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Summary

Skid resistance is an important parameter for road safety and therefore it is essential to monitor the
skid resistance of pavements. In the Netherlands, skid resistance is measured with either the RWS Skid
Resistance Tester �measuring the longitudinal friction coe�cient� or the Seitenkraft-Messverfahren
(SKM) �measuring the sideway friction coe�cient. The latter is nowadays the preferred measurement
device by Rijkswaterstaat. Skid resistance depends much on the vehicle speed: the higher the speed,
the lower the skid resistance. Furthermore, the texture of the surface in�uences the speed dependency.
Because it is not always possible to measure the skid resistance at target speeds set by Rijkswaterstaat,
there is a demand for a speed conversion model for the skid resistance measured with the SKM. The
objective of this research is therefore formulated as follows: the development of a speed conversion
model for the wet skid resistance, measured with the SKM at di�erent speeds, taking into account the
macrotexture of the road surface.

The used dataset consists of 718 sections of 100 metre, measured at the Dutch road network. Measure-
ments were performed at 10 di�erent roads with di�erent pavement layers: porous asphalt, concrete
pavements, dense pavements and stone mastic asphalt. The mean pro�le depth of the pavements varies
between 0.21 and 1.80 mm. The performed measuring speeds were 40, 60 and 80 km/h, and for few
sections 30 km/h.

Three regression methods were performed. Firstly, a multiple linear regression was performed. The
datapoints consisted of combinations of two measurements at di�erent speeds on identical 100 metre
sections. The second method estimated per 100 metre section a zero speed intercept which was used as
a reference point. The third method used multilevel modelling and includes a hierarchical structure.

Concluded was that the multiple linear regression on speed combinations is inappropriate for the ob-
jective of this research, because of two reasons: the datapoints are dependent on each other, and
information is lost by splitting the 100 metre sections into datapoints with combinations of two mea-
surements. In the second method, problems arise with estimating the zero speed intercept. The third
method is most appropriate for this research and the three-level structure �ts best on the dataset.
The �rst level contains the individual measurements on the 100 metre sections, performed at di�erent
measuring speeds. The second level consists of the 100 metre sections and the third level consist of the
roads on which the measurements took place. The obtained model is as follows:

µa = µb · e(0.00511−0.00195·MPD)·(Vb−Va)

µa is the converted skid resistance and µb is the measured skid resistance at measuring speed Vb. Va is
the desired measuring speed at which µa is calculated and MPD is the measured mean pro�le depth in
millimetres.

The standard error of the model on the training data is 0.032 whereas the average change in skid
resistance for two datapoints is 0.053. This average change includes conversions over a speed di�erence
from 10 to 40 km/h. From a sensitivity analysis of the macrotexture it was concluded that if no
macrotexture can be measured, it is advised to use a di�erent model in which no macrotexture is
included. This model is as follows:

µa = µb · e0.00323·(Vb−Va)

Recommendations for further research include among others registering more accurately the type and
age of the measured pavements and extending the dataset with measurements performed at low measur-
ing speeds and on curved sections. Furthermore, it is recommended to perform a more comprehensive
outlier analysis and to optimise the hierarchical structure.
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1
Introduction

This chapter provides an introduction to the study. Firstly, Section 1.1 gives a background into the
topic. After that, Section 1.2 de�nes the scope of the research. In Section 1.3, the research objective
and research questions are posed, followed by the methodology of the research in Section 1.4 and an
outline of the report in Section 1.5.

1.1. Background information
Skid resistance is an important parameter for road safety. A road surface needs to be su�ciently skid
resistant in order to o�set the horizontal forces, that can be present in the contact area between the tyre
and road surface. These frictional forces develop during vehicle movements such as steering, braking
and accelerating (Vos et al., 2017). Much research showed that if the road surface does not provide
enough skid resistance, the risk of accidents increases (e.g. Kogbara et al., 2016 and Fwa, 2017). Skid
resistance depends much on the vehicle speed. The higher the speed, the lower the skid resistance.
Furthermore, the texture of the surface highly in�uences the speed dependency.

Because the skid resistance is an important parameter of the road surface, most European countries
developed their own skid resistance policies and measuring devices (Vos and Groenendijk, 2009). These
policies regulate, for example, how often the skid resistance needs to be measured, which devices should
be used, and which target values should be speci�ed to compare the measurement results with. Since
countries developed these policies themselves, these policies di�er from each other and comparison of
the di�erent skid resistance values is not easy (Vos and Groenendijk, 2009).

Rijkswaterstaat (RWS) is the responsible authority for the design, construction, management and main-
tenance of the main infrastructure facilities in the Netherlands. Until 2013, their own developed RWS
Skid Resistance Tester was the device in use for measuring the skid resistance in the Netherlands.
Measurements with this device should be performed at 50 or 70 km/h, but often this was not possible,
for example at roundabouts. Because besides the speed, also the texture in�uences the skid resistance,
RWS developed a speed conversion model that uses as input whether the asphalt layer is open or dense.
However, only taking into account open or dense asphalt layers is often not accurate enough. There-
fore, Koac�NPC (now Kiwa KOAC) developed a speed conversion model to convert the skid resistance
measured at a speed lower than 50 km/h up to the skid resistance at exactly 50 km/h with the mean
pro�le depth (MPD) as an input parameter representing the surface texture.

In 2013, RWS perceived the idea of changing the skid resistance measuring method. After a compre-
hensive research to the existing measuring devices, the Netherlands decided to cooperate with Germany
and started using the German Seitenkraft-Messverfahren (SKM), a device which measures according to
the sideway force (SWF) method (Scharnigg et al., 2016). With the change of measuring device, RWS
had to de�ne new target values to compare the measurement results with. These values are de�ned
at measuring speeds of 40, 60 and 80 km/h, which are the standard measuring speeds for the SKM.
However, the SKM is a large truck and often it is not possible to perform the measurements at these
speeds, such as at roundabouts. Also, during measurements on highways, tra�c jams could lower the

1
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maximum possible speed resulting in a measurement at a speed of, for example, 70 km/h. Unfortu-
nately, for the SKM, an accurate speed conversion model does not exist yet. Therefore, in the case of
roundabouts, measurements are often still performed with the RWS Skid Resistance Tester. In the case
of tra�c jams, measurements have to be performed one more time, which evidently costs more money.

Evidently, it would be helpful if measurements could be performed at other speeds than the standard
set measuring speeds, which is possible for the RWS Skid Resistance Tester. In Germany, a basic speed
conversion model is in use, which applies a linear correlation between the skid resistance of 30 up to 90
km/h. This model does not incorporate the macrotexture, a parameter which does certainly in�uence
the skid resistance. Especially considering that Germany has many dense wearing courses, while in the
Netherlands much more open wearing courses are present, a di�erent correlation of skid resistance and
speed is expected. Therefore, there is a demand for a research in the subject of a more precise speed
conversion model for the skid resistance measured with the SKM.

1.2. Scope
Much research can be done in the theme of speed conversion models for and measuring of skid resistance.
This research will purely focus on a conversion model for the wet skid resistance measured with the SKM,
with the macrotexture as an in�uencing parameter, independent of the standards set by Rijkswaterstaat.
Furthermore, the correlation between the measured values with the SKM and the RWS Skid Resistance
Tester, another actual topic, is considered beyond the scope. Measurements used in the development
of the conversion model are limited to the right-hand tra�c lane, the tra�c lane were measurements
are usually performed.

1.3. Research objective and research questions
As becomes clear from Section 1.1, Kiwa KOAC would like to develop a conversion model for the skid
resistance measured with the SKM, using the macrotexture as one of the input parameters. With
this conversion model it would become easier to perform skid resistance measurements with the SKM,
because measurements performed at di�erent speeds could then be used.

The research objective for this study is formulated as follows:

The development of a speed conversion model for the wet skid resistance, measured with the SKM at
di�erent speeds, taking into account the macrotexture of the road surface.

In order to achieve this objective a main research question and a couple of sub-questions are posed
below. The sub-questions are speci�c and contribute to the more general main question.

Main question
How can the correlation between the SKM measured skid resistance at di�erent speeds be described,

taking into account the macrotexture of the road surface?

Sub-questions
Several sub-questions are formulated, which together should facilitate answering to the main questions.

1. Which factors are of in�uence on the skid resistance and which should be taken into account in
the development of the conversion model?

2. Which kind of road sections could lead to di�culties during measurements with the SKM? Are
deviating correlations expected on these sections?

3. What speed conversion models for the skid resistance, used in the Netherlands or used for the
SKM, have been developed previously?

4. Which data is needed for developing the model?

5. Which models can be developed in order to, in the end, achieve the best �tted model to represent
the correlation between the skid resistance at di�erent speeds?

6. How reliable is the �nal model?
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1.4. Methodology
This research is separated into 4 phases. An overview of the di�erent phases and intermediate steps is
provided in Figure 1.1.

Literature study
Phase 1 Phase 2 Phase 3 Phase 4

Data collection Model generation Conclusions

Define needed data

Collect and measure
missing data

Analyse usability

Generate model in
SPSS

Analyse model

Improve model

Conclusions

Recommendations

Introduction to skid
resistance

Sub-questions 1, 2 and 3 Sub-question 4 Sub-questions 5 and 6 Main question

Research to previous
conversion models

Verification of final
model

Figure 1.1: Research framework

Sections 1.4.1 to 1.4.4 give an elaborated explanation of the di�erent phases.

1.4.1. Phase 1: Literature study
The �rst phase consists of an exploratory research and this will be performed with the help of a literature
study. The objective of this phase is to fully understand the current situation of the research topic.
Primary knowledge about skid resistance is obtained and a study to the conversion models, used or
previously developed for skid resistance measurements, is conducted. At the end of the literature study
the requirements for the model, which will be generated in a later phase of this study, should be clear.

1.4.2. Phase 2: Data collection
During the second phase, as much data as possible which is needed for the modelling process is obtained.
First, a list with requirements of the data will be formed. Secondly, this data will be searched for in
the database of Kiwa KOAC. Non available data will be measured (if possible). The obtained data will
be prepared for the model generation and analysed according to its usability.

1.4.3. Phase 3: Modelling
The model generation takes place during the third phase. First, a hypothesis about the correlation
will be set up. This will be done with the help of the literature research to existing conversion models.
Then, with help of SPSS, a conversion model for the skid resistance to di�erent speeds will be generated.
Starting with a basic version, an iterative process will follow to obtain a model as precise as possible
within the available time. The following models could, for example, be generated:

� considering no macrotexture;

� considering open or dense asphalt;

� considering the MPD as a parameter;

� considering the MPD and positive/negative macrotexture as parameters; and

� considering a straight section, a left and a right curved road section.

In all above, distinction can be made between new and older pavement layers.

After the literature study and the data collection the di�erent models to be generated will be sharpened,
because during these phases it will, for example, become clear which road sections are expected to have
di�culties and deviating correlations, and which data can be measured.
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When the �nal model is obtained, it will be determined how reliable the �nal model is. During the
literature research, existing models will be analysed. It is expected that at the end of the literature
study, it will be clear how to determine the reliability of the generated speed conversion model.

1.4.4. Phase 4: Conclusions
Phase 4 is the �nal stage of the research. Final conclusions are formulated and recommendations for
further research on this topic are given.

1.5. Outline of the report
Figure 1.2 provides an overview of the outline of this report. The literature study is provided in
Chapters 2 to 4. Chapter 2 gives an introduction to skid resistance: important aspects and in�uencing
factors of skid resistance are mentioned, whereas Chapter 3 explains more about the two measuring
methods for measuring skid resistance which are used in the Netherlands. Chapter 4 focuses on speed
conversion models which were previously developed. The model generation is explained in Chapter 5,
based on the data as explained in Appendix C. A veri�cation of the �nal obtained model is given in
Chapter 6. Finally, the conclusions of this research and recommendations for further research are given
in Chapter 7.

C2
Skid resistance 

Measuring skid
resistance

Previous speed
conversion models

Literature study

C3

C4

C2

Conclusions 

Model generation
C5

Model verification
C6

Conclusions &
recommendations

C7

Model generation

Figure 1.2: Outline of the report
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Introduction to skid resistance

This chapter provides an introduction into the topic of skid resistance. Section 2.1 gives an explanation
of what skid resistance is and explains the principle of how skid resistance is measured. The subsequent
paragraphs give more detailed information about some important aspects of skid resistance, which
include the e�ect of pavement texture (Section 2.2), adhesion and hysteresis (Section 2.3) and in�uencing
parameters (Section 2.4). Section 2.5 outlines possible physical explanations for the speed dependency
of skid resistance and �nally, Section 2.6 gives the conclusions of this chapter.

2.1. What is skid resistance
In order to prevent losing control of a vehicle, horizontal forces are needed which arise from tyre-
pavement friction. The tyre-pavement friction coe�cient is the ratio of the tangential friction force F
between the tyre and surface, which resists the motion, to the perpendicular force Fw, which is the
vertical load (Hall et al., 2009 and O'Flaherty, 2002). Tyre-pavement friction depends on many factors,
that can be separated into di�erent categories: pavement properties, tyre properties, the interface and
other conditions (Mataei et al., 2016, Groenendijk, 2018).

Skid resistance is used to refer to the extent to which the pavement properties contribute to the tyre-
pavement friction (Roe et al., 1998), measured under standardised conditions (Vos et al., 2017). The
extent to which tyre properties contribute to the tyre-pavement friction is often called grip. Skid
resistance can be measured by measuring the tyre-pavement friction coe�cient (further indicated in
this report by the `friction coe�cient') under standardised conditions. These conditions are set for, for
example, the tyre that is used and the interface.

When using dynamic measuring equipment, a measuring wheel that measures the friction force is
mounted. These wheels can be mounted in di�erent ways, namely in the direction of travel or under an
angle to the direction of travel �the yaw angle. A di�erent friction force is measured with these di�erent
mountings, and thus a di�erent friction coe�cient is calculated. This is explained in the following two
sections.

2.1.1. Longitudinal friction coefficient
The longitudinal friction coe�cient (LFC) is of importance when a vehicle is braking, and therefore the
LFC is also called the braking friction coe�cient (BFC). With help of a wheel mounted in line with the
direction of travel the LFC can be measured. The measuring wheel is forced to rotate more slowly than
the forward speed of the vehicle, so that a slip speed lower than the vehicle speed arises (Section 2.4.5
explains more about the slip speed). This results in a friction force in the opposite direction of the
travel direction of the vehicle. Figure 2.1 shows a simpli�ed diagram of the forces acting on a rotating
wheel and Figure 2.2 shows the free body diagram for a wheel measuring the LFC.

5
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Figure 2.1: Simpli�ed diagram of forces acting on a rotating wheel (Hall et al., 2009)

Figure 2.2: Force-body diagram for the longitudinal friction coe�cient (adapted from Flintsch et al., 2012)

The LFC is calculated as:

µx =
FL
Fw

(2.1)

Where: µx = Longitudinal friction coe�cient [-]
FL = Longitudinal friction force between the tyre and surface [N]
Fw = Vertical load or weight [N]

2.1.2. Sideway friction coefficient
The sideway friction coe�cient (SFC) plays a role when a car is steering. To measure the SFC, a wheel
is mounted under an angle to the direction of travel: the yaw angle. The measuring wheel can freely
rotate in its longitudinal direction, but this is not the same direction as the vehicle travels. Therefore,
the tyre is made to slip over the road surface. The resulting force along the wheel axle is now measured
and denoted as the sideway force (Flintsch et al., 2012). This method is called the Sideway Force
(SWF) method. The SKM is a device measuring according to the SWF method. Figure 2.3 shows the
force-body diagram of a measuring wheel under a yaw angle.

Figure 2.3: Force-body diagram for the sideway friction coe�cient (Flintsch et al., 2012)
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The SFC is calculated as:

µy =
Fs
Fw

(2.2)

Where: µy = Sideway friction coe�cient [-]
Fs = Side friction force between the tyre and surface [N]

The friction coe�cient is a dimensionless coe�cient, hence the units of the vertical force Fw and the
horizontal or sideway friction force can be other than Newton, as long as the units are equal.

2.1.3. Devices for measuring skid resistance
In the Netherlands, during the last years, two di�erent devices have been used for measuring skid
resistance. The oldest device is the RWS Skid Resistance Tester, introduced in 1959, measuring the
LFC. In 2017, the SKM was introduced, a device measuring according to the SWF method (Vos et al.,
2017; Kiwa KOAC, 2016).

The original version of the SKM is developed around 1960 in the UK and is called the Sideway-force
Coe�cient Routine Investigation Machine (SCRIM). This device was already used in several countries,
and in the nineties of the previous century Germany constructed the SKM (Derksen, 2017). For the
Netherlands, changing the measuring device to the SKM was a step into the direction of standardisation
of the devices for measuring skid resistance.

Chapter 3 provides more information about measuring skid resistance.

2.2. Pavement texture
Skid resistance is largely in�uenced by the pavement texture. The surface texture characteristics are
known as microtexture, macrotexture, megatexture, and roughness. The Permanent International As-
sociation of Road Congresses (PIARC, the World Road Association) de�ned the scales of the surface
texture according to the wave lengths (see Figure 2.4) of the deviations as follows (Kogbara et al., 2016):

� microtexture: wavelengths from 0 mm to 0.5 mm

� macrotexture: wavelengths from 0.5 mm to 50 mm

� megatexture: wavelengths from 50 mm to 500 mm

� unevenness: wavelengths from 500 mm to 50 m

Figure 2.4: Illustration of the wavelength that de�nes microtexture, macrotexture, megatexture and unevenness
(adapted from NEN, 2004)

The megatexture and unevenness are, for example, characterised by potholes, construction deforma-
tions due to vehicle loadings (Kogbara et al., 2016) and non-uniform subsoil settlements. The two
textures with the smallest wavelengths, microtexture and macrotexture, are the texture characteristics
contributing to the friction properties. This is explained in more detail in Sections 2.2.1 and 2.2.2.
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2.2.1. Microtexture and macrotexture
Where macrotexture is typically formed by the shape and size of the aggregate particles (Kogbara et al.,
2016), microtexture outlines the texture of the stone itself on a microscopic scale. Figure 2.5 shows the
di�erence between the micro and macrotexture.

Figure 2.5: Micro and macrotexture of the road surface (Sahhaf and Rahimi, 2014)

The Mean Pro�le Depth (MPD) is often used as the characterising parameter for the macrotexture,
sometimes enhanced with the Root Mean Square (RMS).

The MPD can be de�ned as the average value of the pro�le depth over a certain distance, this distance
is called the baseline (NEN, 2004). The MPD can then be calculated as the average of the two peaks
on the two half baseline minus the pro�le average, see Figure 2.6.

Figure 2.6: Illustration of the MPD (adapted from NEN, 2004)

The MPD quanti�es the drainage capabilities of a non-porous pavement surface. For a non-porous
surface with a lower MPD, the friction will decrease rapidly with increasing speed (Fuentes, 2009). In
case of a porous surface, the drainage is mainly provided by the porosity of the asphalt and the friction
decreases less with an increasing speed.

Di�erent methods exist for measuring the MPD; the SKM measures the MPD with a laser. Since
the laser covers only a limited scan width, the MPD is a two dimensional measured parameter rather
than a three dimensional parameter, although the test result is commonly used as three dimensional
information. Important is knowing that during wet measuring conditions this laser does not work
properly.

The RMS is a statistical value and outlines how much the measured pro�le deviates from the MPD
(McGhee and Flintsch, 2003). The RMS can be calculated as follows (Fuentes, 2009):

RMS =
1

N − 1

N∑
i=1

Y (i)2 (2.3)
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Where: Y (i) = Elevation of the pro�le at the ith sample point
N = Sample size

2.2.2. Positive and negative textures
For the macrotexture, a distinction can be made between positive and negative textures. A positive
macrotexture is characterised by sharp particles bulging out of the surface (see Figure 2.7a), whilst a
negative texture is characterised by a �at surface, with the texture consisting of troughs (see Figure 2.7b)
(Groenendijk, 2011).

(a) Positive texture (b) Negative texture

Figure 2.7: Positive and negative macrotextures

When the MPD and RMS of a road section are known, one can determine if the texture is positive or
negative (Groenendijk, 2011):

MPD

RMS
> 1.58 : positive macrotexture (2.4a)

MPD

RMS
< 1.58 : negative macrotexture (2.4b)

A positive macrotexture is primarily found in surface treatments of dense wearing courses, a negative
macrotexture is characteristic for stone mastic asphalt (SMA) and porous asphalt1 (PA) layers. With
an equal depth of the macrotexture (and an equal microtexture) a positive macrotexture often has a
slightly higher skid resistance and a lower speed dependency than the skid resistance of a pavement
with a negative macrotexture (Vos et al., 2017).

2.3. Adhesion and hysteresis
The two physical processes of the friction between tyre and road surface are adhesion and hysteresis.
Figure 2.8 illustrates these components.

Figure 2.8: Key mechanisms of tyre-pavement friction (adapted from Hall et al., 2009)

As Figure 2.8 shows, particularly the microtexture of the surface contributes to adhesion. The adhesion
force is developed at molecular level and is a function of their surface free energy components (Al-
Assi and Kassem, 2017). A force arises due to an interface shear strength over a certain contact

1In Dutch: Zeer Open Asfalt Beton (ZOAB), dubbellaags ZOAB, and sometimes, but less often, Dunne Geluidsreduc-
erende Deklagen (DGD or DGAD, Dutch for thin silent surfacing)
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area. Therefore, the adhesion friction is dominant for smooth surfaces under dry conditions and at
low speeds. When a water �lm is present on a pavement, the microtexture is covered with this water
�lm and therefore adhesion is not dominant at wet surfaces. On wet and rough-textured pavements,
hysteresis becomes dominant (Hall et al., 2009).

Figure 2.9 shows the stress-strain diagrams for both elastic (Figure 2.9a) and viscoelastic (Figure 2.9b)
behaviour of a material. Hysteresis is caused by tyre deformations due to the pavement macrotexture.
Because rubber is a viscoelastic material, the tyre does not immediately revert to its original state after
the excitation is released �in contrary to elastic materials. A certain delay is present between the stress
release and the deformation to its original state. This delay is called hysteresis and is accompanied by
a dissipation of heat, which is an energy loss (Michelin, 2001). The energy loss leaves a frictional force
which increases the tyre-pavement friction (Hall et al., 2009). Thus, the higher the energy dissipation,
the higher the skid resistance.
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(a) Stress-strain diagram of an elastic material:
the material immediately reverts to its original

state after the stress is released.
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(b) Stress-strain diagram of a viscoelastic material:
a delay is present between the stress release and
the deformation to its original state, indicated by
the shaded area. The larger the shaded area, the

larger the hysteresis and the more energy is
dissipated.

Figure 2.9: Stress-strain diagrams for elastic and viscoelastic materials, showing the hysteresis loss for a viscoelastic
material.

The total friction force F is the sum of the two forces developed due to adhesion and hysteresis (Hall
et al., 2009).

2.4. Factors influencing skid resistance and its measurements
Tyre-pavement friction is in�uenced by many factors. When considering skid resistance, one tries to
measure the contribution of the road surface to the tyre-pavement friction, meaning keeping all other
factors constant and often at standardised conditions. When discussing factors in�uencing skid resis-
tance, one should distinct factors in�uencing the slipperiness of the road surface, measured by the skid
resistance, and factors in�uencing skid resistance measurements. Factors in�uencing the slipperiness
of the road surface are factors relating to the pavement properties, whereas factors in�uencing skid
resistance measurements are all other factors in�uencing the friction coe�cient.

Standardised conditions are set for factors in�uencing these measurements, however, if the experienced
conditions di�er from the standardised conditions, this could in�uence the measured value of the skid
resistance. In the ideal situation, the in�uences of these deviating circumstances would be exactly
known such that the skid resistance under standardised conditions can be calculated from the measured
skid resistance.

The factors in�uencing skid resistance and its measurements can be separated into several categories
(Mataei et al., 2016, Groenendijk, 2018), as is shown below. Some of these factors are already explained
in previous sections, because knowledge of these aspects is needed for understanding the basics of skid
resistance. Other in�uencing factors are elaborated in more detail in the following sections.
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� Pavement properties

� Micro and macrotexture (Section 2.2.1)

� Porosity: not separately explained, because it correlates with other factors such as the micro
and macrotexture or wet and dry conditions

� Age (Section 2.4.6)

� Interface

� Wet and dry skid resistance (Section 2.4.1)

� Layer thickness (also explained in Section 2.4.1)

� Properties of the interface (viscosity, density)

� Contaminants (Section 2.4.2)

� Measurement conditions

� Temperature (Section 2.4.3)

� Vehicle speed (Section 2.4.4)

� Slip ratio and yaw angle (Section 2.4.5)

� Slip speed (Section 2.4.5)

� Tyre properties (Section 2.4.7)

� Tyre size, pattern and tread depth

� In�ation pressure and wheel loading

� Rubber properties (e.g. hardness, sti�ness)

Because the measurements are performed under standardised conditions, care should be taken that
measurements comparing skid resistance at di�erent speeds should be performed with all other in�u-
encing factors, such as tyre conditions, kept as constant as possible. Temperature is also a desirable
factor to keep constant, but this is of course not a parameter that can be kept constant. Therefore, for
temperature a correction factor is applied.

2.4.1. Wet and dry conditions
A distinction should be made between wet and dry skid resistance. Dry skid resistance is measured at
dry conditions, whilst wet skid resistance is, as the name indicates, measured at wet conditions. At dry
conditions there is contact between the pavement layer and tyre, whereas at wet conditions the water
acts as an interface between the pavement and tyre. A car driver can experience both wet and dry
conditions in real life, thus it is important to know which of the two is critical.

In wet conditions, the tyre needs to drain the water through its pro�le and through the pavement
macrotexture and porosity. The more water standing on or running over the road, the more problems
a tyre can have with draining this water. Compared to dry conditions, a very thin water �lm decreases
already signi�cantly the skid resistance, as is shown in Figure 2.10. At a water layer thickness of 2-3
mm, the skid resistance will reach its minimum, after which the skid resistance can slightly increase
with an increasing water layer thickness. However, Welleman (1977, as cited in Groenendijk (2015))
states that this is not real tyre-pavement friction but water drag, hence this does not contribute to
steering and breaking manoeuvres.



12 2. Introduction to skid resistance

Figure 2.10: Wet friction coe�cient µx as a function of the water layer thickness for a speed of 65.1 km/h and 5
di�erent pavement layers (Welleman (1977), as cited in Groenendijk (2015))

The di�erent pavement layers shown in Figure 2.10 are:

� epoxy bitumen + chippings 5/8 (EB + steenslag 5.8): pavement with a high micro and macro
texture,

� epoxy bitumen + gravel 5/8 (EB + grind 5.8): pavement with a high macro texture and a lower
micro texture than EB + steenslag 5.8,

� porous asphalt (ZOAB): pavement with a lower macro texture than the �rst two, but with a high
porosity,

� asphalt concrete (OAB, Open Asfalt Beton): pavement with less porosity and less macrotexture
than the ZOAB layer, and

� epoxy concrete, not gritted (EB): dense pavement with a smooth surface.

As can be observed in the graph, the lower the microtexture of the surface, the lower the starting value
of the friction coe�cient. Furthermore, the pavement with the highest macro textures (EB + steenslag,
EB + grind and ZOAB) have the smallest decline in skid resistance.

Moore (1966, as cited in Flintsch et al. (2012)) proposed the Three Zone Concept to better understand
the concept of wet friction. This three zone concept is shown in Figure 2.11.
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(a) The three zones: in zone 1 there is pressurised drainage of
water, zone 2 is the visco-dynamic zone and zone 3 is the dry

contact zone

(b) Top view of the three zone concept at low vehicle speed

Figure 2.11: Three zone concept of Moore, (Moore (1966), as cited in Flintsch et al. (2012))

The next sections give an explanation of the di�erent zones.

Zone 1: pressurised drainage of water
In the �rst zone, the water is drained by the macrotexture of the pavement. The rougher the surface,
the more water is dispersed. If not all water is dispersed by the macrotexture, the design of the tyre
tread plays an important role as drainage channel. The viscosity and velocity gradient of the water �lm
play an important role for the developed friction. In zone 1, an uplift force of the water is present. If
this uplift force generated on the tread is equal to the wheel loading, hydroplaning can occur (Michelin,
2001). However, this only occurs under extreme circumstances (Browne (1975), as cited in Fenghua
(2013)).

Zone 2: visco-dynamic zone
In zone 2, the combined zone, some uplift pressure is present, but not as signi�cant as in zone 1.
Generally, the microtexture is responsible for draining the water (Flintsch et al., 2012).

Zone 3: actual contact zone
In zone 3, dry contact between the tyre and road surface is obtained. Both adhesion and hysteresis play
a role (Flintsch et al., 2012).

If the pavement has a large macrotexture and porosity, the drainage capacity of the road will be larger
and less water is left over for the tyre to drain, which means the wet skid resistance will be larger.
In most situations the wet skid resistance is critical for the purpose of safety (Vos et al., 2017) and
therefore usually the wet skid resistance is measured. Therefore, when skid resistance is mentioned in
this thesis without specifying wet or dry conditions, the wet skid resistance is meant.

2.4.2. Contaminants
Besides water, other materials can act as lubricant between the pavement surface and tyre. These
contaminants �such as sand, salt and lubricating oil� form a coating over the pavement layer and
therewith decrease the value of skid resistance (Lubis et al., 2018). Lubis et al. showed with help of
the British Pendulum Tester that both �exible and rigid pavements decreased in skid resistance after
applying contaminants, varying from 20% up to 50%. For rigid pavements this decrease was slightly
higher (approximately 1-2%) than for �exible pavements.
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2.4.3. Temperature
Many literature sources show that temperature has a signi�cant e�ect on the skid resistance. Espe-
cially the temperature of the thread area is important and the contained air temperature (CAT) �the
temperature of the air inside the tyre's air chamber� is an indicator of this temperature. Besides the
CAT one can distinguish pavement temperature (PT), ambient (air) temperature (AT), and the water
temperature used in wet friction measurements.

(a) Modulus (b) Energy loss

Figure 2.12: In�uence of temperature on the energy loss and modulus (Michelin, 2001)

Figure 2.12 shows the in�uence of the rubber tyre temperature on the modulus and energy loss. Because
of the visco-elastic behaviour of rubber, friction decreases with increasing temperature (Fuentes, 2009).
The hysteresis component of friction mainly depends on the rubber sti�ness (Anupam et al., 2013). With
an increasing temperature, due to the visco-elastic behaviour of rubber, the rubber sti�ness decreases.
Rubber resilience increases and hysteresis losses become smaller, which combined give a reduced skid
resistance (Kogbara et al., 2016). Therefore, during winter the skid resistance of a wet road surface is
often larger than during summer (Hosking and Woodford, 1976a).

Anupam et al. (2013) list many researchers who investigated the in�uence of temperature on the skid
resistance. These researchers concluded that in general, a higher temperature lowers the skid resistance.
Anupam et al. (2013) also showed with help of a thermomechanical friction model that a higher PT, AT
and CAT would always result in a lower hysteresis friction for a given pavement surface and a given tyre
slip ratio. Srirangam (2015) cited from previous research (Oliver (1980), Jayawickrama and Thomas
(1981), Hill and Henry (1981) and Hosking (1992)) that both AT and PT signi�cantly in�uence the
temperature of the tyre, which in turn in�uences the skid resistance, whilst the water temperature has
a negligible e�ect on the measured friction coe�cients.

Bazlamit and Farhad Reza (2005) recommended that skid numbers obtained at any arbitrary tempera-
ture should be normalised with respect to, for example, a value at a reference temperature. Nowadays,
when measuring skid resistance with the SKM, a temperature correction for the PT and water tem-
perature is applied according to the TP Gri�-StB (SKM) (see Equation (4.17)). Remarkable is that
Srirangam (2015) cited from previous research that the water temperature has a negligible e�ect on the
measured friction coe�cient, whereas the TP Gri�-StB (SKM) applies a correction factor for the water
temperature. This correction factor followed from practical research and might be explained by the fact
that the water temperature could in�uence the temperature of the tyre or the CAT, due to which the
skid resistance does change.

