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Homomorphic encryption is a very useful gradient protection technique used in privacy preserving fed-
erated learning. However, existing encrypted federated learning systems need a trusted third party to
generate and distribute key pairs to connected participants, making them unsuited for federated learning
and vulnerable to security risks. Moreover, encrypting all model parameters is computationally intensive,
especially for large machine learning models such as deep neural networks. In order to mitigate these
issues, we develop a practical, computationally efficient encryption based protocol for federated deep
learning, where the key pairs are collaboratively generated without the help of a trusted third party.
By quantization of the model parameters on the clients and an approximated aggregation on the server,
the proposed method avoids encryption and decryption of the entire model. In addition, a threshold
based secret sharing technique is designed so that no one can hold the global private key for decryption,
while aggregated ciphertexts can be successfully decrypted by a threshold number of clients even if some
clients are offline. Our experimental results confirm that the proposed method significantly reduces the
communication costs and computational complexity compared to existing encrypted federated learning
without compromising the performance and security.

� 2021 Elsevier B.V. All rights reserved.
1. Introduction

Federated learning (FL) [48] enables different clients to collabo-
ratively train a global model by sending local model parameters or
gradients to a sever, instead of the raw data. Compared to tradi-
tional centralized learning, FL cannot only address the problem
of isolated data island, but also play an important role in privacy
preservation. Consequently, FL has been deployed in an increasing
number of applications in mobile platforms, healthcare, and indus-
trial engineering, among many others [42,72].

However, FL consumes a considerable amount of communica-
tion resources. Model parameters or gradients need to be down-
loaded and uploaded frequently between the server and clients
in each communication round, resulting in a longer operational
stage especially for those large and complex models such as deep
convolutional neural networks [35]. Much research work has been
proposed to reduce the communication costs in the context of FL,
including layer-wise asynchronous model update [12], reduction
of the model complexity [79], optimal client sampling [56], and
model quantization [4,69] based on the trained ternary compres-
sion [78]. It has been empirically and theoretically shown that
using quantization in FL does not cause severe model performance
degradation [4,14,17], and under certain conditions, quantization
can even reduce weight divergence [69].

Although FL can preserve data privacy to a certain degree,
recent studies [61,51,54,23,41] have shown that local data infor-
mation can still be breached through the model gradients uploaded
from each client. Under the assumption that the server is honest-
but-curious, differential privacy (DP) [18] and homomorphic
encryption (HE) [25] have been introduced into FL as additional
privacy-preserving mechanisms. DP injects Gaussian [2] or Lapla-
cian [61] noise into each uploaded model gradients [26,67], which
is cost-effective and light-weighted. But the added noise has a neg-
ative impact on the model performance and cannot deal with data
reconstruction attacks upon the model gradients [54].

Similar to FL, privacy preservation in distributed optimization
[73,75] is also an intrinsic issue. Mao et al. [47] propose a privacy
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preserving distributed optimization algorithm over time-varying
directed communication networks by adding conditional noise to
the exchanged states. Besides, Lu and Zhu [44] adopt HE to pri-
vately execute a distributed projected gradient-based algorithm
on a set of agents. Different from the above work, Xu et al. [70] con-
struct a federated data-driven evolutionary optimization frame-
work to perform data-driven optimization without centrally
storing the training data on the server.

HE is originally applied to outsourced data for privacy-
preserving computation and supports direct ciphertext calcula-
tions. It can be roughly divided into partial homomorphic, some-
what homomorphic and fully homomorphic encryptions [25].
Among them, additive HE [52] can be seen as a partial HE that pro-
vides an efficient protection on gradients and enables gradient
aggregation in FL, in which only the addition operation is involved.
In an HE-based FL, each client encrypts its model gradients before
uploading to the central server, where all encryptions can be
directly aggregated. Phong et al. [54] adopted learning with error
(LWE) based HE and Paillier encryption in distributed machine
learning to safeguard communicated model parameters. But their
method requires that all clients are honest, which is a very strong
assumption and unrealistic for many real-world applications. Later,
Truex et al. [63] performed threshold Paillier encryption [15] to
construct a more practical system, which is more robust to mali-
cious clients in the FL context. Besides, Ma et al. [45] proposed a
privacy-preserving method for multi-party deep learning based
on exponential ElGamal encryption and bilinear pairings. However,
this work is based on an assumption that there is no collusion
between server and clients.

Similar ideas that use HE in FL have also been presented in
[46,28], which, however, incur a considerable increase in commu-
nication costs. More recently, Zhang et al. [74] proposed a batch-
crypt scheme for batch gradients encoding and encryption
without increasing the communication costs, but this method con-
sumes huge amount of local computational resources.

Using HE and DP [63,77,32] together in FL has become a popular
research topic nowadays, which can defend against attacks upon
the shared global model on the server side. Nevertheless, DP pro-
tection in this framework has limited effect against inference
attacks from the client side, since local data has been already
‘‘masked” by HE.

Besides HE and DP based protection methods, other techniques
like secure masking has also been used. Bonawitz et al. [7] pro-
posed a secure aggregation protocol by double masking uploaded
local models with random numbers. In this scheme, keys are gen-
erated to do Diffle-Hellman key exchange without the help of a
TTP. However, this method applies the Diffle-Hellman key
exchange and Shamir secret sharing for every client, which
requires a large amount of communication resources. Similarly,
Kursawe et al. [36] proposed a single masking method for secure
aggregation in smart grids without a TTP, assuming that grid collu-
sion and party dropout do not exist, making it inapplicable to the
FL environment.

Existing HE-based FL systems have the following two major
drawbacks. First, most methods require a trusted third party
(TTP) to generate and distribute key pairs, increasing topological
complexity and attack surfaces of FL systems. In case the TTP is
compromised, the secret messages will be revealed. Second, exist-
ing HE-based FL designs do not scale well to deep learning models
containing a large number of parameters, because encryption and
decryption of all trainable parameters are computationally pro-
hibitive and uploading the entire encrypted model consumes a
huge amount of communication resources. In addition, privacy
protection techniques used in distributed optimization are usually
unsuited for federated deep learning. The main reason is that the
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number of model parameters in distributed optimization is much
less than that in federated deep learning. Therefore, there is no
high demand for secure computation in distributed optimization.
Take the method used in [44] as an example, each agent (client)
generates its own key pairs to encrypt its state for n times without
the help of TTP, where n is the number of agents. The payload of n
times encryption is acceptable, since the state is just a scalar in dis-
tributed optimization. However, this becomes intractable in feder-
ated deep learning, as deep neural networks contain millions or
even billions of model parameters.

To address the above challenges, this work aims to propose a
practical and efficient privacy-preserving federated deep learning
framework on the basis of additive ElGamal encryption [19] and
ternary quantization of the local model parameters, DAEQ-FL for
short. In DAEQ-FL, the global key pairs are collaboratively gener-
ated between the server and clients, and quantization makes it
practical to encrypt deep neural networks in federated learning.
The main contributions of the work are:

� We propose, for the first time, an efficient threshold encryption
system with federated key generation and model quantization
for federated deep learning systems. As a result, the number
of model parameters to be encrypted and the communication
costs for uploading the local models are considerably reduced,
and an extra TTP is no longer required.
� An approximate model aggregation method is developed for the
server to separately aggregate the uploaded ciphertexts and the
quantized gradients, making it possible to download the aggre-
gated ciphertexts to T (threshold value) qualified clients only for
distributed partial decryption. Thus, the proposed approximate
aggregation can further dramatically reduce the computational
and communication cost for threshold decryption.
� Extensive empirical experiments are performed to compare the
proposed method to threshold Paillier [63] with respect to the
learning performance, communication cost, computation time
and security. Our results confirm that even encoded with 10
bits, the proposed method can significantly decrease the com-
putation time and communication cost with no or negligible
performance degradation.

