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Abstract. Parallel robots based on Handed Shearing Auxetics (HSAs)
can implement complex motions using standard electric motors while
maintaining the complete softness of the structure, thanks to specifically
designed architected metamaterials. However, their control is especially
challenging due to varying and coupled stiffness, shearing, non-affine
terms in the actuation model, and underactuation. In this paper, we
present a model-based control strategy for planar HSA robots enabling
regulation in task space. We formulate equations of motion, show that
they admit a collocated form, and design a P-satI-D feedback controller
with compensation for elastic and gravitational forces. We experimen-
tally identify and verify the proposed control strategy in closed loop.

Keywords: Soft Robotics · Model-based Control · Underactuation

1 Motivation and Related Work

The deformability, adaptiveness, and compliance of invertebrates serve as an
inspiration for continuum soft robots. While serial continuum soft robots have
been intensively investigated in recent years [2], parallel soft robots [5] are less
studied despite exhibiting exciting properties such as an improved stiffness-to-
weight ratio. One recent development in this field is robots based on Handed
Shearing Auxetics (HSAs) [6,11,13] in which multiple HSA rods are connected at
their distal end through a rigid platform. Twisting of the proximal end of an HSA
causes the rod to elongate and enables complex motion primitives in 3D space.
Recent work has investigated the mechanical characterization [4], simulation [12],
and kinematic modeling [3,12] of HSA robots but control has yet to be tackled. In
this work, we make a first step towards achieving task-space control by designing
model-based regulators for planar motions. Our approach considers essential
characteristics of HSA robots, such as underactuation, shear strains, and varying
stiffness.

Kinematic models for parallel robots usually require separate configuration
variables for each limb and the enforcement of kinematic constraints [1]. We
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Fig. 1. Panel (a): Block scheme of the closed-loop system: we plan the steady-state
behavior such that the end-effector matches the given desired position pd

ee. The outputs
of this planning are the steady-state actuation φss and a suitable end-effector orienta-
tion θd

ee. After leveraging inverse kinematics to identify the desired and current config-
uration, q is mapped into a collocated form where the inputs are decoupled. Finally,
we use a P-satI-D feedback controller on the actuation coordinates ϕ. Panel (b):
Visualization of the operational workspace of a planar HSA robot consisting of FPU
rods. The colored area within the black dashed borders represents the positions the
end-effector (visualized as a dot) can reach. The coloring denotes the mean magnitude
of actuation (i.e., twisting of the rods). Furthermore, we plot three sample configura-
tions: the unactuated straight configuration q = [0, 0, 0]T (blue), maximum clockwise
bending q = [−11.2 rad/m, 0.08, 0.30]T (red), and maximum counter-clockwise bending
q = [11.2 rad/m, −0.08, 0.30]T (green).

propose to avoid this complexity by defining the Constant Strain (CS) of a vir-
tual backbone in the center of the robot to be our configuration variable. Subse-
quently, we derive the system dynamics in Euler-Lagrangian form. We notice that
the resulting planar dynamics are underactuated and that the actuation forces
are non-affine with respect to the control inputs, which are the motor angles.
The latter is a peculiarity of these systems, rarely observed in other robots.
Based on the model knowledge, we devise a control strategy shown in Fig. 1(a)
that first maps end-effector positions to desired configurations and steady-state
(feedforward) control inputs and then also applies a P-satI-D [8] feedback action
on the collocated form [9] of the system dynamics.

In summary, we state our contributions as (i) a closed-form solution for the
inverse kinematics of a planar CS formulation, (ii) an Euler-Lagrangian dynam-
ical model for planar HSA robots and its expression in collocated form, (iii)
a provably stable model-based control strategy for guiding the end-effector of
the robot towards a desired position in Cartesian space, and (iv) experimen-
tal verification of both the model and the controller. A video accompanies this
paper explaining the methodology and displaying video recordings of the control
experiments1.