Temperature e�ects on skid resistance is an actual theme of research and is beyond the scope of this
research. However, during the data analysis temperature variations should be taken into account.
A correction factor for deviating temperature circumstances will be used to compare skid resistance
measurements converted to the same reference temperatures. The corrections of TP Gri�-StB (SKM)
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will be applied, which corrects the water and pavement temperature to a `standard' temperature of
20°C. However, as shown in this section, temperature in�uence is an actual topic of research. The
accuracy of the applied temperature correction is therefore not taken into further consideration.

2.4.4. Vehicle speed
As mentioned in the introduction, the vehicle speed has a large in�uence on the friction coe�cient.
The friction coe�cient is highest for both dry and wet conditions at a low speed, whereas at increasing
speed the friction coe�cient will decrease �especially for wet roads (Vos et al., 2017). This can be
explained by the fact that during wet conditions and at an increasing speed, the tyre needs to drain
more water per second and therefore the tyre can loose the contact with the pavement (Groenendijk,
2011). Because the macrotexture can help the drainage of water, as explained in Section 2.4.1, the
extent to which the wet friction coe�cient decreases with an increasing speed mainly depends on the
macrotexture. On the other hand, the macrotexture primarily de�nes the level of friction at low speeds
(Mataei et al., 2016). Figure 2.13 illustrates the decrease of the friction coe�cient with an increasing
speed for di�erent textures.
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Figure 2.13: Speed dependency and e�ect of micro and macrotexture on the friction coe�cient (PIARC World Road
Association (2003), as cited in Wilson (2006))

Mechanisms behind effect of increased vehicle speed
This section explains several mechanisms which could cause the change in skid resistance with an
increasing speed.

� Three Zone Concept for increased vehicle speed

The three zone concept of Moore is discussed in Section 2.4.1. Besides Figures 2.11a and 2.11b, Moore
(1966, as cited in Fenghua (2013)) gave a top view of the three zone concept with an increased vehicle
speed, as is shown in Figure 2.14.

Figure 2.14: Top view of three zone concept with high vehicle speed (Moore (1966), as cited in Flintsch et al. (2012)).
Compared to the low vehicle speed as shown in Figure 2.11b, the area of S1 increased and the areas of S2 and S3

decreased.

Clear di�erences can be seen between Figures 2.11b and 2.14. Zone 1 is larger for a higher speed,
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indicating a larger wet area in front of and under the tyre, and thus a larger area where an uplift force
of the water on the tyre works. A larger part of the vertical force is o�set by the uplift force of the
water, indicating a smaller vertical force acting on zone 3, where the adhesion and hysteresis forces
arise. This gives a lower skid resistance. At a certain vehicle speed, the vehicle will fully loose its
contact with the pavement and hydroplaning occurs. This can result from a too shallow tyre pro�le, a
too thick water �lm or a too high vehicle speed �or a critical combination (Anupam, 2012; Flintsch
et al., 2012). The slip ratio is now uncontrolled and braking traction and directional control stability
is prevented (Anupam, 2012).

The main hypothesis in this study is that the mechanism described above is predominantly responsible
for the decreased skid resistance at increasing speeds. However, another mechanisms gives an alternative
hypotheses.

� Increased excitation frequency

Another e�ect of an increased vehicle speed is the increased excitation frequency. At low vehicle speeds
the tyre deforms slowly and the rubber behaves reasonably elastic. The tyre has enough time to revert
to its original state before the subsequent excitation. Its hysteresis is low and so is the hysteresis
component of the skid resistance. However, when increasing the vehicle speed and thus the excitation
frequency, there is more hysteresis and thus more energy is dissipated (Srirangam, 2015), which results
into a higher skid resistance. Figure 2.15 shows the change in energy loss and modulus for an increasing
frequency.

The higher amount of dissipated energy is in the form of heat therefore, because of the increased
hysteresis at increasing speed, the tyre is heated up. This, in turn, decreases the hysteresis friction, as
explained in Section 2.4.3. This phenomenon would be higher for larger macrotextures, because a larger
macrotexture generates a larger hysteresis energy dissipation. Also, it would be stronger for pavements
with a higher draining capacity, because this will decrease the cooling e�ect of the water. It is assumed
that the decline in skid resistance due to the increased heat is dominant and that therefore increasing
the vehicle speed decreases the skid resistance.

(a) Modulus (b) Energy loss

Figure 2.15: In�uence of excitation frequency on the energy loss and modulus (Michelin, 2001)

2.4.5. Slip speed and slip ratio
When measuring the LFC, a sliding process of the tyre by application of a braking force is simulated
(Kogbara et al., 2016). The measuring wheel is partly blocked such that it rotates with a lower speed
than that of the vehicle, and therefore it slides over the surface. The slip ratio expresses how much the
measuring wheel slides over the surface and can be expressed as (Kogbara et al., 2016):
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SR =
V − Vp
V

· 100 =
S

V
· 100 (2.5)

Where: SR = Slip ratio [%]
V = Measuring speed of the vehicle [km/h]
Vp = Average peripheral speed of the tyre [km/h]
S = Slip speed [km/h]

Some measuring devices work with a fully locked measuring wheel. This implies that the slip speed S
is equal to the vehicle directional speed V , and the peripheral speed of the tyre Vp is 0 km/h. In case
of the RWS Skid Resistance Tester, the slip ratio is 86%, thus, the peripheral speed of the tyre Vp is
14% of the vehicle directional speed V .

The skid resistance of a road surface changes at di�erent slip ratios, as is shown in Figure 2.16. With
an increasing slip ratio up to 10-20%, the friction coe�cient rapidly increases. At a certain percentage,
a maximum skid resistance is reached. While increasing the slip ratio up to a fully-locked measuring
wheel, the friction coe�cient declines. On wet pavements this decline is bigger than on dry pavements
and the di�erence between the peak friction and the full sliding friction can go up to 50% of the peak
friction coe�cient (Hall et al., 2009). The extent to which the coe�cient of friction decreases after the
maximum is reached depends, besides on the applied slip ratio, in particular on the macrotexture (Vos
and Groenendijk, 2009).

Figure 2.16: Pavement friction versus tyre slip (Henry, 2000)

When measuring the SFC, no slip is applied on the measuring wheel, but the measuring wheel is set at
a yaw angle α. However, many developed speed conversion models (Chapter 4) used the slip speed as
determining factor. Therefore, for the SFC, a `slip speed' of sin(α) · V was considered.

2.4.6. Age of the surface
The e�ect of the age of the surface can be separated into short-term and long-term e�ects. During
the �rst few months up to a year after construction, the interface is vulnerable to changes which
consequently changes the skid resistance. It can increase or decrease more than for older asphalt layers.
On the long-term, polishing of the aggregates changes the texture of the pavement. As a result of
polishing, the skid resistance will decrease. Monitoring the skid resistance of pavements occurs with
the purpose of detecting (on time) poor skid resistance due to various factors, among which polishing.
This section explains more about changes of the skid resistance on the short-term.

One may distinguish if the pavement layer is gritted after construction or not. Gritting means that the
new wearing courses are covered with �ne material to improve the skid resistance. In case of a gritted
pavement layer, passing vehicles will remove most of the grit during the �rst months and the skid
resistance will decrease. A thin layer of bitumen can, if not removed together with the grit, remain on
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the surface while convering the aggregates. If this is the case, both the wet and dry skid resistance are
temporarily lower. The dry skid resistance can now be critical �especially for locked wheel braking�
and the phenomenon contributing to this deviating dry skid resistance is bituplaning, caused by bitumen
being melted by locked-wheel braking (Vos et al., 2017). After some months, the top layer of bitumen
is worn and the skid resistance �nally increases to its `normal' skid resistance.

In case of non-gritted wearing courses, the aggregates of the wearing course are covered with a thin
layer of bitumen and bituplaning can occur directly after construction. That is why often the road sign
`New road surface, longer braking distance' is placed along new wearing courses. After some months,
the top layer of bitumen is worn o� and the wearing course has its `normal' skid resistance (Vos et al.,
2017).

Dense asphalt layers such as dense asphalt concrete (DAC) are always gritted. SMA layers are sometimes
gritted but not always. Porous wearing courses are often applied in the Netherlands. For this type of
wearing courses, one �rstly assumed that gritting reduced the air voids content in porous asphalt, hence
the porous wearing courses were not gritted (Vos et al., 2017). However, reducing the amount and size
of the gritting material solved this problem, hence nowadays also PA layers are often gritted with �ne
grit material.

During this research it is important to take into account the initial skid resistance which can �uctuate
over a short period of time. One cannot assume that all road surfaces measured by Kiwa KOAC
are older than 1 year, although RWS demands skid resistance measurements with the SKM only for
pavements older than one year (Rijkswaterstaat, 2017). The ages of the road surfaces are not recorded
and often not known while performing the measurements, and furthermore road surfaces could have
been recently treated with rejuvenators as preventative maintenance, which reduces the skid resistance
for up to 1 year (Army and Air Force, 1988).

2.4.7. Tyre characteristics
Tyre properties have a signi�cant in�uence on the skid resistance. For di�erent measuring techniques,
standards are set for the usage of tyres to prevent variations in the measurements because of deviating
tyre properties.

Tyre profile
The tyre pro�le is an important factor when considering friction on contaminated (e.g. wet) pavement
surfaces. If a surface is contaminated the macrotexture partially disappears, because the texture is
�lled with contaminants. In this situation, the tyre pro�le provides a drainage system to evacuate
contaminants (Fuentes, 2009). Therefore, bald tyres have lower skid resistance than tyres with full
pro�le depth. Tyres with deeper treads o�er better frictional characteristics especially at higher speeds,
because more water can be drained than in case of bald tyres (Anupam, 2012).

Pro�le wear has only small e�ect on the average friction coe�cient until the pro�le is about 80% worn,
after which it drops rapidly. Higher wear ultimately results in lower skid resistance (Srirangam, 2015).
Hall et al. (2009) states that studies reported a decrease in wet friction of 45 to 70 percent for fully worn
tyres compared to new ones. When measuring skid resistance a smooth tyre is recommended because
in this situation the skid resistance measurement will only be in�uenced by the drainage capabilities of
the texture of the pavement, and not by the tyre pro�le (Fuentes, 2009).

Inflation pressure
Tang et al. (2017) performed a research to the in�uencing parameters on braking distance with help
of a �nite element model. It was concluded that with an increasing in�ation pressure �between 150
and 250 kPa� the breaking distance increased as well, thus the skid resistance decreased. An increase
of in�ation pressure leads to a decrease of contact area between the tyre and pavement, which reduces
the braking force. For a 100% slip ratio this e�ect was stronger than for a 20% slip ratio. A decreased
vehicle loading decreases the contact area between the tyre and pavement and therefore this can also
have the e�ect of a reducing braking force.
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2.5. Physical explanation for the speed dependency of skid resis-
tance

As Chapter 4 will show, many conversion models for skid resistance have been developed in the past.
Many of these conversion models are empirical models obtained by regressions of measurements per-
formed for the corresponding research. This section outlines possible physical explanations which could
explain the relation between the speed dependency of the skid resistance and pavement macrotexture.

2.5.1. Dissipated energy
This section investigates the possible relationship between the dissipated energy and skid resistance
at di�erent speeds. As explained in Section 2.3, adhesion and hysteresis are two physical mechanisms
providing friction forces between the tyre and road surface. In wet circumstances hysteresis is the
governing component. Therefore this section considers the dissipated energy due to hysteresis.

The mathematical explanation of the friction component caused by hysteresis is very complicated and
much research has been performed on this topic. Srirangam (2015) presented a 3D thermo-mechanical
tyre-pavement interaction model in a �nite element framework and expressed the total energy dissipation
as:

W =

m∑
i=1

∫ T

0

σi · ε̇vidt (2.6a)

σi = Eiεei = Ei

∫ t

0

e
−Ei
ηi

(t−s)
ε̇(s)ds (2.6b)

ε̇vi =
1

τi
εei =

1

τi

∫ t

0

e
− 1
τi

(t−s)
ε̇(s)ds (2.6c)

Where: W = Total energy loss per tyre revolution [-]
T = Time for one tyre revolution [-]
σi = Component related to the stress [-]
ε̇vi = Component related to the change of strain [-]

The parameter corresponding to vehicle speed is T , which is the time needed for one tyre revolution. If
the radius of the tyre would be known, T can be obtained from the vehicle speed. The circumference
of the tyre is 2 · π · r, hence T = 2·π·r

V . If V will linearly increase, T will linearly decrease with the
same rate. Because both the stress and strain components (σi and ε̇vi) have a negative e-power, a
decreasing T will imply a larger value for the stress and strain component of the energy loss, following
the exponential curve.

2.5.2. Volume of water
As described in Section 2.4.4, having a higher velocity means that more water per second must be
drained, especially on non-porous asphalt layers. Also, the larger the speed, the higher the upward
water pressure in the front area of the vehicle wheel. A smaller vertical force from the vehicle is now
acting on the third zone, where hysteresis and adhesion forces arise.

The extent to which the area of the �rst zone increases with an increasing vehicle speed depends on
many factors, such as the thickness of the water layer, the macrotexture and the used tyres. During
skid resistance measurements, most of these factors are kept constant. The macrotexture, however, is
not constant. The size of the macrotexture might have an in�uence on the increase of the upward water
pressure with an increasing vehicle speed, which in turn in�uences the skid resistance. However, this is
a very complicated physical process and one cannot answer easily the question how the macrotexture
in�uences this process. Therefore, this is left outside the scope for this research.



20 2. Introduction to skid resistance

2.6. Conclusions
From the literature study on skid resistance and its in�uencing factors, some important aspects became
clear. Besides insight into skid resistance in general, it became clear that during the development of the
conversion model for the SKM used in the Netherlands, some aspects must be considered. Conclusions,
based on the literature study given in this chapter, are:

� A distinction should be made between the LFC and SFC. Di�erent forces are used to calculate
these coe�cients. Possibly also the speed dependency di�ers for these two coe�cients, hence care
should be taken when analysing prior developed speed conversion models.

� The macrotexture, which can be expressed in the MPD (possibly extended with RMS), has a large
in�uence on the skid resistance and especially on its speed dependency.

� With an SKM the macrotexture is measured in terms of the MPD. This measurement cannot be
accomplished accurately during wet measuring conditions. When analysing the data, care should
be taken that the MPD measurements are performed under dry conditions.

� Positive and negative macrotextures possibly in�uence the speed dependency of the wet skid
resistance. A positive macrotexture can be de�ned as having a MPD/RMS value larger than 1.58,
whereas a negative macrotexture can be de�ned as having a MPD/RMS smaller than 1.58.

� Temperature has a signi�cant in�uence on the skid resistance. For the SKM, a temperature
correction formula exists. During the model generation, the raw measured skid resistance must
be corrected for temperature �uctuations in order to make the measurements comparable.

� The vehicle speed has a large in�uence on the skid resistance and multiple explanations for this
relation exists. In this study the main hypothesis is that at higher speeds the wet skid resistance
decreases because of the higher volume of water per second which needs to be drained. However,
one might discuss which of the mechanisms is governing for which situations.

� The skid resistance of new asphalt layers �uctuates much. Possibly, for new asphalt layers, a
di�erent correlation exists than for older asphalt layers.

� Besides the speed, age and temperature, many other factors in�uence the skid resistance. These
are not taken into account in the model generation. However, one should not forget these in�u-
encing parameters because they could cause deviating measurements if they are not kept constant
while measuring.
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Measuring skid resistance

Measurements of skid resistance can be accomplished with static or dynamic equipment. Static devices
measure the skid resistance at one speci�c location, after which the device should be moved to another
location. Dynamic devices measure the skid resistance continuously over a distance.

The sections below describe two devices recently used in the Netherlands. Section 3.1 explains how
the RWS Skid Resistance Tester works, a device measuring de LFC. Section 3.2 gives more information
about the SKM, a device measuring the SFC.

Table 3.1 gives an overview of the devices.

Table 3.1: Devices for measuring the skid resistance used in the Netherlands

Device Measures Measuring speed Slip Angle of wheel
RWS Skid Resistance Tester LFC 50/70 km/h 86% -
SKM SFC 40/60/80 km/h - 20°

Besides the properties mentioned in the table, also the types and sizes of the tyres used for the RWS
Skid Resistance Tester and the SKM di�er. These are not speci�ed in further detail because this is
considered irrelevant for the speed conversion model.

3.1. RWS Skid Resistance Tester
3.1.1. Working principle
The RWS Skid Resistance Tester (see Figure 3.1) consists of a trailer �tted with a test wheel. To this
test wheel a slip ratio of 86% is applied, which means the rotational velocity of the wheel is 14% of the
velocity of the trailer. The test wheel is loaded with a 200 kilograms mass and a water layer with a
thickness of 0.5 mm is sprayed in front of the test wheel, for measuring the wet skid resistance. With
a standard measuring speed of 50±2.5 or 70±3.5 km/h, the longitudinal friction force between the test
wheel and the road surface is measured. The location of the measurements is normally in the right
wheel path, as Figure 3.1 shows. If this is not possible, the location of measuring should be noted.

21
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Figure 3.1: The RWS system (Kiwa KOAC, 2015)

3.1.2. Calculation of friction coefficient
The wet coe�cient of friction can now be de�ned as the ratio of the horizontal frictional force and the
vertical applied load as in Equation (2.1) (Vos et al., 2017).

If the measurements cannot be performed at the standard measuring speeds, for example on round-
abouts, a measuring speed lower than 50 km/h can be used, and the indicative skid resistance at the
speed of 50 km/h can be estimated with help of a speed conversion model developed by Kiwa KOAC
(see Section 4.9) (Kiwa KOAC, 2015). Besides the speed correction, some corrections for seasonal and
temperature in�uences are applied in order to obtain the friction coe�cient which needs to meet the
requirements.

3.2. SKM
There are two SWF devices which are widely used, namely the German SKM and the British SCRIM.
The working principle of these devices is roughly identical. In the Netherlands the German SKM is used.
Speci�cations of the measuring devices and principles are stated in the German Technical Speci�cations,
the `Technische Prüfvorschriften für Gri�gkeitsmessungen im Staÿenbau Teil: Seitenkraftmessverfahren
(SKM)' (TP Gri�-StB (SKM)). The following sections present a description of the SKM as used by
Kiwa KOAC.

3.2.1. Working principle
Figures 3.2a and 3.2b show photographs of the SKM used bij Kiwa KOAC. The measuring equipment
is incorporated in a truck. At the right side of the truck, a measuring wheel is mounted in between the
rear and front wheels. This wheel is set at a yaw angle of 20° to the direction of travel of the vehicle.
The measuring speed should be 40, 60, or 80 km/h, chosen by the client. On the test wheel a load of
1960 ± 10 N is applied and a water layer with a thickness of 0.5 mm is sprayed in front of the measuring
wheel.

(a) SKM device (b) Measuring wheel

Figure 3.2: Photos of the SKM device (Kiwa KOAC, 2016)
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3.2.2. Calculation of friction coefficient
The equation for calculating the friction force as given by Kiwa KOAC (2016) is equal to Equation (2.2).
If the measurement was not performed at one of the prescribed vehicle speeds (40, 60 or 80 km/h),
a speed correction should be applied. Currently, Equation (4.16) is used to apply a speed correction.
Furthermore, a temperature correction is applied as in Equation (4.17).

3.2.3. Measuring curved sections
Research showed that the yaw angle has an in�uence on the level of the measured SFC. Hosking and
Woodford (1976b) state that the e�ect of increasing the yaw angle is increasing the level of the measured
SFC and at a certain angle the SFC has reached its maximum and it does not increase further. For
lower values of the SFC, this critical angle is smaller than for higher values of the SFC, as can be seen
in Figure 3.3.

Figure 3.3: Relation between the SFC and the yaw angle of the test wheel (Hosking and Woodford, 1976b)

However, Day (2014) gives a di�erent graph than Hosking and Woodford (1976b) and declares that for
every yaw angle a limit of the available tyre/road adhesion can be found, and that the maximum possible
SFC only occurs at a speci�c yaw angle (around 6-12°). After the SFC has reached its maximum, it
will decline with increasing yaw angle.

Figure 3.4: Relation between the SFC and the yaw angle of the test wheel (Day, 2014)
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Although Hosking and Woodford (1976b) and Day (2014) give di�erent relationships for the yaw angle
and SFC, attention should be paid to the yaw angle of the measuring wheel when measuring curved
sections with the SKM. For curves directed towards the left, the yaw angle is `reduced' because the
front wheels are turned into the same direction of the measuring wheel.

For right curved sections, the yaw angle is `increased' because the front wheels are rotated into the
opposite direction of the yaw angle. Figures 3.5a and 3.5b illustrate the change in yaw angle for left
and right turns.

According to Hosking and Woodford (1976b), when decreasing the yaw angle, a reduction in the mea-
sured SFC could be found, whilst according to Day (2014) an increase could be measured. For an
increasing ywa angle, there would be no di�erence according to Hosking and Woodford (1976b) whereas
Day (2014) declares that the SFC might decrease further.

(a) Left curve (b) Right curve

Figure 3.5: Illustrations of SKM measuring device in curves (Vroomans, 2016)

The question whether the measured SFC can be compared to the set target values is beyond the scope of
this research. However, it is not known whether the speed dependency will be di�erent for measurements
performed at curved sections compared to straight sections.

As shown in Figure 3.6, Anupam et al. (2014) found with help of a �nite element model, like Hosking
and Woodford (1976b), a declining increase in the friction coe�cient for an increasing yaw angle.
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Figure 3.6: Cornering Friction Coe�cient vs. Yaw angle (Anupam et al., 2014)

Furthermore, Anupam et al. (2014) investigated the speed dependency of the cornering friction coef-
�cient for di�erent side-slip angles. A decreasing correlation was found �thus, the higher the speed
the lower the cornering friction coe�cient. In terms of percentages, they found 25% to 54% decrease of
the cornering friction coe�cient with an increase in speed of 50 km/h within 1° to 10° slip angle. The
results are plotted in Figure 3.7.

Figure 3.7: Cornering Friction Coe�cient vs. Speed (Anupam et al., 2014)

The lines in Figure 3.7 show that the speed dependency increases slightly with increasing yaw angle.
One should note that the yaw angle of the SKM is 20°, which is not included in this graph.

3.3. Conclusions
This chapter provides information about two di�erent measurement methods of the friction coe�cient.
Conclusions, based on this chapter, are:

� With the RWS Skid Resistance Tester the LFC is measured, whereas with the SKM the SFC is
measured.

� When measuring the LFC, a slip ratio is applied on the measuring wheel. This slip ratio in�uences
the friction coe�cient. Therefore, when analysing the previously developed speed conversion
models, one should take into account whether the slip speed or vehicle speed is used as an input
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parameter and if the LFC or SFC is used as friction coe�cient.

� With the SKM, when measuring curves to the left the yaw angle is slightly decreased whereas
when measuring curves to the right the yaw angle is slightly increased. The smaller the radius,
the larger the change in yaw angle.

� A change in yaw angle could change the speed dependency of the measured SFC. Therefore, sharp
curves can have an in�uence on the speed dependency of the skid resistance measured with the
SKM. Although this in�uence is expected not being signi�cant, in the development of the model,
this in�uence should not be neglected.



4
Previously developed speed conversion

models for the skid resistance

The speed dependent characteristic of skid resistance was observed and reported already in the 1930s
(Fwa, 2017). Much research was performed into the development of speed conversion models for the
skid resistance. The motivating reasons were di�erent. For example, Vos (2008) formulated a speed
conversion model for the RWS-Skid resistance measurements from 50 km/h to 70 km/h. The reason
behind his research was that the standard measuring speed was increased from 50 km/h to 70 km/h, and
therefore the threshold values and requirements needed to be adapted. Groenendijk (2011) performed
his research for the same reason as Vos. Another motivating reason for obtaining a correction for the
speed was the harmonisation of skid resistance measurements. Harmonisation provides a way of making
comparisons between the di�erent approaches used in di�erent countries or between di�erent measuring
techniques in a consistent manner (Vos and Groenendijk, 2009). In this situation, the speed conversion
is one of the needed steps in order to obtain comparable values for the skid resistance.

Table 4.1 gives an overview of conversion models developed in di�erent researches1. In Sections 4.1
to 4.12 these models are presented2. Section 4.13 compares some of the presented models.

1Limited to: models used in The Netherlands and models developed for the SFC (also outside the Netherlands)
2In the descriptions of the models, the symbols noted could di�er from the symbols given in the sources. The purpose of
these adaptions is to prevent confusion caused by the same symbol used for di�erent terms, or the other way around, by
di�erent symbols used for the same terms. The original formulas can be found in Appendix A.
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Table 4.1: Overview of di�erent speed conversion models for the skid resistance

Research Measurement
device

Slip speed or
vehicle speed

Possible speed
conversions

LFC or SFC Relation of µ
to speed

In�uence of
macro texture

Hosking and
Woodford

SCRIM Vehicle From 30-50 km/h
to 50 km/h

SFC Linear -

Penn state Model US locked wheel tester Slip - LFC Exponential PSNG
Rado Model Di�erent devices Slip - LFC Exponential shape factor C
PIARC Model Di�erent devices Slip From di�erent

speeds to 60 km/h
Both Exponential Various

Koac WMD RWS Skid Resistance
Tester

Vehicle Between 30-90
km/h

LFC Exponential MPD and
positive/negative
macrotexture

ESDU Di�erent devices Vehicle - LFC Quadratic MPD (indirect)
FEHRL Hermes Di�erent devices Slip From di�erent

speeds to 30 km/h
Both Exponential MPD

E. Vos RWS Skid Resistance
Tester

Vehicle From 50 to 70 km/h
and vice versa

LFC Linear Open / dense

Koac�NPC RWS Skid Resistance
Tester

Vehicle From 20-50 km/h
to 50 km/h

LFC Exponential MPD

SCRIM conversion SCRIM Vehicle From 25-85 km/h
to 50 km/h

SFC Quadratic -

TP Gri�-StB (SKM) SKM Vehicle From di�erent
speeds to
40/60/80 km/h

SFC Linear -

BASt SKM Vehicle From di�erent speeds to
40/60/80 km/h

SFC Linear MPD

4.1. Hosking and Woodford (1976)
Hosking and Woodford (1976b) investigated several factors a�ecting SCRIM measurements of which
one was the speed. Not a speed conversion model was developed, but a model with which the skid
resistance under certain circumstances could be calculated.

4.1.1. Experimental setup
� Measurements were performed with the SCRIM.

� A test wheel was used with a standardised 3.00x20 tyre under a yaw angle of 20 degrees to the
direction of travel.

� Measurements were performed on the motorway M40 in the UK.

� The bituminous surfaces were gritted with aggregates having a polished stone value (PSV) between
60 and 75 and a texture depth varying from 0.5 to 2.5 mm.

� The section was tested 5 times in both directions at measuring speeds of 16, 32, 48, 64 and 80
km/h.

� All the work was done in one day and therefore the temperature in�uence was kept minimal.

� The water supply had a mean �lm thickness of 1.1 ± 0.1mm on a smooth road.

4.1.2. Developed model
Multiple regression analysis of the mean values of SFC gave the following relationships (Hosking and
Woodford, 1976b):

In the direction of tra�cking:

µy,V = 0.015 · PSV + 0.028 · TD− 0.0027 · V − 0.286
(4.1a)

In the opposite direction of tra�cking:

µy,V = 0.014 · PSV + 0.026 · TD− 0.0025 · V − 0.200
(4.1b)

Where: µy,V = Calculated SFC at measuring speed V [-]
PSV = Polished-stone value of aggregate [-]
TD = Texture depth of surfacing measured with the sand [mm]

Patch method



4.2. Penn State Model (1978) 29

V = Measuring speed of vehicle [km/h]

This is not a conversion model, but a model to calculate, based on certain texture and speed input
parameters, the corresponding SFC. However, for obtaining these equations, Hosking and Woodford
(1976b) investigated the e�ect of di�erent measuring speeds on the skid resistance. This e�ect appeared
to be almost similar for both measuring directions, respectively 0.0027 and 0.0025 units per km/h
di�erence in measuring speed. For practical purposes, Hosking and Woodford (1976b) advised to apply
a correction of 0.01 units for each 4 km/h �which equals a correction of 0.0025 units for each km/h�
if the measuring speed is lower than the standard measuring speed of 50 km/h. They mentioned that
for speeds lower than 30 km/h the accuracy of this correction declines.

Reliability
No information about the reliability or accuracy of this model is given in the work of Hosking and
Woodford (1976b).

4.2. Penn State Model (1978)
The Penn State Model is one of the �rst models bearing in mind the speed dependent characteristic of
skid resistance. This model was developed by researchers at the Pennsylvania State University (Fwa,
2017) and describes the relationship of friction µx to the slip speed S (Henry, 2000).

4.2.1. Experimental setup
� Measurements were performed according to E274-77 of the American Society for Testing and
Materials (ASTM). This implies3 a locked wheel device with a grooved tyre (E501), a water �lm
of 0.56 mm, a wheel load of 4286 N and a tyre pressure of 165 kPa.

� 20 test sections located in West Virginia were measured in July 1976.

� All data was obtained at the same time and therefore seasonal e�ects such as temperature and
rain were considered to be negligible and therefore excluded.

� The sections were measured at measuring speeds of 48, 64, 80 and 96 km/h.

� Twelve tests were made at each speed of which the measured values were averaged .

4.2.2. Developed model
Leu and Henry (1978) developed the following equation:

SN = SN0 · e−
PSNG
100 ·S (4.2)

Where: SN = Skid number (= 100·µx) [-]
SN0 = Zero speed intercept [-]
PSNG = Percentage skid number-speed gradient [%]
S = Slip speed [km/h]

SN0 is the skid resistance estimated with the British Pendulum Test (Fwa, 2017) and is called the zero
speed intercept. Leu and Henry (1978) suggested that this parameter was correlated to the microtexture,
whereas the PSNG is a parameter related to the macrotexture. PSNG is a parameter obtained by curve
�tting with inputs of skid resistance measurements made at three or more speeds (Fwa, 2017).

Reliability
No information about the reliability or accuracy of this model is found.

4.3. Rado Model (1994)
Rado modelled the slip behaviour as in Figure 2.16 with the following formula (Henry, 2000):

3As given in E274-79, a renewed version of E274-77
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µS = µpeak · e
−
[
ln(S/Speak)

C

]
(4.3)

Where: µS = Friction coe�cient at slip speed S [-]
µpeak = Peak friction level [-]
Speak = Slip speed at the peak friction level [km/h]
C = Shape factor [-]
S = Slip speed [km/h]

Speak is typically about 15 percent of the vehicle speed and Rado found C to be related to the harshness
of the texture, this parameter is closely related to the speed number Sp in the PIARC model(Leandri
and Losa, 2015). Equation (A.3) can be used to determine the whole friction curve µ(S) for a braking
process from free rolling to the locked wheel state (Leandri and Losa, 2015).

An example of the Rado model is shown in Figure 4.1, the curve of this �gure resembles Figure 2.16.

Figure 4.1: Rado model (Henry, 2000)

Above the peak friction value, the Rado Model is similar to the Penn State Model and the models
depend on the pavement characteristics (Henry, 2000). The Rado Model is not intended tu be used for
converting the skid resistance between di�erent measuring speeds, but for calculating the skid resistance
at a certain used slip speed, because Speak, C and µpeak are constant numbers in the formula. However,
because later research is based on Rado's work, this model is addressed in this research.

Reliability
No information about the reliability or accuracy of this model is found.

4.4. PIARC Model (1995)
The PIARC International Experiment was conducted to compare and harmonise texture and skid
resistance measurements performed with di�erent devices (Henry et al., 1995). Section 4.4.1 presents
the setup of the experiment whereas Section 4.4.2 explains how the model is developed, which can be
applied on various devices. Section 4.4.3 tries to analyse the PIARC model for SCRIM devices into
more detail.