The remainder of the paper is structured as follows. Section 2
introduces the preliminaries of federated learning, deep neural
network models, and the ElGamal encryption system. Details of
the proposed methods, including federated key generation, encryp-
tion and decryption, ternary quantization, and model aggregation
are provided in Section 3. Experimental results and discussions
are given in Section 4. Finally, conclusion and future work are pre-
sented in Section 5.

2. Preliminaries

2.1. Federated learning

Unlike the centralized cloudmodel training that needs to collect
raw data from different parties and store the data on a server, FL
[72] is able to distributively learn a shared global model without
accessing any private data of the clients. As shown in Fig. 1, at
the t-th round of FL, K connected clients download the same global
model ht from the server and update it by training with their own
data. After that, trained local models or gradients will be uploaded
back to the server for model aggregation. Therefore, the global
model can be learned and updated while all the training data
remain on edge devices.

FL aims to optimize a distributed loss function ‘ hð Þ as shown in
Eq. (1),



Fig. 1. Flowchart of federated learning. htare the global model parameters in the t-th communication round, nk is the data size of client k, and K is the total number of clients.
The global model parameters are randomly initialized at the beginning of the training and will be updated by aggregating the uploaded local models in each round.
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min
h

‘ hð Þ ¼
XK
k¼1

nk

n
Lk hð Þ; Lk hð Þ ¼ 1

nk

X
i2Pk

‘i h; xið Þ ð1Þ

where k is the index of K total clients, Lk hð Þ is the loss function of the
k-th local client, nk equals to the local data size, and Pk is the set of
data indexes whose size is nk, i.e., nk ¼ jPkj. Note that the training
data xi on each client k may not satisfy the independent and iden-
tically distributed assumption, i.e., non-IID.

Although the data on the clients do not need to be shared, FL is
still subject to security risks, since the model gradients naturally
contain information of the training data. It has been theoretically
proved in [54] that only a portion of the gradients may lead to
the leakage of private information of the local data. If we assume
the cost function to be a quadratic function, the corresponding gra-
dients can be calculated in Eq. (2).

J h; xð Þ¼def hh xð Þ � yð Þ2

gk ¼ @J h;xð Þ
@h ¼ 2 hh xð Þ � yð Þr0

Xd
i¼1

xiwi þ b

 !
� xk

ð2Þ

where gk and xk are the k-th feature of gradient g 2 Rd and the input

data x 2 Rd, respectively. Since the product

2 hh xð Þ � yð Þr0 Pd
i¼1xiwi þ b

� �
is a real scalar number, the gradient

is in fact proportional to the input data. As a result, uploading model
gradients cannot completely prevent local data from being revealed
and enhanced protection techniques are required for secure FL
systems.
2.2. Deep learning

Deep learning has been deployed in the fields of computer
vision, speech recognition and many other areas [27,37,57,16,50].
The word ‘deep’ means that neural network (NN) models, such as
convolutional neural networks (CNNs) [38] and recurrent neural
networks (RNNs) [58], used in deep learning always contain multi-
ple hidden layers.

For a typical supervised learning [49], the training purpose is to
minimize the expected distance between a desired signal y (e.g., a
label in classification) and a predicted value ŷ, which is often rep-
resented by a so-called loss function ‘ y; ŷð Þ as shown in Eq. (3),
where h is the trainable model parameters we want to optimize.
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min
h

‘ hð Þ ¼ 1
N

X
i

‘ y; ŷjh; xið Þ xi 2 x1; x2 . . . ; xNf g ð3Þ

The stochastic gradient descent (SGD) algorithm is the most
widely used optimization method that calculates the partial
derivatives of the loss function (3) with respect to each model
parameter in h. The model parameters will be updated by subtract-
ing scaled calculated gradients as shown in Eq. (4),

gt ¼ rh‘ h; xð Þ
htþ1 ¼ ht � ggt

ð4Þ

where g is the learning rate and gt is the expected gradient over
data samples x at the t-th iteration. The model update based on
SGD in (4) is repeatedly performed until the model parameters
converge.

DNNs often contain a large number of layers and training very
deep models on big datasets is extremely time-consuming. There-
fore, DNNs will incur excessive communication and computation
costs when they are adopted in FL.
2.3. Homomorphic encryption and secret sharing

HE is the most widely used data protection technology in secure
machine learning as it supports algebraic operations including
addition and multiplication on ciphertexts. An encryption method
is called partially HE if it supports addition or multiplication oper-
ation, and fully HE if it supports an infinite number of addition and
multiplication operations. Without loss of security and correctness,
additive HE fulfills that multiple parties encrypt message
Ci ¼ Encpk mið Þ and decrypt

Pn
i¼1mi ¼ Decsk

Qn
i¼1Ci

� �
using public

key and secret key, respectively.
Among those well-studied HE techniques, ElGamal[19] is a mul-

tiplicative mechanism while Paillier [52] provides additive opera-
tions, which are based on discrete logarithm and composite
degree residuosity classes, respectively. The former needs 256-bit
key length to achieve the 128 bit security level, whereas the latter
costs 3072 bits [5], implying that ElGamal is a computationally
more efficient encryption and decryption method [33]. However,
additional Cramer transformation [13] needs to be applied to ElGa-
mal encryption so as to extend it to support additive operations.

Conventional HE is not well suited for distributed learning sys-
tems such as FL systems, since the ciphertexts on the server can be
easily inferred, as long as one client uploads its private key to the
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server. In order to mitigate this issue, Adi Shamir [60] proposed
Shamir Secret Sharing (SSS) which splits a secret into n different
shares. Consequently, T-out-of-n shares are needed to recover the
secret. Based on the SSS and Diffie–Hellman (DH) security defini-
tion (refer to Appendix A in the Supplementary material), Feldman
proposed verifiable secret sharing (VSS) [20], which adds a verifica-
tion process during sending shares.

But Feldman VSS only allows trusted clients to share secrets and
it will fail to generate correct key pairs if there are adversaries in
the system. To address this limit, Perdersen [53] proposed a novel
VSS that is able to detect and exclude adversarial clients. On the
basis of the above two VSS methods, Gennaro et al. [24] introduced
a secure distributed key generation (DKG) for discrete logarithm
based crytosystems.

We propose a federated key generation (FKG) based on DKG for
model parameter encryption in FL and the details of FKG will be
given in Section 3.

3. Our proposed system

The motivation of the proposed privacy preserving system is to
remove the requirement of a TTP commonly used in FL for gener-
ating key pairs for encryption, and the whole system should be
robust to malicious clients. A key component for the proposed sys-
tem is federated key generation (FKG) that allows the server and
clients collaboratively generate key pairs without a TTP. To this
end, additive discrete logarithm based encryption is adopted to
achieve secure model aggregation. In addition, a fixed point encod-
ing method is implemented to encode the plaintext. In order to
decrease computational and communication resources, ternary
gradient quantization and approximate model aggregation are fur-
ther introduced. In the following, we elaborate each of our main
components and present a description of the proposed overall
DAEQ-FL system. Finally, a brief discussion is given to compare
our DAEQ-FL with existing encryption based FL systems.

3.1. Threat model

The potential threats considered in this work include those
from the server, clients and outsiders in the FL proposed DAEQ-
FL system. Specifically, in key generation period, we assume that
at least T-out-of-n clients generate key pairs honestly. The remain-
ing clients could be malicious and might try to steal keys from the
honest parties or make the generated keys incorrect for encryption
and decryption. In the training period, we consider the server and
clients are honest-but-curious, which means they strictly follow
the FL algorithm but try to infer extra information from received
information. Our main goal is to prevent clients data from being
leaked, but the situation in which malicious clients attempt to
deteriorate global model performance [11,43] is not considered
here. Besides, we assume that outsiders are passive attackers
who could eavesdrop communication channels during the whole
FL process.