1 https://youtu.be/7PgKnE MOsY.

https://youtu.be/7PgKnE_MOsY
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Fig. 2. Experimental setup: the parallel robot consists of four HSA rods connected by
a platform at their distal end. Four servo motors actuate the HSAs. We track the pose
of the end-effector with a motion capture system by attaching reflective markers to the
platform.

2 Technical Approach

In the following, we consider a parallel HSA robot moving in a plane. First, we
derive the kinematic and dynamic models. Subsequently, we devise a planning
and control strategy to move the end-effector (i.e., the platform) to a desired
position in Cartesian space.

2.1 Kinematic Model

Following the discrete Cosserat approach [10], we characterize the config-
uration space of the virtual backbone by assuming a CS model Vξ(t) =
[
Vκb Vκsh Vσax

]T = I3 q(t) ∈ R
3, where κbe, σsh, and σax denote the bending,

shear, and axial strain respectively. Given q, the pose χ =
[
px py θ

]T ∈ SE(2),
and a point coordinate along the backbone s ∈ [0, l0], the forward and inverse
kinematics are provided in closed form as

χ = π(q, s) =

⎡
⎢⎣

σsh
sb

κbe
+ σax

cbe−1
κbe

σsh
1−cb
κbe

+ σax
sbe
κbe

κbe s

⎤
⎥⎦ , q = 	(χ, s) =

θ

2 s

⎡
⎣

2
py − px sθ

cθ−1

−px − py sθ

cθ−1

⎤
⎦ , (1)

where we use the shorthand notations sbe = sin(κbes), cbe = cos(κbes), sθ =
sin(θ), and cθ = cos(θ). Furthermore, the forward kinematics of the physical
rods Pi, i ∈ {1, 2} can be derived by first following the transformations of the
virtual backbone and then adding a local translation [±roff , 0]T with roff being
the offset distance from the virtual backbone to the centerline of the HSA rod.
After closing the kinematic chain, we identify a mapping βi : Vξ → Pi

ξ from
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the strains of the virtual backbone to the strains in the physical rods: βi(Vξ) =
[
Vκb, Vσsh, Vσax ± roff Vκb

]T. Prior work has shown that the auxetic trajectory
of HSAs can be modeled by coupling the rest length l̃i to the twist strain κtw,i of
the ith HSA rod [4,12]: l̃i = (1 + εi)l0 = (1 + hiCεκtw,i) where l0 is the printed
length of the rod and Cε a positive constant. The handedness hi ∈ {−1, 1}
describes if positive or negative twist angles are needed to elongate the closed
HSA. For a given vector of rod twist angles φ ∈ R

2 and after defining φ+
i = hiφi,

the elongation of the ith rod is then εi = Cε
φ+

i

l0 . We provide examples in Fig. 1(b)
of the operational workspace that can be achieved with this kinematic model.

2.2 Dynamic Model

We aim to devise a dynamic model in the Euler-Lagrange form M(q)q̈+C(q, q̇)q̇+
G(q) + K(q − q0) + Dq̇ = α(q, φ), where M(q), C(q, q̇),K,D ∈ R

3×3 are the
inertia, Coriolis (derived with Christoffel symbols), elastic and damping matri-
ces respectively. q0 ∈ R

3 captures the rest configuration. The terms G(q) and
α(q, φ) ∈ R

3 describe the gravitational and actuation forces acting on the gener-
alized coordinates. The state of the robot at time t can be therefore described by
x(t) =

[
qT(t) q̇T(t)

]T ∈ R
6. The inertia matrix is found by following the stan-

dard procedure of integrating mass and rotational inertia along the HSA rods [2].
Additionally, we consider the inertial contribution of the platform mounted to
the distal end of the robot. Under the small strain assumption, the elastic forces
of the ith HSA rod can be modeled as

PτK,i =

⎡
⎣

Sbe,i(φi) Sb,sh 0
Sb,sh Ssh,i(φi) 0

0 0 Sax,i(φi)