4.4.1. Experimental setup
47 di�erent measuring systems participated the PIARC project. These measuring systems came from
sixteen di�erent countries. These systems measured 67 di�erent parameters �33 texture parameters
and 34 friction parameters (Henry et al., 1995).
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The friction was measured with SWF, �xed slip and locked wheel measurements. Because di�erent
friction devices were used, measurements were performed under di�erent conditions. For example,
some measurements were performed with PIARC ribbed tyres, whereas others were performed with
PIARC smooth tyres. Measuring devices from the US do not use PIARC tyres but ASTM tyres, which
can also be smooth or ribbed. The RWS Skid Resistance tester is the Dutch device used in the PIARC
experiment. From Germany, a version of the British SCRIM was used.

Texture was measured with both stationary and dynamic equipment and expressed in variables such as
the RMS, MPD and the mean texture depth (MTD).

Measurements were performed in September and October of 1992. A variety of test sites was used. In
total 28 Belgium tracks �2 at an air�eld, 4 at a race track and 22 on public roads� and 26 Spanish
tracks �8 at air�elds and 18 on public roads� were used. As a requirement, approximately 75% of
the sites should be asphalt concrete (AC) whereas 25% should be portland cement concrete (PCC).
However, it is not known if this requirement was ful�lled. Each measurement was repeated one time at
each speed. The di�erent measuring speeds were 30, 60 and 90 km/h.

4.4.2. Developed model
During the experiment a model was developed according to the procedure presented in Figure 4.2.
The skid resistance (µBS) measured with a certain measuring device B at a certain slip speed S is �rst
converted to the skid resistance (µB60) for the same device B at the reference slip speed which is de�ned
at 60 km/h. This is followed by a conversion for the skid resistance measured with device B to the skid
resistance (µ60) measured with reference device A. The �rst step is the important step for this research
because this step contains the speed conversion. Therefore, the second step is not analysed in depth.

Skid resistance µB60 measured
with device B, converted to a slip

speed 60 km/h

Skid resistance µBS measured with
device B at slip speed S

Skid resistance µ60 converted to
reference device A with  a slip

speed of 60 km/h

1 2

Figure 4.2: Framework of PIARC model

The �rst step of the PIARC model consists of two parts: �rstly, the speed number Sp, which indicates
the texture dependency, is determined. This is followed by a second formula that calculates the friction
coe�cient at a standard slip speed of 60 km/h, µB60. The speed number is calculated as follows (Henry
et al., 1995):

Sp = a + b · Tx (4.4)

Where: Sp = Speed number [-]
a = Constants for any texture device [-]
b = Constants for any texture device [1/mm]
Tx = Macrotexture measure [mm]

Tx can be measured as the MTD measured by the sand patch method, or the MPD measured by a laser
device (Fwa, 2017). For example, ASTM adopted the following relationship for Sp (ASTM E1960-98,
2015):

Sp = 14.2 + 89.7 ·MPD (4.5)

In which the MPD is measured according to ASTM E1854. Henry et al. (1995) developed a model,
based on the Penn State Model, to convert the measured friction at slip speed S to a friction coe�cient
at a slip speed of 60 km/h as follows:

µB60 = µBS · e
S−60
Sp (4.6)
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Where: µB60 = Slip-speed corrected estimate for the device speci�c [-]
friction coe�cient at a slip speed of 60 km/h

µBS = Measured friction coe�cient with device B at slip speed S [-]
S = Slip speed [km/h]

= V for locked wheel
= V · SR/100 for �xed slip testers
= V · sin(α) for SFC

where α = yaw angle of test wheel [°]

With the values µ60 (estimate of the "true" friction index measured at 60 km/h for the standard
measuring device A) and Sp, PIARC proposed the International Friction Index (IFI) as IFI(µ60, Sp).
With help of the IFI it is now possible to estimate the friction coe�cient at any speed (Henry et al.,
1995) for the standard measuring device. This is considered not relevant for this research and therefore
it is not described into further detail.

In Equation (4.6) there are no device speci�c parameters, only Sp depends on the type of texture device.
Instead of the vehicle speed, the slip speed is used and the model assumes a comparable correlation for
the di�erent devices when considering slip speed. When measuring with the SKM no slip is applied
but a yaw angle. The di�erence between the LFC and SFC is addressed by converting the yaw angle
to a slip ratio of sin(20) = 34%. However, this does possibly not eliminate all di�erences (Vos and
Groenendijk, 2009).

4.4.3. PIARC model for SCRIM Devices
In the research of PIARC, 8 di�erent SCRIM devices participated. All of these used a smooth tyre and
had a yaw angle of 20°. See Table 4.2 for an overview of the used SCRIM devices.

Table 4.2: SCRIM devices used in the PIARC research (Table 1, Henry et al., 1995)

Device ID Device name (country) Measuring speed [km/h]
C3B Flemish Scrim (B) 30, 60, 90
C3E CEDEX SCRIM (E) 30, 60, 90
C6E MOPT SCRIM (E) 30, 60, 90
D1E SCRIM (D) 40, 60, 90
D2 SCRIM-GEOCISA (E) 30, 60, 80
D3 SCRIM (F) 30, 60, 90
D4 SUMMS (I) 30, 60, 80
D5 SCRIMTEX (UK) 30, 60, 90

From this table, it seems that device D1E is the device used in Germany. However, it is unknown
how much the current German SKM deviates from the 1994 German SCRIM. What we are actually
interested in, are the a and b values used for the macrotexture measurements. These do not depend
on the skid resistance measuring device but on the macrotexture measuring device. PIARC gives some
combinations of texture equipment and skid resistance measuring devices, but unfortunately no texture
measuring equipment is provided for the D1E. The only SCRIM devices presented in this table (table
2, Henry et al., 1995), are D2 and D5. However, these devices measure the macrotexture as the MTD,
thus makes the a and b parameters unusable for this research. Three di�erent devices measuring the
MPD are used in the PIARC research, which are A2, A4 and A5. Table 4.3, below, provides information
about these texture measuring devices.
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Table 4.3: Values for a and b for di�erent texture measuring devices (adapted from table 2 and 24, Henry et al., 1995)

Device ID Texture device (country) Measurements V a b
A2 VTI Mobile Pro�lometer (S) RMS, ETD,

TDMA, MPD
34 14.235 89.720

A4 (1) CRR Mobile Pro�lometer (B) MPD, RMS 18 11.502 69.133
A4 (2) CRR Mobile Pro�lometer (B) MPD, RMS 36 9.229 83.230
A4 (3) CRR Mobile Pro�lometer (B) MPD, RMS 72 42.256 139.203
A5 CRR Stationary Pro�lometer (B) MPD, RMS 0 9.741 81.676

As Table 4.3 shows, di�erent values for a and b were used for the A4 device depending on the measuring
speed. The di�erent values for a and b for all given texture devices were compared by calculating the
Sp for MPD values ranging from 0.1 to 2.0 mm.

Figure 4.3: Comparison of di�erent formulas for Sp, the speed number in the PIARC model

Figure 4.3 clearly shows that the values for Sp calculated with the a and b according to texture devices
A2, A4 (1), A4 (2) and A5 are roughly similar, whereas A4 (3) shows a much larger value for Sp. The
a and b values for A4 (3) are much larger than for the other texture devices. This might be due to the
measuring speed, which is 72 km/h for A4 (3), whilst for the other devices it is limited to 36 km/h.

Furthermore, Figures 4.4 and 4.5 visualise the skid resistances, measured between 25 and 80 km/h, with
a reference skid resistance of 0.4 at 60 km/h. The two graphs di�er in the macro texture, which is 0.5
mm in Figure 4.4 and 1.5 mm in Figure 4.5.
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Figure 4.4: Comparison of the PIARC model for di�erent texture devices, with a reference skid resistance of 0.4 at 60
km/h and an MPD of 0.5 mm

Figure 4.5: Comparison of the PIARC model for di�erent texture devices, with a reference skid resistance of 0.4 at 60
km/h and an MPD of 1.5 mm

Figures 4.4 and 4.5 show very clear the impact of the MPD: a larger MPD implies a much smaller speed
dependency. Furthermore, A4 (2) and A5 give approximately equal conversions, which could have been
expected due to very similar values for a and b.

Reliability
Dr. James C. Wambold performed an analysis on accuracy of the model developed by PIARC and
Vos and Groenendijk (2009) gave a summary of this analysis. This analysis is moreover performed on
the overall PIARC model, and not only on the speed corrections. Furthermore, Vos and Groenendijk
(2009) mentioned that it was not fully clear to them what was meant with all the given calculated
values (contributing to the accuracy of the PIARC model). Therefore, at this moment, no steps were
set to dive deeper in the accuracy analysis of the PIARC model.

4.5. KOAC•WMD (1999)
In 1999, Koac�WMD (now Kiwa KOAC) performed skid resistance and macro texture measurements
for the CROW (Dutch knowledge platform for infrastructure). At that moment, a model existed for
the speed dependency of the skid resistance, but this model was developed based on a limited number
of texture variations. Therefore, CROW asked Koac�WMD to verify and improve the existing model
on di�erent asphalt layers with a variation of micro and macrotextures (Wennink, 2000).
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4.5.1. Experimental setup
� Test tracks of the BASt (Die Bundesanstalt für Straÿenwesen, the German Federal Highway
Research Institute), on a former Russian airport 50 kilometres south of Berlin, were used. In
total, 46 test tracks were constructed with a variety of pavement types.

� AC, PCC and mastic asphalt are the main groups of pavement types. With respect to the AC
layers, most were dense layers and some layers were made with porous asphalt. Most of the mastic
asphalt layers were gritted with both �ne and coarser material.

� The MPD of the tested tracks varied between 0.08 and 2.60 mm.

� The texture was measured with the Automatic Road Analyser (ARAN), a device which measures
the MPD with help of a laser. The applied measuring speed of the ARAN was approximately 15
km/h.

� Skid resistance measurements were performed with the RWS Skid Resistance Tester, which mea-
sures the LFC.

� A smooth PIARC-tyre (165 R 15) with a tyre pressure of 200±10 kPa and a load of 1960 N was
used.

� In front of the measuring wheel a water �lm with a thickness of 0.5mm and a width of minimum
0.15m was jetted.

� Measurements were performed at 30, 50, 70 and 90 km/h and three times for each measuring
speed.

4.5.2. Developed model
With help of SPSS and TableCurve a model was developed for the conversion between varying measuring
speeds. Firstly, the shape of the model was de�ned as in Equation (4.7) (Wennink, 2000):

µx,R = µx,V · e(B·(VR−V )) (4.7)

Where: µx,R = Predicted LFC at reference speed VR [-]
µx,V = Measured LFC at measuring speed V [-]
B = Parameter dependent on texture [-]
VR = Reference measuring speed [km/h]

B is a parameter dependent on the texture of the surface. MPD is the best variable to predict the value
for B and furthermore it became clear that for positive textures (at least gritted pavements) factor B
is slightly larger, hence gritted pavements (for equal MPD values) are less speed dependent. B can be
expressed as (Wennink, 2000):

B = −0.00533 + 0.003073 · ln(MPD) + r (4.8)

Where: r = 0.001682 if MPD/RMS < 1.5805 (negative texture) [-]
= 0.001682 if MPD/RMS > 1.5805 (positive texture) [-]

Considering that speed and wet skid resistance have a negative correlation, which should follow from
Equation (4.7), one can calculate that for positive textures the model is valid up to a maximum MPD
of 3.28 mm and for negative textures the model is valid up to a maximum MPD of 5.67 mm.

4.6. ESDU (2003)
The Engineering Sciences Data Unit (ESDU) company developed a statistical method which represents
and relates the braking performances of aircraft and ground-test machines in wet conditions (Balkwill
and mitchell (2000), as cited in van Es et al., 2004). The method was developed to apply on measure-
ments performed on natural wetted surfaces, and the Dutch working group on runway friction evaluated
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investigated if the ESDU approach could also be used to correlate the friction measurements of devices
that apply a water layer in front of the measuring wheel (van Gurp, 2005).

4.6.1. Experimental setup
The experimental setup for ESDU and the model evaluation was as follows (van Es et al., 2004, van
Gurp, 2005):

� The measuring devices (measuring the LFC) included in the evaluation study were as follows (van
Gurp, 2005):

� griptester, 14.5% slip

� ROAR, 15% slip

� mu-meter Mk 6, no slip but a yaw angle of 15°

� skiddometer BV11, 15% slip

� sarsys Friction Tester Saab 9-5, 15% slip

� ASFT Sharan #1, 15% slip

� RAW Trailer (RWS Skid Resistance Tester), 86% slip

� ASFT Sharan #2, 15% slip

� All devices sprayed a water �lm with a thickness of 1.0 mm in front of the measuring wheel.

� 30 surfaces used for the PIARC experiment were selected to use for this evaluation. These surfaces
had a range of macrotexture depths which were representative fro air�elds.

� Measurements from the PIARC experiments on these 30 surfaces were used. This included MPD
measurements measured with the CRR Stationary pro�lometer.

4.6.2. Developed model
The ESDU method is as follows (van Gurp, 2005):

µV =
µdatum

1 + β o.5ρV
2

p

(4.9)

Where: µV = Skid resistance at measuring speed V [-]
µdatum = Coe�cient of friction at zero ground speed on a dry surface [-]
β = Empirical variable [-]
ρ = Surface contaminant density [kg/m3]
V = Measuring speed [m/s]
p = Tyre in�ation pressure [Pa]

The empirical variable β is device speci�c and can be calculated form the measured skid resistance of
a wetted surface. Therefore, skid resistances measured at equal vehicle speeds with di�erent measuring
devices can be compared.

From the evaluation it was concluded that the ESDU method can be used for correlating the output
of di�erent measuring devices that spray a water layer in front of the measuring wheel. The advantage
above previous developed models (such as the PIARC Model (1995)) is that the ESDU method accounts
for random uncertainties to which all skid resistance measuring devices are subjected (van Es et al.,
2004).

4.7. FEHRL Hermes project (2006)
In the early 2000s, the Forum of European national Highway Research Laboratories (FEHRL) conducted
a research called Harmonisation of European Routine and research Measuring Equipment for Skid
resistance of roads and runways (HERMES)). The aim of this research was to promote harmonisation of
skid resistance measurements (Vos and Groenendijk, 2009). During the project the European Friction
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Index (EFI) was developed. This is a scale for the skid resistance, comparable to the IFI, but now
developed on European level.

4.7.1. Experimental setup
� Fifteen skid resistance measuring devices and eight texture-measuring devices were used in the
HERMES project. The most relevant devices that took part in the project are the RWS Skid
Resistance Tester and three types of the SCRIM. The setup conditions for these devices were as
follows:

� RWS Skid Resistance Tester: 86% �xd slip, PIARC smooth tyre at 200 kPa, water �lm with
a thickness of 0.5 mm

� SCRIM CEDEX: yaw angle of 20°, SCRIM smooth tyre at 350 kPa, water �lm with a
thickness of 0.5 mm

� SCRIM MET: yaw angle of 20°, SCRIM smooth tyre at 350 kPa, water �lm with a thickness
of 0.5 mm

� SCRIM TRL: yaw angle of 20°, SCRIM smooth tyre at 350 kPa, water �lm with a thickness
of 0.5 mm at 50 km/h and 0.25mm at 90 km/h.

� Skid resistance measuring devices measured either the SFC or the LFC, with slip ratios from 14%
up to 100% (locked wheel).

� Eight di�erent texture meters were used in the project, among which the ARAN operated in the
Netherlands.

� Di�erent test locations were de�ned and at each test location the selected devices measured at
three di�erent measuring speeds: 30 km/h, 90 km/h and an intermediate speed that corresponded
to the standard measuring speed of this device.

� Many test sections consisted of a concrete pavement, however, some pavements consisted of for
example PA, DAC or SMA.

4.7.2. Developed model
The formula developed by the Hermes project is based on Equation (4.6). To focus more on the devices
used in Europe, the texture depth values were recalculated according to the new ISO-standard for
the calculation of the MPD (ISO 13473-1:1997 (1997), as cited in Descornet et al. (2006)). A further
di�erence to the PIARC is that the formulae developed by the Hermes project used a reference slip
speed of 30 km/h instead of 60 km/h.

FEHRL Hermes developed the formulae as follows (Vos and Groenendijk (2009) and Descornet et al.
(2006)):

EFI = B · µ30 (4.10a)

µ30 = µ · e
S−SR
S0 (4.10b)

S0 = a ·MPDb (4.10c)

Where: a, b, B = Device speci�c parameters [-]
µ = Measured LFC or SFC [-]
µ30 = Estimated friction coe�cient at the reference slip speed, [-]

which is set to 30 km/h
SR = Reference slip speed, set to 30 km/h [km/h]
S0 = Speed constant related to tested surface characteristics [km/h]

Sp is a parameter depending on the surface characteristics and a and b depend on the texture meter.
Parameter B is to convert the skid resistance of a certain device to the skid resistance measured with
a reference device. Thus, B depends on the used skid resistance meter. Therefore, Equation (4.10b) is
the conversion model to convert a measured skid resistance to the skid resistance at another speed.
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Descornet et al. (2006) developed a second regression because the �rst model was not very accurate.
This model contained an extra input parameter, namely the slip ratio. The HERMES approximation
for this curve is as follows:

µs = µ0 · e−
S
S0

3

= µ0 · e
−( S

117·(MPD)a·(SR)0.9
)3

(4.11)

Where: µs = Friction at slip speed S [-]
µ0 = 'Theoretical' friction at 0 km/h slip speed [-]
S0 = Speed constant [km/h]
a = Device speci�c constant [-]

Reliability
In 10% of the cases did the model stemming from Equations (4.10a) and (4.10c) not �t to the exper-
imental data. The majority of these deviations was found in measurements on porous asphalt and/or
measurements with a low slip ratio (<20%) (Vos and Groenendijk, 2009). Therefore, the second model
was developed. The model according to Equation (4.11) showed less deviations to the data, but still it
was not very accurate.

4.8. E. Vos (2008)
Vos (2008) performed his research commissioned by the RWS. In 2010, the standard measuring speed
for the RWS Skid Resistance Tester was raised from 50 km/h to 70 km/h (Vos et al., 2017) and therefore
the skid resistance measured at a speed of 50 km/h needed to be converted to the skid resistance of the
same road section at a speed of 70 km/h.

4.8.1. Experimental setup
� 17 road sections were measured, of which 7 were constructed with porous asphalt (ZOAB) and
10 with dense asphalt (DAC). In total, this gave 41 sections with a length of 1 hectometre.
Measurements were performed 4 times, twice per measuring speed (50 and 70 km/h).

� Sections were consciously selected on having a skid resistance close to the intervention level (the
target values de�ned by RWS).

� Measurements were performed with the RWS SKid Resistance tester, which measures the LFC.

� In front of the measuring wheel a water �lm with a thickness of 0.5mm and a width of 0.15m was
jetted.

� The tyre used was the PIARC 1998 measuring tyre, which is a smooth tyre.

4.8.2. Developed model
Vos (2008) generalised his results on PA and DAC to a distinction between open and dense wearing
courses and he found that there was, with this distinction, a good correlation between the measured
skid resistance at 50 km/h and 70 km/h. Equations (4.12a) and (4.12b) show the found correlations.

For open asphalt: µx,70 =
42

45
· µx,50 (= 0.993 · µx,50) (4.12a)

For dense asphalt: µx,70 =
39

44
· µx,50 (= 0.886 · µx,50) (4.12b)

Reliability
The model of (Vos, 2008) was only based on 41 sections of one hectometre, which is not very extensive.
Furthermore, no information about the reliability or accuracy of this model is given in the work of (Vos,
2008).
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4.9. Koac•NPC (2009)
Koac�NPC (now Kiwa KOAC) developed a conversion model for the skid resistance measured with the
RWS Skid Resistance Tester at a measuring speed between 20 and 50 km/h, to the skid resistance at
50 km/h. This conversion model was developed because sometimes measuring at the speed of 50 km/h,
for example on roundabouts or bicycle paths, was not possible. These type of sections can be measured
with a maximum speed of approximately 30 km/h only. The experimental setup is not known. The
conversion model is given in Equation (4.13).

µx,50 = µx,V · e(V−50)·(0.01222−0.00668·MPD) (4.13)

Where: µx,50 = LFC at 50 km/h [-]
µx,V = LFC measured at measuring speed V below 50 km/h [-]

A second model was developed in cases where the MPD could not be measured, for example during
rain. In this situation, Equation (4.14) can be used, with is slightly less accurate than Equation (4.13).

µx,50 = µx,V · e0.00734·(V−50) (4.14)

Reliability
No information about the reliability or accuracy of this model is known.

4.10. SCRIM Model
In the UK, the SCRIM is used for measuring the SFC. The Design Manual for Roads and Bridges gives
a speed conversion for measuring speeds varying from 25 to 85 km/h to a reference speed of 50 km/h
using the following equation (Highways England, 2015):

SR50 = SRV ·
−0.0152 · V 2 + 4.77 · V + 799

1000
(4.15)

Where: SR50 = SFC corrected to 50 km/h, multiplied by 100 [%]
SRV = SFC measured at speed V , multiplied by 100 [%]

(Roe et al., 1998) performed a research to the in�uence of texture depth of high and low speed skidding
resistance. Roe et al. concluded that a quadratic equation provided the best representation for the
relationship between friction and speed measured with a smooth tyre. This research could be the origin
of the quadratic formula of Equation (4.15), but this not certain.

4.11. TP Griff-StB (SKM) (2007)
In the German TP Gri�-StB (SKM) (Arbeitsgruppe Infrastrukturmanagement, 2007), the technical
document which prescribes all requirements regarding measurements with the SKM device, the speed
conversion is given as:

µy,R = µy,V +
V − VR

20
· 0.05 (4.16)

Where: µy,R = Predicted SFC at reference speed R [-]
µy,V = Measured SFC at measuring speed V [-]
VR = Reference measuring speed (40, 60 or 80 km/h) [km/h]

This formula is possibly derived from the statement that a decrease in speed will have the e�ect of
increasing the measured SFC by 0.01 for each 4 km/h reduction in speed (Hosking and Woodford,
1976b), since 4

20 · 0.05 = 0.01.

Equation (4.16) can be used when the measuring speed is at most 10 km/h lower or higher than the
reference speed. This means that the following speed intervals can be used to convert to the mentioned
reference speeds:
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40 km/h: 30 km/h < V < 50 km/h
60 km/h: 50 km/h < V < 70 km/h
80 km/h: 70 km/h < V < 90 km/h

Besides correcting the speed, also a temperature correction is applied according to Equation (4.17).

µR,T = µR + (TW − 20°C) · 0.002/°C + (PT − 20°C) · 0.0012/°C (4.17)

Where: µR,T = SKM skid resistance normalised for temperature and speed [-]
TW = Measured water temperature [°C]
PT = Measured temperature of the pavement [°C]

Reliability
Equation (4.16) is a linear relation between skid resistances at di�erent speeds, not taking into account
the macrotexture of the surface. Because in much previous research it turned out that the macrotex-
ture is an important parameter to consider, it is plausible that Equation (4.16) is not very accurate.
Derksen (2017) wrote that for practical reasons the German approach is used for the conversion in the
Netherlands, which might already indicate the inaccuracy of the conversion model.

4.12. BASt (2012)
On behalf of the BASt, Bürckert et al. (2012) performed a research to the in�uence of pavement textures
on SKM measurements. They concluded that the speed-dependency is in�uenced by the surface macro
texture and that even the micro texture should be considered, because the combination of macro and
micro texture is essential. Bürckert et al. (2012) mentioned also that unknown temperature e�ects
appeared which could not be explained in the time of their research.

4.12.1. Experimental setup
� Measurements were performed with the SKM, measuring the SWF, according to the TP Gri�-StB
(SKM).

� Smooth SWF tyres of 3x20 inch were used with a tyre pressure of 2.5 ± 0.1 bar.

� In front of the measuring wheel a water �lm with a thickness of 0.5 mm and a width of 80 mm
was jetted.

� Measurements were performed on a 5 km long section of the the German Motorway A24.

� The surface type is unknown, but it had an MPD between 0.72 and 1.47 mm.

� The skid resistance was measured at measuring speeds of 40, 60, and 80 km/h.

4.12.2. Developed model
Bürckert et al. (2012) proposed a speed correlation formula which was an elaboration of Equation (4.16).
This formula takes the surface texture into account:

µy,R = µy,V +
V − VR

20
· (0.120− 0.062

1

mm
·MPD) (4.18)

This formula is obtained by a regression of data points with on the x-axis the macrotexture and on
the y-axis the ∆µy/∆V (thus, the average decline in skid resistance per km/h di�erence in measuring
speed). This is, like the model of Equation (4.16), a linear equation once the macrotexture is set. The
larger the macrotexture, the smaller the slope of the regression line and thus the less speed dependent
the skid resistance will be.
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Reliability
The coe�cient of determination (R2) for Equation (4.18) obtained by a regression of the data is 0.672.
This is interpreted as the proportion of the variance in the dependent variable (∆µy/∆V ) that is
predictable from the independent variable (macrotexture) (StatTrek, 2018). However, the regression
was made based on a limited variation of pavement textures and compositions and therefore the formula
cannot be generalised (Bürckert et al., 2012).

4.13. Comparison of speed conversion models for the SFC
It is di�cult to compare the di�erent speed conversion models for the SFC, because di�erent reference
speeds and input parameters are used. This section attempts to make a comparison and obtain an
indication of how the speed conversion models di�er from each other.

4.13.1. TP Griff-StB (SKM) and BASt
Equations (4.16) and (4.18) are equal for an MPD of 1.129 mm, this value is obtained by solving:

0.120− 0.062
1

mm
·MPD = 0.05 (4.19)

As can be seen from the example in Table 4.4, the correction of Equation (4.16) (TP Gri�) is smaller
than the correction of Equation (4.18) (BASt) for MPD values smaller than 1.129 mm, which means:

� A correction to a higher reference speed: the converted value of TP Gri� is larger than the
converted value of the BASt.

� A correction to a lower reference speed: the converted value of TP Gri� is smaller than the
converted value of the BASt.

Furthermore, Table 4.4 shows that for MPD values larger than 1.129, the correction of Equation (4.16)
is larger than the correction of Equation (4.18), which means:

� A correction to a higher reference speed: the converted value of TP Gri� is smaller than the
converted value of the BASt.

� A correction to a lower reference speed: the converted value of TP Gri� is larger than the converted
value of the BASt.

Table 4.4: Comparison between conversion models of the TP Gri�-StB (SKM) and the BASt. A measured SFC of 0.5 at
respectively 50 or 70 km/h is converted to an SFC at 60 km/h.

Measuring
speed

Measured
SFC

MPD TP Gri�
converted
SFC

BASt
converted
SFC

Correction
TP Gri�

Correction
BASt

50 0.5 1 0.475 0.471 -0.025 -0.0290
70 0.5 1 0.525 0.529 0.025 0.0290
50 0.5 1.5 0.475 0.487 -0.025 -0.0135
70 0.5 1.5 0.525 0.514 0.025 0.0135

It is undesirable that a speed correction model results into a too high value for the converted SFC,
because in this situation the converted value of a SFC could probably meet the standards whilst in
reality it would not. However, no clear conclusions can be drawn from the comparison above. In some
situations, the TP Gri� gives a higher value of the converted SFC and in some situations the BASt
does.

Figure 4.6 gives a visualisation of the comparison between the conversion models of the BASt and TP
Gri�. In this �gure the following is shown:

� The reference skid resistances are given at 40 at 60 km/h and are 0.6 and 0.5 respectively.
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� The reference skid resistances are converted to the 'measured' skid resistances, which are 30 to
50 km/h (for the reference skid resistance at 40 km/h) and 50 to 70 km/h (for the reference skid
resistance at 60 km/h).

� Three values of the MPD have been used as input, namely 0.5, 1.0 and 1.5 mm.

The �gure shows values for skid resistances at certain speeds in combination with a certain macrotexture
(for the BASt), which would give a reference skid resistance µR of 0.6 at 40 km/h or 0.5 at 60 km/h.

Figure 4.6: Comparison of conversion models BASt and TP Gri�-StB (SKM). A reference skid resistance of 0.6
measured at 40 km/h or 0.5 measured at 60 km/h is converted over a speed di�erence of 10 km/h.

From the �gure it becomes clear that the larger the macro texture is, the less speed dependent the
skid resistance for the BASt conversion model will be. This matches with the theory that a larger
macrotexture provides a drainage system and makes the skid resistance less speed dependent, because
at higher speeds the macrotexture will help to drain o� the water.

4.13.2. TP Griff and SCRIM
A �rst di�erence of Equations (4.15) and (4.16) (respectively the SCRIM model and the TP Gri� model)
is that the SCRIM model gives a relative correction, whilst the TP Gri� model provides an absolute
correction. This means, the SCRIM model is of the shape µR=µV ·X, whereas the TP Gri� model is
of the shape µR=µV +X.

The two models are compared with �ctitious skid resistance measurements. A reference speed of 50
km/h is used, because this is the reference speed for the SCRIM. This is not a reference speed for the
TP Gri�, but because the TP Gri� provides a linear model, it is assumed that a di�erent reference
speed can be used to compare the di�erent conversion models �as long as the corrections are limited
to 10 km/h. With a a reference speed of 50 km/h and a skid resistance at 50 km/h, the values for the
skid resistance at the measuring speeds from 40 to 60 km/h can be calculated.

For Table 4.5 a reference skid resistance of 0.5 is used, for Table 4.6 a reference skid resistance of 0.7 is
used. As can be seen from the examples:

� For smaller SFC values the corrections calculated according to Equation (4.15) are higher than
for larger SFC values.

� For the SCRIM model, the average correction in SFC per km/h declines when the measuring
speed increases, whilst for the TP Gri� this stays 0.0025.

� Only at very high skid resistances the correction of the SCRIM will be equal or smaller than the
correction applied by TP Gri�. In Table 4.6 this is the case for a measured value of 0.73 by the
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SCRIM at a measuring speed of 40 km/h. However, for the other measuring speeds, the correction
applied by the SCRIM is always smaller. As 0.7 is already quite high, this indicates that in most
of the situations the SCRIM model will give a smaller correction for the SFC.

Table 4.5: Comparison of SCRIM and TP Gri�-StB (SKM) conversions. The given corrections are corrections to
converd from the corresponding measuring speed to a reference skid resistance of 0.5 at a reference speed of 50 km/h.

Measuring
speed

SCRIM,
µ50=0.5

TP Gri�,
µ50=0.5

Correction
SCRIM

Correction
TP Gri�

Correction
SCRIM
per km/h

Correction
TP Gri�
per km/h

40 0.518 0.525 -0.018 -0.025 -0.0018 -0.0025
45 0.509 0.513 -0.009 -0.013 -0.0017 -0.0025
50 0.500 0.500 0.000 0.000
55 0.492 0.488 0.008 0.013 0.0015 0.0025
60 0.485 0.475 0.015 0.025 0.0015 0.0025

Table 4.6: Comparison of SCRIM and TP Gri�-StB (SKM) conversions. The given corrections are corrections to
converd from the corresponding measuring speed to a reference skid resistance of 0.7 at a reference speed of 50 km/h.

Measuring
speed

SCRIM,
µ50=0.7

TP Gri�,
µ50=0.7

Correction
SCRIM

Correction
TP Gri�

Correction
SCRIM
per km/h

Correction
TP Gri�
per km/h

40 0.725 0.725 -0.025 -0.025 -0.0025 -0.0025
45 0.712 0.713 -0.012 -0.013 -0.0024 -0.0025
50 0.700 0.700 0.000 0.000
55 0.689 0.688 0.011 0.013 0.0021 0.0025
60 0.679 0.675 0.021 0.025 0.0021 0.0025

Figure 4.7 visualises the di�erence for the two conversion models. For this �gure, a reference skid resis-
tance of 0.5 and 0.7 at a reference speed of 50 km/h is calculated to the corresponding skid resistances
for measuring speeds of 40 to 60 km/h. Figure 4.7 shows that for the reference skid resistance of 0.7,
the outcome of the models are more similar than for the reference skid resistance of 0.5.