3.2. Federated key generation

The proposed FKG is a variant of DKG [24], which is based on
Pedersen VSS and Feldman VSS that can verify key shares in a
secure way for successful key generations. The main steps of FKG
are described in Algorithm 1.
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Algorithm1 Federated Key Generation. G is a cyclic group, p
and q are large prime numbers, g is a generator, y 2 G, N is
the number of total clients, C is the fraction of clients
participating the current round, i is the client index, and T is
the threshold value.

1: Server distributes public parameters < p; q; g; y >

2: for Each FL round t ¼ 1;2; . . . do
3: n ¼ C � N
4: Select threshold value T > n=2
5: Client i 2 1; � � � ;nf g perform Pedersen VSS
6: Collect the number of complaints cpti for client i
7: for Client i 2 1; � � � ;nf g do
8: if cpti > T then
9: Mark client i as disqualified
10: else
11: Client i uploads f i jð Þ and
12: if Eq. (6) is satisfied then
13: Mark client i as qualified (QUAL)
14: else
15: Mark client i as disqualified
16: end if
17: Mark client i as QUAL .T 6—QUAL—

6 n
18: end if
19: end for
20: Client i 2 QUAL perform Feldman VSS
21: Collect complained client index in O,
22: for Each client i 2 O do .jOj < T
23: Set counter ¼ 0
24: for Each client j 2 QUAL but j R m do
25: Client j uploads f j ið Þ and f 0j ið Þ
26: if Eq. (7) is satisfied then
27: counter ¼ counter þ 1
28: end if
29: if counter P T then
30: Break
31: end if
32: end for
33: Retrieve f i zð Þ and Ai0 .Ai0 ¼ gai0 modpð Þ
34: end for
35: Generate global public key h ¼ Qi2QUAL Ai0 ¼ gx

36: end for

Assume that the server in DAEQ-FL is honest-but-curious, and
there are at least T-out-of-n (T > n=2) honest clients. Before key
pair generation, the server needs to generate and distribute four
public parameters p; q; g and y, where q is the prime order of
cyclic group G; p is a large prime number satisfying
p� 1 ¼ rq; r is a positive integer, g and y are two different ran-
dom elements in G.

For Pedersen VSS executed in line 5 of Algorithm 1, each
participating client i in the t-th round generates two random
polynomials f i zð Þ and f 0i zð Þ over Z�q of order T � 1 as shown in
Eq. (5).

f i zð Þ ¼ ai0 þ ai1z þ . . .þ aiT�1zT�1 modqð Þ
f 0i zð Þ ¼ bi0 þ bi1z þ . . .þ biT�1zT�1 modqð Þ ð5Þ
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Let zi ¼ ai0 ¼ f i 0ð Þ be the locally stored private key. Client i
broadcasts Cik ¼ gaik ybik modpð Þ and sends shares
sij ¼ f i jð Þ; s0ij ¼ f 0i jð Þ to client j (j 2 n), then client j verifies the
received shares by Pedersen commitment:

gsij ys
0
ij ¼

YT�1
k¼0

Cikð Þjk modpð Þ ð6Þ

Due to the hiding and binding properties of Pedersen commit-
ment [53], it is impossible for adversaries, if any, to guess the real
aik and bik through Cik or to find another a pair of sij and s0ij that can
satisfy Eq. (6). In addition, based on our previous security assump-
tion and the principle of SSS, it is infeasible to reconstruct the pri-
vate keys of any honest clients even if the system contains n� T
malicious clients.

Each client sends a complaint of client i to the server if any
shares sij and s0ij received from client i do not satisfy Eq. (6). Once
the server receives more than T complaints against client i (line 6
in Algorithm 1), this client will be immediately disqualified.
Besides, as long as client i is complained by any client j, where
j 2 1; � � � ;nf g, the corresponding shares sij and s0ij are required to
upload to the central server for Pedersen commitment (Eq. (6))
verification. If any verification fails, client i would be marked as
disqualified.

However, Pedersen VSS cannot guarantee correct global public
key generation, since malicious clients can still corrupt the gener-
ation process by broadcasting fake Ai0 (line 33 in Algorithm 1).
Therefore, Feldman VSS is used in addition to Pedersen VSS to
ensure that all the QUAL clients broadcast correct Ai0 for in the pro-
posed FKG.

Similarly, to implement Feldman VSS (line 20 in Algorithm 1),
each client j (j 2 QUAL) broadcasts Aik ¼ gaik modpð Þ and verifies
Eq. (7).

gsij ¼
YT�1
k¼0

Aikð Þjk modpð Þ ð7Þ

If shares of client i satisfy Eq. (6) but not Eq. (7), client jwill send
a complaint to server. Then the server requires T QUAL clients to
upload their shares f i jð Þ; j 2 t to retrieve the random polynomial
f i zð Þ of client i by Lagrange interpolation function [6] as show in
Eq. (8).

kj ¼
Y
k–j

z�k
j�k ; k 2 T; j 2 QUAL

f i zð Þ ¼
X

j2QUAL
kjf i jð Þ

ð8Þ

Finally, the server can generate the global public key through
broadcasting Ai0 from all QUAL clients in Eq. (9), where x is in fact
the global private key. And then, the public key h will be shared to
all QUAL clients.

hi ¼ Ai0 ¼ gzi modpð Þ

h ¼
Y

i2QUAL
hi ¼ g

X
i2QUAL

zi

¼ gx modpð Þ
ð9Þ

Pedersen’s VSS and Feldman’s VSS for FKG require at most
768NT þ 64N N � 1ð Þ bytes of communication, where N is the total
number of clients and T is the threshold.

3.3. Additive Discrete Logarithm Based Encryption

To be fully compatible with FKG, which is adapted from DKG to
the FL environment, additive discrete logarithm based encryption
is employed based on ElGamal encryption [19].
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The original ElGamal encryption works as follows:

� Parameters generation: Generate three parameters p; q and g,
where q is the prime order of a cyclic group G; p is a large prime
number satisfying qjp� 1, and g is a generator of G.
� Key generation: Select a random number x; x 2 Z�q as the secret
key, and then compute h ¼ gx modpð Þ to be the public key.
� Encryption: To encrypt a message m 2 Z�p, choose a random
number r 2 Z�q as a ephemeral key, calculate two ciphertexts

as < c1 ¼ gr modpð Þ; c2 ¼ mhr modpð Þ >.
� Decryption: The plaintext message m can only be decrypted if
the private key x is available by computing Eq. (9),
c2
cx1
¼ mhr

grð Þx ¼
mgxr

grx
modpð Þ � m ð10Þ

Therefore, the original ElGamal is a multiplicative HE satisfying:
Enc m1ð Þ � Enc m2ð Þ ¼ Enc m1 � m2ð Þ, because
m1h

r1 �m2h
r2 ¼ m1m2h

r1þr2 modpð Þ. Since model aggregation on
the server in FL performs the addition operation, we can apply Cra-
mer transformation [13] on ElGamal encryption by simply convert-
ing the plaintext m into m0 ¼ gm modpð Þ. Consequently, the original
ElGamal encryption becomes a discrete logarithm based additive
HE, as shown in Eq. (11).

Enc m1ð Þ � Enc m2ð Þ ¼ gm1hr1 � gm2hr2

¼ gm1þm2hr1þr2 modpð Þ ð11Þ

A security analysis is described in Appendix B of the Supple-
mentary materials.