⎤
⎦

⎛
⎝

⎡
⎣ Pi

κb

Pi
σsh

Pi
σax

⎤
⎦ −

⎡
⎣

κ0
be

σ0
sh

σ0
ax + εi(φi)

⎤
⎦

⎞
⎠ , (2)

where Pi
ξ0 =

[
κ0

be σ0
sh σ0

ax

]T denotes the rest strain, Sbe,i(φi), Ssh,i(φi), Sax,i(φi)
are the bending, shear, and axial stiffnesses which are defined as linear functions
with respect to the twist angle of the rod φi [4,12]:

Sbe,i(φi) = Ŝb + CSb φ+
i , Ssh,i(φi) = Ŝsh + CSsh φ+

i , Sax,i(φi) = Ŝax + CSax φ+
i . (3)

The coefficient Sb,sh accounts for the elastic coupling between the bending and
the shear strain. Subsequently, we project the forces into the virtual back-
bone by premultiplying with JT

β = ∂β
∂q

T
and then sum the contribution of all

rods. Finally, we group all terms depending on the control input φ in α(q, φ)
and everything else in K. After modeling the dissipative forces in each HSA
as diag(ζbe, ζsh, ζax) Pi

ξ̇, we derive the damping matrix in configuration space
as D =

∑2
i=1 JT

β,i diag(ζbe, ζsh, ζax)Jβ,i = 2diag
(
(ζbe + r2

off ζax), ζsh, ζax

)
. We

open-source the derivation of the Euler-Lagrangian dynamics and a JAX imple-
mentation of a simulator based on them on GitHub2. We stress that (a) the
2 https://github.com/tud-phi/jax-soft-robot-modelling.

https://github.com/tud-phi/jax-soft-robot-modelling
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derived dynamical model is not affine in the control input and (b) the system is
underactuated.

2.3 Control

Our goal is to control the end-effector, which is defined as the distal surface
of the platform, to a desired position in Cartesian space pd

ee ∈ R
2. However,

the mapping into configuration space is not trivial as we do not know which
end-effector orientation θee is feasible at steady-state. To tackle this challenge,
we perform steady-state planning identifying admittable configurations qd and
matching steady-state actuations φss, which allow the robot’s end-effector to
statically remain at pd

ee. More details on the used planning procedure can be
found in Sect. 3.4.

In principle, we can command φ = φss to achieve regulation towards the
desired end-effector position. Nevertheless, we add a feedback controller to com-
pensate for any errors in φss caused by unmodelled effects such as hysteresis.
Unfortunately, the non-affine actuation α(q, φ) would complicate the design of
such a feedback controller. Therefore, we perform a first-order Taylor expansion
of the actuation forces with respect to φ resulting in a configuration-dependent
actuation matrix Aφss(q) = ∂α

∂φ

∣
∣
φ=φss

∈ R
3×2. This allows us to re-write the right

side of the Equations of Motion (EOM) as τq = α(qss, φss) + Aφss(q)u where
u = φ − φss is the new control input. To improve the robustness of the control
loop, we compute u with a P-satI-D control law [8]. However, our system is under-
actuated and in a non-collocated form. Therefore, we apply a coordinate trans-
formation h : q → ϕ ∈ R

3 recently introduced by Pustina et al. [9] which maps
the EOM into a form where φ applies direct forces on the actuated configuration
variables. The map is given by h(q) =

[∫ t

0
q̇TAφss(q)dτ, σsh

]T
=

[
h1(q), h2(q), σsh

]T
with

hi(q) = CS,ax
hi

l0

[
2 εi(φ

ss
i ) (±roffκbe + σax) ∓ r2

off
κ2

be

2

± roff σ0
ax κbe ∓ roff κbe σax + σ0

ax σax − σ2
ax

2

]
+ CS,b

hi

l0

[
κ0

be κbe − κ2
be

2

]
(4)

+ CS,sh
hi

l0

[
σ0

sh σsh − σ2
sh

2

]
+ Ŝax

hi

l0
Cε

[
± roff κbe + σax

]
.