Figure 4.7: Comparison of conversion models SCRIM and TP Gri�-StB (SKM). A reference skid resistance of 0.5 or 0.7
measured at 50 km/h is converted to a skid resistance at 40 and 60 km/h.

In Figure 4.8a the SCRIM model is given for a wider variety of measuring speeds, because this model
can be used for speeds varying between 25 and 85 km/h. As one can see, the model of the SCRIM
follows slightly the curve of Figure 4.8b.
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Figure 4.8: On the left: comparison of conversion models SCRIM and TP Gri�-StB (SKM). On the right: speed
dependency of friction coe�cient (copy of Figure 2.13)

4.13.3. TP Griff-StB (SKM), PIARC and BASt
A comparison between the PIARC Model, the BASt model, and the conversion formula used in the TP
Gri�-StB (SKM) was performed by plotting graphs of the formulas in which a reference skid resistance
of 0.4 at 60 km/h is used in combination with an MPD of 0.5 mm (Figure 4.9) and 1.5 mm (Figure 4.10).

Figure 4.9: Comparison of TP Gri�-StB (SKM), PIARC and BASt for an MPD of 0.5 mm. A skid resistance of 0.4 at
60 km/h is converted to skid resistances at 50 and 70 km/h.
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Figure 4.10: Comparison of TP Gri�-StB (SKM), PIARC and BASt for an MPD of 1.5 mm. A skid resistance of 0.4 at
60 km/h is converted to skid resistances at 50 and 70 km/h.

The graphs clearly show that, for an MPD of 0.5 mm, the lines are less close to each other than for an
MPD of 1.5 mm. As expected, because 1.129 (see Section 4.13.1) is between the two used macrotextures,
for a MPD of 0.5 mm the BASt applies a larger correction whilst for an MPD of 1.5 mm the TP Gri�-
StB (SKM) applies a larger correction. The model with a and b values for texture device A4 (3) matches
the values obtained by TP Gri�-StB (SKM) and BASt. This may indicate that the values for a and b
of A4 (3) �t best to the texture device used in the SKM. The PIARC formula would then become:

µB60 = µBS · e
S−60

42.256+139.203·MPD (4.20)

However, one should note that A4 (3) is the device of which the a and b parameters are most divergent
comparing to the other texture meters (see Table 4.3). Therefore, the values of a and b for the SKM
remain doubtful.

4.14. Conclusions
Based on the analysis of previous speed conversion models and some comparisons between the models,
some conclusions can be drawn:

� Forms of models that exist are:

� linear formulas, which add or subtract a factor to the measured skid resistance (Hosking and
Woodford (1976), TP Gri�-StB (SKM) (2007));

� linear formulas, that multiply the measured skid resistance with a certain factor (E. Vos
(2008));

� quadratic formulas, which multiply the measured skid resistance with a factor (SCRIM
Model);

� exponential formulas (Penn State Model (1978), PIARC Model (1995), KOAC�WMD (1999),
FEHRL Hermes project (2006), Koac�NPC (2009)).

� Most of the models use an exponential relationship. Possibly, this �ts best the speed dependent
behaviour of skid resistance.

� Some models use the texture, or a parameter dependent on the texture, as input. The macro-
texture is used in the PIARC Model (1995), KOAC�WMD (1999), Koac�NPC (2009), and BASt
(2012)). E. Vos (2008) makes a distinction between open and dense pavements, and the FEHRL
Hermes project (2006) uses a speed parameter related to tested surface characteristics.

� BASt (2012) extended the model of TP Gri�-StB (SKM) (2007) and incorporates the fact that
the skid resistance is less speed dependent on a road with a larger macrotexture. This model still
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uses a linear function. For a macrotexture of 1.129, BASt (2012) and TP Gri�-StB (SKM) (2007)
are equal.

� The plot of the SCRIM model looks more equal to Figure 2.13 than the TP Gri�-StB (SKM)
model, but no macrotexture is used in this formula. Also, this formula always converts to a speed
of 50 km/h, which is not the purpose of the conversion model in this research. Therefore, this
model might not be extendable to a model that takes into account macrotexture and which can
convert the skid resistance to di�erent reference speeds.

� It is not known which a and b should be applied in the Sp of the PIARC Model (1995) for the
SKM. Based on a comparison with TP Gri�-StB (SKM) (2007) and BASt (2012) for di�erent
values of the MPD, the conclusion can be drawn that the texture device A4 (3) with a=42.256
and b=139.203 �ts best in the other conversion models.

� For most models, no evaluation of the accuracy or reliability of the model is given or found in the
consulted literature.



5
Model generation

This chapter describes the regression analysis performed on the data. An overview of the available data
is given in Appendix C, as well as some graphs visualising the dataset and a short repeatability analysis.
Furthermore, the analysis as described in this chapter is performed on approximately 75% of the total
available data, the other 25% of observations are used to verify the model.

Section 5.1 describes the set-up of the performed analysis for the model generation. The predictive
variables and the used methods are concisely described. The performed methods are elaborated in
detail in Sections 5.2 to 5.4 and Section 5.6 gives the �nal conclusions of the model generation.

5.1. Set-up of analysis
From the literature review and experiences in measurements it became clear that the skid resistance is
assumed to decline with an increasing measuring speed. In previously developed conversion models often
a curvilinear �exponential� relationship is assumed between the speed and skid resistance, whereas in
fewer models a linear relationship is assumed. Therefore, initially, two di�erent models are formulated
for the regression analysis:

µa = µb + C0 + C1 · var1 + C2 · var2 + ...+ Cn · varn (5.1a)

µa = µb · eC0+C1·var1+C2·var2+...+Cn·varn (5.1b)

Equation (5.1a) shows the linear relationship and Equation (5.1b) shows the exponential relationship.
C1, ..., Cn are the regression coe�cients and var1, ..., varn are the predictive variables.

5.1.1. Predictive variables
Equations (5.1a) and (5.1b) show the models which are used for the regression analysis, in which
C1, ..., Cn are the regression coe�cients and var1, ..., varn are the predictive variables.

From previous research, predictive variables are selected and some new possible predictive variables are
added. The following variables are used in the analysis:

� Vb − Va
� MPD·(Vb − Va)

� ln(MPD) · (Vb − Va)

�
MPD
RMS · (Vb − Va)

�
MPD
RMS · (Vb − Va) as a dummy variable:

� (Vb − Va) if MPD
RMS > 1.58

� 0 if MPD
RMS < 1.58

47
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� 1- VbVa : this variable is not included in previous research but will be investigated in this regression
analysis. Often it is assumed that at a lower speeds the skid resistance declines more with
increasing the speed than at higher speeds. Therefore, it is investigated whether the relative
change in speed works as a predictive variable.

� MPD·(1− Vb
Va

)

�
MPD
RMS · (1−

Vb
Va

)

� ln(MPD) · (1− Vb
Va

)

Replicate measurements of skid resistance at the same measuring speed should ideally result in the same
value of skid resistance. For this reason a model set-up was chosen in which all predictive variables
combined with their regression coe�cients were to be regarded as a multiplication of Va−Vb or 1− Vb

Va
.

This implies that the intercept (C0) should be set to zero.

In general, a decline in skid resistance is expected with an increasing speed. This means that if Vb−Va
would be included, this variable would have a positive coe�cient (if Va is smaller than Vb, a higher skid
resistance is expected. Since Vb − Va is positive the coe�cient must be positive as well). Furthermore,
a larger MPD is expected to diminish the speed dependency, thus the coe�cients of MPD·(Vb − Va)
and ln(MPD) · (Vb − Va) are expected to be negative. For the other predictive variables, such as
MPD/RMS·(Vb − Va) it is more di�cult to set up an hypothesis about the sign of the regression
coe�cient.

In the analysis, all variables with (Vb − Va) are divided by 100. The regression coe�cients are very
small and by dividing the variables by 100 the constants become larger. This makes no di�erence in
the correlations and the calculated regression constants, besides that they must be divided by 100 after
the regression. In this report, all regression constants are already divided by 100 and thus the models
shown are based on the variables above, and not on the variables divided by 100.

5.1.2. Performed regression methods
The regression analysis is performed according to three di�erent methods, which are as follows:

� The �rst method is a multiple linear regression, performed on data consisting of combinations
of two skid resistance measurements with corresponding measurement speeds. This method is
explained in Section 5.2.

� The second method is based on the estimation of a zero speed intercept. This zero speed intercept
is then used in the linear regression analysis to predict µa based on the µ0. This method is clari�ed
in Section 5.3.

� The third method uses multilevel modelling and this method is elaborated in Section 5.4.

5.1.3. Comparison of regression methods: RMSE
For the obtained models, the standard error of the residuals (Root Mean Square Error, RMSE) is
calculated according to the equation as follows:

RMSE =

√∑n
1 (µpred,i − µmeasured,i)2

n
(5.2)

This standard error of the residuals is used to compare the models obtained by the di�erent regression
methods. The RMSE has the same unit as the dependent variable, and to obtain comparable values of
the RMSE, it must be calculated in the same datasheet. Therefore, the datasheet of the �rst regression
method, which is explained in the next section, is used for calculating the RMSE for all obtained models.

5.2. Method 1: multiple linear regression performed on speed com-
binations

The �rst method is a multiple linear regression performed on combinations of two measurements, con-
sisting a measuring speed and a corresponding value for the skid resistance. The comprehensive theory
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behind a multiple linear regression analysis can be found in Section B.2.

5.2.1. Explanation of method
The objective of this research is to develop a model which can convert a skid resistance measurement at
a certain measuring speed B to a skid resistance at a di�erent measuring speed A. Therefore, the data,
which mostly consists of three measurements per 100 metre section, is split into multiple observations
with two measurements per observation. If the measurement speeds for a road section were 40, 60, and
80 km/h, three observations are composed consisting of measurements performed at 40 and 60 km/h,
40 and 80 km/h, and 60 and 80 km/h with the corresponding measured values of the skid resistance.
The structure of the data is presented in Table 5.3, and this matches the input needed for the models as
in Equations (5.1a) and (5.1b). The structure of the data is explained in more detail in Section C.2.2.

Table 5.1: Structure of datasheet for regression method 1 - multiple linear regression

Unique code for
100 metre section

Va Vb µa µb MPD RMS ... other information

1 40 60 µ40 µ60

1 40 80 µ40 µ80

1 60 80 µ60 µ80

Both a linear and exponential relationship can be investigated with this method. In case of a linear
relationship, a regression will be performed on:

µa − µb = C1 · var1 + C2 · var2 + ...+ Cn · varn (5.3)

In case of the exponential relationship, the regression will be performed on:

ln

(
µa
µb

)
= C1 · var1 + C2 · var2 + ...+ Cn · varn (5.4)

Therefore, some extra variables are calculated and added to the datasheet:

� Variables to be predicted:

� µa − µb

� ln
(
µa
µb

)
� Possible predictive variables: as in Section 5.1.1

Various regressions on the data were performed. First, a stepwise (forward) regression with all possible
predictive variables was performed on both a linear and exponential model, to see which variables �t
best on the dataset. Thereafter, several regressions were performed with combinations of predictive
variables. For the combination of variables that gives the best outcome, a more comprehensive output
was generated, making it possible to detect and select outliers and highly in�uential observations.
Finally, a regression without outliers was performed to see whether this would give a large di�erence
compared to the regression with all data included in for example the standard error of the residuals
(Root Mean Square Error, RMSE).

5.2.2. Analysis of data
This section outlines the obtained results with the analyses performed as explained in the previous
section. The executed analyses are:

� stepwise regression on multiple variables

� regressions on combinations of variables, and

� outlier analysis.
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Stepwise regression on multiple variables
A forward stepwise regression was performed for a linear and exponential model with all predictive
variables as in Section 5.1.1. With a stepwise regression, a regression starts with one predictive variable
and in each step another predictive variable is added. The process is stopped when adding a new
variable did not generate a signi�cant improvement.

The included variables for the exponential model per step are:

1. MPD
RMS · (1−

Vb
Va

)

2. MPD·(1− Vb
Va

)

3. MPD
RMS · (Vb − Va)

4. 1− Vb
Va

5. ln(MPD) · (1− Vb
Va

)

6. Vb − Va
For the linear model the included variables are slightly di�erent:

1. MPD
RMS · (1−

Vb
Va

)

2. MPD·(1− Vb
Va

)

3. MPD
RMS · (Vb − Va)

4. MPD
RMS · (Vb − Va) as a dummy variable

5. MPD·(Vb − Va)

6. Removal of: MPD·(1− Vb
Va

)

7. 1− Vb
Va

8. ln(MPD) · (Vb − Va)

9. MPD·(1− Vb
Va

)

The �rst three steps include similar predictive variables for the linear and exponential model. There-
after, the included variables are sometimes di�erent. For the exponential model, ln(MPD) · (Vb − Va),
MPD·(Vb−Va) and MPD/RMS·(Vb−Va) as a dummy variable were not included. For the linear model,
Vb − Va and ln(MPD) · (1− Vb

Va
) are not included.

By analysing the output of these regressions, feasible combinations of variables were formulated for
the regressions on combinations of predictive variables. Import information is given by the variance
in�ation factor (VIF), which can indicate multicollinearity (see Section B.2.2). Combining too many of
the possible predictive variables gives high a high VIF because many variables depend on each other.
A high VIF arises when the following variables are combined within one model:

�
MPD
RMS · (Vb − Va) and MPD

RMS · (1−
Vb
Va

)

�
MPD
RMS · (Vb − Va) and Vb − Va

� MPD·(1− Vb
Va

) and ln(MPD) · (1− Vb
Va

)

Regressions on combinations of variables
An overview of the performed regressions is shown in Table 5.2. The table shows the included variables,
the values of the VIF, the R2 and the RMSE for both the exponential and linear relationship. Important
is that in SPSS the R2 for a regression through the origin is calculated di�erently than for a regression
with an intercept, and therefore the value for R2 seems higher than it in reality is. Furthermore, the
RMSE for the exponential and linear models are in other units (for the exponential model it is given

in ln
(
µa
µb

)
, whereas for the linear model the RMSE is given in µa − µb). The R2 is therefore used to
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compare the exponential and linear models, and the RMSE is used to compare models with di�erent
variables within the exponential or linear equation.

Table 5.2: Overview of performed regressions with combinations of predictive variables

Regression Included variables
Highest
VIF

Exponential Linear
R2 RMSE R2 RMSE

1 Vb − Va, MPD·(Vb − Va), MPD/RMS·(Vb − Va) 32.0 0.805 0.043 0.797 0.029
2 MPD/RMS·(Vb − Va) - 0.746 0.049 0.741 0.033
3 Vb − Va, MPD/RMS·(Vb − Va) 22.0 0.746 0.049 0.742 0.033
4 Vb − Va, MPD/RMS·(1− Vb/Va) 12.0 0.723 0.055 0.709 0.038
5 Vb − Va, MPD·(Vb − Va) 7.7 0.780 0.046 0.763 0.031
6 Vb − Va, MPD·(1− Vb/Va) 7.4 0.768 0.047 0.749 0.032
7 1-Vb/Va, MPD·(1− Vb/Va) 7.8 0.776 0.046 0.765 0.031
8 MPD/RMS·(Vb − Va), 1-Vb/Va 18.0 0.747 0.049 0.741 0.033
9 MPD·(Vb − Va), MPD/RMS·(Vb − Va) 5.5 0.788 0.045 0.786 0.030
10 MPD·(1− Vb/Va), MPD/RMS·(1− Vb/Va) 5.3 0.782 0.046 0.766 0.030
11 Vb − Va - 0.720 0.055 0.707 0.037
12 ln(MPD)·(Vb − Va), MPD/RMS·(Vb − Va) 1.1 0.792 0.045 0.782 0.030
13 ln(MPD)·(1− Vb/Va), MPD/RMS·(1− Vb/Va) 1.1 0.777 0.046 0.767 0.031
14 ln(MPD)·(Vb − Va), Vb-Va 1.1 0.766 0.047 0.747 0.032
15 Vb − Va, ln(MPD)·(1− Vb/Va) 1.1 0.766 0.047 0.748 0.032
16 1− Vb/Va, MPDMPD·(Vb − Va) 6.7 0.761 0.048 0.751 0.032

For all performed regressions, the exponential models give higher values of R2 than the linear regressions.
Therefore, in the further analysis, only the exponential models are considered. Furthermore, regressions
with the variables multiplied by Vb− Va �t better than regressions for the same variables multiplied by
1− Vb

Va
(for example, model 5 �ts better than model 6).

One can see that not all models ful�l the requirement of having a VIF lower than 10. Only considering
models with predictive variables multiplied by Vb − Va, the exponential models with a VIF lower than
10 that have the lowest values for the RMSE are:

� Model 5, including variables Vb − Va and MPD·(Vb − Va)

� Model 9, including variables MPD·(Vb − Va) and MPD
RMS · (Vb − Va)

� Model 12, including variables ln(MPD) · (Vb − Va) and MPD
RMS · (Vb − Va)

Models with these variables �t best to the dataset. From a statistical point of view, the last model of
these three �ts best. However, the di�erences in the standard errors are very small (0.046 versus two
times 0.045), and therefore simplicity of the model is preferred. For this reason, the comprehensive
output for performing an outlier analysis is generated for the regression with Vb−Va and MPD·Vb−Va
as predictive variables.

Outlier analysis
A more comprehensive output was generated from the regression performed with Vb−Va and MPD·Vb−
Va as predictive variables. With this output, it is possible to detect outliers and highly in�uential points.
Observations were considered to be outliers when they had a residual value more than three times the
average residual. Furthermore, plots of the Cook's distance and the Centrered Leverage Value were
generated, in which high values indicate highly in�uential points.

Only four observations are detected as outliers, of which three belong to the road HOV1 (Concrete).
The plots of the Cook's Distance and Centered Leverage Values are shown in Figures 5.1 and 5.2.
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Figure 5.1: Plot showing the Cook's Distance for all observations. On the x-axis the unique codes per 100 metre section
are given (not all names are displayed on the x-axis). Dots close to each other on the x-axis therefore often correspond

to the same road. The green line indicates 4/n, the red line indicates 10/n.

Figure 5.2: Plot showing the Centered Leverage Value for all observations. On the x-axis the unique codes per 100
metre section are given (not all names are displayed on the x-axis). Dots close to each other on the x-axis therefore

often correspond to the same road. The green line indicates 5*p/n.

Karadimitriou and Marshall (2018) propose comparing the Cook's Distance to 4/n where n is the
number of observations. This line is indicated by the green line in Figure 5.1. Many observations would
then be indicated as having a (too) high Cook's Distance. Because in literature no strict cut-o� values
are found, but moreover suggestions, the cut-o� limit was increased to 10/n (coinciding with the red
line). With this limit, 22 observations were marked with a high Cook's distance of which one was
already detected as an outlier. For the Centered Leverage Value, Karadimitriou and Marshall (2018)
propose comparing these values to 5·p

n , where p is the number of predictive variables and n is the number
of observations. This gives the green line in Figure 5.2, and with this limit only 5 observations were
marked as having a high Centered Leverage Value. In total, 29 observations were marked as outliers or
highly in�uential points.

First of all, a new stepwise regression was performed without observations marked as outliers or highly
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in�uential points, with all available predictive variables. The same variables were included as in the
stepwise regression, and an extra regression was performed in which MPD/RMS·(Vb−Va) was in cluded
as a dummy variable. The outliers did not change the included predictive variables much. Furthermore,
a new regression was performed with only Vb − Va and MPD·(Vb − Va) as predictive parameters, to
see whether the model would improve compared to the model with these variables on all data. The
obtained models are as follows:

ln

(
µa
µb

)
= 0.00560 · (Vb − Va)− 0.00263 ·MPD · (Vb − Va) (5.5a)

ln

(
µa
µb

)
= 0.00586 · (Vb − Va)− 0.00285 ·MPD · (Vb − Va) (5.5b)

Equation (5.5a) is the model based on all data and Equation (5.5b) is the model based on the data
without outliers and highly in�uential points. The corresponding values for the RMSE given in SPSS are
respectively 0.046 and 0.043, which is a very small improvement. It is not known why these observations
are marked as deviating observations. Spikes (physical errors during the measurements, giving very
deviating values for µ) are �ltered out because many measurements are taken on one 100 metre section
and these are averaged. Furthermore, at this stage, it is not possible to exclude observations based
on a choice di�erent than for a statistical motivation. Because the regression coe�cients di�ered very
little and the RMSE did not increase much, it was decided to not make a distinction in the subsequent
regressions between `normal' observations, outliers or highly in�uential points.

5.2.3. Conclusions of multiple linear analysis on speed combinations
Variables giving best outcomes
In the �nal model Vb − Va and MPD·(Vb − Va) were used as predictive parameters. Although these
variables did not give the highest RMSE, the di�erences compared to other models were very small.
Therefore, preference was given to use the most `simple' parameters, ie. the parameters that are most
logical to use and that are not transformed.

Final model
The �nal model obtained with the multiple linear regression is:

µa = µb · e(0.00560−0.00263·MPD)·(Vb−Va) (5.6)

This model is obtained with a multiple linear regression performed on all data, including observations
selected as outliers or highly in�uential points. When applying this model in the datasheet with speed
combinations, an RMSE of 0.032 is obtained.

Outliers
For the regression with predictive variables Vb−Va and MPD·(Vb−Va) the outliers were selected and a
new regression was performed based on the dataset without outliers. The RMSE of the regression did
not improve much and the regression coe�cients did not change and therefore, in the further regression
analysis, outliers are not treated.

Limitations of method
When performing the regression analysis with the multiple linear regression, only two datapoints per
observation are taken into account. However, three of the measurement combinations belong to one
and the same road section. By splitting the data into observations with two measurements, this inter-
dependency information is being lost. SPSS considers each pair of measurements separately and does
not know that three of these observations belong to the same 100 metre section.

Furthermore, one of the assumptions of a linear regression is that all observations must be independent
(see Section B.2.1). This can be examined with help of the Durbin Watson statistic, which is given
in the output of a linear regression. For the �nal model, this statistic has a value of 0.5, which
does indicate autocorrelations and thus implies that the observations are not independent. Although
time, which is often an indication of dependency of the data, does not play a role in this model, the
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observations are not independent. For one 100 metre section, three datapoints exist. These three data
points are dependent on each other, because the same measurements appear in multiple observations.
Therefore, three datapoints for one 100 metre section are dependent. Together with the limitation of
the lost information as explained in the previous paragraph, this makes the multiple linear regression
inappropriate for the objective of this research.

5.3. Method 2: linear regression with zero speed intercept
The second regression method is based on the idea of a zero speed intercept, as is also used by Leu and
Henry (1978). Where the multiple linear regression (method 1) did loose the information that multiple
observations were measured on one 100 metre section, this method tries to avoid this loss by estimating
a zero speed intercept µ0 which is equal for observations on similar 100 metre sections. The zero speed
intercept is considered to be related to pavement microstructure. Physically it is the friction between
tyre and pavement interface at zero sliding speed.

5.3.1. Explanation of method
This method assumes an intercept value at a measuring speed of 0 km/h, of which two examples are
shown in Figure 5.3. Every 100 metre section has a di�erent intercept value. The extrapolation is a
mathematical step and ignores the stick-slip e�ect which occurs when a fully or partially locked tyre
starts moving.

Figure 5.3: Two measured 100 metre sections with an extrapolation to their `zero speed' intercept

A speed intercept which �ts the data must be estimated. After determining the µ0, a regression
analysis can be performed to determine the skid resistance dependent on the predictive variables and
the estimated µ0.

In brief, this method contains of two steps:

1. determining µ0 and adding this value to the dataset, and

2. performing a multiple linear regression on the dataset including µ0.

The dataset for the �nal regression as in step 2 contains one measurement per observation with a �tted
µ0. The structure of the dataset is as follows:

Table 5.3: Structure of datasheet for regression method 2 - zero speed intercept

Unique code for
100 metre section

Va µa µ0 MPD RMS ... other information

1 40 µ40 µ0

1 60 µ60 µ0

1 80 µ80 µ0
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5.3.2. Step 1: determination of zero speed intercept
The µ0 is determined according to two di�erent methods:

1. Obtaining µ0 with help of a functional approach developed by Chu and Fwa (2017);

2. Determine µ0 with help of a regression in SPSS.

Determining the zero speed intercept according to a functional approach
Chu and Fwa (2017) developed a functional approach for determining skid resistance threshold states
of porous pavements. In this approach, a �nite element simulation model for the computation of skid
resistance is included. The �nal output of this simulation analysis is the skid resistance µ at speed v
de�ned by (Chu and Fwa, 2017):

µv =
Fx
Fw

=

[
Ft + F dv
Fw

]
=

[
µ0 · (Fw − Fuv ) + F dv

Fw

]
(5.7)

Where: µv = Skid resistance at speed V [-]
Fx = Total resisting forces acting on the wheel [N]
Ft = Total traction force [N]
Fw = Vertical wheel load (1960 N for the SKM) [N]
Fuv = Fluid uplift force, dependent on vehicle speed [N]
F dv = Fluid drag force, dependent on vehicle speed [N]
µ0 = Zero speed intercept [-]

The last formula of Equation (5.7) was used to estimate the values for µ0. In this formula, Fuv and
F dv depend on the vehicle speed. The higher the vehicle speed, the larger Fuv and F dv . Therefore, the
unknown parameters are:

� µ0

� Fu30, F
u
40, F

u
60, F

u
80

� F d30, F
d
40, F

d
60, F

d
80

For reason of simpli�cation, all measuring speeds were assumed to be performed at exactly 30, 40, 60
and 80 km/h. In reality, the measuring speeds can be for example 42 or 58 km/h as well.

The exact solution of these unknowns cannot be determined. However, with the solver function in excel,
estimating the variables including µ0 is possible. The approach is as follows:

� All unknown variables above are added to the dataset, and are initially set to random, but
plausible, values. µ0 is set to a number between 0 and 1, the drag forces are very small (for
example, 0.1 kN) and the uplift forces can be large (for example, 1000 kN).

� For each observation, the µpred (predicted skid resistance according to Equation (5.7)) is calcu-
lated.

� The absolute di�erence between the predicted and the measured skid resistance is calculated and
the sum of the errors is determined.

� The excel solver can determine an optimal solution taken into account predetermined constraints.
The solver is focused on minimising the sum of the errors, such that Equation (5.7) predicts the
skid resistance most accurate. The given constraints are:

� µ0 > µmax, in which µmax is the highest measured skid resistance for the observations for
which the µ0 is calculated

� Fu30 < Fu40

� Fu40 < Fu60

� Fu60 < Fu80

� F d30 < F d40
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� F d40 < F d60

� F d60 < F d80

� The solver determines all unknowns such that the error of the predictions is minimal given the
constraints. This gives an estimation of µ0. This µ0 is added to the dataset, after which the
second step of this regression method can be performed.

The value for µ0 is di�erent for each 100 metre section, however, it is not possible to use the solver for
determining the µ0 for each separate 100 metre section. Multiple measurements are needed in order to
make an adequate estimation. Therefore, several zero speed intercepts were estimated:

� µ0 equal for the whole dataset:

� µ0 based on 100% of the data: µ0,total,100,solver

� µ0 based on 25% of the data: µ0,total,25,solver

� µ0 di�erent per road:

� µ0 based on 100% of the data, per road: µ0,road,100,solver

� µ0 based on 25% of the data, per road: µ0,road,25,solver

Thus, in total, 4 values for µ0 (µ0,total,100,solver, µ0,total,25,solver, µ0,road,100,solver, µ0,road,25,solver) were
added to the dataset. These values were used in the multiple linear regression in step 2.

Determining zero speed intercept with regressions in SPSS
Besides the functional approach, µ0 was estimated with help of SPSS. A regression was performed on:

ln(µa) = C0 + C1 · Va + C2 ·MPD · Va (5.8)

After which µ0 = eC0 .

With this approach, per 100 metre section, three di�erent values for µ0 were estimated:

� One µ0 for the whole dataset: µ0,total,SPSS . The regression was performed as in Equation (5.8).

� One µ0 for every road1: µ0,road,SPSS . Separate regressions in SPSS were performed per road on:

ln(µa) = C0,m + C1,m · Va + C2,m ·MPD · Va (5.9)

Then: µ0,m = eC0,m , with m the di�erent roads.

� One µ0 for every road separated into subsections: µ0,subsection,SPSS . The roads were visually
divided into more subsections of roughly equal levels of skid resistance (see for an example Fig-
ure 5.4). Then, µ0 was determined per subsection by performing separate regressions in SPSS per
subsection on:

ln(µa) = C0,m,n + C1,m,n · Va + C2,m,n ·MPD · Va (5.10)

Then: µ0,m,n = eC0 , with m the di�erent roads and n the di�erent subsections.

1Every road consists of one pavement type except one road, for this road a few sections had another pavement layer. In
the determination of µ0, no distinction was made between these two pavement types.
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Figure 5.4: Example of a road visually divided into subsections. On the x-axis the 100 metre indication of the beginning
of the section is shown, on the y-axis the measured skid resistance is given. For this road, 7 di�erent values of µ0 are

estimated.

In total, 3 values for µ0 (µ0,total,SPSS , µ0,road,SPSS , µ0,subsection,SPSS) were added to the dataset. These
values were used in the multiple linear regression in step 2.

5.3.3. Step 2: multiple linear regression on dataset including µ0

In the second step of this method, a multiple regression analysis was performed on:

ln

(
µa
µ0

)
= D1 · Va +D2 ·MPD · Va (5.11)

This can be rewritten into Equation (5.1b) by the following steps:

µa = µ0 · eD1·Va+D2·MPD·Va (5.12a)

µb = µ0 · eD1·Vb+D2·MPD·Vb (5.12b)

µa
µb

=
µ0 · eD1·Va+D2·MPD·Va

µ0 · eD1·Vb+D2·MPD·Vb
(5.12c)

µa = µb · eD1·(Va−Vb)+D2·MPD·(Va−Vb) (5.12d)

µa = µb · eC1·(Vb−Va)+C2·MPD·(Vb−Va) (5.12e)

In which: C1 = −D1, C2 = −D2

In the �rst step of this method, in total, 7 di�erent speed intercepts were determined per 100 metre
section. For these zero speed intercepts various multiple linear regressions were performed according to
Equation (5.11):

� Functional approach:

� µ0,total,100,solver

� 1 regression based on 100% of the data

� µ0,total,25,solver

� 1 regression based on remaining 75% of the data

� 1 regression based on 100% of the data

� µ0,road,100,solver

� 1 regression based on 100% of the data

� µ0,road,25,solver
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� 1 regression based on remaining 75% of the data

� 1 regression based on 100% of the data

� SPSS:

Per speed intercept, one regression was performed on 100% of the data:

� µ0,total,SPSS

� µ0,subsection,SPSS

� µ0,subsection,SPSS

5.3.4. Analysis of data
First of all, for a few combinations of variables the µ0 was determined with help of SPSS for the total
dataset. This gives insight in which variables had smaller standard errors on the dataset and predict
speed intercepts that were feasible. With this method it was not possible to use predictive variables
such that, when rewriting the obtained model as in Equation (5.12), a model with 1 − Vb

Va
would be

obtained.

Table 5.4: Zero speed intercepts obtained for the total dataset by a regression in SPSS. The RMSE is given in the
output of SPSS and is in the same unit of ln(µa).

Variables µ0 R2 RMSE
V , MPD·V 0.787 0.291 0.097
ln(V ), MPD·V 0.620 0.299 0.097
MPD/RMS·V , MPD·V 0.742 0.234 0.101
MPD/RMS·V , ln(MPD) 0.713 0.110 0.109

Table 5.4 shows that the regression with ln(V ) and MPD·V has the best R2 and smallest standard error,
but this regression gives a µ0 which is much lower than the µ0 for all other regressions. Therefore, the
variables V and MPD·V are preferred. These variables give the second highest R2 and have the same
RMSE as the regression with variables ln(V ) and MPD·V , and give a more feasible µ0.

In total, 9 models are generated according to the zero speed intercept method. In all of these models
the variables Va and MPD·Va are used as predictive variables. The regression coe�cients and RMSE
(according to Equation (5.12e), calculated in the datasheet with speed combinations) are shown in
Table 5.5.