3.4. Fixed point encoding method

Note that HE can be applied to integers only, however, model
parameters or gradients are normally real numbers. Therefore,
the real-values model parameters must be encoded before
encryption.

The encoding method used in this work is straightforward, as
shown in Eq. (12), where st is the maximum absolute of the gradi-
ents (will be introduced in Section 3.6), b is the encoding bit length,
q is the above mentioned prime order of G and m is the encoded
integer number.

bm ¼ round st � 2b
� �

; bm 6 intmax

Encode stð Þ ¼ bm modqð Þ ¼ m

Decode mð Þ ¼ m � 2�b; m 6 intmax

m� qð Þ � 2�b; m > q� intmax

( ð12Þ

intmax is the maximum positive encoding number defined by the
server, which is one-third of q. If m > q� intmax ( bm is negative), it

should subtract q before multiplying 2�b, becausebm modqð Þ ¼ qþ bm; bm < 0. Since the bit length of intmax is always
set to be much larger than the encoding bit b, sufficient value space
can be reserved for encoding number summations (additive HE).

3.5. Brute force and log recovery

Using Cramer transformation needs to recover the desired m
from m0 to solve the so-called discrete logarithm hard problem
after decryption. Here, we propose two techniques, namely brute
force and log recovery, to solve this problem.

Brute force recovery simply tries different m from 0 to q� 1,
and the correct m is found only if m0 ¼ gm modpð Þ. Thus, a maxi-
mum of q trials are needed to solve DLHP in the worst case. Fortu-
nately, the absolute values of all the model gradients in DNNs are
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always less than 0:1, and therefore, they can be encoded with a b

bit-length fixed point integer number. It takes about 2b times to
find the correct m if bm is positive. Note that the quantization
method we employ can guarantee that bm is positive, which will
be introduced later.

The log method consumes almost no additional recovery time
by calculating logg gmð Þ ¼ m directly. However, this only works
when gm < p. In order to ensure the best encoding precision (the
encoded m should be as large as possible), we minimize g to
g0 ¼ 2. And the encoded numbermmust be less than the bit length
of a large prime number p, which means the encoding precision is
restricted by the security level. Besides, the security level will not
be reduced by selecting a small fixed g0.

Both the brute force and log recovery are described in Algo-
rithm 2

Algorithm2 Plaintext Recovery. q is a prime order of the
cyclic group G, p is a large prime number satisfying p� 1jq,
g is a random element in G, m is the message to be
recovered, intmax is the maximum positive encoded
number.

1: Brute Force Recovery:
2: g0 ¼ g
3: Given decrypted plaintext m0 ¼ gm0 modpð Þ, m 6 intmax

4: for j from 0 to q� 1 do

5: if gj0 modpð Þ ¼¼ m0 then
6: m ¼ j
7: Break
8: else
9: Continue
10: end if
11: end for
12: Return m
13:
14: Log Recovery:
15: g0 ¼ 2
16: Given decrypted plaintext m0 ¼ gm0 modpð Þ, gm0 6 p
17: m ¼ logg0 gm0

� �
18: Return m
3.6. Ternary gradient quantization

Encrypting and decrypting all elements of the model gradients
have several shortcomings. First, performing encryption on local
clients is computationally extremely expensive, causing a big bar-
rier for real world applications, since usually the distributed edge
devices do not have abundant computational resources. Second,
uploading model gradients in terms of ciphertext incurs a large
amount of communication costs. Finally, the first two issues will
become computationally prohibitive when the model is large and
complex, e.g., DNNs.

In order to tackle the above challenges, we introduce ternary
gradient quantization (TernGrad) [68] to drastically reduce compu-
tational and communication costs for encryption of DNNs. Tern-
Grad compresses the original model gradients into ternary
precision gradients with values 2 �1;0;1f g as described in Eq.
(13),

~gt ¼ st � sign gtð Þ � bt

st ¼ max abs gtð Þð Þ ð13Þ
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where gt is the full precision model gradients at the t-th iteration, ~gt

is the quantized gradients, st (a scalar larger than 0) is the maxi-
mum absolute element among gt , and the sign function transfers
gt into binary precision with values 2 �1;1f g. Finally, bt is a binary
tensor whose elements follow the Bernoulli distribution [64].

Pr btk ¼ 1jgtð Þ ¼ jgtkj=st
Pr btk ¼ 0jgtð Þ ¼ 1� jgtkj=st

ð14Þ

where btk and gtk is the k-th element of bt and gt , respectively, and
the product of sign gtð Þ and btk is a ternary tensor ( �1;0;1f g) repre-
senting the model training direction. According to Eq. (4), the full
precision model parameters in TernGrad is updated as shown in
Eq. (15).

htþ1 ¼ ht � g st � sign gtð Þ � btð Þ ð15Þ
Since st is a random variable depending on input xt and the

model weights ht , Eq. (14) can be re-written into Eq. (16).

Pr btk ¼ 1jxt ; htð Þ ¼ jgtkj=st
Pr btk ¼ 0jxt ; htð Þ ¼ 1� jgtkj=st

ð16Þ

The unbiasedness of the ternary gradients can be proved as
shown in Eq. (17).

E st � sign gtð Þ � btð Þ ¼ E st � sign gtð Þ � E btjxtð Þð Þ
¼ E gtð Þ

ð17Þ

The TernGrad algorithm is adopted in the proposed DAEQ-FL to
significantly reduce the computational cost for encryption on local
devices and the communication costs for passing the encrypted
model parameters between the clients and the server. Before per-
forming encryption on the local clients, the model gradients are
decomposed into two parts: one is the positive scalar st and the
other is the ternary model gradients sign gtð Þ � btÞ. And only one
scalar st in each layer of the model needs to be encrypted, thereby
dramatically decreasing the computation costs and encryption
time.

The ternary gradients do not need to be encrypted, because
adversaries, if any, can only derive parts of gradients sign informa-
tion from them. It should be noted that existing popular attacks
[54,81,76,22,21,66,29] on FL do not have ability to retrieve the
original data from ternary gradients. In addition, separately
uploading encrypted st and ternary gradients reduce the total
amount of uploads to 16 times smaller than the original. Another
advantage is that it can make brute force recovery much faster,
since the scalar st in Eq. (12) can never be negative.

3.7. Approximate model aggregation

For model aggregation on the server, the received encrypted st
(t-th round in FL) should multiply its corresponding ternary gradi-
ents before weighted averaging (Eq. (18)).

gi
t;ternð Þ ¼ sign gi

t

� � � bi
t

Enc gglobal
t

� �
¼
X
i

ni
n Enc sit

� � � gi
t;ternð Þ

� � ð18Þ

Decryption of the aggregated global gradients Enc gglobal
t

� �
requires to traverse each single ciphertext, which is extremely
time-consuming, making it less practical even if the server often
possess abundant computation resources. Therefore, this work
proposes an approximate aggregation method (Fig. 2) so as to
reduce the decryption time. The basic idea is to separately aggre-
gate the encrypted scalar and related ternary gradients, as shown
in Eq. (19).



Fig. 2. Encryption with TernGrad and model aggregation approximation. The Enc sglobalt

� �
is aggregated over the uploaded Enc sit

� �
from the participating clients.
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Enc sglobalt

� �
¼
Y
i

Enc sit � ni
n

� � ¼ Enc
X
i

sit � ni
n

 !
gglobal

t;ternð Þ ¼
X
i

gi
t;ternð Þ

ð19Þ

where i is the client index, ni is the local data size and n is the global

data size. And Enc gglobal
t

� �
¼ Enc sglobalt

� �
� gglobal

t;ternð Þ, if

s1t ¼ s2t ¼ . . . ¼ snt . However, this condition is hard to satisfy and

the bias gglobal
t � sglobalt � gglobal

t;ternð Þ is difficult to estimate due to the ran-
dom property of SGD. In reality, each client’s local scalar satisfies
s1t � s2t � . . . � snt , and our experimental results (Section II.B in the
Supplementary material) confirm that the values of st of different
clients are very similar, making this approximation reasonable.

