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Abstract

With the use of simulation models, predicting and optimizing the correct dynamic behaviour and pa-
rameters of a propulsion system of a ship can be performed cheap and safe. However, capturing
the right dynamic behaviour is very difficult. Besides, building simulation models and determining the
correct parameters is a time consuming process. System identification is a new proposed method to
create simulation models of the propulsion system of a ship. With system identification, in- and output
data of a controlled test are used to identify the parameters of the created grey box model structure,
which reflects the underlying physical laws. A so called ”fingerprint” is generated that imitates the
behaviour of the system. The first attempt of system identification of a full-scale propulsion system by
Martinus [1] showed promising results but asked for further research. This thesis further investigates
if system identification is a suitable method to obtain the dynamic model- behaviour and parameters
of a full-scale propulsion system in a short time, with the use of controlled tests.

The measured data is used from a backward bollard push test with a Stan Tug 1205. A model structure
defined by Martinus [1] is used, containing a governor, diesel and shaft loop. Linear system identifi-
cation is used as the initial method to obtain dynamic model- behaviour and parameters of a full-scale
propulsion system. Furthermore, the performed full-scale system identification of Martinus [1] is used
as benchmark. The three pillars of system identification, data, model structure and searching criterion
are analysed and if possible improved to increase the quality of the linear system identification.

The measured data of a multiple sine waves test is transformed from time domain to frequency domain.
With a Gaussian filtering approach, the frequencies of interest are selected. The noise of the measured
data is cancelled out at the frequencies where the sines have no power and the system identification
speeds up. Open and closed loop sensitivity analysis are performed with the model structure, which
showed that in open loop a more clear response and influence of the individual parameters is visible
compared to closed loop. Furthermore, the model structure is split up in open loop sub-model struc-
tures as this creates more simple model structures with a lower amount of identifiable parameters.
Based on the performed sensitivity analysis of the sub-models, a second order system and time delay
are added to the model structure to increase the quality of the model response compared to the mea-
sured data.

Linear system identifications are performed with closed and open loop model structures, with and
without a second order system and time delay and frequency domain measured data. The identified
models are compared with the measured data and the benchmark. The results of the linear system
identifications showed that the addition of a time delay and second order system increase the quality
of the dynamic behaviour and identified parameters. The response of these identified models compare
well with the measured data and the parameters show trustworthy results.

Based on the results, it is concluded that linear system identification is a suitable method to obtain
dynamic model- behaviour and parameters of a full-scale propulsion system in short time. There are
still some deficiencies which influence the quality of the linear system identification of the full-scale
propulsion system. First, the identified value of the parameter describing the shaft loop does not
match with what is known. Secondly, the amount of measurement points in the critical region of the
propulsion system of the Stan Tug 1205 is too low. Furthermore, there is not enough damping in the
identified model and the identified time delay is still not sufficient. However, these deficiencies are solv-
able and most likely further increase the quality of system identification of a full-scale propulsion when
solved. Therefore, it is recommended to continue developing linear open loop system identification
with a second order system and time delay combined with frequency domain data.
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1
Introduction

1.1. Motivation
Globally, the maritime industry has a large and important role. Due to the globalisation, shipping of
goods is increasing by day. Almost every country is depending on oil, which is transported and mostly
extracted at sea. Installation of offshore wind farms is performed with support and installation ships.
There are endless applications of ships and people use products and services that are dependent on
the maritime industry daily. You want your package to be shipped as fast as possible, still being
cheap. Petrol and gas must be low-priced to drive cheap and to enjoy warm water. On the other hand,
sustainability is rising as priority by the day. Regulations are ensuring that ship emissions will decrease.

A method to create cleaner, safer and more effective ships is the use of simulation models. Simu-
lation models are cheap and safe in usage to predict and optimize the dynamic behaviour of systems.
However, capturing the right dynamic behaviour is extremely difficult. These models vary from simple,
small systems to the overall ship dynamics and propulsion systems. Simulation models of propulsion
systems are used for system performance, controller design and monitoring. High performance and
commendable controllers of the propulsion system cause that ships possibly sail with low operational
expenses and low emissions. Monitoring the decay of components prevent damage of components
and could create a predictive maintenance model.

For ship builders the necessity of having simulation models of propulsion systems is high. The model
has to be build, but also the parameters have to be determined. Suppliers of equipment of the propul-
sion system are not very willing to share the details of their product. This causes a difficult and time
consuming process during the creation of simulation models of the propulsion system. Besides, propul-
sion systems become more complex by the day, as the amount of components and controlling systems
are increasing with a rapid speed. Therefore, the complexity of simulation models of the propulsion
system increase as well.

Simulation models of propulsion systems are built using different methods. Simulations models of
propulsion systems build with physical laws are applicable for system performance predictions and
controller design. Building a simulation model with physical relations and determination of the pa-
rameters of a propulsion system is a time consuming process [2][3]. Setting up a propulsion system
model with determined parameters requires large amounts of data from the equipment manufacturers
[4]. Data driven modelling (DDM) is an approach based on historical data and advanced algorithms.
Models can be generated without any prior knowledge creating a black box. DDMs are applicable for
continuously monitoring of the propulsion equipment and their decay [5]. Obtaining data sets in real
world scenarios that are suitable for data driven models is difficult and time consuming [5]. To fit the
measured data, a mean of the obtained data is created. The behaviour of the model only covers a
small part of the reality and will become unreliable for slightly more extreme situations.
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2 1. Introduction

An intermediate method to create simulation models of propulsion systems is grey box system iden-
tification. System identification uses a mathematical model structure from which the parameters are
estimated with the use of measured in- and output data. The measured data is obtained during short
and controlled tests and the model structure is build upon known physical relations. The potential
advantage of system identification of propulsion systems with controlled tests is the usage to quantify
system performance during sea acceptance trails, after periodic maintenance or after system modifi-
cations in a relative short time span[3]. Moreover, the so called fingerprints that are generated after
performing system identification are useful to understand the state of decay of components and help
create a predictive maintenance model. Furthermore, the pace of creating models and the certainty of
the measured data and models might increase.

1.2. Literature Review
For this research a separate literature review is performed. The literature review exists out of three
main parts [6]. First, an overview is given of literature concerning simulation models of ship propul-
sion systems and their application. Secondly, the general working principle of system identification is
described. Moreover, an overview of the variety of applications of system identification in the maritime
industry is given. The content of this separate performed literature review will be considered as known
during this research [6]. However, a short overview of the defined gap concerning system identification
of the propulsion system of a ship from the literature review is presented.