Table 5.5: Overview of regression constants and standard errors of the regressions performed with a zero speed
intercept, with C1 and C2 as in Equation (5.12e). The RMSE is calculated in the datasheet with speed combinations

and has the same unit as µ.

Regression Used µ0 C1 C2 RMSE
1 µ0,total,SPSS 0.00235 0.00120 0.040
2 µ0,road,SPSS 0.00573 -0.00338 0.034
3 µ0,subsection,SPSS 0.00580 -0.00337 0.033
4 µ0,total,100,solver 0.01143 0.00051 0.185
5 µ0,total,25,solver (100% data used) 0.00740 0.00050 0.098
6 µ0,total,25,solver (75% data used) 0.00804 0.00005 0.102
7 µ0,road,100,solver 0.00750 0.00050 0.100
8 µ0,road,25,solver(100% data used) 0.00757 0.00050 0.102
9 µ0,road,25,solver(75% data used) 0.00821 0.00005 0.105

The regression with the smallest RMSE is regression 3, in which the zero speed intercept is determined
in SPSS for the roads divided in subsections.

The regressions performed with the zero speed intercept obtained with the functional approach give
very high RMSE values. The solver function in Excel was very sensitive to the initial values given for
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the unknown variables, and therefore the estimations of the speed intercepts are assumed not to be
accurate. Furthermore, the signs of the coe�cients for all regressions performed with the zero speed
intercept obtained with the functional approach do not meet the expectations: both C1 and C2 are
positive, indicating that a larger MPD increases the speed dependency whereas it is expected that a
larger MPD decreases the speed dependency.

5.3.5. Conclusions of linear regression with zero speed intercept
Final model
The best obtained regression according to the method using a zero speed intercept is:

µa = µb · e(0.005804−0.003373·MPD)·(Vb−Va) (5.13)

When applying this model in the datasheet with speed combinations, an RMSE of 0.033 is obtained.

Limitations of method
By estimating the µ0, which is equal for every observation on the same 100 metre section, this method
tried to avoid the loss of information that all observations of one 100 metre section are dependent on
each other. However, this method has some drawbacks:

� First of all, the �nal regression is based on an estimated value of µ0. The question is whether it
is better to loose some valuable information, or to add some information which is estimated and
therefore not 100% reliable.

� The zero speed intercepts are not estimated per 100 metre section, but per road or per subsection
of a road. This makes the method less accurate, independent of the used method for estimating
µ0.

� Estimating the zero speed intercept in SPSS per subsection of a road gave the best �nal model.
However, this speed intercept is in�uenced by the included predictive variables. Changing the
model parameters would change the µ0 and thus changing the �nal model.

Concluded can be that this method is di�cult to implement, because it is challenging to make a good
estimation of µ0. In the above described procedure the zero speed intercept is too vulnerable to choices
made in the regression process. If a functional approach would exist which predicts better values for
µ0, the models obtained by this regression could probably be improved.

5.4. Method 3: multilevel modelling
In this research, every 100 metre section has in most cases measurements at three di�erent measuring
speeds, and these three measurements are not independent of each other. For example, if the skid
resistance at 40 km/h is 0.6, it is unlikely that the skid resistance at the same section at 60 km/h will
be 0.2. Therefore, the observations are not independent and hierarchy of the data is present, and a
multilevel analysis is performed. Multilevel models can implement a hierarchical structure and deal
with dependent observations. An explanation of multilevel modelling is given in Section B.3.

5.4.1. Explanation of method
In this research, only random intercepts play a role and slopes are assumed to be equal. Figure 5.5
shows for every road the average measured skid resistances per measuring speed. This �gure clearly
shows that every line has a di�erent level of skid resistance, and therefore a di�erent intercept. Not all
slopes are equal, since an in�uence of the texture is assumed, which a�ects the slope of the lines. If the
in�uence of the texture is equal for all sections, this implies that no random slopes are present.
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Figure 5.5: Overview of average measured skid resistances per road

The following sections explain the di�erent hierarchical structures that are assumed, and clarify how to
determine the correct number of levels.

Hierarchical structures for single, two, and three-level models
Figures 5.6 to 5.8 show the hierarchical structures for respectively a single-level model, a two-level model
and a three-level model. The structures of the schemes can be explained as follows:

� In the single-level model, no hierarchy is assumed and the regression is a normal linear regression
in which there are no random variables. Each measurement is considered separately from all other
measurements.

� In the two-level model, the �rst level contains the individual measurements performed at certain
measuring speeds and the second level contains the 100 metre sections to which the individual
measurements belong.

� In the third-level model, it is assumed that the values of the measurements not only depend on
the 100 metre sections, but also on the roads where the 100 metre section belongs to.

Measurement
at 40 km/h

Measurement
at 60 km/h

Measurement
at 80 km/h

Figure 5.6: Hierarchical structure for a single-level model (which implies no hierarchy)

100 metre section

Measurement
at 40 km/h

Measurement
at 60 km/h

Measurement
at 80 km/h

Figure 5.7: Hierarchical structure for a two-level model
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Road

100 metre section

Measurement
at 40 km/h

Measurement
at 60 km/h

Measurement
at 80 km/h

Figure 5.8: Hierarchical structure for a three-level model

The single-level model is formulated as follows:

ln(µi) = C0 + C1 · Vi + C2 · (MPDi · Vi) + εi (5.14)

Where: ln(µi) = Skid resistance of observation number i
C0 = Intercept of the overall model �tted to the data
C1 = Fixed slope for variable Vi
Vi = Measuring speed V for observation i
C2 = Fixed slope for variable V · MPDi ·Vi
MPDi = MPD for observation i
εi = Residual error term for observation i

Compared to the single-level, a random intercept is added to the two-level model for the 100 metre
section on which a measurement is performed. Furthermore, an observation is not only indicated by
the observation number i, but also by the 100 metre section j to which the observation belongs. The
two-level is formulated as follows:

ln(µij) = (C0 + Uj) + C1 · Vij + C2 · (MPDj · Vij) + εij (5.15)

Where: ln(µij) = Skid resistance of observation number i, belonging to 100 metre section j
C0 = Intercept of the overall model �tted to the data
Uj = Random intercept for 100 metre section j
C1 = Fixed slope for variable Vij
Vij = Measuring speed V for observation i belonging to 100 metre section j
C2 = Fixed slope for variable V · MPDj ·Vij
MPDj = MPD for 100 metre section j
εij = Residual error term for observation i within group j

The three-level model is an elaboration of the two-level model. Not only a random intercept for the
100 metre section appears, but also for the road where the measurement took place. An observation is
now also indicated by the road k on which the measurement is performed. The model is formulated as
follows:

ln(µijk) = (C0 + Tk + Ujk) + C1 · Vijk + C2 · (MPDj · Vijk) + εijk (5.16)

Where: ln(µijk) = Skid resistance of observation number i for 100 metre section j belonging to road k
C0 = Intercept of the overall model �tted to the data
Tk = Random intercept for road k
Ujk = Random intercept for 100 metre section j within road k
C1 = Fixed slope for variable Vijk
Vijk = Measuring speed V for observation i belonging to 100 metre section j of road k
C2 = Fixed slope for variable MPDj · Vijk
MPDj = MPD for 100 metre section j
εijk = Residual error term for observation i within 100 metre section j belonging to road k
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In the equations above, the intercept values can be compared to the zero speed intercept from Section 5.3.
The intercepts will be eliminated in the transformation from the regression model (Equations (5.14)
to (5.16)) to the model in which the skid resistance can be converted between di�erent measuring speeds
(Equation (5.1b)), according to the same steps as in Equation (5.12). Therefore, the random intercepts
are not generated as output. This process takes much time because there are many data points.

The hierarchical structure must be possible to be extracted from the data. Therefore, the datasheet for
the multilevel model is as in Table 5.6.

Table 5.6: Structure of datasheet for regression method 3 - multilevel modelling

Unique code for
100 metre section

Va Vb Vc µa µb µc MPD RMS Road
... other
information

1 40 60 80 µ40 µ60 µ80 X
2 40 60 80 µ40 µ60 µ80 X
3 40 60 80 µ40 µ60 µ80 Y

The hierarchical structure can be extracted because each road has a unique indication (name) and every
100 metre section also has an unique code. Within one 100 metre section there are (a maximum of)
three measurements, which are given a number (1/2/3) in SPSS. Therefore, the single-level, two-level
and three-level models can be generated.

Determination of number of levels
For a multiple regression analysis the t-test is used to verify if a model signi�cantly improved the R2

compared to another model on the same dataset. In a multilevel analysis, no R2 is given. For these
regressions, the chi-square likelihood ratio test, which analyses the improvement of the -2 Log Likelihood
(-2LL, see Section B.3.3), is used to verify whether a model makes a signi�cant improvement compared
to another model on the same dataset. For determining the optimal number of levels, it is analysed
with help of the chi-square likelihood ratio test whether a two-level model makes a signi�cant di�erence
compared to a single-level model. Thereafter, if a two-level model makes a signi�cant di�erence to a
single-level model, it can be analysed whether a three-level model signi�cantly improves the two-level
model.

Table 5.7 shows the performed regressions in order to analyse the optimal hierarchy structure. During
this analysis the variables V and MPD·V are used, because from regression method 1 (multiple linear
regression) these appeared to be the best variables. Since in the �rst regression method the variables
resulted in small di�erences to the standard errors of the obtained models only, the choice of predic-
tive variables would presumably not make a signi�cant di�erence in the determination of the optimal
hierarchy structure.

Table 5.7: Performed regressions to analyse optimal hierarchy structure. The column `Applied chi-square likelihood
ratio test' gives the two regressions of which the -2LL is compared to verify whether the model is signi�cantly improved

by adding an additional level or predictive variable

Regression No. of levels Predictive variables
Tested chi-square
likelihood ratio test

1 1 V -
2 1 V, MPD·V (-2LL(1))-(-2LL(2))
3 2 V (-2LL(1))-(-2LL(3))
4 2 V, MPD·V (-2LL(2))-(-2LL(4))
5 3 V (-2LL(3))-(-2LL(5))
6 3 V, MPD·V (-2LL(4))-(-2LL(6))

The hypothesis is that (for Equations (5.14) to (5.16)) C1 will be a negative value, as a decline in skid
resistance is assumed with an increasing speed, and that C2 will be positive, because overall, a larger
MPD is assumed to decrease the speed dependency of the skid resistance.
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Determination of predictive variables
After the best hierarchical structure was determined, regressions with di�erent predictive variables using
this hierarchical structure were performed to analyse whether variations in the predictive variables could
signi�cantly improve the model.

In the output of a mixed model, no number such as a VIF is given to detect multicollinearity. Therefore,
when combining variables, the VIFs of Table 5.2 were taken into account for choosing combinations of
variables. The chi-square likelihood ratio test is only valid for comparing two models of which one
model is an elaboration of the other model. Two models which are an elaboration of the same `basis'
model, can be compared to each other by comparing the chi-square likelihood ratio test with the same
basis model. Therefore, some regressions with only one predictive variable were performed because this
allows to compare two other models with each other. For example, for comparing a model with V and
MPD·V to a model with ln(V ) and MPD·V as predictive variables, the chi-square likelihood ratio test
must be performed with a model only containing MPD·V . The extended model with the best chi-square
likelihood ratio test is then the model that �ts better on the dataset.

Figure 5.9 shows the structure of the performed regressions with di�erent variables. As one can see, by
structuring the regressions in this way, it becomes clear that all models can be compared to each other,
because indirectly, they all have a connection to a model with the same `basis' model.

ln(MPD)·VVMPD·V

V, 
MPD·V 

ln(MPD)·V 
MPD/RMS·V 

V, 
ln(MPD)·V 

MPD·V 
MPD/RMS·V 

MPD·V 
ln(V) 

Figure 5.9: Structure of performed regressions to obtain comparable models. The orange ellipses are the basis models,
the yellow rectangles are the extended models with an extra predictive variable. The green arrows indicate models of

which the chi-square likelihood ratio test can be compared because of having the same basis model.

Table 5.8 shows the regressions performed to compare models with di�erent predictive variables and
the corresponding chi-square likelihood ratio test(s) which should be analysed. For some regressions,
two χ2

Change were tested, because the model could be an extension of two `basic' models (ie. with one
predictive variable less).

Table 5.8: Performed regressions to analyse the best combination of predictive variables. For the regression with V as
predictive parameter, model 1/3/5 will be used, depending of the optimal hierarchy structure determined according to

Table 5.7. The same holds for regressions 2/4/6.

Regression Predictive variables
Tested chi-square
likelihood ratio test(s)

1/3/5 V -
2/4/6 V , MPD·V (-2LL(5))-(-2LL(6)) (-2LL(8))-(-2LL(6))
7 V , ln(MPD)·V (-2LL(5))-(-2LL(7)) (-2LL(11))-(-2LL(7))
8 MPD·V -
9 ln(V), MPD·V (-2LL(8))-(-2LL(9))
10 MPD·V , MPD/RMS·V (-2LL(8))-(-2LL(10))
11 ln(MPD)·V -
12 ln(MPD)·V , MPD/RMS·V (-2LL(11))-(-2LL(12))
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5.4.2. Analysis of data
This section analyses the output of the regressions as described in Section 5.4.1. First, the optimal
hierarchy structure for this dataset is determined after which regressions with di�erent combinations of
variables are analysed.

Optimal hierarchy structure
The outcomes of the regressions performed as in Table 5.7, in order to determine the best �tted hierarchy
structure, are shown in Table 5.9. The used syntax (programming codes) in SPSS can be found in
Section D.1.

Table 5.9: Output of regressions performed to analyse optimal hierarchical structure. C1 is the regression coe�cient for V and
C2 is the regression coe�cient for MPD·V .

Regression
No. of
levels

No. of
parameters

-2LL C1 C2
Chi-square likeli-
hood ratio test

dfchange

1 1 3 -2552.524 -0.00370 - - -
2 1 4 -2644.638 -0.00235 -0.00121 (1-2): 92.11 1
3* 2 6 -4186.464 -0.00325 - (1-3): 1633.94 3
4* 2 7 -4235.063 -0.00439 0.00118 (2-4): 1590.43 3
5* 3 7 -4437.224 -0.00323 - (3-5): 250.76 1
6 3 8 -4547.981 -0.00511 0.00195 (4-6): 312.91 1
* For these regressions the following warning was given: `The �nal Hessian matrix is not positive de�nite although

all convergence criteria are satis�ed. The MIXED procedure continues despite this warning. Validity of subsequent

result cannot be ascertained.'. The exact cause of this warning is not known. Suggestions to solve this warning
include changing the covariance structures or increase the number of step-halvings (IBM, 2016), but these proposed
solutions did not change the warning.

For a dfchange of 1, a χ
2
Change larger than 3.84 is signi�cant and for a dfchange of 3, the χ

2
Change should

exceed 7.81 in order to be signi�cant. This is true for all performed chi-square likelihood ratio tests.

First of all, by comparing regressions 1 and 2, a signi�cant improvement of the model by adding MPD·V
as a parameter is shown by the χ2

Change. Furthermore, by comparing regressions 1-3-5 and 2-4-6, the
improvement of the models by adding one or two levels to the hierarchical structure is shown. Therefore,
the three-level model is chosen as the most optimal hierarchical structure. An additional chi-square
likelihood test can be performed to see whether the addition of MPD·V also improves the three-level
model by comparing the -2LL of regression 5 to the -2LL of regression 6:

χ2
Change,(5,6) = (−4437.224)− (−4547.981) = 110.757

With one extra predictive variable in regression 6 (compared to regression 5), the χ2
Change is signi�cant

and thus adding the predictive variable MPD·V signi�cantly improves the three-level model.

Best predictive variables
Table 5.10 shows some of the output of the regressions performed to determine the best combination of
predictive variables, as given in Table 5.8. Section D.2 gives the syntax used for this analysis.

Table 5.10: Output of regressions performed to analyse best predictive variables. All regressions are performed with a three-level hierarchy.

Regression Predictive variables
No. of
parameters

-2LL Chi-square likelihood ratio test(s) dfchange

5* V 7 -4437.224 - - -
6 V , MPD·V 8 -4547.981 (5-6): 110.757 (8-6): 591.419 1
7 V , ln(MPD)·V 8 -4550.067 (5-7): 112.843 (11-7): 1103.207 1
8* MPD·V 7 -3956.562 - - -
9 ln(V), MPD·V 8 -4526.403 (8-9): 569.841 1
10 MPD·V , MPD/RMS·V 8 -4477.220 (8-10): 520.658 1
11* ln(MPD)·V 7 -3446.860 - - -
12 ln(MPD)·V , MPD/RMS·V 8 -4527.370 (11-12): 1080.510 1
* For these regressions the warning about the Hessian Matrix as given in Table 5.9 was given.
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For a dfchange of 1, the χ
2
Change is signi�cant if the ratio is larger than 3.84. This holds for all performed

tests.

First of all, the regressions which are an elaboration of the model with only V as predictive parameter
are analysed. These are regressions 6 and 7, containing the additional variable MPD·V (regression 6) is
and ln(MPD)·V (regression 7). The values of χ2

Change for these regressions compared to the regression
with only V di�er very little from each other. Therefore, the `simplest' variable is preferred, which is
MPD·V .

Secondly, the models with MPD·V as basic model are analysed. By performing a regression solely on
MPD·V (regression 8) and calculating the χ2

Change for regressions with adding V , ln(V ), or MPD
RMS · V ,

(respectively regressions 6, 9 and 10), it becomes clear that regression 6 �ts best on the dataset, because
of having the largest χ2

Change.

Lastly, regressions with ln(MPD) as basic model are analysed. The elaborated regressions contain as
variables V , and MPD

RMS · V (respectively regressions 7, and 12). The χ2
Change of the regression with

ln(MPD) and V is highest, and therefore this model �ts better on the dataset than the model obtained
with regression 12. However, it was already determined that the model with V and MPD·V �tted
better on the dataset than the model with V and ln(MPD)·V .

Concluded can be that regression 7 �ts best on the dataset, but because of the very small di�erence
compared to regression 6, and because the variables of regression 6 are preferred above the variables of
regression 7, the variables of regression 6 are chosen as the best variables for obtaining a model for the
used dataset.

This gives the following model:

µa = µb · e(0.00511−0.00195·MPD)·(Vb−Va) (5.17)

5.4.3. Separate regressions for MPD values larger or smaller than one millimetre
Besides the analysis described in Sections 5.4.1 and 5.4.2, one more analysis was performed. This
analysis contains separate regressions for datapoints with an MPD larger than 1 mm and datapoints
with an MPD smaller than 1 mm. As the frequency histogram of MPD in Figure C.4 shows, there are
very few observations having an MPD of approximately 1 mm. However, there are two peaks in the
frequency histogram of which one is around an MPD of 0.8 mm and the other peak is around an MPD
of 1.3 mm. Therefore, separate regressions for observations having an MPD< 1 mm and having an
MPD> 1 mm were performed to see whether this improves the standard error of the total dataset.

Hierarchy structure and predictive variables
First of all, regressions with V and MPD·V were performed to identify whether also for these regressions
a three-level analysis would be the most optimal hierarchy structure. Table 5.11 shows an overview
of the performed regressions. These are similar to the regressions performed on the total dataset for
verifying the optimal hierarchy structure, and therefore only the table with output is given.

Table 5.11: Output of regressions performed to analyse optimal hierarchical structure for separate regressions for
observations with an MPD smaller or larger than 1 mm.

Regres-
sion

No. of
levels

predictive
variables

No. of pa-
rameters

Chi-square likeli-
hood ratio test

MPD<1 mm MPD>1 mm
-2LL χ2

Change -2LL χ2
Change

1 1 V 3 -1714.541 -961.991
2 1 V , MPD·V 4 (-2LL(1))-(-2LL(2)) -1715.015 0.474 -1142.534 180.543
3 2 V 6 (-2LL(1))-(-2LL(3)) -2631.963 917.422 -1863.199 901.208
4 2 V , MPD·V 7 (-2LL(2))-(-2LL(4)) -2641.714 926.699 -1863.232 720.698
5 3 V 7 (-2LL(3))-(-2LL(5)) -2741.959 109.996 -2130.388 267.189
6 3 V , MPD·V 8 (-2LL(4))-(-2LL(6)) -2770.884 129.170 -2139.521 276.289

There is one χ2
Change which is not signi�cant and this is for the chi-square likelihood test between

regression 1 and 2 for an MPD< 1 mm. However, a two-level model improves the one-level model,
and the three-level model improves the one-level model for regressions with the same parameters. By
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performing a chi-square likelihood ratio test for regression 5 and 6, it is observed that for the three-level
model adding MPD·V does improve the model, contrary to for the single-level model.

Table 5.12 shows several regressions to analyse which variables �ts best on the dataset as predictive
variables.

Table 5.12: Output of regressions performed to analyse best predictive variables for separate regressions for observations
having an MPD smaller or larger than 1 mm. All regressions are performed with a three-level hierarchy.

Regres-
sion

predictive
variables

No. of pa-
rameters

Chi-square likeli-
hood ratio test

MPD<1 mm MPD>1 mm
-2LL χ2

Change -2LL χ2
Change

5 V 7 -2741.959 -2130.388
6 V , MPD·V 8 (-2LL(5))-(-2LL(6)) -2770.884 28.925 -2139.521 9.133

(-2LL(8))-(-2LL(6)) 338.522 57.071
7 V , ln(MPD) 8 (-2LL(5))-(-2LL(7)) -2782.866 40.907 -2141.891 11.503
8 MPD·V 7 -2432.362 -2082.450
9 ln(V ), MPD·V 8 (-2LL(8))-(-2LL(9)) -2793.944 361.582 -2109.061 26.611

For observations with an MPD< 1 mm, the regression with ln(V ) and MPD·V �ts best on the dataset.
For observations with MPD> 1 mm, the regression with V and ln(MPD) �ts best on the dataset.

Standard error of the estimates
In total, two values of the total RMSE are calculated: one for regressions with V and MPD·V as
predictive variables, and one for regressions with the best predictive variables for each dataset. The
variables V and MPD·V �t best on the total dataset and with this regression the improvement of
estimating the regression coe�cients separately for MPD< 1 mm and MPD> 1 mm can be seen. This
gives the following models:

� For MPD< 1 mm, the following equations are used to determine the RMSE:

µa = µb · e(0.00562−0.00196·MPD)·(Vb−Va) (5.18a)

µa = µb · e
−0.280051·ln

(
Va
Vb

)
−0.00103754·MPD·(Vb−Va) (5.18b)

� For MPD> 1 mm, the following equations are used to determine the RMSE:

µa = µb · e(0.00313−0.00094·MPD)·(Vb−Va) (5.19a)

µa = µb · e(0.00227−0.00142·ln(MPD))·(Vb−Va) (5.19b)

Table 5.13 shows the RMSE values for the di�erent models.

Table 5.13: RMSE values on total dataset for combinations of separate models for observations with MPD values
smaller or larger than 1 mm.

Used model
RMSE MPD<1 RSME MPD>1 RMSE total

MPD<1 MPD>1
Equation (5.17) Equation (5.17) 0.0366 0.0236 0.0319
Equation (5.18a) Equation (5.19a) 0.0368 0.0211 0.0312
Equation (5.18b) Equation (5.19b) 0.0348 0.0209 0.0298

The RMSE for observations with an MPD< 1 mm is always larger than the RMSE for observations
with an MPD> 1 mm. For an MPD< 1 mm, the RMSE is always larger than 0.03 whereas for an
MPD> 1 mm the RMSE is always smaller than 0.03. Furthermore, it can be seen that the di�erences
in RMSE are very small. Equation (5.17) is the equation with Vb − Va and MPD·(Vb − Va) determined
for the whole dataset, whereas Equation (5.18a) and Equation (5.19a) are regressions with the same
predictive variables but determined separately for observations with MPD< 1 mm and MPD> 1 mm.
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The di�erence in the �nal RMSE is only 0.0007. When using the best �tted models �with di�erent pre-
dictive variables per model� for observations with MPD> 1 mm and MPD< 1 mm (Equations (5.18b)
and (5.19b)), an improvement of the 0.0021 is found. However, with this RMSE, for both models
di�erent predictive variables are used.

Visualisation of the models
Figures 5.10a and 5.10b show a visualisation of Equations (5.18) and (5.19).

(a) For both ranges of MPD, the models with V and MPD·V
as predictive variables are used, these models are shown in

Equations (5.18a) and (5.19a).

(b) For both ranges of MPD, the best predictive model is
used. Thus, for MPD< 1 mm Equation (5.18b) is used, and

for MPD> 1 mm Equation (5.19b) is used.

Figure 5.10: Comparison of models for MPD< 1 mm and MPD> 1 mm, the grey lines indicate Equation (5.17), which is
equal for all values of MPD. A conversion of the skid resistance between 40 and 60 km/h is calculated, based on a skid

resistance of 0.6 at 40 km/h.

In Figure 5.10a, the regression for MPD values smaller than 1 mm gives a larger dependency of skid
resistance with speed than the overall model. For MDP values larger than 1 mm this is opposite: here,
the overall model gives a larger dependency of skid resistance with speed. gives a larger dependency of
skid resistance with speed

In Figure 5.10b, for MPD values smaller than 1 mm, this e�ect increases. Equation (5.18b) gives even
a larger dependency of skid resistance with speed than Equation (5.18a).

Therefore, the overall model of Equation (5.17) might over-estimate the skid resistance for increasing
measuring speeds for road sections with an MPD smaller than 1 mm. For MPD values larger than 1
mm, the overall model might under-estimate the skid resistance for increasing vehicle speeds. With
converting the skid resistance to a lower measuring speed, this e�ect is opposite.

Furthermore, for both models, a di�erence can be observed between the predicted dependency of skid
resistance with speed for observations with an MPD smaller or larger than 1 mm. For an MPD of 0.95
or 1.05 mm, a di�erent prediction of the skid resistance at 60 km/h is made, despite the small di�erence
in texture. This `jump' is of course undesirable.

Conclusions
With making separate models for observations having an MPD smaller or larger than 1 mm, a small
improvement of the RMSE can be obtained. When using the same predictive variables as in the best
obtained model for the total dataset, an improvement of 0.0007 is made. By using di�erent predictive
variables for both regressions, an improvement of the RMSE of 0.0021 is reached.

For two reasons, using the best obtained models per MPD range is not preferred:

1. For both regressions, di�erent predictive variables are used. These are `randomly' selected, because
they generate the lowest RMSE. However, it cannot be explained why di�erent predictive variables
should be used, and it is preferred to use equal predictive variables.
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2. For observations with MPD values marginally above or below 1 mm, a very di�erent skid resistance
adjustment is calculated. This is an undesired e�ect of performing separate regression analyses.

Consequently, the models obtained by performing separate regressions depending on the MPD values
are not considered in the further analyses.

5.4.4. Conclusions of multilevel modelling
Final model
The best obtained model with the hierarchical model is (equal to Equation (5.17)):

µa = µb · e(0.00511−0.00195·MPD)·(Vb−Va) (5.20)

When applying this model in the datasheet with speed combinations, an RMSE of 0.0319 is obtained.

Hierarchical structure
The dataset �ts best on a three-level model with the following hierarchical structure as in Figure 5.11.

Road

100 metre section

Measurement
at 40 km/h

Measurement
at 60 km/h

Measurement
at 80 km/h

Figure 5.11: Hierarchical structure for a three-level model

The �rst level include the individual measurements performed at di�erent measuring speeds, the second
level are the 100 metre sections and the third level are the di�erent roads to which the 100 metre
sections belong.

Predictive variables
From comparing models with di�erent predictive variables it was concluded that two three-level models
�tted best to the dataset, namely the models with as predictive variables:

� V , MPD·V

� V , ln(MPD)·V

The chi-square likelihood ratio test of the second regression was slightly higher than of the �rst regres-
sion. But, because the di�erence was so small, the �rst regression is chosen as the preferred regression
because of the more simple predictive variable (MPD·V is preferred above ln(MPD)·V ).

5.5. Comparison of different methods
Three regression methods are performed to obtain a speed conversion model for the skid resistance
measured with the SKM. The obtained models per regression method are:

� Method 1:
µa = µb · e(0.00560−0.00263·MPD)·(Vb−Va)

RMSE: 0.032

� Method 2:
µa = µb · e(0.00580−0.00337·MPD)·(Vb−Va)

RMSE: 0.033
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� Method 3:
µa = µb · e(0.00511−0.00195·MPD)·(Vb−Va)

RMSE: 0.032

The values of the RMSE are calculated based on the datasheet of speed combinations, such that the
regressions can be compared to each other.

Figure 5.12 shows a plot in which all three models are shown. A skid resistance of 0.6 at 40 km/h is
converted into a skid resistance at 60 km/h. Three di�erent macro textures are included: 0.5, 1.0 and
1.5. Table 5.14 shows the numerical values of the calculated values of the skid resistance at 60 km/h.

Figure 5.12: Comparison of �nal models obtained with the three regression methods

Table 5.14: Comparison of �nal models obtained with the three regression methods. µa at 60 km/h is calculated based
on µb = 0.6 at a speed of 40 km/h. µa is shown per model for an MPD of 0.5, 1 and 1.5 mm.

MPD
µa

Linear regression Zero speed intercept Multilevel model
0.5 0.551 0.553 0.552
1 0.565 0.572 0.563

1.5 0.581 0.591 0.574

As one can see, for an MPD of 0.5 mm, the model results barely depart from each other. The skid
resistance obtained with the zero speed intercept model cannot be seen in the plot, because it is almost
equal to the skid resistance obtained with the multilevel model. The larger the MPD, the more the
models diverge. The multilevel model shows the smallest in�uence of the MPD, whereas the model
obtained with the zero speed intercept shows the largest in�uence of the MPD.

Figure 5.13 shows the predicted values of the skid resistance for the �rst and third regression methods.
Because the model obtained with the zero speed intercept diverges much from the other two obtained
models, this model is not shown.
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Figure 5.13: Plot with on the x-axis the predicted skid resistance according to regression method 3 and on the y-axis the
predicted skid resistances according to regression method 1.

As Figure 5.13 shows, the dots show a very small spread around the line y = x. This indicates that
both models predicts very identical values of the skid resistance.

As already mentioned, with regression method 1 (multiple linear regression), the problem of dependent
observations arises. This makes the data inappropriate for performing a multiple linear regression.

For the second method, which makes use of the zero speed intercept, estimating the zero speed intercept
according to a functional approach results in poor values of the RMSE. Estimating the zero speed
intercept in SPSS gives better results, but this makes the intercept value dependent on the chosen
predicted variables. Furthermore, it is not possible to estimate a zero speed intercept per 100 metre
section, but only for larger sections.

Regression method 3, the multilevel analysis, deals with both problems from regression methods 1 and
2. For this method, observations can be dependent, and because of the random intercept values, every
100 metre section is given another random intercept. These intercepts are not given in the output,
but during the transformation of the obtained regression to the speed conversion model, the intercept
values are eliminated. Because the data ful�ls the criteria for obtaining a model according to a multilevel
analysis, this model is considered to be the most reliable model.

5.6. Conclusions
During the model analysis, three methods were used:

1. multiple linear regression on speed combinations,

2. linear regression with zero speed intercept, and

3. multilevel modelling.

With the �rst method, the problem of dependency between observations arose. This was tried to avoid
in the second method with help of a zero speed intercept, however, it appeared to be di�cult to give
a good estimation of the zero speed intercept. The last method is the best regression method for this
dataset, because it can deal with the dependent observations and the hierarchy present in the data.
The model obtained with the multilevel modelling is given in Equation (5.20) and is as follows:

µa = µb · e(0.00511−0.00195·MPD)·(Vb−Va)
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The standard error obtained with this model, calculated on the dataset with speed combinations, is
0.032.