The Jacobian Jh(q) = ∂h
∂q is used to formulate the dynamics Mϕϕ̈+η(ϕ, ϕ̇)+

Gϕ+Kϕ+Dϕ ϕ̇ = J−T
h (q)α(qss, φss)+Aϕ u in the collocated variables [7], where

AT
ϕ =

[
I
2 02×1

]T. In the following, we will denote with the subscript a the first
two actuated coordinates ϕa. Finally, the full control law of the P-satI-D is given
in collocated form as

φ = φss + Kp(ϕd
a − ϕ) − Kdϕ̇a + Ki

∫ t

0

tanh(γ (ϕd
a,t′ − ϕa,t′)) dt′, (5)

where Kp, Kd, Ki ∈ R
2×2 are the proportional, derivative, and integral gains respec-

tively, and γ ∈ R
2×2 horizontally compresses the hyperbolic tangent. While the pro-
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posed P-satI-D control law compensates gravity through φss, we can extend the app-
roach to include gravity cancellation (P-satI-D + GC ) by evaluating Gϕ,a at the current
configuration:

φ = φss−Gϕ,a(q
d)+Gϕ,a(q)+Kp(ϕd

a−ϕ)−Kdϕ̇a+Ki

∫ t

0

tanh(γ (ϕd
a,t′ −ϕa,t′))dt′. (6)

The implementation of all control laws is available on GitHub3.

Fig. 3. Verification of the system model and the identified system parameters on an
unseen trajectory with the HSA being randomly actuated through a GBN sequence:
the solid line denotes the actual trajectory. In contrast, the dashed line visualizes the
trajectory simulated with the system model. We report results for both FPU and EPU-
based HSAs.

3 Experimental Validation

3.1 Experimental Setup

We evaluate the system model and our proposed control approach on a robot
consisting of four HSA rods. The material choice of the HSA is crucial and has a
significant influence on the resulting mechanical characteristics of the robot (e.g.,
blocked force, holding torque, bending stiffness, etc.) [13]. Furthermore, specific
material requirements are dictated by the nature of the design of the HSA rod.
The structure of the metamaterial is made of struts connected by living hinges.

3 https://github.com/tud-phi/hsa-planar-control.

https://github.com/tud-phi/hsa-planar-control
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These living hinges must be thin, flexible, and accommodate high strains [13].
Therefore, we decided to 3D-print the HSAs via digital projection lithography
either from the photopolymer resin Carbon FPU 50 (stiffer) or the elastomeric
polyurethane EPU 40 resin (softer).

Each HSA rod is actuated by a Dynamixel MX-28 servo motor. The
Dynamixel motors are set to use position control mode. As shown in Fig. 2,
the robot is mounted platform-down on a cage with an Optitrack motion cap-
ture system, which measures the SE(3) pose of the platform at 200 Hz. Our
algorithms run within a ROS2 framework4. The pose measurements are first
projected into the plane of actuation and serve as an input to the closed-form
inverse kinematics introduced in (1). We use a Savitzky-Golay filter with a win-
dow duration of 0.1 s to numerically differentiate χee(t), q(t) and gather with
that χ̇ee(t) and q̇(t).

3.2 System Identification

Next, we strive to identify the parameters used in our dynamic model. We assume
the robot’s geometric and mass density properties to be known or easily measur-
able. As knowledge about the damping coefficients is not required by the control
law, only the experimental identification of elongation and stiffness characteris-
tics remains. For this, we measure the response of the system to step and staircase
actuation sequences. Afterward, the parameters are regressed using least squares.
For the FPU-based robot, we identify CFPU