System identification of the propulsion system is a field that is scarcely investigated. The identification
of a propulsion system is proven on model-scale [3]. The first attempt of Martinus [1] on full-scale
grey box linear system identification of the propulsion system based on a controlled test is promising
but needs to be improved. Besides, only linear system identification is performed with one type of
model structure, one type of searching criterion and one set of experiments. Literature shows that
there is a gap concerning system identification of the propulsion system. Recommendations are given
by Martinus [1] to improve the system identification of a full-scale marine propulsion system. These
recommendations underline the importance of this research and the present gap in system identifica-
tion of propulsion systems. Grey box system identification of a propulsion system is a method that
might fill the gap concerning the drawbacks of the conventional methods.

1.3. Research Goal
This research aims to improve the system identification results obtained by Martinus [1]. The research
of Martinus [1] focused mainly on identifying the correct parameters of the propulsion system. This
research focuses on identifying the correct parameters but also the correct behaviour of the propulsion
system. Damen Shipyards and TU Delft are keen to find a “fingerprinting” method to obtain the
dynamic model- behaviour and parameters of a propulsion system of a ship in a short time, with the
use of controlled tests.

Main goal
Define a method that obtains the dynamic model- behaviour and parameters of a propulsion system in
a short time, with the use of controlled tests.

Sub goal
Implementation on board of a ship concerning input data, output data, sensors needed etc. Define
what is needed to create a ”fingerprinting” system on board of a ship.
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1.4. Research Questions
From the research goal it is possible to define the main research question. The following main research
question is defined:

”What is a suitable method to obtain dynamic model- behaviour and parameters of a
full-scale propulsion system in short time, based on controlled tests?”

The main question is divided in sub-questions.

• What are the possible improvements concerning data, model structure and searching criterion
for the linear system identification of a full-scale propulsion system?

• How does the implementation of a nonlinear model structure affect the full-scale system identi-
fication?

• What is required to implement the most suitable fingerprinting method on a Damen ship?

1.5. Scope
A backward bollard push test was executed as controlled test in November 2019 with a Stan Tug 1205 of
Damen Shipyards. The measured data that was collected during this test will be used for this research.
Therefore, no other test will be executed. The diesel engine and governor of the Stan Tug 1205 will
have the main focus in obtaining dynamic model- behaviour and parameters. The governor of the Stan
Tug 1205 controls the fuel injection and uses the feedback of the engine speed, this will be imitated
in the models. For modelling and programming, Matlab & Simulink, System Identification Toolbox of
Matlab and scripts & models from the research of Martinus [1] will be used. Linear grey box system
identification is the initial method to obtain dynamic model- behaviour and parameters of a full-scale
propulsion system.

1.6. Approach
The research approach is based upon the improvements that can be made for system identification.
In figure 1.1 the system identification loop is presented with the possible improvement steps. Im-
provements can be made concerning the three pillars of system identification: measured data, model
structure and the searching criterion. During the iterative process of improvements, the sub-questions
and eventually the main research question will be answered. Important to note is that the linear system
identification is improved and the findings are used to answer the research questions.

Figure 1.1: System identification loop is presented with the possible improvements [1].
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The first step performed is analysing and improving the measured data. Creating better and clean
data has an improving effect on the system identification. The raw measured data is pre-processed
to create a usable data set. Thereafter, errors concerning a time delay and the measurement of the
rpm are analysed and and if necessary improved. Furthermore, the usage of frequency domain data
is analysed. During the whole process possible changes are applied to the measured data.

The second step is analysing and improving the linear model structure. With a sensitivity analysis
of the initial linear model structure of the propulsion system, the behaviour of each parameter is anal-
ysed. Thereafter, the individual sub-models of the model structure and the addition of possible new
terms to the model structure are investigated. Examining the possibilities of improving the linear model
structure gives insight if linear system identification is the correct method to obtain the dynamic model-
behaviour parameters of a propulsion system.

The third pillar of system identification, the searching criterion is reviewed during the third step. Mainly,
the searching criterion is improved concerning optimisation to increase the chance to find a global min-
imum instead of a local minimum. Eventually, the improved measured data, model structures and
searching criterion are brought together to perform different linear system identifications. The results
of the linear system identifications are compared in frequency domain and validated in time domain.
The different linear system identifications are also compared with the benchmark identification that
is performed by Martinus [1]. This is performed to see if the method to obtain the dynamic model-
behaviour parameters of a propulsion system is improved.

1.7. Outline
The thesis outline gives an overview of the contents of each chapter in this report. The thesis outline
is based on the approach steps and the improvement loop presented in figure 1.1. This report exist
out of 6 chapters, the outline presents a short explanation of the upcoming chapters.

Chapter 2 ”Background” contains background information concerning the aspects of the research of
Martinus [1] that are used during this thesis.

Chapter 3 ”Data Processing & Improvements” contains analysis and improvements concerning the
measured data. This chapter contains the pre-processing of measured data, analysis of errors in the
data, analysis of frequency domain data and presents the data sets that are used.

Chapter 4 ”Linear Model Analysis & Improvements” contains possible improvements of the linear model
structure that are determined. This chapter contains a sensitivity analysis, simplification of the model
structure, analysis of the sub-models and the addition of new terms to the model structure.

Chapter 5 ”Linear System Identification” contains the results of different performed linear system
identifications with the improved model structures and measured data sets. This chapter contains
an explanation of the used searching criterion, open and closed loop linear system identifications re-
sults and the validation of the identified models.

Chapter 6 ”Conclusions & Recommendations” gives answers to the main and sub-questions that are
presented in section 1.4. Thereafter, recommendations concerning future research and use of full-scale
system identification are given.
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Background

The aspects of the research of Martinus [1] used are the nonlinear model, linear model, experimental
data, searching criterion and the results of the performed system identification. In this chapter back-
ground information is given concerning these aspects. More detailed descriptions can be found in the
research of Martinus [1]. This chapter exist out of five main sections. First, the system of interest
is discussed. Moreover, the performed experiment and the obtained measured data are presented.
Thereafter, the nonlinear model of the system of interest is discussed. Further, the linear model ob-
tained from the nonlinear model is presented. After that, the used searching criterion is reviewed. This
chapter ends with system identification as performed by Martinus [1], which is used as benchmark
during this research.