Note that a small implementation trick used here is to do
weighted averaging upon st before encryption, which helps reduce
the differences between sit and avoid overflow of the encrypted
gradients during model aggregations on the server.

To update the global model, only two ciphertexts Enc sglobalt

� �
of

each layer need to be decrypted, which will be multiplied by the
global ternary gradients afterwards as shown in Eq. (19)

sglobalt ¼ Dec Enc sglobalt

� �� �
hglobaltþ1 ¼ hglobalt � gsglobalt � gglobal

t;ternð Þ

ð20Þ
3.8. Overall framework: DAEQ-FL

The overall framework, distributed additive ElGamal encryption
and quantization for privacy-preserving federated deep learning,
DAEQ-FL for short, is depicted in Algorithm 3. Note that our algo-
rithm generates key pairs at the beginning of each round, consider-
ing that in practice the keys are often frequently changed. This is,
however, not a mandatory requirement.

Algorithm3 DAEQ-FL. p, q, g, y are key parameters introduced
in Algorithm 1, pk is the global public key, Qual are
qualified clients, N is the total number of clients, C is the
fraction of connected clients, E is the number of local
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epochs, B is the local batch data, ht is the global model
parameters at the t-th FL round, T is the threshold value,
and g is the learning rate.

1: Server:
2: Generate and distribute p, q, g, y and global model

parameters h0
3: for each FL round t ¼ 1;2; . . . do
4: Select n ¼ C � Nclients, C 2 0;1ð Þ
5: Select T > n=2
6: Generate pk by FKG among n clients in Algorithm 1
7: for each client i 2 Qual in parallel do
8: Download ht
9: Do local Training

10: Upload cit;1ð Þ, c
i
t;2ð Þ and Dhi t;ternð Þ

11: end for
12: c t;1ð Þ ¼

Q
ic

i
t;1ð Þ modpð Þ

13: c t;2ð Þ ¼
Q

ic
i
t;2ð Þ modpð Þ

14: Dh t;ternð Þ ¼
P

iDh
i
t;ternð Þ

15: Randomly select T Qual clients
16: foreach client j 2 T in parallel do
17: Download c t;1ð Þ and c t;2ð Þ
18: Do Partial Decryption
19: end for

20: gTmt
0 ¼ Qj2Tpdj ¼ gTmt

0 g
x�
P

j
kjxi

� �
T
modpð Þ

21: Recover Tmt by Algorithm 2
22: htþ1 ¼ ht � Dh t;ternð Þ � Tmt=T
23: end for
24:
25: Client i:
26: // Training:

27: hit ¼ ht
28: for each iteration from 1 to E do
29: for batch b 2 B do

30: hit ¼ hit � grLi hit ; b
� �

31: end for
32: end for

33: Dhit ¼ hit � ht

(continued on next page)
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34: Quantize Dhit into sit and Dhi t;ternð Þ in Eq. (13) and (18)

35: Encode mi
t ¼ round sit � Dk=D � 2l

� �
modqð Þ in Eq. (12)

36: Encrypt cit;1ð Þ ¼ gri modpð Þ, cit;2ð Þ ¼ gm
i
t

0 pkri modpð Þ .ri is a

random number, ri 2 Z�q
37: Return cit;1ð Þ, c

i
t;2ð Þ and Dhi t;ternð Þ to server

38: // Partial Decryption:
39: xi ¼

P
jsji ¼ f j ið Þ; i; j 2 QUAL .f j ið Þ in

Algorithm 1

40: Partial decrypt pdi ¼ c t;2ð Þ=c
kixiT
t;1ð Þ modpð Þ

41: Return pdi

Note that the server can determine the threshold value T based
on the number of participating clients n in each FL round (T > n=2).
If the number of QUAL clients are less than T, the disqualified cli-
ents will be kicked out of the system and then the process is
aborted and FKG is restarted. After FKG, each QUAL client i down-
loads the global model parameters ht and the public key pk for local
training. Then the model gradients, obtained by subtracting the
received global model ht from the local updated model hit , are con-

verted into a real-valued coefficient sit and a ternary matrix Dhi t;ternð Þ
before performing ElGamal encryption. Two ciphertexts cit;1ð Þ and

cit;2ð Þ together with a ternary gradient Dhi t;ternð Þ are then uploaded
to the server for model aggregation as described in Section 3.7.

For decryption (Fig. 3), only two aggregated ciphertexts need to
be downloaded to T QUAL clients for partial decryption and T par-
tial decrypted ciphertexts pdi are uploaded back to the server (line
16–20 in Algorithm 3). The server can easily get the plaintext gTmt

0

by multiplying all received ciphertexts pdi. sji is a share f j ið Þ (intro-
duced in Algorithm 1) from client j to client i; ki ¼

Q
j–i

j
j�i is the

Lagrange coefficient and x ¼Pj2QUALzj is the global private key.
According to the property of SSS, at least T (threshold value) differ-
ent f i jð Þ; j 2 T shares are needed to retrieve the local private key zi.
The reason why x�Pikixi ¼ 0 is proved below:
Fig. 3. The encrypted sglobalt is downloaded to T qualified clients for partial decryption, an
the final plaintext.
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P
i2Tkixi ¼

X
i2T

ki
X

j2QUAL
f j ið Þ

¼
X

j2QUAL

X
i2T

kif j ið Þ

¼
X

j2QUAL
zj ¼ x

ð21Þ

One of the advantages of DAEQ-FL is that no parties within the
FL system, including the server, can know the global private key x,
which significantly enhances system security level. In addition, the
extra communication resources are negligible, and only three
ciphertexts c t;1ð Þ; c t;2ð Þ and pdi are transmitted between the server
and each client i with the help of the TernGrad algorithm. Finally,
DAEQ-FL is robust to possible disconnection of individual clients,
since the ciphertext can be successfully decrypted so long as a min-
imum of T QUAL clients upload their pdi.
3.9. Discussion

We list the general differences between our proposed system
and four popular existing approaches in Table 1. From the table
we can see that our DAEQ-FL has remarkable superiority, being a
threshold based encryption system without an extra TTP and toler-
ating the existence of malicious clients. We here note that Truex
et al. [63] also proposed a threshold based Paillier encryption sys-
tem in FL, but it still requires a TTP for key generation. Some quan-
tization technique is introduced in [74] for efficient encoding and
encryption, but it is totally different from our ternary quantization
methods.

Compared to LWE [55,9] causing excessive message expansion
and functional encryption [8,40] with large computaional com-
plexity, Paillier is a relatively lightweighted encryption scheme.
Therefore, we compare Paillier with our system in the next section.
It is worth considering that in the real world scenario, outsiders
could tamper the messages communicating between server and
clients, a signature scheme could be used here [19] based on keys
generated by FKG. In addition, the double masking method pro-
posed by Bonawitz et al. [7] needs to recover masking values as
d then the partial decrypted ciphertexts are uploaded back to the server to retrieve



Table 1
Comparison of encryption based privacy preserving FL systems.