ε = 0.0079 m/rad, SFPU
be = −2.5 ·

10−5+3.9·10−7 φ+
i

l0 Nm2, SFPU
sh = 0.043+0.0029 φ+

i

l0 N, SFPU
ax = 0.74+0.0098 φ+

i

l0 N,
and SFPU

b,sh = −5.0 · 10−4Nm/rad where l0 = 0.059 m. Furthermore, we regress

CEPU
ε = 0.0098 m/rad, SEPU

be = 5.7 · 10−4 − 9.7 · 10−6 φ+
i

l0 Nm2, SEPU
sh =

0.59 − 0.00047 φ+
i

l0 N, SEPU
ax = 5.7 + 0.015 φ+

i

l0 N, and SEPU
b,sh = −0.000 48 Nm/rad

for the EPU HSAs which have the same length as the FPU HSAs. Finally, we
identify the axial rest strain σ0

ax before the start of each experiment. We notice
that the EPU-based HSA robot is approximately one order of magnitude more
flexible than the FPU-based robot.

3.3 Model Verification

We verify the accuracy of the proposed system model and the identified param-
eters on trajectories unseen during system identification. We generate the tra-
jectories by actuating the robot with a Generalized Binary Noise (GBN) [14]
sequence with a settling time of 0.5 s and at each time step k randomly sample
φ(k) ∼ U(0, φmax). We simulate the model evolution with a Dormand-Prince
5(4) integrator and a time step of 0.1 ms. Figure 3(a) shows the model exhibit-
ing excellent accuracy for representing the behavior of FPU-based HSA robots.
We observe more significant errors in the shear estimate for EPU-based HSA

4 https://github.com/tud-phi/ros2-hsa.

https://github.com/tud-phi/ros2-hsa
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Fig. 4. Step response of the baseline PID, P-satI-D (with gravity compensation), and
P-satI-D + GC (with gravity cancellation) controllers on an FPU-based HSA robot.

Fig. 5. Experimental results for tracking a reference trajectory of eleven step functions
with the baseline PID controller on an FPU-based HSA robot. Panel (a): End-effector
position with the dotted and solid lines denoting the task-space reference and actual
position, respectively. Panel (b): The planned (dotted) and the actual (solid) config-
uration. Panel (c): The planned (dotted) and the actual (solid) actuation coordinates
of the collocated system. Panel(d): The saturated planar control inputs are visualized
with solid lines, and the computed steady-state actuation with dotted lines.

robots in Fig. 3(d). Specifically, the CS model no longer seems sufficient for cap-
turing the robot’s shape, particularly for larger bending angles. Therefore, we
suggest for future work to employ kinematic models with more Degrees of Free-
dom (DOF) such as Piecewise Constant Strain (PCS) as proposed, for example,
in [12].
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3.4 Steady-State Planning

Our approach, as detailed in Sect. 2.3, requires us for a given desired end-effector
position pd

ee to identify a statically-feasible configuration qd with the matching
steady-state actuation φss.

We perform online static inversion to identify admittable desired config-
urations qd and matching steady-state control inputs φss during our experi-
ments involving the FPU HSA robots. First, we substitute the inverse kine-
matics �ee(χee) into the static EOM. Then, we find the roots of the equation
G ◦ �ee(χd

ee) + K ◦ �ee(χd
ee) − α(�ee(χd

ee), φss) with respect to (θee, φ1, φ2) using
nonlinear least-squares while enforcing constraints on the sign of φ. We solve
this optimization problem with projected gradient descent.

In contrast, the static inversion optimization problem is not well-behaved
for the identified EPU system parameters. Instead, we rely on rolling out the
dynamics over a duration tss to steady-state and then optimize the steady-state
input φss such that the final end-effector error ‖pd

ee −pss
ee‖ is as small as possible.

We formalize this optimization problem in a least-squares fashion

φss = argmin
φ

1
2

‖pd
ee − pss

ee(φ)‖2
2,

s.t. xss = x(t0) +
∫ tss

t0

f(x(t), φ) dt, χss
ee =

[
pss
ee

θss
ee

]
= πee(qss),

(7)

where ẋ(t) = f(x(t), φ) are the nonlinear state-space dynamics based on
the EOM derived in Sect. 2.2 and φ ∈ R

2 is constant in time. We solve (7)
online using the Levenberg-Marquardt algorithm. Finally, we choose qd = qss

and χd
ee = πee(qd).