2.1. System of Interest
The vessel of interest during this research is the Stan Tug 1205. This ship is selected by Martinus [1]
because it has a relatively simple propulsion drive train, containing a governor, fuel actuator, diesel
engine, gearbox and propeller. Besides, the Stan Tug 1205 is a small ship, so when damage would
have occurred during experiments, the cost and consequence would be minimal. Important to note is
that the Stan Tug 1205 is equipped with a fixed pitch propeller (FPP). Therefore, the simulation model
will only have one input signal, the engine speed set point. The engine control system of the Stan
Tug 1205, controls the fuel injection and uses the feedback of the engine speed[1]. The governor is
fed with an error between the actual engine speed and the engine speed set point and actuates the
fuel injection for a diesel engine. The full-scale experiment that is performed is a backward bollard
push, which is a bollard pull performed in a somewhat different way. This backward bollard push is
executed for safety and simplification reasons. The backward bollard push condition simplifies the
model because the speed loop can be neglected. A detailed product sheet of the Stan Tug 1205 can be
found in appendix A. In table 2.1 an overview of the main particulars of the Stan Tug 1205 is presented.

Table 2.1: Overview of the main particulars of the Stan Tug 1205 [1].

Symbol Physical quantity Value
L፨ፚ Length overall 13.08 [m]
B Width overall 5.28 [m]

DWT Deadweight 54 [t]
v፝ Design speed 1 [Kn]
i፠ Gearbox ratio 3.82 [-]

P,፦ፚ፱ Maximum engine brake power 221 [kW]
n፞,፦ፚ፱ Maximum engine speed 1800 [rpm]
D፩ Propeller diameter 1.05 [m]
P/D Pitch ratio 1.110 [-]

5
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2.2. Experimental Data
A controlled test is performed to obtain measured data that can be used for system identification.
The experiment is executed in calm water during a day with average weather conditions. A backward
bollard push set up is used because the Stan Tug 1205 was already moored in a backward position.
Therefore, no captain was needed to change the mooring position, which eased the preparations of
the experiment[1].

Two different parties have measured the input and outputs of the system. JVS and Damen Shipyards
with DEWEsoft equipment have performed measurements. Three types of experiments were carried
out, multiple sine waves experiments, chirp waves experiments and step response experiments. Input
of the experiments was the engine speed set point, in voltage. The output of each experiment was
the engine speed, the shaft speed measured with one pulse and four pulses and the shaft torque.
Important to note is that only one shaft line was instrumented during the experiment, namely the port
side shaft line. In figure 2.1 an overview is given of the measurement set up, with both DEWEsoft and
JVS measurements. Table 2.2 clarifies the symbols of the overview.

Figure 2.1: Overview of measurement set up during experiments [1].

Table 2.2: Clarification of symbols in figure 2.1 [1].

Symbol Physical quantity Unit
I፬፞፭፩፨።፧፭ Set point current [mA]

X Feedback signal [-]
M Engine torque [Nm]
M፬ Shaft torque [Nm]
PTMኻ Pulse time modulation [1 pulse] [s]
PTMኾ Pulse time modulation [4 pulse] [s]
PTM፞ Pulse time modulation [Engine] [s]
n፬ኻ Shaft speed 1 pulse [rpm]
n፬ኾ Shaft speed 4 pulse [rpm]
n፞ Engine speed [rpm]

U፬፞፭፩፨።፧፭ Set point voltage [V]
Uፌ,፬ Shaft torque voltage [V]
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Martinus [1] concluded that the JVS data was most suitable for system identification. The raw data is
used and therefore needed to be processed to usable data sets. Besides, the data is normalised because
the identification is performed with a linear model structure. The pre-processing and normalisation are
revised and performed again to get better insight of measured data sets, which is shown in section
3.1. The raw JVS measurements used are the shaft torque 𝑀፬, the three pulse time modulation
measurements and the set point voltage 𝑈፬፞፭፩፨።፧፭. The following enumeration shortly explains how
the raw data sets are measured and processed.

• Shaft torque - 𝑀፬: The measurement is performed with strain gauges on the shaft between the
gearbox and propeller. The shaft torque data set in [Nm] is used and normalised.

• Pulse time modulation [1 pulse] - 𝑃𝑇𝑀ኻ: The measurement is performed with one reflection strip
attached to the shaft, creating a measurement of one pulse per rotation. The pulse measurement
of the shaft speed is transformed into engine speed measurement 𝑛፞,ኻ in [rpm] and is normalised.

• Pulse time modulation [4 pulse] - 𝑃𝑇𝑀ኾ: The measurement is performed with four reflection
strips attached to the shaft, creating a measurement of four pulses per rotation. The pulse
measurement of the shaft speed is transformed into engine speed measurement 𝑛፞,ኾ in [rpm]
and is normalised.

• Pulse time modulation [Engine] - 𝑃𝑇𝑀፞: The measurement is performed with one reflection strip
attached to the shaft, creating a measurement of one pulse per rotation. The pulse measure-
ment of the engine speed is transformed into an engine speed measurement 𝑛፞ in [rpm] and is
normalised.

• Set point voltage - 𝑈፬፞፭፩፨።፧፭: The input of the system is done in voltage. The input is transformed
into the engine speed set point 𝑛፬፞፭ in [rpm] and is normalised.

The raw JVS data is measured during the different performed experiments. In table 2.3 the input of
each experiment is shown, concerning the start and stop time, frequency and amplitude. There are
16 different sine wave experiments performed, each with another operating frequency. Four different
chirps are carried out, which can be divided in a short chirp (C11) and a long chirp (C21 - C23). The
test is ended with two different step response experiments.

The three types of experiments can be used for system identification, validation and comparisons.
Due to the large amount of different experiments with different frequencies, the data gives information
about the system dynamics over the entire frequency range of interest. The data sets are measured
in time domain but could be transformed to frequency domain. To visualise the different performed
experiments, a time domain plot of the unprocessed set point voltage is shown in figure 2.2. Each
experiment type will be discussed in the following parts.

Figure 2.2: Overview of measurement of unprocessed set point voltage in time domain with indication of different experiments.
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Table 2.3: Overview of the executed experiments with the Stan Tug 1205.