6
Verification of model

This chapter gives a veri�cation of the model obtained in Chapter 5. This model is the model developed
by the three-level hierarchical regression, and is given in Equation (5.20). The model is as follows:

µa = µb · e(0.00511−0.00195·MPD)·(Vb−Va)

The model veri�cation consist of several parts. Firstly, Section 6.1 gives the standard error of the
estimate. In Section 6.2 the model is applied on new data, namely 25% of the data which is not used
for the model generation and on a small dataset consisting of curved sections. Section 6.3 extrapolates
the model to 20 and 100 km/h to verify whether expected values are predicted at these measuring
speeds. Section 6.4 gives some visualisations of the residuals and Section 6.6 compares several previously
developed speed conversion models to Equation (5.20). Finally, Section 6.7 gives conclusions of the
model veri�cation.

6.1. Standard error of the estimate
The RMSE of this model, when applied on the datasheet with speed combinations, is 0.032. This RMSE
is for all data, thus conversions from 30 to 40, 60 to 40, 80 to 60 and 80 to 40 are included. To obtain
a better indication of how large or small this RMSE is, the RMSE is calculated separately over the
following speed conversions:

� 30 to 40 km/h: 0.035

� 60 to 40 km/h: 0.031

� 80 to 60 km/h: 0.022

The average standard error is larger for lower measuring speeds. This could be expected because the
skid resistance is assumed to change more at lower measuring speeds than at higher measuring speeds,
thus the error of estimates will also be higher at lower measuring speeds.

6.2. Model applied on new data
Besides the standard error of the used data, the standard error of new data is analysed, for which two
di�erent datasets are used. Firstly, the model is applied on 25% of the dataset which was not used for
the model generation. Thereafter, the model is applied on a small dataset consisting of measurements
performed on curved sections.

6.2.1. Remaining 25% of data
All regressions as described in this chapter are performed on 75% of all available data. Therefore, the
model is applied on the remaining 25% of the data. If the RMSE of the model on this part of the data
is much larger than on the �tted data, it can indicate that the model is over�tted to the used dataset.
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The RMSE for the remaining 25% is 0.034, which is very similar to the RMSE of the data on which
the model is �tted. The RMSE's per speed interval are:

� 30 to 40 km/h: 0.044

� 60 to 40 km/h: 0.035

� 80 to 60 km/h: 0.022

The values above slightly higher than the standard errors of the model on the data which is used for
the regression. Since the model is based on 75% of the data, the standard error for this 75% is expected
to be smaller than the standard error for the non-used 25% of the data.

6.2.2. Curved sections
Some new measurements were performed on bends to verify whether the developed model can also
be used for curved sections. These measurements are obtained on the intersection Beekbergen, near
Apeldoorn, which includes both curves to the left and to the right. The curve to the right has a radius
of approximately 82 metres and is measured at 45 and 55 km/h, whereas the curve to the left has a
radius of approximately 105 metres and is measured at 45 and 60 km/h. In total, only 13 100 metre
sections were measured.

When applying the model on these 13 100 metre sections, the standard errors are as follows:

� From 45 km/h converted to 55/60 km/h: 0.0094

� From 55/60 km/h converted to 45 km/h: 0.0090

The average di�erence between the skid resistance measured at these measuring speeds is 0.029.

The standard errors for the curved sections are smaller than the standard errors of the model applied
on the used dataset. Furthermore, for most sections, the speed dependency is under estimated. For
few sections the speed dependency is over estimated, but no clear di�erence between left or right
curved sections was found. This could indicate that the model can also be applied on curved sections.
However, only few 100 metre sections are included and it is recommended to include more measurements
performed on curved sections before drawing a conclusion.

6.3. Extrapolation of model
The model is obtained with data measured at 40, 60 and 80 km/h, and some of the data is measured
at 30 km/h. The skid resistances at 20 and 100 km/h are calculated to see whether the model acts as
expected for these speed ranges. Because an exponential model is used, it should be prevented that for
small measuring speeds the skid resistance will exceed one, or that for larger measuring speeds the skid
resistance approaches zero.

(a) Skid resistance at 20 km/h predicted with measurements
at 40 km/h, skid resistance at 100 km/h predicted with

measurements at 80 km/h

(b) Skid resistance at 20 km/h predicted with measurements
at 80 km/h, skid resistance at 100 km/h predicted with

measurements at 40 km/h

Figure 6.1: Plot showing the measured values for the skid resistance at 30, 40, 60 and 80 km/h and the extrapolated
values of the skid resistances at 20 and 100 km/h.
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Figure 6.1 shows the extrapolated values for 20 and 100 km/h. In Figure 6.1a the skid resistance at 20
km/h is calculated based on the measurements performed at 40 km/h and the skid resistance at 100
km/h is calculated based on the measurements performed at 80 km/h. In Figure 6.1b the opposite is
shown: the skid resistance at 20 km/h is calculated based on measurements at 80 km/h and the skid
resistance at 100 km/h is calculated based on measurements at 40 km/h. It is unlikely that the model
will be used for conversing skid resistance over large speed di�erences as in Figure 6.1b, but in this plot
it is analysed what the in�uence of such a large speed di�erence can be.

As Figure 6.1a shows, the ranges for 20 km/h are very large and even exceed 1, which is not possible for
measured values of skid resistance. However, at 40 km/h some of the measured values are very high and
these measurements pushes skid resistances above one at 20 km/h. Figure 6.1b shows only one value
that exceeds a skid resistance of one. Overall, the extrapolation does not show unlikely large increases
in skid resistance when approaching 20 km/h or unlikely large decreases when approaching 100 km/h.

6.4. Residuals
In this section, the residuals of the model are analysed. One must realise that the `real' residuals of
the model cannot be calculated. These should be calculated from the datasheet that is used for the
mixed model, but then also the random intercepts should be known. Furthermore, the interest of this
research is to convert skid resistance measurements to values of skid resistance at another measuring
speed. Therefore, the residuals of the model calculated for the datasheet with speed combinations are
analysed.

Figure 6.2a shows a plot with on the x-axis the measured value of the skid resistance and on the y-axis
the residuals of the predicted values of the skid resistance. According to the theory of a linear regression,
the residuals must be normally distributed. In a scatterplot, no clear pattern should be visible, because
if a clear pattern can be seen, the residuals are not normally distributed. Furthermore, Figure 6.2b
shows a frequency histogram of the residuals. This histogram shows a distribution which is roughly
normal.

(a) Plot showing on the x-axis the measured values for the
skid resistance µa and on the y-axis the residuals

(µmeasured-µpredicted), calculated for µa=40 or 60 and µb=60
or 80

(b) Histogram of residuals for the model applied on the
datasheet with speed combinations

empty
empty

Figure 6.2: Plots of measured skid resistances with the predicted skid resistances for several reference speeds

Figure 6.3 shows a plot of the measured skid resistance on the x-axis, and the predicted skid resistance
on the y-axis. Ideally, all datapoints would be plotted on the line y = x.
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Figure 6.3: Plot of measured skid resistance with predicted skid resistance for all data points

Figure 6.4 show the same plot of Figure 6.3, but separated into four plots for four di�erent speed
combinations.

(a) Skid resistance at 40 km/h, predicted with measurements
at 60 km/h

(b) Skid resistance at 40 km/h, predicted with measurements
at 80 km/h

(c) Skid resistance at 60 km/h, predicted with measurements
at 80 km/h

(d) Skid resistance at 80 km/h, predicted with measurements
at 60 km/h

Figure 6.4: Plots of measured skid resistances with the predicted skid resistances for several reference speeds

Figure 6.4b shows a wider spread of the dots around y = x than the other �gures of Figure 6.4. This
is as expected, because Figure 6.4b converts the skid resistance over 40 km/h, whereas to other �gures
show a conversion of 20 km/h. Therefore, more scatter is expected in Figure 6.4b. Furthermore, no
large di�erences between the scatterplots are observed.

Figure 6.5 also shows a similar plot as Figure 6.3, but now separated into one plot containing datapoints
with an MPD< 1 mm, whereas the other plot contains datapoints of an MPD> 1 mm.
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(a) Plot of measured skid resistance with predicted skid
resistance for datapoints with MPD< 1 mm

(b) Plot of measured skid resistance with predicted skid
resistance for datapoints with MPD> 1 mm

Figure 6.5: Plot of measured skid resistance with predicted skid resistance, separated into datapoints with an MPD< 1
mm and an MPD> 1 mm

Figure 6.5a shows a wider spread of the dots around y = x than Figure 6.5b. Because for observations
with an MPD smaller than 1 mm the speed dependency is larger, a wider spread of the dots can be
expected.

6.5. Sensitivity analysis of macrotexture
The best �tting model has MPD and speed di�erence as the principal predictive input parameters. The
MPD cannot always be measured accurately especially not when a test is performed on a rainy day
or on a wet pavement surface. Laser measurements conducted on these conditions may lead to wrong
estimates of MPD. For this reason a computational analysis was performed to see how sensitive the
developed model is for wrong input of MPD. For a few examples, values of 0.5 times MPD and 1.5
times MPD were substituted for the actual value of MPD.

Furthermore, the model is compared to a multilevel (three-hierarchical) model in which only the speed
di�erence Vb − Va is used as a predictive parameter. This model is given by regression 5 of Table 5.9
and is as follows:

µa = µb · e0.00323·(Vb−Va) (6.1)

Four random 100 metre sections with di�erent MPD values were selected from the database. In Fig-
ure 6.6, for each of the four 100 metre sections, �ve di�erent plots of the skid resistance are shown:

� measured values;

� skid resistance at 60 km/h converted to 40 km/h and 80 km/h, according to Equation (5.20);

� skid resistance at 60 km/h converted to 40 km/h and 80 km/h, according to Equation (5.20), but
now with 0.5· MPD instead of the measured MPD;

� skid resistance at 60 km/h converted to 40 km/h and 80 km/h, according to Equation (5.20), but
now with 1.5· MPD instead of the measured MPD; and

� skid resistance at 60 km/h converted to 40 km/h and 80 km/h, according to Equation (6.1).
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(a) Datapoint of N302 DAB, MPD=0.5 mm (b) Datapoint of N320 SMA 8, MPD=0.8 mm

(c) Datapoint of Oostveluweweg Concrete, MPD=1.2 mm (d) Datapoint of N344 ZOAB11, MPD=1.6 mm

Figure 6.6: Visualisation of texture in�uence on model. 4 random datapoints are selected for which the skid resistance
at 40 and 80 km/h are calculated, the skid resistance at 60 km/h is taken as reference point. In the obtained model, the

measured MPD, the measured 0.5·MPD and the measured 1.5·MPD are entered.

Figures 6.7a to 6.7d show per converted value of the skid resistance the di�erence with the measured
value of the skid resistance. At 60 km/h, this di�erence is zero because 60 km/h was taken as the
reference speed. Furthermore, a positive value indicates that the measured skid resistance was larger
than the converted skid resistance.
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(a) Datapoint of N302 DAB, MPD=0.5 mm (b) Datapoint of N320 SMA 8, MPD=0.8 mm

(c) Datapoint of Oostveluweweg Concrete, MPD=1.2 mm (d) Datapoint of N344 ZOAB11, MPD=1.6 mm

Figure 6.7: Visualisation of texture in�uence on model. 4 random datapoints are selected for which the skid resistance
at 40 and 80 km/h are calculated, the skid resistance at 60 km/h is taken as reference point. In Equation (5.20), the
measured MPD, the measured MPD·0.5 and the measured MPD·1.5 are entered. The �gures show the measured skid

resistances minus the converted skid resistances.

From the �gures above, several observations and conclusions can be made. First of all, the conversions
to a skid resistance of 40 km/h according to Equation (5.20) are more accurate for the datapoints
with larger MPD values (1.2 mm, 1.8 mm) than for the datapoints with smaller MPD values (0.5 mm,
0.8 mm). Furthermore, for the datapoints with smaller MPD values the speed dependency according
to Equation (5.20) is underestimated, whereas for the larger MPD values, the speed dependency is
overestimated.

For the datapoints with smaller MPD values, the conversions with 0.5·MPD and 1.5·MPD have, logically,
small di�erences compared to the conversion with the measured MPD. These di�erences are also small
compared to the error of the estimate made in that conversion. For the datapoints with larger MPD
values, the di�erences for conversions with 0.5·MPD and 1.5·MPD compared to the error of the estimates
are larger. As Figures 6.7c and 6.7d show, the error of the estimate can become twice as large.

For all four datapoints, Equation (5.20) gives a better conversion than Equation (6.1), the model with
only the speed di�erence as a predictive variable. However, for the datapoints with smaller MPD values,
the di�erences between the conversion of Equation (6.1) and the conversions of Equation (5.20) with
incorrect values of the MPD are small compared to the total increase or decrease in skid resistance. For
the datapoints with larger MPD values, Equation (5.20) gives a better conversion of the skid resistance
than when 0.5·MPD or 1.5·MPD is used in Equation (5.20). Therefore, when MPD values are unknown,
it is advised to use Equation (6.1) instead of Equation (5.20).
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6.6. Comparison of developed model with previous developed mod-
els

This section compares the model that is developed in this research, i.e. Equation (5.20), with several
previously developed speed conversion models as described in Chapter 4. Not all models can be com-
pared, because for some models the exact numbers were not known. The comparison is divided into two
sections, namely Section 6.6.1, that compares Equation (5.20) to previously developed models for the
RWS Skid Resistance Tester, and Section 6.6.2, that compares Equation (5.20) to previously developed
models for the SKM or SCRIM.

6.6.1. Conversion models for the RWS Skid Resistance Tester
The following comparisons are analysed:

� Equation (5.20) with Koac�WMD (Equation (4.7)): conversion model for RWS Skid Resistance
Tester measurements, including MPD and positive/negative textures. Possible to convert between
several measuring speeds.

� Equation (5.20) with Koac �NPC (Equation (4.13)): conversion model for RWS Skid Resistance
Tester measurements, including MPD. Possible to convert a measurement at a speed between 20
to 50 km/h to a skid resistance at 50 km/h.

� Equation (6.1) with Koac�NPC (Equation (4.14)): conversion model for RWS Skid Resistance
Tester measurements, with only the speed di�erence as a predictive variable. Possible to convert
a measurement at a speed between 20 to 50 km/h to a skid resistance at 50 km/h.

Because the conversion models of Koac�NPC can only convert to a skid resistance at a measuring speed
of 50 km/h, a measured skid resistance of 0.6 at 40 km/h is chosen as basis of this comparison, and this
is converted to a skid resistance at 50 km/h.

Figures 6.8a and 6.8b show the di�erences between the predicted skid resistances according to Equa-
tion (5.20) and according to the model as given in the legend. A positive number indicdates that
Equation (5.20) predicts a larger value of the skid resistance at 50 km/h, and thus a smaller speed
dependency of the skid resistance.
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(a) Di�erences of skid resistance predicted with Equation (5.20) and with the
speed conversion model developed by Koac�WMD (Equation (4.7)). The

Koac�WMD model is applied for both a positive [pos] and a negative [neg] texture.

(b) Di�erences of skid resistance predicted with Equation (5.20) and with the
speed conversion model developed by Koac�NPC (Equation (4.13)).

Figure 6.8: Comparison of several previously developed speed conversion models with the model obtained in this
research (Equation (5.20)). A skid resistance of 0.6 at 40 km/h is converted to a skid resistance at 50 km/h for di�erent
values of MPD. The di�erence between the predicted skid resistance with Equation (5.20) and the corresponding model
is shown. A positive value indicates that Equation (5.20) predicts a larger value of the skid resistance and thus a smaller

speed dependency.

Figure 6.8a compares the model developed by Koac�WMD (Equation (4.7)) to Equation (5.20). The
model developed by Koac�WMD is developed for measurements performed with the RWS Skid Resis-
tance Tester (which measures the LFC), thus these measurements could have a di�erent speed depen-
dency. It can be seen that for positive textures, the conversions for an MPD of 1 mm and 1.5 mm are
quite similar, whereas for an MPD of 0.5 mm there is a larger di�erence. Koac�WMD gives a larger
speed dependency than Equation (5.20). For negative textures, the model developed by Koac�WMD
converts to a much lower skid resistance than Equation (5.20). This is remarkable, because approxi-
mately 90% of the data used in this research contains values of MPD/RMS< 1.58, indicating a negative
texture according to Equation (4.7).

Figure 6.8b compares the model developed by Koac�NPC (Equation (4.13)) with Equation (5.20). The
model developed by Koac�NPC is developed for measurements performed with the RWS Skid Resistance
Tester. As the �gure shows, the models are equal for an MPD of 1.5 mm. However, the smaller the
MPD, the larger the di�erence.

Besides Equation (4.13), Koac�NPC also developed a speed conversion model with only the speed
di�erence as a predictive variable, given in Equation (4.14). No visualisation of this model is given,
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because the only coe�cient is the coe�cient of the speed di�erence. From observing these coe�cients,
it was concluded that Equation (4.14) applies a much larger speed dependency than Equation (6.1).
Thus, for both Equations (4.13) and (4.14), Koac�NPC predicts a larger speed dependency than the
models developed in this research. This holds also for the comparison with the model developed by
Koac�WMD.

The models developed by Koac�NPC and Koac�WMD were developed on LFC-data with a 86% retained
wheel, whereas the model developed in this research is based on SFC-data with a yaw angle of 20°. This
di�erence in test set-up generates di�erent hysteresis and adhesion, which might have their e�ect on the
speed dependency of skid resistance. The di�erence of the in�uence of MPD could also indicate that
di�erent levels of values of MPD were used in the regression analyses that generated in turn di�erent
relationships.

6.6.2. Conversion models for the SKM or SCRIM
This section compares Equation (5.20) to previously developed conversion models based on the SKM
or SCRIM. The following comparisons are analysed:

� Equation (5.20) with SCRIM (Equation (4.15)): conversion model for SCRIM, no texture included.
Possible to convert a measurement performed between 25 and 85 km/h to a skid resistance at 50
km/h.

� Equation (5.20) with TP Gri�-StB (SKM) (Equation (4.16)): conversion model for SKM, no
texture included. Possible to convert at most over 10 km/h.

� Equation (5.20) with BASt (Equation (4.18)): conversion model for SKM, MPD included. Ex-
tension of TP Gri�-StB (SKM) model, therefore probably possible to convert at most over 10
km/h.

Because the conversion models from the TP Gri�-StB (SKM) and BASt cannot exceed a speed di�erence
of 10 km/h, a measured skid resistance of 0.6 at 40 km/h is chosen as basis of this comparison, and this
is converted to a skid resistance at 50 km/h.

Figure 6.9 show the di�erences between the predicted skid resistances according to Equation (5.20)
and according to the model as given in the legend. A positive number means that Equation (5.20)
predicts a larger value of the skid resistance at 50 km/h, and thus a smaller speed dependency of the
skid resistance.

Figure 6.9: Comparison of several previously developed speed conversion models for the SKM or SCRIM with the model
obtained in this research (Equation (5.20)). A skid resistance of 0.6 at 40 km/h is converted to a skid resistance at 50
km/h for di�erent values of MPD. The di�erence between the predicted skid resistance with Equation (5.20) and the
corresponding model is shown. A positive value indicates that Equation (5.20) predicts a larger value of the skid

resistance and thus a smaller speed dependency.

Figure 6.9 shows the comparison for models developed for the skid resistance measured with the SKM
or SCRIM, which both measure the SFC. The conversion of TP Gri�-StB, which does not include a
texture measurement, is almost similar to the conversion of Equation (5.20) for an MPD of 0.5 mm.
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This can be clari�ed by the fact that in Germany much more dense pavements are used than in the
Netherlands, which indicate often lower values of MPD. The conversion of the SCRIM lies between the
conversion of Equation (5.20) for an MPD of 0.5 mm and an MPD of 1 mm. Finally, the model of BASt,
which is an extension of TP Gri�-StB including MPD measurements, shows a much wider variation
of converted values than Equation (5.20). The texture has a larger in�uence in the model developed
by BASt than in Equation (5.20). Especially for the smaller textures there is a large di�erence in the
conversion of the skid resistance. No obvious reason could be found for this discrepancy.

6.7. Conclusions
This chapter performed some test to verify the model developed in Chapter 5. This section summarises
the conclusions from this veri�cation.

The standard error of the model applied on the dataset with speed combinations is 0.032. When
applying the model on the 25% of the data not used for the model generation, a standard error of 0.034
was found. This is slightly higher than the standard error of the model applied on the 75% of the data
which is used for the model generation. The residuals of the model are normally distributed and a larger
variation is found for observations having an MPD< 1 mm than for observations having an MPD> 1
mm.

Besides the model with predictive parameters Vb−Va and MPD·(Vb−Va), also a three-level model with
only Vb−Va as predictive parameter was developed. Based on sensitivity analyses, with Equation (5.20)
using 0.5 and 1.5 times the measured MPD values, it was concluded that if no MPD is known or it is
unsure whether the MPD measurements are reliable, it is advised to use the model with only Vb − Va
as predictive parameter instead of Equation (5.20).

A comparison between previously developed speed conversion models and the model developed in this
research was performed. A skid resistance of 0.6 at 40 km/h was converted to a skid resistance at
50 km/h according to several models. It was observed that the models developed for the RWS Skid
Resistance Tester have a larger speed dependency for equal values of MPD. For an MPD of 1.5 mm,
the models are approximately equal. Furthermore, the model is compared to other models developed
for SWF measurements. Compared to the model of TP Gri�-StB (SKM), which does not include a
texture measurement, an MPD of 0.5 mm gave approximately an equal conversion of skid resistance.
This can be clari�ed by the fact that in Germany more dense pavements are used, and an MPD of 0.5
mm is a more standard MPD value. The model used for the SCRIM does also not include a texture
measurement. The converted value of the SCRIM is in between the converted values for an MPD of
0.5 and 1 mm according to the model developed in this research. Lastly, the extended model of the
TP Gri�-StB (SKM), developed by BASt, has a larger in�uence of texture than the model developed
in this research. No clari�cation for this larger in�uence is known.





7
Conclusions and recommendations

In this research, e�orts have been made to search for an answer to the following question:

How can the correlation between the SKM measured skid resistance at di�erent speeds be described,
taking into account the macrotexture of the road surface?

In this chapter the conclusions and recommendations of the research programme are described. Sec-
tion 7.1 contains the conclusions, followed by the recommendations in Section 7.2.

7.1. Conclusions
Literature study
A comprehensive literature study was conducted on the theoretical background and speed dependency
of skid resistance, and several previously developed speed conversion models were analysed. In general,
a decline in skid resistance can be observed with increasing vehicle speeds. In previously developed
speed conversion models, often an exponential relationship between the speed di�erence and the change
in skid resistance is assumed, whereas in fewer models a linear relationship is assumed.

Predictive variables frequently used are the speed di�erence and the MPD. Furthermore, the MPD/RMS
is also used once in a model. This parameter can indicate if a texture is positive or negative.

Measurements performed on curved sections or new pavement layers and measurements performed at low
measuring speeds were classi�ed as sections that could give di�culties or a di�erent speed dependency
of the skid resistance.

The available dataset consisted practically completely of data measured at straight road sections and
sections with a large horizontal radius. The lack of data from sections with sharp horizontal radii
hampered development of a speed dependency model speci�c for these sections. Since the developed
model applies to a large range of skid resistance values and consists of a relative adjustment factor, the
model is considered to be appropriate for curved sections as well.

Furthermore, no reliable data on ages of the road sections were available. Also in this case, the developed
model may be used with con�dence on all ages of wearing courses.

Model generation
Three regression methods were performed to generate the speed conversion model for the skid resistance
measurements over speed with the macrotexture incorporated. The methods were as follows:

� multiple linear regression on speed combinations,

� linear regression with zero speed intercept, and

� multilevel modelling.
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From the multiple linear regression on speed combinations, it can be concluded that an exponential
relationship �ts better to the used dataset than the linear relationship. However, the multiple linear
regression is not considered as an appropriate method to generate the speed conversion model. This
was concluded because of the dependency of observations and the interdependency information which is
lost by separating the data of each road section into multiple records with various speed combinations.

The linear regression with zero speed intercept tried to prevent the information loss by estimating an
zero speed intercept for every 100 metre section. With help of the excel solver, a functional approach
was used to estimate the zero speed intercept. However, the outcomes of this estimation depended
much on the initial values given to the solver, making the results not robust. The zero speed intercept
was also estimated with help of SPSS, but with this method, the intercepts depended on the chosen
predictive variables. Furthermore, it was not possible to determine a zero speed intercept for every 100
metre section separately, but only per road, or per road divided into several subsections. Therefore,
the linear regression with zero speed intercept is also not considered to be an appropriate method for
generating the speed conversion model.

Multilevel modelling manages dependent observations and hierarchical structures of a dataset. There-
fore, this method appeared to be the most appropriate method for the model generation in this research.
The three-level structure came forward as the most optimal hierarchical structure. This structure is as
follows:

� level 1: individual measurements (performed at a certain measuring speed), which all belong to a
speci�c 100 metre section;

� level 2: 100 metre sections, which all belong to a speci�c road; and

� level 3: di�erent roads on which the measurements were performed.

The models having the best �t contained the predictive variables V and MPD·V , and V and ln(MPD)·V .
The accuracy of the two models were almost equal. Preference was given to the �rst model, because no
transformations are needed in this model.

Final model
The obtained model is as follows:

µa = µb · e(0.00511−0.00195·MPD)·(Vb−Va) (7.1)

Limitations of the usage of this model are given by the used data:

� The model was derived for skid resistance values ranging from 0.44 to 0.98.

� The data used in the model includes measurements performed at 40, 60 and 80 km/h, and few
measurements performed at 30 km/h. Therefore, the model should ideally only be used for
converting the skid resistance between these speed ranges.

� All data is obtained with SKM measurements, a device measuring the SFC with help of a mea-
suring wheel mounted at the right-hand side of the vehicle with a 20° yaw angle anticlockwise.
Therefore, the obtained model should only be used for measurements performed with an equal
SKM, or with an SKM with the measuring wheel mounted at the left-hand side at a clockwise
yaw angle.

� The dataset included measurements on sections with an MPD varying between 0.21 and 1.80 mm.
However, the frequency histogram of the MPD values shows that there is a lack of MPD values
around 0.6 and 1 mm. Therefore, the model might be less reliable for road sections having these
MPD values.

Verification of model
From previously developed models, no approach was found for determining how reliable an obtained
model is. Therefore, in this research, a model veri�cation was performed. In this veri�cation, several
aspects of the model were veri�ed and tested.
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The �nal model has a standard error over various speed combinations of 0.032. When applying the
model to other data than used in the development phase, the standard error is 0.034. This is only
a very small increase, and therefore it can be concluded that the model was not over-�tted on the
dataset. Furthermore, the model is applied to a small dataset (13 sections of 100 metres) consisting
of measurements performed on curved sections. The standard error of the model on this dataset was
0.0094, which is much smaller than the standard error of the model applied to the training data.
Although this standard error is obtained with a small dataset, it could indicate that the model can also
be applied to curved sections.

The data used in the model includes measurements performed at 40, 60 and 80 km/h, and few mea-
surements performed at 30 km/h. However, an extrapolation of the observations to 20 and 100 km/h,
did not give outstanding values of the skid resistance.

Besides the model with predictive parameters Vb−Va and MPD·(Vb−Va), also a three-level model with
only Vb − Va as predictive parameter was developed. This model is as follows:

µa = µb · e0.00323·(Vb−Va) (7.2)

Based on sensitivity analyses, performed by applying Equation (7.1) to datapoints with arti�cial un-
certainties (50% of mean value) of the MPD, the conclusion can be drawn that if no MPD is known or
it is unsure whether the MPD measurements are reliable, it is advised to use Equation (7.2) instead of
Equation (7.1).

A comparison between previously developed models and the model generated in this report was per-
formed. A skid resistance of 0.6 at 40 km/h was converted to a skid resistance at 50 km/h, with MPD
values of 0.5, 1.0 and 1.5 mm. In conclusion can be stated that the models developed for the RWS Skid
Resistance Tester often implied a larger speed dependency. These models are based on LFC data with
a 86% retained wheel, whereas the model developed in this research is based on SFC data with a yaw
angle of 20°. This di�erence in test set-up generates a di�erent skid resistance, which might in�uence
the speed dependency of the skid resistance. Furthermore, the current applied speed conversion, given
by the TP Gri�-StB (SKM) gave an equal conversion for the conversion model developed in this research
when an MPD of 0.5 mm was used. This can be clari�ed by the fact that the arterial road network
in Germany consists mainly of dense asphalt wearing courses, and that therefore an MPD of 0.5 mm
is a more or less standard MPD value. When comparing Equation (7.1) to the model developed by
BASt, the latter had a larger in�uence on the texture than the model developed in this research. No
clari�cation for this larger in�uence is known.

7.2. Recommendations
This section provides recommendations for further research on the topic discussed in this thesis. A
distinction is made between recommendations based on the theoretical background of the research and
recommendations for the used data and performed regression analysis.

7.2.1. Theoretical background
This section contains recommendations relating to the theoretical background of the research.

Effect of increased vehicle speed
Increasing the vehicle speed changes the measured value of the skid resistance. From measurements can
concluded that the skid resistance generally declines with an increasing speed. However, it is not known
due to which phenomenon the skid resistance decreases (see Section 2.4.4). If better understanding of
this phenomenon would be obtained, it might become possible to make better choices on for example
which variables to use in the regression.

Applied temperature correction
For this research, the temperature correction as used in the TP Gri�-StB (SKM) was applied to adjust
the skid resistance measurements for temperature variations. However, from the literature study it
became clear that the in�uence of temperature is an actual topic of research. Therefore, when further
analyses on the speed conversion model will be performed, it is recommended to stay up to date of
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the temperature correction models. If more accurate models are developed, it is advised to apply these
models to the data instead of the correction used in the TP Gri�-StB (SKM).

7.2.2. Data
This section contains recommendations with respect to the obtained data.

Registration of data
For the future performed measurements it is recommended to accurately register the mixture type
and age of the pavement during measurements. With this information a better data analysis can be
performed.

SKM measurements at low speeds
In this study, measurements performed at a measuring speed of 30 km/h or higher were used, and
only few of these measurements were performed at 30 km/h. This indicates that no conclusions could
be drawn about the speed dependency at very low measuring speeds (20-40 km/h) for measuring on
roundabouts, where the SKM cannot measure with high measuring speeds. Therefore, it is recommended
to perform research to the speed dependency at low measuring speeds. More data of measurements
performed at low measuring speeds could be obtained and included in the multilevel modelling.

Measurements performed on curved sections
In the model veri�cation, only few measurements performed on curves were used to verify the appli-
cability of the model on curved sections. In total, 13 100 metre sections consisting of curved road
sections were obtained. These datapoints showed a small standard error when applying the model, but
because only a small number of datapoints is involved, it is recommended that in future research more
measurements on curved sections need to be performed and analysed to verify whether curved sections
will have a di�erent speed dependency than straight sections.

MPD values
The MPD values of the measured data show two peaks in the frequency histogram, around 0.8 and 1.2
mm. There are almost no datapoints having an MPD around 1 mm, and also there are less datapoints
with small MPD values around 0.6 mm. It is recommended to extend the database with measurements
performed at sections with these MPD values.

Roads with DGD
Unfortunately, all measurements performed at pavements with a DGD layer were performed under
wet circumstances. Therefore, no macrotexture measurements of these roads were available. It is
recommended to extend the database with measurements performed on roads with DGD. In Figure 7.1
the course of measured skid resistance over speed is shown for pavements which were measured under
wet circumstances, and which were therefore not included in the regression analysis. Three of these
roads were DGD roads. As one can see, the N304 DGAD 2 and N338 2ZOAB show a higher decline in
skid resistance at higher speeds, and the road N304 DGAD shows a very small di�erence in the decline
between 40 an 60, and 60 and 80 km/h.

Figure 7.1: Average measured skid resistance per road from measurements which were performed under wet
circumstances. These observations are therefore not included in the regression analysis.
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If the database is not extended with measurements on DGD roads, the developed model should not be
applied to these road types.

Age of road surfaces
For the obtained data, the year of the pavement construction was sometimes given, but this does not
give certainty about possible maintenance services or whether parts of the pavements were renewed.
On new pavements, di�erent relations for the speed dependency could be applicable. Therefore, it is
recommended for future research to invest more time in analysing whether the pavements are older than
one year and eliminate measurements performed on renewed pavements from the dataset.