3.5 Closed-Loop Control

Next, we implement the closed-loop control strategy laid out in Sect. 2.3. After
evaluating the control law at a rate of 40 Hz and saturating the control inputs
to the ranges [0, 3.40] rad for FPU and [0, 4.71] rad for EPU, respectively, we
map φ ∈ R

2 to desired positions of the four motors. For this, we consider
the handedness of the HSAs and apply the same actuation magnitude to both
rods on the same side of the virtual backbone. After tuning the gains for
the feedback part of the model-based control laws in (5) and (6), we select
Kp = diag(0.3, 0.3), Ki = diag(0.05, 0.05) 1/s, Kd = diag(0.01, 0.01) s, and
γ = diag(100, 100). Furthermore, we report the performance of a model-free
PID controller as a baseline. Here, the control input in task-space is given by
uts =

[
uts,x uts,y

]T = KPID
p (pd

ee − pee) − KPID
d ṗee + KPID

i

∫ t

0
pd
ee,t′ − pee,t′ dt′,

which is then mapped to the actuation via φ =
[
uts,x + uts,y, −uts,x + uts,y

]T.
Here, we select KPID

p = diag(10, 10) rad/m, KPID
i = diag(110, 110) rad/m/s, and

KPID
d = diag(0.25, 0.25) rad s/m.
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Fig. 6. Experimental results for tracking a reference trajectory of eleven step functions
with the P-satI-D controller on an FPU-based HSA robot. Panel (a): End-effector
position with the dotted and solid lines denoting the task-space reference and actual
position, respectively. Panel (b): The planned (dotted) and the actual (solid) config-
uration. Panel (c): The planned (dotted) and the actual (solid) actuation coordinates
of the collocated system. Panel(d): The saturated planar control inputs are visualized
with solid lines, and the computed steady-state actuation with dotted lines.

Evaluation: We define a reference trajectory pd
ee(k), k ∈ {1, . . . , nk} with

a duration of 110 s and consisting of eleven step functions as the refer-
ence trajectory. We report the Root Mean-Squared Error (RMSE) metric√∑nk

k=1
‖pd

ee(k)−pee(k)‖2
2

nk
for assessing the control performance, where pee(k) is

the actual trajectory of the end-effector.

Control of an FPU-Based HSA Robot: The baseline PID achieves an
RMSE of 5.86 mm with respect to the reference trajectory. The P-satI-D based
on (5) (with gravity compensation) exhibits an RMSE of 4.17 mm. Similarly,
the P-satI-D + GC based on (6) (with gravity cancellation) displays an RMSE
of 4.13 mm. We present a comparison of the three different controllers for a
step response in Fig. 4 and plot the entire trajectories of the baseline PID and
the P-satI-D in Figs. 5 and 6, respectively. Additionally, we discretize various
continuous reference trajectories into setpoints: star trajectory (873 setpoints
and duration of 109 s), the flame of the TU Delft logo (680 setpoints and duration
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Fig. 7. Cartesian evolution of the proposed P-sat-D controller (solid lines) tracking
various continuous reference trajectories (dotted lines) on the FPU robot.

Fig. 8. Sequence of stills for the large bat trajectory performed with the P-satD con-
troller on the FPU robot. The red and black dots visualize the desired and current
end-effector positions, respectively. The past trajectory is plotted in red (reference)
and black (actual). The blue line renders the shape of the virtual backbone.

of 85 s), the contour of the MIT-CSAIL logo (1046 setpoints and duration of
131 s), and the outline of a bat at three different sizes (1510 setpoints and 189 s
duration). The resulting Cartesian evolutions of the P-satI-D controller tracking
these continuous references are displayed in Figs. 7 and 8.