Sine Freq [Hz] - Ampl. [V] Start [s] Stop [s]
S1 0.0044 - 0.6 480 1270
S2 0.0092 - 0.6 1450 1900
S3 0.0193 - 0.6 1970 2300
S4 0.0275 - 0.6 2400 2700
S5 0.0405 - 0.6 2750 2950
S6 0.06 - 0.6 3100 3200
S7 0.084 - 0.6 3300 3500
S8 0.11 - 0.6 3600 3700
S9 0.1778 - 0.6 3800 3950
S10 0.3728 - 0.6 4050 4150
S11 0.7814 - 0.6 4250 4350
S12 1.637 - 0.6 4440 4580
S13 3.433 - 0.6 4640 4690
S14 7.19 - 0.6 4840 4900
S15 15.01 - 0.6 5020 5050
S16 31.644 - 0.6 5234 5254
Chirp Start freq. Stop freq. Ampl. [V] Start [s] Stop [s]
C11 0.001 3.981 0.6 8850 9450
C21 0.001 0.02 0.6 9600 10150
C22 0.015 0.27 0.6 10200 10750
C23 0.1 3.3981 0.6 10900 11450
Step Stepsize [V] Min. [V] Max. [V] Start [s] Stop [s]
St1 1 -3 6 7150 7600
St2 2 -3 7 7900 8300

Multiple Sine Waves
The 16 different sine wave experiments are induced with different input frequencies. These frequencies
vary between 0.0044 and 31.644 [Hz]. The sine waves fluctuate around a working point of -5 [V].
The experiments at low frequencies resulted in the longest experiments, which is also visible in table
2.3. The multiple sine waves can be presented in time domain but also in frequency domain. Due
to constant frequencies per experiment it is easy to convert the multiple sine wave experiments in
frequency domain. In frequency domain it is possible to selected the desired points and cancel out
the noise. Martinus [1] cancelled out the noise by first transferring the data to frequency domain and
after that selecting the highest amplitude peak in frequency domain. The frequency domain data of
the multiple sine waves obtained by Martinus [1] can be seen in figure 2.4. For most of the sine waves
experiments this filtering approach worked, but unfortunately for some experiments it went wrong.

Chirp Waves
Four different chirps are carried out, which can be divided in a short chirp (C11) and a long chirp (C21
- C23). The long chirp is in essence the same as the short chirp because both vary from 0.001 to 3.981
[Hz]. However, the difference is the amount of time that is used to increase the frequency. The chirps
C21 to C23 are merged, which creates a long chirp with a duration of approximately 1500 [s]. The
chirp waves fluctuate around a working point of -5 [V].Martinus [1] used the chirp waves data sets
in time domain for both system identification and time domain validation. In section 3.4 time domain
plots of the long and short chirp waves, after the revised pre-processing, are shown.

Step Responses
The step response experiments are performed for different purposes. First, the step responses contain
constant input and output measurements. These constant values can be used for pre-processing of the
data. Another usage of the step response data sets is for time domain validation. By implementing the
identified parameters in the simulation model, the response can be compared with the measured step
response. Martinus [1] used the step response for both pre-processing and time domain validation. In
section 3.4 time domain plots of the step responses, after the revised pre-processing, are shown.
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2.3. Nonlinear Model
In figure 3.1 the lay-out of the nonlinear simulation model in block diagrams is presented. Correspond-
ing with the relatively simple drive train of the Stan Tug 1205, the simulation model exists out of a
governor, fuel actuator, diesel engine, gearbox, shaft loop and propeller (FPP). Equation (2.1) to (2.12)
show the differential and algebraic equations (DAE) of the Stan Tug 1205 in bollard pull condition. Im-
portant to note is that the nonlinear model does not contain any limiters, such as upper and lower
limits for engine brake power, engine speed and amount of fuel injection. Besides, ramp rates and
other nonlinear software of the governor are also not present in this model structure.

Figure 2.3: Nonlinear simulation model of the Stan Tug 1205 [1].

2𝜋 ⋅ 𝐼፩
𝑑(𝑛፬)
𝑑𝑡 = 𝑀፬ −𝑀፩ (2.1)

𝑒፧ = 𝑛፬፞፭ − 𝑛 (2.2)

𝐸፧ = ∫
፭

ኺ
𝑒፧𝑑𝑡 (2.3)

𝑋፬፞፭ = 𝐾፩𝑒፧ + 𝐾።𝐸፧ (2.4)
𝑋፟ = 𝑋፬፞፭ (2.5)
𝑀 = 𝐴ኻ𝑋፟ + 𝐴ኼ𝑛፞ + 𝐴ኽ (2.6)
𝑀፬ = 𝑀𝑖፠𝜂፭፫፦ (2.7)
𝑛፞ = 𝑛፬𝑖፠ (2.8)

𝑄 = 𝐷፩𝜌𝑛ኼ፬𝐾ፐ(𝐽) (2.9)
𝑇 = 𝐷ኾ፩𝜌𝑛ኼ፬𝐾ፓ(𝐽) (2.10)

𝑀፩ =
𝑄
𝜂፫

(2.11)

𝐽 = 𝑣ፚ
𝑛፬𝐷፩

𝑤𝑖𝑡ℎ 𝑣ፚ = 0 (2.12)

The shaft loop is described by a first order differential, presented in equation (2.1). The shaft loop is
dependent on the moment of inertia, the shaft speed and the balance between the shaft and the static
propeller torque.

The governor is described by equation (2.2) to (2.4). The governor is modelled by a proportional-
integral (PI) controller and is dependent on the engine speed error. The error is calculated in equation
(2.2) between the engine speed set point and the actual engine speed. In equation (2.4) the error 𝑒፧
is multiplied with the proportional gain 𝐾፩ and the time integrated error 𝐸፧ with the integral gain 𝐾።,
calculating a fuel rack set point 𝑋፬፞፭. It is important to note that it is unknown if the Stan Tug 1205 is
equipped with a PI or PID controller with or without limiters.
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The fuel actuator is described by equation (2.5). The function of the fuel actuator is making sure
that the fuel enters the cylinder which most of the time is done under high pressure and thus assumed
to be very fast. The output of the governor 𝑋፬፞፭ determines the amount of fuel, the fuel actuator
actuates 𝑋፟. The fuel actuator is assumed to work under ideal conditions, the dynamics are neglected
and the fuel actuator will work infinitely fast. This assumption is made because it is expected that the
time constant of the actuator is very small compared to the full shaft speed loop.

The diesel engine is described by a fuel rack map shown in equation (2.6). A fuel rack map shows the
relation between the fuel rack, engine speed and engine torque. Therefore, the engine brake torque
is dependent on the fuel rack and the engine speed. The engine brake torque is in relation with the
shaft torque, gearbox ratio and gearbox efficiency which is shown in equation (2.7). The approach of
modelling a diesel engine with a fuel rack map is a very simplified method.

The propeller is modelled and described by equation (2.9) to (2.12). A backward bollard push condi-
tion is taken into account, therefore the ship speed is zero. A ship speed equal to zero means that 𝐽
is equal to zero, see equation (2.12). This causes the torque and thrust to become constant and only
dependent of the shaft speed multiplied by a few constants. With the relative rotative efficiency, the
propeller torque is calculated, see equation (2.11).

2.4. Linear Model
In this section the linearised model of the nonlinear model presented in section 2.3 is discussed. The
linearisation is performed by Martinus [1] and is based on the linearisation of Vrijdag and Stapersma
[7][8]. The linearisation of Vrijdag and Stapersma [7][8] is applicable for free sailing conditions. Marti-
nus [1] linearised the model for bollard pull condition. This linearised model is used as model structure
for system identification. The linear DAE of the model are shown in equation (2.13) to (2.23). The
equations are normalised and this is mathematically noted as *.