Proposed systems Threat model Encryption scheme Without TTP Threshold Based

Server Client

Phong et al. [54] honest but curious honest Paillier, LWE
Truex et al. [63] honest but curious majority honest Paillier U

Xu et al. [71] honest but curious majority honest functional encryption
Batchcrypt[74] honest but curious honest Paillier U

Ma et al. [45] honest but curious honest ElGamal U

DAEQ-FL(our system) honest but curious majority honest ElGamal U U
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long as one client is offline which is not computationally efficient.
Our threshold based encryption scheme is more efficient and
robust to this drop out problem, since it only require T-out-of-n cli-
ents to be online during decryption period.
4. Experimental results

In this section, we first introduce the datasets and models used
in the experiments, together with all settings of the FL and encryp-
tion. We also present the communication and computation cost
resulting from encryption, as well as the time consumption of
the brute force recovery, followed by the analysis of approximate
aggregation and a description of results on the model perfor-
mances. Intel(R) Xeon(R) Gold 5218 CPU @ 2.30 GHz and NVIDIA
Quadro RTX 6000 GPU are used in our experiments.
4.1. Dataset and model information

In our simulations, we use CNN for MNIST [39] digit number
classifications, ResNet for CIFAR10 [34] image classifications and
stacked LSTM [30] for Shakespeare [59] next word prediction task.
All three datasets are non-iid among different clients.

MNIST is a 28x28 grey scale digit number image dataset con-
taining 60,000 training images and 10,000 testing images with 10
different kinds of label classes (0	9). All the clients’ training data
are distributed according to their label classes and most clients
contain only two kinds of digits for non-iid partition.

CIFAR10 contains 10 different kinds of 50,000 training and
10,000 testing 32x32x3 images. Similar to MNIST, the whole train-
ing data are horizontally sampled and each client owns five differ-
ent kinds of object images.

The Shakespeare dataset is built from the whole work of Wail-
liams Shakespeare. It has in total 4,226,073 samples with 1129 role
players and the data samples of each role player represent the
dataset on each client. Additionally, 90% of the user’s data are ran-
domly divided as the training data and the rest are testing data.
This dataset is naturally non-iid and unbalanced, with some clients
having few lines and others a large number of lines. In order to
reduce the training time, we follow the method used in [10] to ran-
domly select 5% of the total users and remove those containing less
than 64 samples.

Note that we do not apply any data augmentation techniques
[62,65] to boost the final global model performances to reduce
local computational complexity, since the main purpose of this
work is not to achieve the state of the art model performances in
FL; instead, we aim to present a distributed encryption method
for better privacy preservation in FL without considerably increas-
ing the computational and communication costs.

A CNN model is adopted to train on MNIST in the FL framework,
which contains two 3 � 3 convolution layers with 32 and 64 filter
channels, respectively, followed by a 2 � 2 max pooling layer. And
then, a hidden layer with 128 neurons is fully connected to the flat-
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tened output of the max pooling layer. Thus, the whole CNN model
has 1,625,866 learnable parameters.

CIFAR10 dataset is to be learned by a ResNet model. The input
images firstly pass through a 3x3 convolutional layer with 64 chan-
nels, followed by a batch normalization layer [31] with the Relu [3]
activation function. Its output is connected to four sequentially
connected block layers with 64, 128, 256, 512 filter channels,
respectively. Each block layer contains two residual blocks contain-
ing two convolutional layers, each followed by a batch normaliza-
tion layer and a shortcut connection. All the trainable parameters
of the batch normalization layers are disabled, because they are
observed to perform poorly with small batch sizes and non-iid data
[31,80]. The full ResNet model has 11,164,362 trainable
parameters.

The Shakespeare dataset is trained by a stacked LSTM model
which contains two LSTM layers, each with 256 neurons. Since
we use the module cudnnLSTM of Tensorflow [1], the layer bias
is twice as large as the original LSTM layer. Thus, the full model
contains 819,920 parameters.

4.2. Federated learning and encryption settings

In the experiments for image classification using CNN and
ResNet, the FL system consists of total 20 clients, each containing
3000 and 2500 data samples for MNIST and CIFAR10, respectively.
The total number of communication rounds is set to be 200 and all
the clients are connected to the server in each communication
round. In the experiments for language modeling using the LSTM,
we randomly sample 5% of the entire role players (36 role users
containing at least 64 samples) in Shakespeare dataset. Therefore,
only 10 out of the 36 clients are randomly chosen to participate the
training, following the settings in [10]. The total number of com-
munication rounds is set to be 100.

We use SGD algorithm for all model training. For the CNN mod-
els, the number of local epochs is set to 2, the batch size is 50, and
the learning rate is 0.1 with a decay rate of 0.995 over the FL
rounds. We do not use any momentum for training the CNNs, while
the momentum is set to be 0.5 for the ResNet. For the LSTM, the
local epoch is set to 1, the batch size is 10, and the learning rate
is 0.5 with a decay rate of 0.995.

The threshold rate is set to be 0.6 and the corresponding thresh-
old value T is 0:6n, where n is the number of connected clients in
each communication round. Note that threshold T can be set to
any value so long as it satisfies the condition T > n=2 so that the
assumption that the number of benign clients is larger than that
of malicious clients holds. The key size and group size of the dis-
tributed additive ElGamal encryption are set to 256 and 3072,
respectively, to offer a 128-bit security level. Besides, the bit length
b for encoding is chosen to be from 2 to 15. Due to the limited com-
putation resources, a very large encoding bit length (b > 15) is not
used here, since it will consume much more time for brute force
recovery. Besides, for the log recovery, g0 is set to 2 for fast encryp-
tion and the condition gm

0 6 p must be satisfied as described in



Table 2
Communication costs of one connected client for both encryption and partial decryption with 128-bit security level, # of ciphertexts means the number of transmitted ciphertexts
for encryption and decryption, respectively.

Models Enc Uploads (MB) Dec Downloads (MB) Dec Uploads (MB) # of Ciphertexts

CNN (DAEQ-FL) 0.3876 + 0.0059 0.0059 0.0029 16 + 24
ResNet (DAEQ-FL) 2.6618 + 0.0161 0.0161 0.0081 44 + 66
LSTM (DAEQ-FL) 0.1955 + 0.0066 0.0066 0.0033 18 + 27
CNN (Paillier) 595.4099 595.4099 595.4099 1625866 + 3251732

ResNet (Paillier) 4088.5115 4088.5115 4088.5115 11164362 + 22328724
LSTM (Paillier) 300.2637 300.2637 300.2637 819920 + 1639840

Table 3
Runtime for encryption and decryption of one number using ElGamal and Paillier.

Algorithm Enc Time (s) Dec Time (s)

ElGamal 0.0029 0.0015
Paillier 0.0501 0.0141
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Algorithm 2. Since the group size of p is 3072, the encoded number
m must satisfy the condition 2m 6 3072 and the corresponding
encoding bit length satisfies the condition b 6 11:6. Also consider-
ing the overflow problem previously discussed, the largest encod-
ing bit length for log recovery is set to 10. As a result, the log
recovery is used when the encoding bit length ranges from 2 to
10, while the brute force recovery method is adopted when the
bit length is larger than 10.
4.3. Encryption cost and brute force recovery time

At first, we compare the communication costs between the pro-
posed DAEQ-FL and a threshold based Paillier method in terms of
encryption and recovery costs.

We experiment with three different models (CNN, ResNet and
LSTM) in our DAEQ-FL system and compare them with the
Paillier-based variants. As shown in Table 2, the communication
cost of our system is dramatically less than those Paillier-based
systems. The best case has been achieved in the LSTM, where each
client consumes only 0.212 MB of communication costs in one
round, whereas the Paillier system takes 900.7911 MB, which is
about 4249x of our system. For training the CNN and ResNet, the
proposed DEAQ-FL costs 0.4023 MB and 2.7021 MB, respectively,
which accounts for approximately 0.023% and 0.022% of the Paillier
based variants.
Fig. 4. Brute force recovery time with different enc
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Next, we compare the runtime of the ElGamal encryption used
in our system and the conventional Paillier method under the same
security level. The runtimes of the two encryption methods for
encrypting and decrypting one number are listed in Table 3,
where both the key size of Paillier and the group size of ElGamal
are 3072.