The step response in Fig. 4 shows how the two model-based controllers P-
satI-D and P-satI-D + GC can leverage the planned φss and qd to achieve a fast
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Fig. 9. Step responses of the baseline PID, P-satI-D (with gravity compensation), and
P-satI-D + GC (with gravity cancellation) controllers on an EPU-based HSA robot.

response time of roughly 1.2 s. In contrast, the baseline PID needs to wait for the
integral error to build up and thus has a much slower response time of approx-
imately 4.2 s. Furthermore, overshooting caused by the baseline PID is usually
more extensive than that caused by the model-based controllers. We conclude
that P-satI-D (gravity compensation) and P-satI-D + GC (gravity cancellation)
exhibit quite similar behavior. Sometimes, P-satI-D exhibits undershooting at
the beginning of the transient and P-satI-D + GC overshooting towards the end
of the transient (see Fig. 4(a)).

Control of an EPU-Based HSA Robot: Tracking the reference trajectory
of eleven step functions with an EPU-based robot, the baseline PID controller
has an RMSE of 4.40 mm. The P-satI-D (with gravity compensation is able to
achieve an RMSE of 3.63 mm. The P-satI-D + GC controller exhibits a similar
performance (RMSE of 3.71 mm). We visualize the step response of all three
controllers in Fig. 9 and the entire trajectory of the P-satI-D controller in Fig. 10.

Again, we notice that the response time of the model-based controllers (0.54 s)
is much shorter than the response time of the baseline PID (3.84 s). Furthermore,
the importance of a model-based control law is motivated by the oscillations in
the transient of the baseline PID (see x-coordinate in Fig. 9(a)). The steady-
state error for the model-based controllers on the EPU material is slightly higher
compared to the FPU material, as seen in Figs. 9(a) and 10(a). In Sect. 3.3, we
noticed that the shear model doesn’t fully capture the actual system behavior.
This then results in an error in the planned desired configuration qd, which the
controller is not able to resolve because of the underactuation of the robot (see
Fig. 10(b)).
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Fig. 10. Experimental results for tracking a reference trajectory of eleven step functions
with the P-satI-D controller on an EPU-based HSA robot. Panel (a): End-effector
position with the dotted and solid lines denoting the task-space reference and actual
position, respectively. Panel (b): The planned (dotted) and the actual (solid) config-
uration. Panel (c): The planned (dotted) and the actual (solid) actuation coordinates
of the collocated system. Panel(d): The saturated planar control inputs are visualized
with solid lines, and the computed steady-state actuation with dotted lines.

4 Experimental Insights

This work shows effective, model-based regulation with planar HSA robots. The
conducted experiments gave us deep insights into the particular characteristics
of HSAs and how well our model is able to capture them. We see excellent
agreement for predicting the dynamical behavior of HSA robots made of FPU
material. For EPU-based HSAs robots, we observe that the model does not fully
capture the shear dynamics (Fig. 8).

The excellent agreement of the model with the actual system behavior enables
our model-based controllers to perform very well at the task of setpoint regula-
tion. For the model-based controllers, any mismatch between the dynamic model
and the actual system (as analyzed in Sect. 3.3) has two impacts: (i) the steady-
state planning provides us with a desired configuration qd which the underactu-
ated robot cannot achieve. This then, in turn, causes a small steady-state error
in the end-effector position as seen for the manual setpoints in Fig. 6(a) and for
the continuous references in Fig. 7. This steady-state error is absent in the base-
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line PID as its integral term acts directly in task space. We suggest that future
work include an integral term directly on the end-effector position to remove
the remaining steady-state error of the model-based controller. Secondly, as (ii),
model errors will lead to an offset in the planned steady-state actuation φss.
Therefore, applying a constant φss will not move the robot exactly to pd

ee. As
shown in Fig. 6(d), the P-satI-D feedback term can compensate for this effect
through its proportional and integral terms applied in the collocated variables.
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