𝜏፧
𝑑𝑛∗
𝑑𝑡 = 𝛿𝑀

∗
፬ − 𝛿𝑀∗፩ (2.13)

𝑑𝐸∗፧
𝑑𝑡 = 𝛿𝑛∗፬፞፭ − 𝛿𝑛∗ (2.14)

𝛿𝐸∗፧ = ∫
፭

ኺ
𝛿𝑒∗፧𝑑𝑡 (2.15)

𝛿𝑋∗፬፞፭ = 𝐾፩𝛿𝑒∗፧ + 𝐾።𝛿𝐸∗፧ (2.16)
𝛿𝑋∗፟ = 𝑋∗፬፞፭ (2.17)

𝛿𝑀∗ = 𝑔𝛿𝑛∗ + 𝑣𝛿𝑋∗፟ (2.18)

𝛿𝑀∗፬ = 𝛿𝑀∗ (2.19)
𝛿𝑄∗ = 2𝛿𝑛∗ (2.20)
𝛿𝑀∗፩ = 𝛿𝑄∗ (2.21)
𝛿𝑇∗ = 2𝛿𝑛∗ (2.22)

The linearised and normalised shaft loop is described by equation (2.13). The integration constant 𝜏፧
is added to the model. This constant is dependent on the operating point and the mass moment of
inertia. The constant 𝜏፧ can be determined with equation (2.23).

𝜏፧ =
2𝜋𝐼፩𝑛ኺ
𝑀፬,ኺ

(2.23)

The fuel actuator is still an ideal actuator, see equation (2.17). The linear and normalised governor is
represented by equation (2.14) to (2.16). The governor is still described by a PI controller and depen-
dent on the engine speed error.
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The diesel engine is still described by a fuel rack map. Equation (2.18) shows the linearised and
normalised description of the diesel engine. The parameter 𝐴ኽ disappeared and the parameters 𝐴ኻ
and 𝐴ኼ are replaced with respectively 𝑔 and 𝑣. The definition of the parameters 𝑔 and 𝑣 is shown in
equation (2.24) and (2.25). The parameter 𝑔 represents the influence of an increase in engine speed
on the engine torque multiplied by the linearisation point. Where 𝑣 represents the influence of an
increase in the fuel rack on the engine torque multiplied by the linearisation point. The transmission
efficiency is constant, therefore the normalised shaft torque is equal to the normalised brake torque,
see equation (2.19).

𝑔 ≡ 𝑛፞,ኺ
𝑀,ኺ

𝛿𝑀
𝛿𝑛 |ፗ (2.24)

𝑣 ≡ 𝑋ኺ
𝑀,ኺ

𝛿𝑀
𝛿𝑋 |፧ (2.25)

The propeller is linearised and normalised for the backward bollard push condition, see equation (2.20)
to (2.22). Quadratic coefficients become a linear multiplier when they are linearised. This is visible
in the equation 2.20 and 2.22 of the linearised torque and thrust. The relative rotative efficiency is
assumed to be constant, therefore the propeller torque is equal to the linearised torque 𝛿𝑄∗.

2.4.1. Transfer Functions
A transfer function is a mathematical description of theoretical models representing the possible rela-
tions between input and output. The closed loop transfer functions are derived from the linear DAE by
Martinus [1]. The input of each transfer functions is the engine speed set point, the outputs are re-
spectively engine speed, integrated error and the shaft torque. The transfer functions of the linearised
model are presented in equation (2.26) to (2.28).

𝛿𝑛∗
𝛿𝑛∗፬፞፭

=
፯ፊᑡ
Ꭱᑟ
𝑠 + ፯ፊᑚ

Ꭱᑟ
𝑠ኼ + ፯ፊᑡዅ፠ዄኼ

Ꭱᑟ
𝑠 + ፯ፊᑚ

Ꭱᑟ

(2.26)

𝛿𝐸∗፧
𝛿𝑛∗፬፞፭

=
𝑠 + ኼዅ፠

Ꭱᑟ
𝑠ኼ + ፯ፊᑡዅ፠ዄኼ

Ꭱᑟ
𝑠 + ፯ፊᑚ

Ꭱᑟ

(2.27)

𝛿𝑀∗
𝛿𝑛∗፬፞፭

=
𝑣𝐾፩𝑠ኼ +

፯ፊᑚᎡᑟዄኼ፯ፊᑡ
Ꭱᑟ

+ ኼ፯ፊᑚ
Ꭱᑟ

𝑠ኼ + ፯ፊᑡዅ፠ዄኼ
Ꭱᑟ

𝑠 + ፯ፊᑚ
Ꭱᑟ

(2.28)

All three the transfer functions are subjected to the lowest and highest frequencies to see if the response
is logic. These tests are performed by Martinus [1]. The frequencies that are used for these tests are
0 and ∞. All three transfer functions showed a logic response. The results of subjecting the transfer
functions to the extreme frequencies 0 and ∞ are presented in table 2.4. The results are presented as
absolute value and in decibels.

Table 2.4: Overview of responses of the closed loop transfer functions subjected to extreme frequencies

Relation s → 0 [abs] s →∞[abs] s → 0 [dB] s →∞[dB]
᎑፧∗
᎑፧∗ᑤᑖᑥ

1 0 0 -∞
᎑ፄ∗ᑟ
᎑፧∗ᑤᑖᑥ

ኼዅ፠
፯ፊᑚ

0 log(ኼዅ፠፯ፊᑚ
) -∞

᎑ፌ∗
᎑፧∗ᑤᑖᑥ

2 𝑣𝐾፩ 0.3 log(𝑣𝐾፩)
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2.4.2. State Space Notation
A mathematical representation of a physical system as a set of input, output, and state variables
related by first-order differential equations can be created with a state space notation [9]. State space
notations can be written in different ways. The continuous time invariant state space notation is shown
in equation (2.29) to (2.30).

̄�̇� = 𝐴�̄� + 𝐵�̄� (2.29)

�̄� = 𝐶�̄� + 𝐷�̄� (2.30)

Vector �̄� represents the state vector, �̄� the input vector and �̄� the output vector. Where matrix A is
state matrix, B is the input-to-state matrix, C is the output-to-state matrix and D is the feedthrough
matrix [9]. With a state space notation it is possible to represent different inputs and outputs, creating
a model with multiple in- and/or outputs. With the linearised DAE the following state space is derived
by Martinus [1]. The continuous time invariant closed loop state space of the linearised model is shown
in equation (2.31) to (2.33). The closed loop state space notation has one input, two different outputs
and two states. The closed loop state space notation is used by Martinus [1] as model structure for
full-scale linear system identification.