From the results in Table 3, we can observe that ElGamal is
approximately 17 times and 10 times faster than Paillier for
encryption and decryption, respectively. However, since the Cra-
mer transformation needs extra brute force recovery time, in
the following, we explore the brute force recovery time corre-
sponding to different encoding bit lengths for CNN, ResNet18
and stacked LSTM, respectively. The comparative results are plot-
ted in Fig. 4.

Because the larger the encoding bit length is, the more time the
brute force recovery will consume. Here, we experiment with the
encoding bit length starting from 15 bits to 2 bits. The results
clearly show that the difference in computation times goes bigger
with rising of encoding bit. Specifically, CNN, ResNet and LSTM
spend at most 18.0467s, 42.2203s and 55.2088s on recovery,
respectively.

The CNN and ResNet show similar recovery time profile over
the communication rounds. Their brute force recovery time are
very large in the beginning, and quickly drop over the communica-
tion rounds. This is attributed to the fact that the gradients of the
model parameters of the SGD decrease quickly as the global model
parameters converge. It is surprisingly to see that the recovery
time for the ResNet becomes almost zero, which is smaller than
that of the CNN after approximately 100 communication rounds.
This means the model gradients of the ResNet become very small
at the end of federated model training.

By contrast, the recovery time of the LSTM does not drop to zero
and keeps fluctuating at a relatively high level, especially for the
15-bit length encoding. There are two reasons for the above obser-
vations. First, training of the LSTM involves large gradients of
oding bit lengths for different learning models.



Table 4
Brute force recovery time for 15 encoding bit length.

Models Max (s) Min (s) Avg (s)

CNN 18.0467 1.0717 1.9786
ResNet 42.2203 0.0474 2.6491
LSTM 55.2088 12.6166 23.8876

Fig. 5. Ratio of consumed time for model training, encryption and decryption, and
brute force recovery for the 15-bit encoding length (a), and for the log recovery for
the 10-bit encoding length (b) in one communication round.
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recurrent connections, and those values are determined by the
length of sequence. Second, the setting of the FL environment for
the LSTM is very different from that of the CNN and ResNet, where
only ten clients randomly participate global model aggregation in
one communication round.

Table 4 presents the time consumption of the brute force recov-
ery for 15-bit encoding length. From Fig. 5(a) we can find that the
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average brute force recovery time accounts for a great proportion
of the total elapsed time in each communication round, especially
for the LSTM.

Therefore, we can use the log recovery instead of the brute
force recovery when the encoding bit length is smaller than or
equal to 10 so that the recovery time and the encryption time
become negligible (Fig. 5(b)). Since the group size of p is 3072
bit and g0 is 2, the log recovery is not recommended when the
plaintext message is larger than 3072 bit (11-bit encoding
length). In order to avoid overflow, the maximum encoding bit
length is set to be 10 in our simulations and the global perfor-
mance drop caused by a low encoding bit length will be discussed
in the next section.
4.4. Analysis of approximate model aggregation

For approximate aggregation analysis, we vary the degrees of
data skew among each client, since the local gradient differences
mainly come from different local data distributions. More specif-
ically, there are three kinds of different local data distributions:
1) independent and identical distributed (iid): the training data
is randomly allocated to each client, 2) non-iid with 5 classes:
each client owns five different kinds of object images, 3) non-
iid with 2 classes: each client owns two different kinds of
images.

ResNet is adopted for this analysis, since it is the most complex
model containing the largest trainable parameters in our experi-
ments and the results derived from ResNet are more representa-
tive. In addition, we just display the maximum absolute elements
st of the first convolutional layer and the last fully connected layer,
because it is redundant and unnecessary to show total 22 st values
of all 20 layers in one client. Except that, these experiments are
performed under the federated encryption environment with our
DAEQ-FL algorithm and two kinds of encoding bit length (10 and
15) are used here.

The purpose of this ablation study is to observe whether the
values of st of different clients are similar. And if s1t � s2t � . . . snt
holds, the bias between gglobal

t and sglobalt � gglobal
t;ternð Þ in Eq. (19) of

the original paper would be very small.
All experimental results with three different kinds of data dis-

tributions are shown in Fig. 6–8, respectively. It is clear to see that,
st values from different clients do not show big differences with
each other over communication rounds.

More specifically, for iid cases, the curves of different st values
are nearly located at a single line. In other words, different st values
have almost the same value and our proposed approximate aggre-
gation algorithm has extremely small performance biases for iid
data compared to original weighted averaging method.

For non iid cases with 5 kinds of local images, the curves show
more variations than those of iid cases. However, even for the sce-
narios of 10 bit encoding length, the observed maximum distance
between two st values of the first convolutional layer is less than
0.003 in Fig. 7(a), and the approximation biases caused by these
small differences can be negligible.

The results of very extreme non iid cases with only 2 kinds of
local images are also presented in Fig. 8. This case has an obvious
difference that the st values of the last fully connected layer show
more variations than those of two previous situations. And it is
also clear to see that the maximum distance between two st val-
ues is around 0.005 in Fig. 8(d), thus, even for this extreme case,
our proposed approximate aggregation algorithm would not bring
in large performance biases and is still valid in DEAQ-FL
algorithm.



Fig. 6. st values of all connected clients with iid data.
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4.5. Learning performance

In this section, we empirically examine influence of the Tern-
Grad quantization, approximate aggregation and encoding length
on the learning performance of the proposed DAEQ-FL system.
Fig. 9 shows the test accuracy of the three models with or without
encryption operations. For non encryption cases, ‘Original’ repre-
sents standard FL, ‘TernGrad’ means only quantization is used
and ‘TernGrad + Approx’ uses both quantization and approximated
aggregation technique. And for encryption cases, brute force recov-
ery is used for 15 encoding bit length cases and log recovery is
adopted for 10 bit length scenarios.

From these results, we can see that the test accuracy of the
models of the original FL and four variants of the DEAG-FL have
achieved almost the same performance (in particular the CNN,
with 98.97% test accuracy). These results indicate that both the
quantization and approximated aggregation have negligible
320
impact on the test performance of the global model. Besides, nei-
ther the quantization or encryption has considerably slowed down
the convergence speed over the communication rounds. It also can
be seen that, the CNN and ResNet converge around the 25th round,
while the LSTM is convergent around the 50th round.

More specifically, when the CNN trained on the MNIST dataset,
the model performance does not degrade when the encoding bit
length is decreased to 10. However, For the ResNet trained on
CIFAR10, the test accuracy of the global model is reduce to
74.96% by using 10-bit encoding, which is approximately 1% lower
than models without using encryption. The test accuracy of the
LSTM models fluctuates between around 48% and 52%, regardless
whether quantization or encryption are used or not. This can be
due to the same reasons as discussed above.

Now we take a closer look at the learning performance of the
global model of the proposed DAEQ-FL when the encoding bit
length further decreases. The results for all models are shown in



Fig. 7. st values of all connected clients with non iid data that each client contains only 5 different kinds of object images.
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Fig. 10. It can be noticed that the convergence speed of the CNN
and ResNet starts to decrease when the encoding bit length is
smaller than 9. Besides, the model performance reduces dramati-
cally when the encoding length is reduced to 7 bits or lower for
CNN and to 8 bits or lower for the ResNet, respectively. Reduction
of the encoding bit length does not cause clear model degradation
for the LSTM until when only 2 bits are used for encoding and the
accuracy is reduced to 43.15%. Nevertheless, we can still observe a
slight drop in the convergence speed in the beginning of the com-
munication rounds. The possible reason for this is that the model
gradients of LSTM are large.