7.2.3. Regression analysis
Three methods were used for performing the regression analysis and it became clear that the mul-
tilevel modelling is the best regression method for the purpose of this research. This section gives
recommendations on further research relating the regression analysis.

Averaged observations
For the �rst two regression methods (the multiple linear regression and the zero speed intercept method),
measurements per measuring speed for the same section were averaged. However, a multilevel model can
deal with repeated measurements. Due to time restrictions and di�culties to compare models obtained
from di�erent datasets, the multilevel model was also obtained based on the averaged measurements.
Because it was concluded that the multilevel modelling is the best method for this research topic, in
the future, datasets without averaged measurements should be used. Also, the di�erence in obtained
models with averaged or repeated data can be analysed.

Outlier analysis
Although SPSS selected outliers and highly in�uential points, no observations were excluded from the
analysis, because it was not known why observations were marked as outliers or highly in�uential points.
For future research it is recommended to obtain more knowledge of the dataset to be able to perform a
more useful outlier analysis. For example, photographs of the measurements could be inspected and/or
the roads could be visited.

Hierarchical structure for multilevel model
For the hierarchical structure of the three-level model, the second level is de�ned as the separate
100 metre sections and the third level is de�ned as the di�erent roads on which measurements were
performed. The latter is chosen because on roads of the same type and wearing course, comparable
values of the skid resistance are expected. However, it can be tried to de�ne what `road' means, such
as: type of mixture, age or tra�c intensity. For example, some roads will exists of multiple mixture
types and if this would be accurately registered during measurements, a better hierarchical structure
could possible be de�ned.

Zero speed intercept
In this research, attempts were made to estimate the zero speed intercept with help of a functional
approach. This appeared to be di�cult which made the method inappropriate for the purpose of
this research. However, if a functional approach would be found to properly estimate the zero speed
intercept, the regression method using this zero speed intercept could be improved.

Physical requirements
The developed model does not ful�l the physical requirements of skid resistance. For a small speed,
the skid resistance can exceed a value of 1, something which is not possible in reality. Therefore,
further research could be performed on changing the form of the model such that it ful�ls the physical
requirements, which is that the converted skid resistance will always be between 0 and 1.

Repeatability analysis
A short repeatability analysis in this research was performed. However, because measurements were
only performed twice, this analysis could be improved by including more repeated measurements. By
comparing the repeatability of SKM measurements to the RMSE of the obtained models, a better
understanding of the impact of this RMSE could be obtained.
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A
Original speed conversion models

This appendix gives an overview of the original speed conversion models discussed in Chapter 4. In
Chapter 4 multiple symbols have been changed in order to make it more uniform. This appendix gives
the formulas with the symbols used in the sources. No explanation of the symbols is given because the
meaning is the same as in the formulas of Chapter 4, nor they are included in the nomenclature of this
research.

A.1. SCRIM conversion (1976)
In the direction of tra�cking:

SFC = 0.015 · PSV + 0.028 · TD − 0.0027 ·K − 0.286
(A.1a)

In the opposite direction of tra�cking:

SFC = 0.014 · PSV + 0.026 · TD − 0.0025 ·K − 0.200
(A.1b)

A.2. Penn State Model (1978)
SN = SN0 · e−

PSNG
100 ·V (A.2)

A.3. Rado Model
µ(S) = µpeak · e

−
[
ln(S/Speak)

C

]
(A.3)

A.4. PIARC Model (1992)
FR60 = FRS · e

S−60
Sp (A.4)

A.5. KOAC•WMD (1999)
fv = fx · e((p+q·ln(MPD)+r)·(v−x)) (A.5)

A.6. ESDU (2003)
For the ESDU model the original formula is given.

A.7. FEHRL Hermes project (2006)
EFI = B · F30 (A.6a)

F30 = F · e
S−30
S0 (A.6b)
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S0 = a ·MPDb (A.6c)

A.8. E. Vos (2008)
For open asphalt: STR70 =

42

45
· STR50 (= 0.993 · STR50) (A.7a)

For dense asphalt: STR70 =
39

44
· STR50 (= 0.886 · STR50) (A.7b)

A.9. Koac•NPC (2009)
µ50 = µ · e(V−A)·(B−C·MPD) (A.8)

µ50 = µ · eB·(V−A) (A.9)

A.10. SCRIM Model
SR(50) = SRs ·

−0.0152 · s2 + 4.77 · s+ 799

1000
(A.10)

A.11. TP-Griff-StB (2007)
mv = m+

Vist − Vsoll
20

· 0.05 (A.11)

A.12. BASt (2012)
mv = m+

Vist − Vsol
20

· (0.120− 0.062)
1

mm
·MPD (A.12)



B
Introduction to regression analyses

using SPSS

In order to obtain a conversion model for the skid resistance at di�erent speeds, a regression analysis
in SPSS will be executed. This appendix �rstly explains some statistical theory related to regression
analyses in Section B.1. After that, the concept of multiple linear regressions is explained (Section B.2).
Section B.3 explains what multilevel models are.

B.1. Statistical theory related to regression analyses
This section describes some of the statistical theory related to regression analyses. Several aspects are
explained, but the details of calculations are omitted. SPSS performs calculations and plots graphs and
therefore it is not needed to perform calculations by hand, but understanding of how to interpret the
output of SPSS is important.

B.1.1. Pearson’s correlation coefficient r
The Pearson's correlation coe�cient r gives information about the linear relationship between two
variables. It is a number in between -1 and 1. If the correlation coe�cient is -1, this means there is a
perfect negative linear relationship. All the data points can be exactly plotted on one straight, declining,
line. If the correlation coe�cient is +1, this means there is a perfect positive linear relationship. All
data points can now exactly be plotted on one straight increasing line. If the correlation coe�cient is
0, this means there is no linear relationship between the two variables. The higher |r| the stronger the
relationship (de Vocht, 2009).

B.1.2. Coefficient of determination R2

The coe�cient of determination measures the proportion of the variance and is de�ned as the square of
the correlation coe�cient r. Often, for a regression with one variable the coe�cient of determination
is denoted as r2, whereas for a linear regression with multiple predictive variables the coe�cient of
determination is denoted as R2. The coe�cient of determination tells you what percentage of the
behaviour of the predicted variable y is explained by the predictive variable x (Kahane, 2001), or, in
case of a multiple regression analysis, by the predictive variables x1, ..., xn. For a strong relationship
must account: |R| ≥ 0.8 and thus R2 ≥ 0.64 (de Vocht, 2009).

B.1.3. Adjusted coefficient of determination
The adjusted R2 is a modi�ed measure of the coe�cient of determination that takes into account the
number of independent, predictive variables included in the regression analysis. Adding more predictive
variables will always cause the coe�cient of determination to rise whilst the adjusted coe�cient of
determination may also fall if the added variables have little extra explanatory power. Therefore, this
statistic is useful when comparing models with di�erent predictive variables (Hair Jr. et al., 2014).
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B.1.4. Statistical significance
Statistical signi�cance is the likelihood that the di�erence in conversion rates between a given variation
and the regression line is not due to random chance. Thus, the result of an experiment is said to
have statistical signi�cance if it is not likely caused by chance for a given statistical signi�cant level
(Optimizely, 2018). Not only the correlation coe�cient r, but also the sample size n determines if a
regression is statistically signi�cant (Texas Education Agency, 2018).

Often 95% is chosen as a signi�cance level, which means that you can be 95% sure that the results
are real and not an error caused by randomness. If the result is not statistical signi�cant, the result is
only valid for the sample data and cannot be generalised. To determine whether we accept a certain
regression coe�cient or not, �rst we de�ne the null-hypothesis: there is no signi�cant relation between
two variables.

The three requirements to test if a regression coe�cient is statistically signi�cant are (Molin, 2018b):

� an (absolute) t-value > 1.96,

� a p-value < α, and

� the 95% con�dence interval does not contain the value 0.

We only reject the null-hypothesis if the 3 requirements are met, hence there is a signi�cant relation
between two variables. If a regression coe�cient is not statistically signi�cant, one should not reject
the null-hypothesis, and therefore not use the calculated regression coe�cient and set the value of the
coe�cient to 0.

t-value
The t-value tells you how many times larger the regression coe�cient is compared to the standard
deviation of the regression coe�cient. In general, we say that for samples larger than 120, if |t| > 1.96,
the coe�cient is statistical signi�cant (Molin, 2018a). If the sample size is smaller than 120, one should
use a t-table to determine the limiting values.

p-value
The p-value is used in hypothesis testing to verify whether a hypothesis must be rejected or not (Kahane,
2001). If we test if there is a regression coe�cient for a certain variable in a regression, and the p-value
of this regression coe�cient is smaller than a chosen level of signi�cance (often 5%), then we must reject
the null hypothesis of not having a regression coe�cient and accept the regression coe�cient. If the
p-value is larger than the chosen level of signi�cance, we accept the null hypothesis.

95% confidence interval
All values within the 95% con�dence interval are possible regression coe�cients for which the di�erence
with the estimated regression coe�cient is not statistically signi�cant. SPSS gives for calculated coe�-
cients, such as a in y = a ·+b, a 95% con�dence interval. If a is 3 and the lower and upper boundaries of
the 95% con�dence intervals are 2.75 and 3.25, this means that in 95% of the samples (or data points)
a value of a between 2.75 and 3.25 will give the right predicted parameter. All values between 2.75
and 3.25 are possible regression coe�cients for which the di�erence with the regression coe�cient is not
statistically signi�cant (Molin, 2018b).

If 0 is a number within the 95% con�dence interval, the regression coe�cient does not signi�cantly
di�er from 0, hence we do not use the regression coe�cient.

B.1.5. RMSE
The root mean square error (RMSE) indicates the absolute �t of the model to the data. The smaller
the RMSE, the closer the observed data points are to the predicted values of the model. The RMSE is
de�ned as the square root of the variance of the residuals and the unit matches the unit of the predicted
variable.

The RMSE is calculated as follows (Statistics How To, 2016):

RMSE =

√∑n
1 (µpred,i − µmeasured,i)2

n
(B.1)
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When comparing several regressions, the values of the RMSE can be compared as long as the predicted
variable is in the same unit.

B.2. Multiple linear regression
A multiple linear regression model demands a linear correlation between all predictive variables and the
variable which must be predicted. An example of a linear function is:

f(x1, x2, . . . , xn) = A0 +A1 · x1 +A2 · x2 + . . .+An · xn (B.2)

All predictive variables (x1, . . . , xn) have a linear relationship with the predicted variable through
A1, . . . , An and A0 is the intercept.

When there is only one predictive variable x1 it is called a linear regression analysis, whereas having
multiple predictive variables, it is called a multiple linear regression analysis. Thus, if only the speed
di�erence would be considered as an in�uencing parameter, a linear regression analysis should be per-
formed. If besides the speed di�erence, also the MPD as a predictive parameter is considered, a multiple
regression analysis should be performed. The goal of this research is to develop a conversion model with
speed and texture as input parameters, thus the section about linear regressions will focus on multiple
linear regressions.

B.2.1. Assumptions
There are several assumptions which must be met for performing a multiple linear regression. These
are (Laerd statistics, 2018):

� There must be a linear relationship between the dependent and independent variables.

� The dependent variable should be measured at a continuous level. This means, the variable can
take any value. Height is an example of a continuous variable whilst gender, which can only be
male or female, is not. In this research, the reference skid resistance is an example of a continuous
variable.

� The independent, predictive, variables should be measured at continuous or categorical level.
A categorical variable (or nominal variable) has several categories which do not have an order
(UCLA, 2018). Gender or hair colours are examples of categorical variables. Hair colour can
be brown, blond, black, etc. But one colour is not better than the other, and thus it does not
have an order. In this research, positive or negative macrotexture is a categorical variable, whilst
measuring speed and measured skid resistance are continuous variables.

� The data must not show multicollinearity. This occurs when two or more predictive variables
are highly correlated with each other. Multicollinearity can be a problem because if two variables
are highly correlated they might be predictors for the same phenomena.

� There should be no signi�cant outliers or highly in�uential points. These can disturb the
regression. If outliers or highly in�uential points are present, these must be omitted from the
data.

� You should have independence of observations. This means that the occurrence of one
observation, does not provide information about the occurrence of the subsequent observation
(NEDARC, 2016). Often, when time is one of the measurement variables, there is no inde-
pendence of observations (McDonald, 2014). If the occurrence of one observation does provide
information of the occurrence of another observation, we say that the autocorrelation is present.
An example of autocorrelation is that the pavement temperature on day 1 in�uences the pavement
temperature on day 2.

� The data needs to show homoscedasticity. This implies that the error term of the predicted
dependent variable is the same across all values of the independent variables (Statistics Solutions,
2018a).
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Furthermore, after a regression has been performed, one must check whether the residuals (errors) of
the regression line are approximately normally distributed. This is needed in order to determine the
statistical signi�cance explained in Section B.1.4.

Thus, before starting performing a linear regression analysis, one must check whether the data set ful�ls
the assumptions above. The next section will explain how these assumptions can be examined.

B.2.2. Examine assumptions
This paragraph explains how to examine the assumptions which must be ful�lled by the data set before
performing a linear regression analysis.

Linear relationship
Analysing whether a predictive parameter has a linear relationship with the predicted parameter can
easily be done with help of a scatterplot. A scatterplot visualises the relationship between two variables
by plotting the values obtained for two di�erent variables. One variable is plotted on the y-axis and one
on the x-axis. The scatterplots of Figure B.1 show how a scatterplot could indicate a linear relationship.

(a) Positive correlation (b) Negative correlation (c) Nonlinear correlation

Figure B.1: Scatterplots showing linearity of data, (adapted from Pythagoras & That, 2014)

When a straight line can be drawn through the data, a linear relationship exists. This can be positive
or negative correlated. For a positive correlation (Figure B.1a), a formula for this data will be in the
form of y = ax+ b, with a a positive number. For a negative correlation (Figure B.1b), the formula for
this data will be in the form of y = −ax + b, thus, the constant value before x is now negative. If no
straight line can be drawn through the data set, there is no linear relationship, as for example shown
by Figure B.1c.

Besides the scatterplot, the Pearson's correlation coe�cient r gives information about the linearity
between two variables. In a scatterplot, a higher |r| means that the data points lie closer to the
regression line, whereas a smaller |r| corresponds to data points that deviate more from the regression
line. Thus, if we would compare the correlation coe�cients from Figures B.2a and B.2c with the
correlation coe�cients from Figures B.2b and B.2d, the �rst ones would be closer to 1 than the second
ones.
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(a) Strong positive correlation (b) Weak positive correlation

(c) Strong negative correlation (d) Weak negative correlation

Figure B.2: Di�erent scatterplots showing a strong or weak correlation (adapted from Pythagoras & That, 2014)

For a linear relationship the correlation between two variables is signi�cant. If the correlation coe�cient
between two variables is not signi�cant, there is no linear relationship (Texas Education Agency, 2018).
Often a signi�cance level of 5% is chosen, which means that for a p-value smaller than 0.05 the correlation
coe�cient is signi�cant (Texas Education Agency, 2018)

If a scatterplot or the correlation coe�cient does not show a linear relationship, one can apply a transfor-
mation to the variables to make their relation linear. Table B.1 gives some examples of transformations
(Stat Trek, 2018).

Table B.1: Examples of transformations

Method Transform Regression equation Predicted value (ŷ)
Standard linear
regression

None y = b0 + b1 · x ŷ = b0 + b1 · x

Exponential model log(y) log(y) = b0 + b1 · x ŷ = 10b0+b1·x

ln(y) ln(y) = b0 + b1 · x ŷ = eb0+b1·x

Quadratic model
√
y

√
y = b0 + b1 · x ŷ = (b0 + b1 · x)2

Reciprocal model 1/y 1
y = b0 + b1 · x ŷ = 1

b0+b1·x
Logarithmic model log(x) y = b0 + b1 · log(x) ŷ = b0 + b1 · log(x)
Power model log(y) log(y) = b0 + b1 · log(x) ŷ = 10b0+b1·log(x)

If also with transforming variables no linear relationship can be obtained, a nonlinear regression must
be performed.

Multicollinearity
A correlation coe�cient between two predictive variables higher than 0.8 might indicate multicollinear-
ity(ReStore, 2011a). Multicollinearity can be identi�ed analysing Variance In�ation Factor (VIF) (Laerd
statistics, 2018) and the collinearity diagnostics table (IBM, 2018). In the output of a linear regression,
values for the VIF are given. These are an indicator of the e�ect that the other independent variables
have on the standard error of a regression coe�cient (Hair Jr. et al., 2014). Often, a VIF of 10 is used
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as the cut-o� limit. For a VIF above 10,there is cause for concern (Myers (1990) and Bowerman &
O'Connell (1990), as cited in Field (2005)). Also, the eigenvalues of the collinearity diagnostics table
can be analysed. Eigenvalues close to zero indicate multicollinearity and thus small changes in the data
values may lead to large changes in the estimates of the coe�cients (IBM, 2018).

If multicollinearity is present, the con�dence intervals of the regression coe�cients can become very
wide and the standard errors are likely to be high. It becomes di�cult to reject the null hypothesis and
accept the regression coe�cients (Statistics Solutions, 2018b).

When multicollinearity is present, for example between two predictive variables x1 and x2, one could
either remove one of the two variables �if very high correlated� or de�ne a new variable that is
composed of the two correlated variables, namely x3 = x1 · x2 (ReStore, 2011b). When including
this variable in the regression analysis performed with the Stepwise method, SPSS includes the new
variable and makes it possible to verify with the partial F value if the added variable has a signi�cant
contribution.

Outliers and highly influential points
Outliers can, among others, be identi�ed with help of a scatterplot. Figure B.3 gives an example of a
scatterplot where an outlier can be identi�ed very clearly.

Figure B.3: Scatterplot showing a outlier

Besides using a scatter plot, SPSS has a function called Casewise Diagnostics. When collecting casewise
diagnostics, SPSS tells you which cases have residuals that are three (or a chosen multiplication) or
more standard deviations away from the mean residual(ReStore, 2011a). These cases have the largest
errors and thus could be outliers. After analysing these points, one could decide to exclude these points
from the analysis and perform the regression analysis one more time without these points.

Also, the Cook's distance and the Centered Leverage Value of data points can be calculated during
a regression. The Cook's distance gives information of data points which have a very large in�uence
on the regression parameters. Cases where the Cook's distance is larger than 1 may cause a disturbed
regression (ReStore, 2011a). Karadimitriou and Marshall (2018) propose comparing the Cook's distance
for each observation with 4/n where n is the number of observations used in the regression. Observations
with a Cook's distance higher than 4/n might be a problem. Furthermore, cases with a high leverage

might pull the regression line towards it (Karadimitriou and Marshall, 2018). Leverage values of 3·(k+1)
n ,

where k are the number of predictive variables, indicate high leverage for an observation.

Independence of observations
In this research no time element is present, but still the observations might be dependent. Because
multiple measurements on one 100 metre section are performed, these measurements are not fully
independent.

Independence of observations can be tested with the Durbin Watson statistic. The Durbin Watson
statistics measures whether there is autocorrelation or not. If this is the case, a regression can underes-
timate the standard error of the coe�cients. The predictive variable can now seem signi�cant whilst it
is not (Minitab, 2017). The Durbin Watson statistic is a number between 0 and 4 and Karadimitriou
and Marshall (2018) state that for a value between 1.5 and 2.5 the variables are not autocorrelated.
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Homoscedasticity
When performing a linear regression with one predictive variable, homoscedasticity can sometimes be
discovered with a scatterplot. As Figure B.4 shows, the variance of the data changes along the horizontal
axis. For larger values on the horizontal axis, the values on the vertical axis vary much more than for
smaller values on the horizontal axis.

Figure B.4: Scatterplot showing no homoscedasticity

However, the scatterplot with the data points is not always clear enough to see whether the data
set shows homoscedasticity or not. Also, when having multiple predictive variables, one cannot plot
one scatterplot to see the variance of the data. With help of SPSS it is also possible to check for
homoscedasticity in another way, namely by plotting a scatterplot which plots the standardised predicted
values (ZPRED) on the x-axis and the standardised residuals on the y-axis (ZRESID) (ReStore, 2011a),
as is shown in Figure B.5.

(a) Scatterplot of residuals showing homoscedasticity (b) Scatterplot of residuals not showing homoscedasticity

Figure B.5: Scatterplots of residuals (Statistics Solutions, 2018c)

In Figure B.5a the residuals are equally distributed above and below the x-axis, which implies ho-
moscedasticity of the data. In Figure B.5b this is not the situation, and thus this data does not show
homoscedasticity (Statistics Solutions, 2018c).

Normally distributed residuals
A histogram of the residuals can be plotted to see whether the residuals are normally distributed, see
Figure B.6a. This histogram is not always very clear and therefore a P-P plot should be checked, see
Figure B.6b. If this graph shows a straight line, the residuals are normally distributed (ReStore, 2011b).
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(a) Example of a histogram of residuals (b) Example of a p-plot

Figure B.6: Examples of histogram and p-plot to check whether the residuals are normally distributed (Pennsylvania
State University, 2018)

Also, the Kolmogorov-Smirnov value can be calculated to verify whether there is a normal distribution.
If the p-value for the Kolmogorov-Smirnov normality test is larger than 0.05, a normal distribution for
the tested variable can be assumed (Statistiek, 2018).

B.2.3. Choosing the right variables
When performing a multiple regression analysis, one can use as many predictive variables as wanted.
However, adding more variables does not always improve the model. When using too many variables
the danger of over-�tting exists: the regression is �tted too exactly to a particular set of data and
cannot be generalised.

(a) Under�tted (b) Good �t (c) Over�tted

Figure B.7: Illustrations of model �ttings (Gandhi, 2018)

To prevent over-�tting, one must analyse which variables to use. Performing a regression according to
the Stepwise method can help to search for the best combination of predictive variables.

Stepwise
Stepwise is a regression method that searches for the best combination of coe�cients. The process
starts with a regression with one variable, the variable with the highest correlation coe�cient. The
second variable that is added, is the variable that explains the largest statistically signi�cant portion
of the unexplained (error) variance remaining from the �rst regression equation (Hair Jr. et al., 2014).
Therefore, the second added predictive variable does not have to be the variable with the second largest
correlation coe�cient. New regressions are made every time with one more predictive variable, until
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all variables are used or until adding a new variable does not add a statistical signi�cant change to the
model.

Partial F value
The adjusted R2 can be used to analyse if an added variable makes sense. If the adjusted R2 increases
much by adding a new variable, it makes sense. However, if the adjusted R2 does not increase much,
it might be better to not include the variable in the model. This can be veri�ed with the partial F
test. A signi�cant (<0.05) F-change means that the added variable in this step signi�cantly improves
the regression and thus should be included. If the addition of the variable is not signi�cant, then one
should eliminate the variable (Hair Jr. et al., 2014). SPSS calculates and displays the R2 and partial
F tests for the performed regressions.

B.2.4. Dummy variables
Usually, the predictive variables in SPSS are numbers which can take any value. However, it is possible
to use a dichotomous variable, which is a variable with two possible categories that is coded with a 1
or 0. Because in this research there is a possibility that the `positive or negative macro texture' will
be used as a predictive variable in the model, one should understand how to implement a dichotomous
variable.

A dichotomous variable which is used in a regression analysis is called a dummy variable. The �rst step
of using a dummy variable is de�ning the possible outcomes of the variable as 0 or 1. For example, a
negative macrotexture corresponds to 0 whereas a positive macrotexture corresponds to 1. The dummy
variable is used to indicate of the presence or absence of a certain e�ect that in�uences the outcome
of the regression analysis (de Vocht, 2009). The outcome of the dummy variable which is set to 0
is the reference category, and in the regression analysis the in�uence of the presence of `group' 1 on
the predicted variable is compared to the in�uence of the reference category on the predicted variable.
Thus, an extra regression coe�cient is generated which will only be used if the dummy variable has the
value 1.

B.2.5. SPSS output multiple linear regression
When performing a multiple linear regression, SPSS gives various output tables. This sections gives an
overview of the data generated in SPSS and discusses how to interpret this output. For every table, the
amount of rows corresponds (in case of the stepwise method) to the number of performed regression.
Thus, the �rst row contains one regression variable, whereas row n contains n regression variables. This
section discusses the basic output generated by SPSS. One should be aware that much more output
can be generated. For the tables an example regression is performed, which has no meaning for this
research, but is solely used to explain the output of the regression analysis.

Variables Entered/Removed
This table gives, when using the stepwise method, an overview of the variables that are added to every
new regression. Another method which you can use is backward, which starts with all possible variables
and removes one variable per new regression. If this method would be used, this table shows which
variables are removed every new regression.

Figure B.8: Linear regression output SPSS: table `Variables Entered/Removed'

Figure B.8 shows that the �rst regression only uses var_2 as input, whereas the third regression uses
var_2, var_5 and var_ 4 as input.
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Model summary
This table gives an overview of the statistics of all models generated during the regression analysis.
The r, R2, adjusted R2, standard error of the estimate and partial F values are given. This table can
thus be used to compare the outcome of the di�erent models. The best model has the highest R2 and
adjusted R2, and the smallest standard error.

Figure B.9: Linear regression output SPSS: table `Model summary'

From Figure B.9 it becomes clear that the third regression has the highest R2 and adjusted R2 and the
lowest standard error of estimate. Furthermore, the addition of var_4 signi�cantly improves the model
because the Sig. F Change value is smaller than 0.05. Thus, the third model is the best model from
three obtained models. Adding another variable would not change the model signi�cantly, thus SPSS
stops the stepwise regression.

ANOVA
ANOVA stands for Analysis of Variance and with this table one can test if the whole model is signi�cant
(de Vocht, 2009). It reports how well the regression equation �ts the data and hence how well it predicts
the dependent variable (Laerd statistics, 2018). First, the signi�cance of the F-test should be smaller
than 0.05 for having a signi�cant model. Furthermore, the sum of squares for the regression and
residuals are given.

The sum of squares regression gives the sum of the squared di�erences between the mean and predicted
values of the predicted variable for all observations. It gives an impression of the amount of improvement
in explanation of the predicted, dependent variable by the independent variable(s) (Hair Jr. et al.,
2014). Therefore, the larger this value, the better. The sum of squared residuals is the sum of squared
di�erences in prediction errors (residuals) from all observations. It is used to denote the variance in
the predicted variable not accounted for by the regression model (Hair Jr. et al., 2014). Therefore, this
value should be as small as possible.

Figure B.10: Linear regression output SPSS: table `ANOVA'

All three models have a signi�cant F-test. And considering the sum of squares, the third model gives
the best regression model.
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Coefficients
From the table Coe�cients the model can be obtained. The unstandardised coe�cients for the di�erent
predictive variables are given, thus if y = b1 ·var1 +b2 ·var2 +b3 ·var3, the values obtained for b1, b2 and
b3 are given in the table. Also the signi�cance of the variables are given, which should all be smaller
than 0.05. In the last columns the table gives the 95.0% con�dence intervals for B.

Figure B.11: Linear regression output SPSS: table `Coe�cients'

In Figure B.11, the model would thus be:

y = 10.959 + 0.408 · var_2 + 0.364 · var_5 + 0.337 · var4 (B.3)

The standardised coe�cients can be used to analyse the independent in�uence of each variable, because
the units are standardised. This can be usable when, for example, one variable is expressed as euros
whereas the other variable is expressed as age. Furthermore, in the column `Sig.' one can see that all
variables are statistically signi�cant and that 0 does not belong to one of the 95% con�dence intervals,
hence, we should not omit one of the variables from our model.

Excluded variables
In the table Excluded Variables (Figure B.12) the variables are shown which are not included in every
model. The partial correlation coe�cients of these variables are calculated. The variable with the high-
est partial correlation coe�cient is added to the consecutive regression (as explained in the paragraph
`Stepwise' of Section B.2.3).
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Figure B.12: Linear regression output SPSS: table `Excluded variables'

As can be seen in Figure B.12, in the �rst regression variables 1 and 3 to 6 are excluded from the model.
Var_5 has the highest partial correlation coe�cient, thus in the second regression, var_5 is added to
the used variables.

B.3. Multilevel models
A multilevel model is a linear model that deals with a hierarchical structure in a dataset. Often this is
explained with examples from biological sciences, such as individuals nested within geographical areas
(Steele, 2008). We expect individuals from the same geographical area to be more equivalent than two
individuals from di�erent areas, and therefore a hierarchical structure in the data is present. The lowest
level of observation in the hierarchy, which are the individuals, is called the �rst and the groups, which
are the geographical areas, is the second level (Steele, 2008). Even third or higher levels can be modelled.
A multilevel linear model takes into account the hierarchy of a dataset and the independence of the
data within one group, in contrary to a multiple linear regression which assumes that all observations
are independent.

B.3.1. Fixed and random effects
In multilevel models a di�erence is made between �xed coe�cients and random coe�cients. Fixed
coe�cients are equal for every individual observation, independent of the cluster it belongs to. Random
e�ects are, in contrary, di�erent per cluster, thus per level 2 variable. One can make a di�erence
between a random intercept and random slope model: for a random intercept model, the intercept
value di�ers per group, and for a random slope model the slopes are di�erent per group. Figure B.13
gives a visualisation of a dataset with random intercepts (Figure B.13a) and of a dataset with both
random intercepts and random slopes (Figure B.13b).
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(a) Model containing random intercepts for group ID's
(coloured lines, α1 to α5). The slope is �xed and therefore

the regression lines are parallel.

(b) Model containing both random intercepts and random
slopes per group ID.

bla

Figure B.13: Di�erences between Random Intercept vs Random Slope Models (Harrison et al., 2018)

The multilevel model with 2 levels can be represented as follows (Field, 2013):

Yij = (b0 + u0j) + (b1 + u1j)Xij + εij (B.4)

Where: Yij = Observed value i belonging to group j
b0 = Fixed intercept of overall model �tted to the data
u0j = Random intercept for group j
b1 = Fixed �xed slope for overall model for predictive variable X
u1j = Random slope for variable Xij , for group j
Xij = Predictive variable
εij = Error term

B.3.2. Regression methods
Two di�erent regression methods can be used while performing a multilevel analysis. These are the
maximum-likelihood estimation (ML) or restricted maximum likelihood estimation (REML). Field
(2013) suggests that the ML produces more accurate estimates of the �xed e�ects, whereas the REML
produces more accurate estimates of the random variances. Often, the results obtained with an REML
or ML only make a small di�erence to the estimated regression coe�cients.

B.3.3. Analysing a multilevel model
The output generated from a multilevel model does not give a R2 or standard error of the estimate, as
is given in the output of a multiple linear regression. Instead, the -2 Log Likelihood (-2LL) is given,
which is called the deviance. The Log Likelihood function gives an indication of how well the data �ts
a certain model. The higher the log likelihood, the larger the possibility that the model �ts the dataset.
The log likelihood function can be either positive or negative. If the log likelihood is positive, it follows
that the -2LL must be as negative possible, because then the log likelihood will be largest. If the log
likelihood is negative, the -2LL closest to 0 represents the best model.

To compare two models the chi-square likelihood ratio test is used (Field, 2013):

χChange
2 = (−2LLold)− (−2LLnew) (B.5a)

dfChange = κold − κnew (B.5b)
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Where: κ = number of parameters in the respective model

With help of Table B.2 one can determine if the χChange
2, in combination with the change in number

of parameters, is signi�cant, which indicates a signi�cant improvement to the model.