�̄� = [𝛿𝑛
∗

𝛿𝐸∗፧] , �̄� = 𝛿𝑛∗፬፞፭ , �̄� = [𝛿𝑛
∗

𝛿𝑀∗፬ ] (2.31)

𝐴 = [
ዅ(ኼዅ፠ዄ፯ፊᑡ)

Ꭱᑟ
፯ፊᑚ
Ꭱᑟ

−1 0
] , 𝐵 = [

፯ፊᑡ
Ꭱᑟ
1
] (2.32)

𝐶 = [ 1 0
𝑔 − 𝑣𝐾፩ 𝑣𝐾።] , 𝐷 = [ 0𝑣𝐾፩] (2.33)

In the state space notation, five different parameters are visible. For an identification it will be needed
to estimated these parameters. However, with the presented closed loop model structure it is not
possible to identify all five parameters. Martinus [1] already investigated this matter and concluded
that there are dependencies in the closed loop model structure. These dependencies cause that not
all parameters can be identified individual. The four relations that will be identified during a system
identification are shown in equation (2.34).

[𝜏፧ 𝑔 ፊᑡ
ፊᑚ

𝑣𝐾፩] (2.34)

2.5. Searching Criterion
Three things are needed for system identification. One of them is the searching criterion. Different
searching criterion are discussed within the performed literature research [6]. The basic principle of
the searching criterion is as followed. The searching criterion is the method of minimizing a certain
cost function based on a parameter set and a defined error. Minimizing the cost functions means that
the output of the system and model structure will converge. Ideally, the end product is a dynamic
model with a set of identified parameters that imitates the behaviour of a system.

The system identification is performed with the help of the Matlab System Identification Toolbox. The
searching criterion is chosen by the software itself. This means that the System Identification Toolbox
chooses the searching criterion method to determine a minimum. The methods that can be selected
and used are the subspace Gauss Newton Least Squares (GNLS), Levenberg Marquard Least Squares
(LMLS) and the Matlab function ’fmincon’ [10]. Different options can be turned on within the System
Identification Toolbox to increase the quality of the identification. The benchmark system identifica-
tion is performed with the state space notation presented in section 2.4.2, which has two outputs. To
prevent that the cost function only optimises for on single output, an output weight is added. This
addition translates the cost function into a weighted cost function [10]. To prevent overestimation or
over fitting of the parameters during the system identification, the cost function is extended with a
regularization term [10].
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To preclude that the searching criterion runs for a very long time in search for the ideal zero optimum,
stopping criteria are used to constraint the benchmark identification. An easy way of constraining an
identification is the addition of a maximum amount of iteration steps. For the benchmark identification
of Martinus [1] a maximum of 100 iterations per identification is added as stopping criteria. To avoid
that the minimum is already found during these 100 iterations or that the improvement steps become
extremely small, a tolerance is used as stopping criteria. The tolerance is set to 0.01 percentage differ-
ence between the current value of the cost function and the expected improvement of the next iteration.

Boundaries of parameters are also introduced to prevent that the searching criterion searches for
an optimum for a very long time. The boundary conditions of the parameters that will be identified are
presented in the equations (2.36) to (2.40). The initial values of the parameters that are required for
the searching criterion are presented in (2.35). The boundaries conditions and the initial values are
determined by Martinus [1].

[𝜏፧ 𝐾፩ 𝐾። 𝑔 𝑣] = [1.2 10 3 −0.5 1] (2.35)

0 < 𝜏፧ ≤ 5 (2.36)

0 < 𝐾፩ ≤ 15 (2.37)

0 < 𝐾። ≤ 10 (2.38)

− 3 ≤ 𝑔 < 0 (2.39)

0 < 𝑣 ≤ 5 (2.40)

2.6. Benchmark Identification
The benchmark system identification performed by Martinus [1] is used for comparison. The three
necessities to perform a system identification are discussed: model structure, data and a searching
criterion. As model structure the state space notation in section 2.4.2 is used. As searching criterion
and optimisation principles the methods presented in section 2.5 are used. The benchmark system
identification with the best fit is performed with frequency domain data of the multiple sine waves
experiment, discussed in section 2.2. The best fit is selected based on the fitting percentage. In
equation (2.41) is shown how the fitting percentage is obtained in frequency domain. The calculations
can also be done for identification in time domain. The fitting percentage is an automatic generated
value by the System Identification Toolbox of Matlab. The 2-norm (root mean square) of the differences
between measurement points and simulated points are used to calculated the fitting percentage.

𝐹𝑖𝑡𝑃𝑒𝑟𝑐𝑒𝑛𝑡𝑎𝑔𝑒 = 100(1 − ||�̂�(𝜔)፦፞ፚ፬፮፫፞፝ − �̂�(𝜔)፬።፦፮፥ፚ፭፞፝||ኼ
||�̂�(𝜔)፦፞ፚ፬፮፫፞፝ − �̂�(𝜔)ፌ፞ፚ፧ፌ፞ፚ፬፮፫፞፝||ኼ

) (2.41)

The estimated relations of the benchmark identification are shown in table 2.5. Martinus [1] concluded
that the estimated parameters of the propulsion system are not trustworthy. The values differed from
the expected results and different parameter estimations showed large differences. However, the
behaviour of the identified model showed promising agreement with the system [1]. The comparison
of the processed frequency domain data of [1] and identified benchmark model is shown in figure 2.4.
Up to a frequency of 10 [rad/s] they compare well.

Table 2.5: Results of benchmark identification with frequency domain data

Parameters Fitting
𝜏፧ [s] 𝑔 [-] ፊᑡ

ፊᑚ
[-] 𝑣𝐾፩ [-] 𝛿𝑛∗ [%] 𝛿𝑀∗፬ [%]

Benchmark 0.275 -0.314 0.0010 0.010 55.2 20.81
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Figure 2.4: Bode plots of the relations ᒉᑄ∗ᑤ
ᒉᑟ∗ᑤᑖᑥ

and ᒉᑟ∗
ᒉᑟ∗ᑤᑖᑥ

with the benchmark and the frequency domain data obtained by Martinus

[1].



3
Data Processing & Improvements

In this chapter data processing and possible data improvements will be discussed. This chapter contains
five main sections. In the first main section the revised pre-processing of the raw JVS measurements
are discussed. Thereafter, in the second main section, certain analysis of the data are performed. In
the third main section, frequency domain data of the multiple sine waves experiment is discussed. A
new filtering approach is introduced and the noise variance is evaluated. In the fourth main section, the
revised pre-processed and normalised data sets that will be used for system identification, comparisons
and validation are presented. This chapter ends with an overview of the most important conclusions
and findings.