To take a closer look at the relationship between the model per-
formance and computation time (related to the encoding length if
the bit size is larger than 10), the test performances over different
brute force recovery time are listed in Table 5. It is clear to see that
the model test accuracy on three datasets does not have big varia-
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tions with the increase of the brute force recovery time. On the
CIFAR10 and MNIST datasets, however, the model performances
have a significant drop from 7 bit encoding length. In this case,
the log recovery method is adopted to alleviate the brute force
recovery time. And all runtimes should be the same without
considering the error in calculating the system computation time
and other interference noise.

Overall, both TernGrad quantization and the approximate glo-
bal model aggregation have little impact on the model perfor-
mance, so long as the encoding bit length is not less than
eight. Therefore, the proposed DEAQ-FL using the log recovery
and an encoding length of 9 or 10 can achieve 128 bit security
level with negligible degradation in performance and little
increase in computational and communication costs for the
CNN, ResNet and LSTM on the corresponding datasets studied
in this work.



Fig. 8. st values of all connected clients with non iid data that each client contains only 2 different kinds of object images.
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5. Conclusion and future work

In this paper, we propose a privacy-preserving solution that
makes use of distributed key generation and additive ElGamal
encryption to protect gradients in the federated learning frame-
work. To reduce computational and communication costs, we also
introduce ternary quantization of the local models and approxi-
mate aggregation of the global model, making our solution practical
in complex machine learning models, such as deep neural net-
works, in the context of gradient encryption. The proposed DAEQ-
FL system does not rely on a TTP for key pair generations, which
enables the system to tolerate a certain number ofmalicious clients.

DEAQ-FL can adopt the computationally efficient log recovery
when the encoding bit length is less than eleven, and there is no
noticeable learning performance degradation when ten bits are
used for encoding (note only about 1% accuracy loss for ResNet
compared to the results without doing any encryption on the
Shakespeare dataset). However, the model learning performance
starts to clearly deteriorate when the encoding length is less than
322
eight. Thus, brute force recovery must be adopted when the encod-
ing length is larger than eleven. Although a large encoding length
can enhance the coding precision, the amount of recovery time will
considerably increase. According to our experimental results, the
global models trained with a maximum of fifteen bits can perform
comparably to the non-encrypted FL, while the recovery time is
still acceptable. Since the model gradients tend to decrease to zero
during training, the brute force recovery time is expected to
become much smaller as the global model converges.

Although the proposed method shows highly promising perfor-
mance for encrypted federated deep learning, it may need to bal-
ance a trade-off between model performance and computation
time needed for plaintext recovery when a small model (e.g., a
logistic regression) is adopted. This is mainly because a smaller
model will require a much longer encoding length (e.g., more than
fifteen), making the brute force based recovery intractable.
Therefore, our future work will be dedicated to the development
of a distributed additive homomorphic encryption without recov-
ery that can be used in federated learning systems.



Fig. 9. The test accuracy of the global model for CNN, ResNet and LSTM in five different settings.
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Appendix A. Security definitions

Definition 1 (Discrete Logarithm Hard Problem – DLHP) Dis-
crete Logarithm is considered to be hard if

Pr DLogG;A að Þ ¼ 1
� �

6 negl að Þ
Definition 2 (Computational Diffle-Hellman – CDH) CDH is con-

sidered to be hard if



Fig. 10. The test accuracy of the global model with different encoding lengths.
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Table 5
Model test performance over different brute force recovery time on three datasets.

Encoding bit 6bit 7bit 8bit 9bit 10bit 11bit 12bit 13bit 14bit 15bit

CIFAR-10
Accuracy (%) 29.1 46.71 62.4 74.87 74.96 76.03 75.31 75.68 75.54 75.89
Average Time (s) \ \ \ \ \ 0.1006 0.2508 0.5360 1.2207 2.6491
Maximum Time (s) \ \ \ \ \ 1.4608 3.9389 7.5755 16.1956 42.2203

MNIST
Accuracy (%) 14.25 81.18 97.79 98.53 98.75 98.97 98.91 98.92 98.98 99
Average Time (s) \ \ \ \ \ 0.1267 0.2312 0.5585 1.1146 1.9786
Maximum Time (s) \ \ \ \ \ 1.2942 1.6247 6.3499 9.0804 18.0468

Shakespeare
Accuracy (%) 50.80 516.65 51.04 50.11 50.33 50.42 51.67 51.15 50.47 51.26
Average Time (s) \ \ \ \ \ 1.4180 2.5906 5.4531 10.8060 23.8876
Maximum Time (s) \ \ \ \ \ 3.2861 7.0456 11.9095 31.8851 55.2088
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Pr A g; ga; gb
� � ¼ gab

� �� �
6 negl að Þ

Definition 3 (Decisional Diffie-Hellman – DDH) DDH is consid-
ered to be hard if

jPr A g; ga; gb; gc
� � ¼ 1

� �� Pr A g; ga; gb; gab
� � ¼ 1

� �j
6 negl að Þ

Definition 4 Indistinguishability – Chosen plaintext attacks
(IND - CPA).

Consider a following game between an adversary A and a
challenger:

Set up: Challenger generates public parameters < g; p; q >, pub-
lic key h and secret key s, then sends public parameters and pk to
the A.

Challenge: A chooses two plaintexts m0;m1 with same length,
then sends them to the challenger. Challenger randomly selects
b 2 0;1f g, encrypts mb

C ¼ Enc pk;mbð Þ
and sends challenge ciphertext C toA. Finally,Awould compute b0.

A scheme is security against CPA if the advantage

AdvCPA
A að Þ ¼ Pr b ¼ b0

� �� 1
2

���� ����
is negligible.

Appendix B. Security analysis

� Parameters generation: server runs a polynomial-time G 1a
� �

to
generate public parameters < G; g; p; q >, where g is a generator
of G which is a cyclic group with prime order q; p is a large
prime number satisfying qjp� 1; y is a random element in G

and a corresponding to security level is bit length of q. Given
a polynomial-time algorithm A and a negligible function negl,
the security of key generation and encryption are based on fol-
lowing definitions.
� Key generation: x $Z�q;h ¼ gx modpð Þ.
� Encryption:
gm 2 Z�p; r  $Z�q; < c1 ¼ gr modpð Þ; c2 ¼ gm � hr modpð Þ >.

� Decryption: c2
cx1
¼ mhr

grð Þx ¼ gm �gxr
grx ¼ gm modpð Þ

Additive ElGamal is CPA-secure against chosen ciphertext
attacks if the advantage ofA is negligible in a satisfying as follows:

AdvCPA
A að Þ ¼ Pr b ¼ b0

� �� 1
2

���� ����

Proof. Ciphertexts under additive ElGamal:

C ¼ c1; c2ð Þ ¼ gr ; gmb � hr� � ¼ gmbþx�r

A computes:

C 0 ¼ C � gm�1
b0 ¼ gx�r iff b ¼ b0

Besides, A wants to determine whether C0 is DH agreement. A
could ‘‘win” this game with a probability:

AdvElG
A að Þ ¼ jj Pr A g; gx; gr ; gx�rþmb�mb0ð Þ ¼ 1½ 


�Pr A g; gx; gr; gx�rð Þ ¼ 1½ 
j � 1
2 j

6 negl að Þ
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Theorem 1 The exponential ElGamal and distribute key gener-
ation are CPA-secure and correctness-satisfying according to
[13,24]. h
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