Table B.2: Critical values of chi-square distribution (Field, 2009)

p p
df 0.05 0.01 df 0.05 0.01
1 3.84 6.63 25 37.65 44.31
2 5.99 9.21 26 38.89 45.64
3 7.81 11.34 27 40.11 46.96
4 9.49 13.28 28 41.34 48.28
5 11.07 15.09 29 42.56 49.59
6 12.59 16.81 30 43.77 50.89
7 14.07 18.48 35 49.80 57.34
8 15.51 20.09 40 55.76 63.69
9 16.92 21.67 45 61.66 69.96
10 18.31 23.21 50 67.50 76.15
11 19.68 24.72 60 79.08 88.38
12 21.03 26.22 70 90.53 100.43
13 22.36 27.69 80 101.88 112.33
14 23.68 29.14 90 113.15 124.12
15 25.00 30.58 100 124.34 135.81
16 26.30 32.00 200 233.99 249.45
17 27.59 33.41 300 341.40 359.91
18 28.87 34.81 400 447.63 468.72
19 30.14 36.19 500 553.13 576.49
20 31.41 37.57 600 658.09 683.52
21 32.67 38.93 700 762.66 789.97
22 33.92 40.29 800 866.91 895.98
23 35.17 41.64 900 970.90 1001.63
24 36.42 42.98 1000 1074.68 1106.97

Two restrictions limit the use of the chi-square distribution (Field, 2013):

1. the full maximum-likelihood estimation should be used (and not the restricted maximum likeli-
hood), and

2. the new model contains all of the e�ects of the older model.

Restriction one deals with a di�erence in regression methods and says that the chi-square test only
works for the ML method. Furthermore, for comparing two models, the second model should be an
elaboration of the �rst model. If the �rst model contains variable Xij , the second model cannot only
contain variable Yij but should also contain Xij .
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Available data

This appendix describes the data that is used in this study and how this data is prepared for the
analysis. Di�erent datasets from di�erent projects are provided which are described in Section C.1.
After that, a general procedure of the data preparation is given in Section C.2. Section C.3 visualises
the data by di�erent plots of the data and �nally, Section C.4 gives a short repeatability analysis of the
data.

C.1. Obtained data
C.1.1. Measurements performed by Kiwa-KOAC for RWS
In an early stage of this research, a dataset was obtained consisting of measurements performed in the
past (2016 - 2018) by Kiwa-KOAC for RWS. For several reasons, some of the measurements needed
to be repeated. If these repeated measurements were performed at another measuring speed than the
�rst measurement, a data point could be obtained consisting of two measurements speeds and two
corresponding values for the skid resistance.

Only 75 datapoints consisting of two measurements at di�erent measuring speeds were obtained from
this dataset. These measurements were performed on di�erent days and the average time in between
two measurements was 50 days. The measurements were therefore a�ected by temperature and seasonal
variations. Furthermore, neither the pavement types nor the construction years of the pavements were
known. Therefore, it was decided to exclude this dataset from the further analysis.

C.1.2. Measurements performed for SKM and RWS Skid Resistance Tester com-
parison

In 2016, a study was performed in which the correlation was analysed between SKM and RWS SKid
Resistance Tester measurements at di�erent speeds, types of road sections and types of pavements.
Aveco de Bondt and Kiwa-KOAC both provided a dataset for this analysis. These datasets consisted
of both RWS Skid Resistance Meter and SKM measurements at di�erent measuring speeds on di�erent
sections. The measurements performed with the SKM are used in this research. The dataset of Aveco
de Bondt is called 'Dataset A' and the dataset of Kiwa-KOAC is called 'Dataset B', corresponding
to the reports of the study for which these measurements are performed. The sections below give a
description of the two datasets.

Dataset A: measurements performed by Aveco de Bondt
Table C.1 gives an overview of the dataset measured by Aveco de Bondt with the SKM. Measurements
were performed at three measuring speeds, namely 40, 60 and 80 km/h. The type and texture of the
pavements vary.

113
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Table C.1: Overview of dataset A, measured by Aveco de Bondt

Road
No. of usable
100m sections

Type
Construction
year

Measuring
speeds

MPD Avg.
MPD/RMS

Conditions
Measuring
datemin max avg.

N795 79 SMA 8G+ 2014 40-60-80 0.72 0.91 0.84 1.15 Dry 15-9-2016
N320 121 SMA 8 2010/2015 40-60-80 0.68 0.98 0.83 1.22 Dry 19-9-2016
HOV1 79 Concrete C35/45 2000/2013/2015 40-60(-801) 0.19 0.98 0.41 1.57 Dry 22-9-2016
N224 30 SMA 11 type 2 2004 40-60-80 0.67 1.08 0.94 1.26 Dry 27-9-2016
N311 40 AC 16 Surf 1994 40-60 0.52 0.95 0.69 1.72 Dry 27-9-2016
N804 10 AC 11 Surf 2007 40-60 0.55 0.90 0.71 1.65 Dry 27-9-2016
RW015 (A18) 56+242 ZOAB 16 ? 40-60-80 0.40 1.54 1.22 1.26 Dry 15-8-2016
N310 40 SMA 8G+ 2015/2016 40-60 0.33 0.99 0.79 1.27 Dry 15-9-2016
1 52 sections are not measured at 80 km/h
2 56 sections with texture measurement and 24 sections without texture measurement

Dataset B: measurements performed by Kiwa-KOAC
Table C.2 gives an overview of the dataset measured by Kiwa-KOAC for the research about the cor-
relation between the SKM and RWS Skid Resistance Tester. The measurements shown below are all
performed with the SKM. Kiwa-KOAC measured a variety of pavement types. Unfortunately, several
measurements have been performed on wet surfaces which makes the texture measurements unreliable.

Table C.2: Overview of dataset B, measured by Kiwa-KOAC

Road
No. of usable
100m sections

Type
Construction
year

Measuring
speeds

MPD Avg.
MPD/RMS

Conditions
Measuring
datemin max avg.

N304 40 DGD 2009 40-60-80 0.77 1.00 0.88 0.65 Dry 2-8-2016
N344 20 + 801 ZOAB 8+ ZOAB 11 2011 40-60-80 0.71 1.73 1.32 0.95 Dry 2-8-2016
N304 40 DGD 2009 40-60-80 0.80 1.50 1.00 0.90 Wet 3-8-2016
N224 81 DGD 2008 40-60-80 0.51 1.25 0.93 0.61 Wet 3-8-2016
N338 40 2-ZOAB 2006 40-60-80 0.71 1.25 0.86 0.71 Drying 3-8-2016
RW015 (A18) 70 + 102 ZOAB + DAB ? 40-60-80 0.45 1.32 1.13 1.24 Dry 15-8-2016
1 20 sections with ZOAB 8, 80 sections with ZOAB 11
2 70 sections with ZOAB, 10 sections with DAB

C.1.3. New measured data
Besides the provided data described above, another round of measurements with the SKMwas performed
by Kiwa-KOAC. This data is described in Table C.3. Additional to the measurements performed at 40,
60 and 80 km/h, this dataset also contains a few measurements performed at 30 km/h.

Table C.3: Overview of new measured data

Road
No. of usable
100m sections

Type
Construction
year

Measuring
speeds

MPD Avg.
MPD/RMS

Conditions
Measuring
datemin max avg.

N302 20 DAB ? 40-60-80 0.3 0.6 0.47 1.26 Dry 7-11-2018
Oostveluweweg 8 Concrete ? 40-60-80 0.9 1.2 0.99 1.41 Dry 7-11-2018
N344 20 ZOAB11 ? 40-60-80 1.6 1.8 1.64 1.09 Dry 7-11-2018
Gildenlaan 12 Dense ? 30-40 0.5 0.7 0.52 1.37 Dry 18-12-2018
Kanaal Zuid 12 Dense ? 30-40 0.5 0.6 0.53 1.33 Dry 18-12-2018

C.2. Preparation of data
Before the data can be analysed, the data needs to be prepared. This preparation phase consists of
several steps. First, for every road an overview sheet was made. All these overview sheets have the same
structure, as is explained in Section C.2.1. Thereafter, for every regression method (see Chapter 5) a
separate datasheet was compiled. This description is given in Section C.2.2.

C.2.1. Overview sheets per road
1. The datasets were separated into multiple excel �les. Each excel �le contained information of one

road, for which multiple measurements were conducted. All measurements were separated into
separate sheets. In most situations, measurements were performed at 40, 60 and 80 km/h and
twice per measuring speed. Therefore, this leads to 6 sheets per road: 40-1, 40-2, 60-1, 60-2, 80-1
and 80-2 (or in some situations, one of the measuring speeds is missing or di�erent).

2. In the data the raw skid resistance and the skid resistance is given. The raw skid resistance is the
skid resistance measured with the SKM, and corrections for temperature and speed were applied
to obtain the skid resistance. Equations (4.16) and (4.17) were used to calculate the corrected skid
resistance from the raw (measured) skid resistance. For this study, the skid resistance was only
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corrected for temperature variations and not for speed variations. Therefore, either the corrected
skid resistance minus the applied speed correction according to Equation (4.16) was taken, or the
raw skid resistance plus the temperature correction as in Equation (4.17).

3. Per measuring speed, measurements for the same section are averaged. This means, the average
speed and the average skid resistance, corrected for temperature variations, are calculated.

4. Per excel �le, a single overview sheet was prepared consisting of several columns:

� Unique, characterisation code for every 100 metre section (consisting of road name, start and
end hectometre indication).

� Average measuring speeds for (mostly) 40, 60 and 80 km/h and for some sections 30 km/h.

� Average skid resistance values �corrected for temperature variations� at 40, 60 and 80
km/h.

� MPD of the �rst measurement for the corresponding section1 For some measurements, prior
to the skid resistance measurements a texture measurement was performed. A separate sheet
called 'Texture' was setup and the texture measurements were read from this sheet.

� RMS.

� MPD divided by RMS.

� Type of pavement, given in measurement data. These were:

� ZOAB: ZOAB, ZOAB-2 (double layered ZOAB), ZOAB 8, ZOAB 11

� SMA: SMA 11 type 2, SMA 8G+, SMA 8

� Concrete: concrete C35/45, concrete

� Dense asphalt: DAB, dense

� DGD

� AC 16 Surf

� AC 11 Surf

� Excel �le (in a later stadium the overview sheets were to be extracted and compiled into one
excel �le, this column facilitates easy retrieval of the original data). Excel �les were named
after the roads on which the measurements were performed. Each excel �le containes data
of one road.

� Pavement category: from the measurements various pavement types were measured. From
some pavements categories, for example ZOAB, multiple types were measured, such as double
layered ZOAB, ZOAB 8 and ZOAB 16. This column divides the pavement types in bigger
groups which contain several pavement types, namely:

� ZOAB: ZOAB 8, ZOAB 11, ZOAB 16, double layered ZOAB, ZOAB (without further
indications)

� SMA: SMA 8G+, SMA 8, SMA 11 type 2

� Concrete: concrete C35/45, concrete (without further indications)

� Dense: DAB, AC 16 surf, AC 11 Surf, dense (without further indications)

� DGD: no further indications

During the analysis the di�erent pavement types could easily be selected to perform analyses
on separate pavement types.

1After the �rst measurement, the road surface is wet from the water layer, which makes later texture measurement
unreliable. Therefore, the �rst texture measurement was taken in the analysis.
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� Weather conditions: some measurements were performed under wet conditions, and therefore
the texture measurements of these measurements were not reliable. This column states if
the pavement was wet, dry or drying. Only the dry pavements were used in the analysis.

� The di�erence in skid resistance per km/h of vehicle speed between 40 and 60, and 60 and
80 km/h. In this case a linear relationship was assumed. This di�erence was used as quality
control. If this di�erence would be much lower or higher on a road section than average, the
dataset on that road section might be invalid.

� Column for comments measurements.

If for certain measurements no skid resistance or MPD value was obtained, these cells were set to -9999.
In SPSS, -9999 will be set as a missing value. SPSS will ignore rows during regressions in which data
that is needed are set as a missing value.

Multiple excel �les are obtained of which the �rst sheet contains the measurement data of that road. All
�les were equally structured such that the data could easily be collected into one overview datasheet.

C.2.2. Combining data into one datasheet
The excel �les with measurements data per road were combined into one excel �le containing all dat-
apoints needed in the analysis. Di�erent datasheet were compiled. The structure of these datasheets
depended on the regression method (see Chapter 5). Furthermore, for these excel �les, the data from
Section C.1.1 were not used. This data was measured under di�erent weather circumstances and thus
temperature di�erences might have caused deviating measurement values. Therefore this data was �rst
omitted.

Datasheet for regression method 1: multiple linear regression
The �rst regression method is described in Section 5.2. An observation must consist of two measurements
performed on the same section, thus the data must be split into several combinations of skid resistance
measurements with corresponding measurement speeds.

The excel �le has the following content:

� characterising code for every 100m section

� Va: corresponds to 40 or 60 km/h

� Vb: corresponds to 60 or 80 km/h (and for one section to 30 km/h)

If one section is measured at 40, 60 and 80 km/h, 3 data points will be made per section. These
are combinations of 40 and 60, 60 and 80 and 40 and 80 km/h.

� µa: skid resistance at Va

� µb: skid resistance at Vb

� MPD

� RMS

� MPD/RMS

� comments

� type of pavement according to measurement

� excel �le containing original data

� pavement category

� weather conditions

� measuring speeds: number of which the �rst two digits contain Va and the last two digits Vb,
each rounded to the nearest ten. For example, if Va is 39.8 and Vb is 61.5, this cell will contain
the value 4060. This number can be used to include or exclude certain data points during the
analysis.
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Next to this content, few columns were added with calculated variables which could be predictive
variables for the model. These are:

� Vb − Va
� MPDdry: only shows the MPD when the pavement was dry during measurements. Otherwise, the
MPD is set to -9999. This variable is used for calculating the other variables containing MPD
below.

� MPD·(Vb − Va)

� ln(MPD) · (Vb − Va)

�
MPD
RMS · (Vb − Va)

�
MPD
RMS · (Vb − Va) as a dummy variable:

� (Vb − Va) if MPD
RMS > 1.58

� 0 if MPD
RMS < 1.58

� 1- VbVa

� MPD·(1− Vb
Va

)

�
MPD
RMS · (1−

Vb
Va

)

� ln(MPD) · (1− Vb
Va

)

The number of individual data points (consisting of a measurement with measuring speed code 4030,
4060 and 4080) are:

� ZOAB: 922 (of which 192 under wet conditions)

� DGD: 480 (all under wet conditions)

� SMA: 723

� Dense: 161, and

� Concrete: 161.

In total, the dataset consisted of 2420 data points. 1748 of these datapoints contained measurements
performed under dry conditions.

Datasheet for regression method 2: linear regression with zero speed intercept
The regression method which used the zero speed intercept is described in Section 5.3. For this method,
a datasheet was needed consisting of one measurement per observation. Therefore, instead of Va, Vb,
µa and µb, this datasheet contained only Va and a corresponding µa. Furthermore, some columns were
added with calculated variables which could be predictive variables. These are:

� MPD·Va
� ln(MPD) · Va
�

MPD
RMS · Va

�
MPD
RMS · Va as a dummy variable:

� Va, if
MPD
RMS > 1.58

0, if MPD
RMS < 1.58

The amount of observations (consisting of one measurement) are:

� ZOAB: 641 (of which 133 under wet conditions)

� DGD: 480 (all under wet conditions)
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� SMA: 774

� Dense: 236

� Concrete: 198

In total, this dataset contains 2012 observations.

Datasheet for regression method 3: multilevel modelling
The third regression method is called the multilevel analysis. For this method, all data consisting of
one 100 metre section were listed in one observation. This means that, compared to the datasheet
of method 1, instead of two measurements all measurements are given in one observation. If only two
measurements are performed for a section, then the third measurement speed and skid resistance are set
to -9999, which will be seen as a missing value in SPSS. Furthermore, no new variables were calculated,
because this computation would be catered for by SPSS.

The amount of observations (consisting of one 100 metre section with multiple measurements) are:

� ZOAB: 309 (of which 64 under wet conditions)

� DGD: 160 (all under wet conditions)

� SMA: 282

� Dense: 104

� Concrete: 87

C.2.3. Selection of data points for regression
The regression analysis was performed on approximately 75% of the data as described in the previous
sections. The remaining 25% of the data were to used to test the model. Therefore, 75% of the data
were randomly selected. In the datasheet for the third regression method, an observation coincides
with one 100 metre section. In this datasheet, per road, 75% of the 100 metre sections were randomly
selected. In the datasheets for regression method 1 and 2, this selection was adopted.

C.3. Visualisation of data
This section visualises the data as described in the previous section. Only the observations that could
be used for the regression are included. This means that no pavements with DGD are included, because
all data from DGD pavements were performed under wet conditions, which makes the macrotexture
measurements unreliable. Also, other observations without macrotexture measurements were not taken
into account. Furthermore, this analysis is based on 100% of the data, and not on the selected 75%.

Figure C.1 shows the distribution of the average measured skid resistances at the average measuring
speeds. A declining trend in skid resistance with increasing measuring speed is visible. Furthermore,
the slope of the two roads with measurements performed at 30 km/h and 40 km/h is steeper than the
slopes of the roads with higher measuring speeds. This agrees with the assumption that at low speeds,
the skid resistance declines more per km/h than at high speeds.

Furthermore, the �gure shows that not for all roads a decreasing trend of the slope can be observed.
For example, RW015 A18 ZOAB shows a steeper slope for the decline from 60 to 80 km/h than for the
decline in skid resistance from 40 to 60 km/h.
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Figure C.1: Overview of average skid resistances per road

Figure C.2 shows a scatterplot of all measurements. Some concrete sections have a very high skid
resistance. Furthermore, the skid resistance generally ranges from 0.45 to 0.85. Also, the larger the
measuring speed is, the less the values of the measured skid resistances vary.

Figure C.3 shows all measurements performed at 40 km/h, with on the x-axis the MPD. There is no
clear distribution between the height of the skid resistance and the MPD.
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Figure C.2: Plot of measured skid resistances at di�erent
measuring speeds
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Figure C.3: Plot with on the x-axis the MPD and on the
y-axis the skid resistance measured at 40 km/h

Figure C.4 shows a histogram of the measured MPD values, with a distinction between di�erent pave-
ment types.
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Figure C.4: Histogram of MPD divided over di�erent pavement types

A clear separation between MPD sizes and pavement types is visible. As expected, ZOAB contains
pavements with the largest MPD values, followed by pavements with SMA. Furthermore, the distribu-
tion is far from a normal distribution, but the data could be separated into measurements containing
an MPD< 1 and measurements containing an MPD> 1.

Figures C.5a to C.5d show for di�erent speed combinations the measured skid resistances.
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Figure C.5: Plots of two skid resistance measurements at di�erent speeds. The lower speed is plotted on the x-axis, thus
all the data points under the blue lines indicate a decline in skid resistance, whereas datapoints above the plotted line

indicate an increase in skid resistance with increasing speed.

Most datapoints are situated below the line, which indicates a decline in skid resistance with increasing
speed. Some datapoints are situated above the line, this happens mainly on pavements with ZOAB.
Since MPD-values on ZOAB are usually high and are associated with less speed dependency of the
skid resistance, another round of measurements at a slightly higher speed might in some case lead to
a higher skid resistance value purely because of uncertainties and random variation in the test results.
For the majority of the cases a higher speed leads to lower skid resistance values.

Figures C.6a to C.6c show the percentage of change in skid resistance for increasing the measuring
speed from respectively 40 to 60, 60 to 80, and 40 to 80.
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Figure C.6: Percentage of change in skid resistance for increasing the measuring speed from respectively 40 to 60, 60 to
80, and 40 to 80. A positive percentage (above the blue line) indicates an increase in skid resistance with an increasing
speed, whereas a negative percentage (below the blue line) indicates a decreasing skid resistance with increasing speed.

Figures C.6a to C.6c show that from 40 to 60 km/h, much of the measured skid resistances increase for
ZOAB pavements, and also few measurements of concrete and SMA show an increased skid resistance.
From 60 to 80 km/h, even more of the measurements performed on SMA show an increase in skid
resistance. However, the majority of the sections with SMA show a declining skid resistance with
increasing speed. Overall, from 40 to 80 km/h, only some sections with a ZOAB pavement show an
increasing skid resistance with increasing speed. Furthermore, in Figure C.6c one could see that a lower
MPD in general leads to a larger % change in skid resistance.

C.4. Repeatability
Repeatability can be de�ned as `the ability of a measurement device to produce the same measured
value when measurement runs are repeated on the same surface under the same conditions' (Vos and
Groenendijk, 2009). Because the friction coe�cient is a result of tyre-pavement interaction, the mea-
sured friction coe�cient is an indicator of the interaction process. The repeatability for one device for
one pavement, may not apply for the same device on another pavement.

The repeatability is calculated as follows:

1. The standard deviations of the measured friction coe�cients are calculated per road section.

2. The variance per road section is calculated by quadrating the standard deviations.

3. The repeatability for one road and one measuring speed is calculated by:
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r = 2.77 ·
√∑n

1 (V ARn)

n
(C.1)

The repeatability is the value that will not be exceeded by the di�erence between two successive measure-
ments, with a 95% probability (Vos and Groenendijk, 2009). A small repeatability therefore indicates
better performance than a larger repeatability. In this research the repeatability is calculated based
on two measurements (measurements are performed twice per measuring speed), more measurements
would give better estimations of the repeatability.

Table C.4 show the repeatability for the di�erent road sections of which data will be used in this
research, Figure C.7 visualises the table.

Table C.4: Repeatability of di�erent road sections

Name of excel �le 40 km/h 60 km/h 80 km/h
I_1800501-uitgebreid_per_100m_ N302_ DAB 0.021 0.060 0.068
I_1800501-uitgebreid per 100m N344 DGD 0.037 0.017 0.023
I_1800501-uitgebreid per 100m Oost Veluwe
weg Beton

0.012 0.024 0.029

181217 N224 DGAD 0.052 0.045 0.084
181217 N304 DGAD 0.035 0.039 0.057
181217 N304 DGAD2 0.044 0.048 -
181217 N338 2ZOAB 0.046 0.065 0.054
181217 N344 ZOAB11 0.050 0.092 0.065
181217 RW015 ZOAB 0.061 0.038 0.025
SMA 11 type 2 0.058 0.053 0.052
181213 N310 SMA 8G+ 0.044 0.032
181213 N311 AC 16 Surf 0.041 0.027
181213 N320 SMA 8 0.040 0.032 0.040
181213 N795 SMA 8G+ 0.034 0.046 0.032
181213 N804 AC 11 Surf 0.082 0.135
181213 RW015 A18ZOAB 0.046 0.045 0.033
190401 HOV1 BetonC35 0.017 0.066

30 km/h 40 km/h
190301 Gildenlaan 0.090 0.035
190301 Kanaal 0.061
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Figure C.7: Repeatability of di�erent road sections

As one can see, the repeatability for N804 AC 11 Surf at 60 km/h is high. These measurements are
deviating much from each other.



D
Syntaxes for regressions performed in

SPSS

D.1. Determination of hierarchical structure for multilevel model
This code given below shows syntax for the regressions to detect the optimal hierarchical structure as
given in Section 5.4.2, Table 5.9.

1 **Regression 1: 1 level, V_100.
2 MIXED ln_mu WITH V_100
3 /CRITERIA=CIN(95) MXITER(100) MXSTEP(10) SCORING(1) SINGULAR(0.000000000001) HCONVERGE(0,
4 ABSOLUTE) LCONVERGE(0, ABSOLUTE) PCONVERGE(0.000001, ABSOLUTE)
5 /FIXED= V_100 | SSTYPE(3)
6 /METHOD=ML
7 /PRINT=CORB COVB G LMATRIX R SOLUTION TESTCOV.
8
9 **Regression 2: 1 level, V_100 MPD_V_100.
10 MIXED ln_mu WITH V_100 MPD_V_100
11 /CRITERIA=CIN(95) MXITER(100) MXSTEP(10) SCORING(1) SINGULAR(0.000000000001) HCONVERGE(0,
12 ABSOLUTE) LCONVERGE(0, ABSOLUTE) PCONVERGE(0.000001, ABSOLUTE)
13 /FIXED= V_100 MPD_V_100 | SSTYPE(3)
14 /METHOD=ML
15 /PRINT=CORB COVB G LMATRIX R SOLUTION TESTCOV.
16
17 **Regression 3: 2 levels, V_100.
18 MIXED ln_mu WITH V_100
19 /CRITERIA=CIN(95) MXITER(100) MXSTEP(10) SCORING(1) SINGULAR(0.000000000001) HCONVERGE(0,
20 ABSOLUTE) LCONVERGE(0, ABSOLUTE) PCONVERGE(0.000001, ABSOLUTE)
21 /FIXED= V_100 | SSTYPE(3)
22 /random intercept | subject(Zoekcode) covtype(ID)
23 /repeated=Measurement | subject(Zoekcode) COVTYPE (DIAG)
24 /METHOD=ML
25 /PRINT=CORB COVB G LMATRIX R SOLUTION TESTCOV.
26
27 **Regression 4: 2 levels, V_100 MPD_V_100.
28 MIXED ln_mu WITH V_100 MPD_V_100
29 /CRITERIA=CIN(95) MXITER(100) MXSTEP(10) SCORING(1) SINGULAR(0.000000000001) HCONVERGE(0,
30 ABSOLUTE) LCONVERGE(0, ABSOLUTE) PCONVERGE(0.000001, ABSOLUTE)
31 /FIXED= INTERCEPT V_100 MPD_V_100 | SSTYPE(3)
32 /random INTERCEPT | subject(Zoekcode) covtype(ID)
33 /repeated=Measurement | subject(Zoekcode) COVTYPE (DIAG)
34 /METHOD=ML
35 /PRINT=CORB COVB G LMATRIX R SOLUTION TESTCOV.
36
37 **Regression 5: 3 levels, V_100.
38 MIXED ln_mu WITH V_100
39 /CRITERIA=CIN(95) MXITER(100) MXSTEP(10) SCORING(1) SINGULAR(0.000000000001) HCONVERGE(0,
40 ABSOLUTE) LCONVERGE(0, ABSOLUTE) PCONVERGE(0.000001, ABSOLUTE)
41 /FIXED= V_100 | SSTYPE(3)
42 /random intercept | subject(Excel_file) covtype(ID)
43 /random intercept | subject(Excel_file*Zoekcode) covtype(ID)
44 /repeated=Measurement | subject(Excel_file*Zoekcode) COVTYPE (DIAG)
45 /METHOD=ML
46 /PRINT=CORB COVB G LMATRIX R SOLUTION TESTCOV.
47

125
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48 **Regression 6: 3 levels, V_100 MPD_V_100.
49 MIXED ln_mu WITH V_100 MPD_V_100
50 /CRITERIA=CIN(95) MXITER(100) MXSTEP(10) SCORING(1) SINGULAR(0.000000000001) HCONVERGE(0,
51 ABSOLUTE) LCONVERGE(0, ABSOLUTE) PCONVERGE(0.000001, ABSOLUTE)
52 /FIXED= V_100 MPD_V_100 | SSTYPE(3)
53 /random intercept | subject(Excel_file) covtype(ID)
54 /random intercept | subject(Excel_file*Zoekcode) covtype(ID)
55 /repeated=Measurement | subject(Excel_file*Zoekcode) COVTYPE (DIAG)
56 /METHOD=ML
57 /PRINT=CORB COVB G LMATRIX R SOLUTION TESTCOV.

D.2. Determination of predictive variables for multilevel model
1 **7: 3 levels V_100 lnMPD_V_100.
2 MIXED ln_mu WITH V_100 LN_MPD_V_100
3 /CRITERIA=CIN(95) MXITER(100) MXSTEP(10) SCORING(1) SINGULAR(0.000000000001) HCONVERGE(0,
4 ABSOLUTE) LCONVERGE(0, ABSOLUTE) PCONVERGE(0.000001, ABSOLUTE)
5 /FIXED= V_100 LN_MPD_V_100 | SSTYPE(3)
6 /random intercept | subject(Excel_file) covtype(ID)
7 /random intercept | subject(Excel_file*Zoekcode) covtype(ID)
8 /repeated=Measurement | subject(Excel_file*Zoekcode) COVTYPE (DIAG)
9 /METHOD=ML
10 /PRINT=CORB COVB G LMATRIX R SOLUTION TESTCOV.
11
12 **8: 3 levels, MPD_V_100.
13 MIXED ln_mu WITH MPD_V_100
14 /CRITERIA=CIN(95) MXITER(100) MXSTEP(10) SCORING(1) SINGULAR(0.000000000001) HCONVERGE(0,
15 ABSOLUTE) LCONVERGE(0, ABSOLUTE) PCONVERGE(0.000001, ABSOLUTE)
16 /FIXED= MPD_V_100 | SSTYPE(3)
17 /random intercept | subject(Excel_file) covtype(ID)
18 /random intercept | subject(Excel_file*Zoekcode) covtype(ID)
19 /repeated=Measurement | subject(Excel_file*Zoekcode) COVTYPE (DIAG)
20 /METHOD=ML
21 /PRINT=CORB COVB G LMATRIX R SOLUTION TESTCOV.
22
23 **9: 3 levels ln_V_100 MPD_V_100.
24 MIXED ln_mu WITH ln_V_100 MPD_V_100
25 /CRITERIA=CIN(95) MXITER(100) MXSTEP(10) SCORING(1) SINGULAR(0.000000000001) HCONVERGE(0,
26 ABSOLUTE) LCONVERGE(0, ABSOLUTE) PCONVERGE(0.000001, ABSOLUTE)
27 /FIXED= ln_V_100 MPD_V_100 | SSTYPE(3)
28 /random intercept | subject(Excel_file) covtype(ID)
29 /random intercept | subject(Excel_file*Zoekcode) covtype(ID)
30 /repeated=Measurement | subject(Excel_file*Zoekcode) COVTYPE (DIAG)
31 /METHOD=ML
32 /PRINT=CORB COVB G LMATRIX R SOLUTION TESTCOV.
33
34 **10: 3 levels, MPD_V_100, MPDRMS_V_100.
35 MIXED ln_mu WITH MPD_V_100 MPD_RMS_V_100
36 /CRITERIA=CIN(95) MXITER(100) MXSTEP(10) SCORING(1) SINGULAR(0.000000000001) HCONVERGE(0,
37 ABSOLUTE) LCONVERGE(0, ABSOLUTE) PCONVERGE(0.000001, ABSOLUTE)
38 /FIXED= MPD_V_100 MPD_RMS_V_100 | SSTYPE(3)
39 /random intercept | subject(Excel_file) covtype(ID)
40 /random intercept | subject(Excel_file*Zoekcode) covtype(ID)
41 /repeated=Measurement | subject(Excel_file*Zoekcode) COVTYPE (DIAG)
42 /METHOD=ML
43 /PRINT=CORB COVB G LMATRIX R SOLUTION TESTCOV.
44
45 **11: 3 levels lnMPD_V_100.
46 MIXED ln_mu WITH LN_MPD_V_100
47 /CRITERIA=CIN(95) MXITER(100) MXSTEP(10) SCORING(1) SINGULAR(0.000000000001) HCONVERGE(0,
48 ABSOLUTE) LCONVERGE(0, ABSOLUTE) PCONVERGE(0.000001, ABSOLUTE)
49 /FIXED= LN_MPD_V_100 | SSTYPE(3)
50 /random intercept | subject(Excel_file) covtype(ID)
51 /random intercept | subject(Excel_file*Zoekcode) covtype(ID)
52 /repeated=Measurement | subject(Excel_file*Zoekcode) COVTYPE (DIAG)
53 /METHOD=ML
54 /PRINT=CORB COVB G LMATRIX R SOLUTION TESTCOV.
55
56
57 **12: 3 levels, lnMPD_V_100, MPDRMS_V_100.
58 MIXED ln_mu WITH LN_MPD_V_100 MPD_RMS_V_100
59 /CRITERIA=CIN(95) MXITER(100) MXSTEP(10) SCORING(1) SINGULAR(0.000000000001) HCONVERGE(0,
60 ABSOLUTE) LCONVERGE(0, ABSOLUTE) PCONVERGE(0.000001, ABSOLUTE)
61 /FIXED= LN_MPD_V_100 MPD_RMS_V_100 | SSTYPE(3)
62 /random intercept | subject(Excel_file) covtype(ID)
63 /random intercept | subject(Excel_file*Zoekcode) covtype(ID)
64 /repeated=Measurement | subject(Excel_file*Zoekcode) COVTYPE (DIAG)
65 /METHOD=ML
66 /PRINT=CORB COVB G LMATRIX R SOLUTION TESTCOV.
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