The raw JVS measurements used for the data processing and improvements are the shaft torque
𝑀፬, the three pulse time modulation measurements and the engine speed set point voltage 𝑈፬፞፭፩፨።፧፭.

3.1. Pre-processing
In this first main section the revised pre-processing of Martinus [1] is of the measured raw data from the
backward bollard push experiment is explained. Pre-processing the raw measured data is performed
to create usable data sets for the system identification. The measured JVS data is in raw form, which
is not convenient for system identification.

First, the three different PTM measurements are translated from pulse measurement to rpm. The
raw data of JVS contains the PTM measurements of the measured one pulse engine speed, one pulse
shaft speed and the four pulse shaft speed. The PTM measurements are converted to pulse periods
with the Matlab function ’pulseperiod’[11]. A pulse period is the time between two increasing edges of
pulses [11]. With the Matlab function, the pulse periods for the one pulse measurement 𝑇፩ኻ, four pulse
measurement 𝑇፩ኾ and the engine speed 𝑇፩፞ are determined. One pulse period of 𝑇፩ኻ and 𝑇፩፞ and four
pulse periods of 𝑇፩ኾ equal one rotation of the shaft. The equations in (3.1) show the conversion of the
measurements to engine speed in rpm, with the help of calculated pulse periods.

𝑛፞ =
60
𝑇፩፞

, 𝑛፞,ኾ =
𝑖፠ ⋅ 60
𝑇፩ኾ ⋅ 4

, 𝑛፞,ኻ =
𝑖፠ ⋅ 60
𝑇፩ኻ

(3.1)

The engine speed set point is measured in voltage and needs to be converted to rpm. To make a
conversion the relationship between voltage and engine speed is necessary. When the engine speed
set point and the engine speed are constant, located in the step response experiment, this relationship
can be determined. The average is taken of the constant measurements to cancel out oscillations.
Table 3.1 shows the averaged relationships and in figure 3.1 the points are plotted with a trendline.

15
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Table 3.1: Relationship between input signal and engine speed.

𝑈፬፞፭፩፨።፧፭ [v] 𝑛፬፞፭ [rpm]
-3.031 676.57
-4.031 927.94
-5.035 1182.60
-6.024 1428.50
-7.022 1676.61

Figure 3.1: Engine speed as function of input voltage with trend line.

In figure 3.1 shows a linear relationship, therefore a linear function 𝑛፬፞፭ = 𝑎 ∗ 𝑈፬፞፭፩፨።፧፭ + 𝑏 can
be derived. Using the trendline drawn in figure 3.1, the characteristics of this linear function are
determined. Equation (3.2) shows the linear function used for the conversion of the engine speed set
point from voltage to rpm.

𝑛፬፞፭ = −250.97 ⋅ 𝑈፬፞፭፩፨።፧፭ − 83.467 (3.2)

Furthermore, using the interpolation function ”interp1” of Matlab all in- and output data sets are down
sampled [12]. The down sampling is performed for different reasons. First, to reduce the amount of
computer memory needed. Second, to speed up the parameter estimation. The JVS raw data is down
sampled from 2000 Hz to 200 Hz. Interpolation of data can be performed with different methods [12].
For the interpolation of the JVS data, a previous neighbour interpolation is used. ”The interpolated
value at a query point is the value of the previous sample grid point” [12].

Multiple outliers are visible in the data sets of the shaft torque and engine speed set point mea-
surements. The outliers are eliminated manually and a new point is inserted by taking the average of
neighboring points. In figure 3.2, the pre-processed torque and engine speed set point measurements
are shown with the removed outliers.
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(a) Overview of the removed outliers in engine speed set point.
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(b) Overview of the removed outliers in the torque response.

Figure 3.2: Overview of removed outliers in the revised pre-processed data before normalisation.

The system identification will be performed in a linear environment. The model structure is linearised,
therefore a normalisation of the data sets is required. The normalisation points from a stable time
period while running at constant is 𝑈፬፞፭፩፨።፧፭ = -5 [V]. The corresponding normalisation values are
shown in table 3.2. The data sets of the different experiments after the revised pre-processing and
normalisation are presented in section 3.4.

Table 3.2: Normalisation points of logging device of JVS [1].

Unit Value
𝑛ኺ [rpm] 1183.8
𝑀፬,ኺ [Nm] 1725

3.2. Data Analysis
In the second main section the analyses of the measured data sets are discussed. Martinus [1] stated
that the measured data contains a time delay and that the 𝑃𝑇𝑀ኾ measurement contains a rpm error.
First, the time delay will be evaluated. Thereafter, the rpm error is investigated.

3.2.1. Time Delay
A time delay is visible between the input and output data, see figure 3.3. However, the magnitude
of this time delay is unknown. It is possible to approximate the time delay with the help of the step
response experiment. The step response is used to compare the engine speed set point 𝑛፬፞፭ and the
engine speed 𝑛፞. The step responses of the engine speed set point 𝑛፬፞፭ and the engine speed 𝑛፞ are
shown in figure 3.3. Figure 3.3b zooms in on one single step to see the time delay that is present. The
time difference of each step of the step response is determined, shown in table 3.3. The average of
Δ𝑛 is taken to approximate the time delay between the in- and output of the measured data sets. The
time delay from the measured data is approximated at 0.4018 [s].

Table 3.3: Time differences per step of step response.

Step 𝑛፬፞፭ [s] 𝑛፞ [s] Δ𝑛 [s]
1 58.9100 59.2500 0.34
2 119.5050 119.8450 0.34
3 178.5950 179.0400 0.445
4 239.0450 239.5300 0.485
5 298.6950 299.0600 0.365
6 358.5850 359.0200 0.435
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(b) Step responses zoomed in.

Figure 3.3: Overview of normalised step responses of the input engine speed set point ፧ᑤᑖᑥ and the output engine speed ፧ᑖ.

3.2.2. Rpm Error
A possible error is present in the four pulse measurement 𝑃𝑇𝑀ኾ, inducing a rpm error. For this mea-
surement four reflecting strips are glued on the shaft. This set-up is visible in figure 3.4. Ideally, the
angles a, b, c and d are 90 degrees. However, these strips are glued on the shaft manually, which
could cause that the angles are not exactly 90 degrees. This could provoke an error in the four pulse
measurement and therefore in the pre-processed rpm data of 𝑛፞,ኾ.

Figure 3.4: Set-up of the reflecting strips on a shaft with the four angles a, b, c and d [1].

From the papers of Resor et al. [13] and Braut et al. [14], a method is obtained to determine the
rpm error. A location is selected where the measured rpm is constant, which is present in the step
response. Ideally, when the rpm is constant the pulse periods of 𝑃𝑇𝑀ኾ are constant too. However, the
pulse periods of 𝑃𝑇𝑀ኾ are not constant. With the help of the ’pulseperiod’ function of Matlab, the pulse
periods at a constant rpm are determined [11]. Equation (3.3) shows how the pulse periods for each
reflection strip are obtained, with x indicating angle a, b, c or d. Furthermore, equation (3.4) shows
the time needed for one rotation per reflection strip. The mean is taken to determine the average time
needed for the shaft to rotate one time. With the average time needed for one rotation and the different
pulse periods per reflection strip, each angle of the different reflection strips can be calculated. When
a large amount of pulses is used, the angle calculated converges to the actual angle of the reflecting
strips. Besides, the influence of noise in the measurement is then minimised. The actual angle of the
reflecting strips is obtained with equation (3.5).
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̄𝑇ፏ፮፥፬፞,፱[𝑠] = 𝑃𝑢𝑙𝑠𝑒(𝑥 + 1) − 𝑃𝑢𝑙𝑠𝑒(𝑥) (3.3)

̄𝑡፨፧፞፫፨፭ፚ፭።፨፧,፱[𝑠] = 𝑃𝑢𝑙𝑠𝑒(𝑥 + 4) − 𝑃𝑢𝑙𝑠𝑒(𝑥) (3.4)

𝐴𝑛𝑔𝑙𝑒፱[∘] = 𝑚𝑒𝑎𝑛 (
̄𝑇ፏ፮፥፬፞,፱

𝑚𝑒𝑎𝑛( ̄𝑡፨፧፞፫፨፭ፚ፭።፨፧,፱)
) ⋅ 360∘ (3.5)

The results always converged to the same angles for different constant measurements. The determined
angles of the different reflection strips are shown in table 3.4. The differences between the angles are
relatively small. Due to relatively small differences, the error is appointed as acceptable and therefore
not removed from the four pulse four pulse measurement 𝑃𝑇𝑀ኾ.

Table 3.4: Overview of different angles of the reflection strips glued to the shaft.

Angle a 90.40∘

Angle b 87.24∘

Angle c 90.74∘

Angle d 91.64∘

3.3. Frequency Domain Data
In the third main section the conversion of the multiple sine waves data from time domain to frequency
domain are discussed. First, the advantages of converting data from time domain to frequency domain
are presented. Thereafter, the transformation of time domain data into frequency domain is discussed
and what approach Martinus [1] used. Moreover, a new approach that selects the correct frequencies
out of data sets is presented. This section ends with a noise variance evaluation of the multiple sine
waves data in frequency domain.

In previous figures of the experimental data, the multiple sine waves were presented in time domain.
Converting time domain data of the multiple sine waves into frequency domain provides different ad-
vantages. The response data, the engine speed and shaft torque, contain noise. In frequency domain
it is possible to cancel out the noise at the frequencies where the sines have no power, influencing the
system identification in a positive manner. Moreover, by cancelling out the noise, the data becomes
more clean but also less computer memory is required. Another advantage is, the frequency domain
data speeds up the system identification, mainly because the measured time domain data sets have a
high sample rate.

As already stated in section 2.2, Martinus [1] used an algorithm that selects the highest amplitude
peak of the data in frequency domain. For this filtering approach, the Matlab function ’SineFit’ is used.
This function is obtained from the Matlab file exchange [15]. The selected data is fitted into a single
sine wave without noise with the help of the obtained offset, amplitude, frequency and phase shift
[15]. Due too determination of the offset, which serves as the normalisation point of each frequency,
it is not necessary to normalise the multiple sine waves data before it is put into frequency domain.

The ’SineFit’ function first converts the measured time domain data to frequency domain and there-
after cancels out the noise by selecting the data point with the highest amplitude peak. The offset,
amplitude, frequency and phase shift are obtained from the highest amplitude peak. The obtained
points with the highest amplitude are used for system identification in frequency domain. However,
wrong data points are selected when the noise at any frequency exceeds the amplitude of the linear
response to the input signal at the frequency of interest. For most of the sine waves experiments
this ’SineFit’ filtering approach is accurate, but unfortunately for some experiments the wrong data
in frequency domain are selected. The following section presents a new selecting procedure used to
select the correct data points in frequency domain.
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3.3.1. Selection Procedure
The new procedure calculates the correct frequencies to be selected. The method is a Gaussian ap-
proach that makes it possible to select the frequency of interest out of the measured sine waves data
sets. The new selection procedure is incorporated in the ’SineFit’ function instead of the maximum
amplitude procedure. The input frequencies, starting time and stopping time of the different sine
waves are known. From each sine waves experiment the location of the frequency of interest can
be calculated when the length of the experiment is known. The frequencies of interest are the input
frequencies of the measured data.

Equations (3.6) to (3.8) are used to determine the location of the frequency of interest in a frequency
domain vector. 𝜔፬ in [rad/s] is the frequency of interest (fundamental frequency). Variable 𝑖 is the
location of the fundamental frequency in the frequency domain vector of a certain sine waves experi-
ment. T is the length of the experiment in seconds and 𝜔ኺ [rad/s] is the smallest frequency that fits in
the total length of a certain sine wave experiment. It is important that 𝑖 integer is, meaning that the
length of each sine waves experiment fits a round amount of periods of the fundamental frequency.
First, equations (3.6) and (3.7) are used with the initial length of the sine waves experiments to calcu-
late 𝑖. Thereafter, the calculated values of 𝑖 are rounded to the nearest lower value (floor value). With
equation (3.8) the new decreased value of T is calculated.

𝜔፬ = 𝑖 ⋅ 𝜔ኺ (3.6)

𝜔ኺ =
2 ⋅ 𝜋
𝑇 (3.7)

𝑇 = 𝑖፟፥፨፨፫ ⋅
2𝜋
𝜔፬

(3.8)

When knowing 𝑖, the points to be selected in the frequency domain vector of each sine waves exper-
iment are known. The adjusted ’SineFit’ function cancels out the noise at the frequencies where the
sines have no power and returns the correct obtained offsets, amplitudes, frequencies and phase shifts.
The calculated values of 𝑖, the new stopping times of each sine waves experiment and the eventually
selected frequencies can be seen in table 3.5. The calculated values in table 3.5 are applicable for the
engine speed, shaft torque and engine speed set point measurements.

Table 3.5: Overview of calculated values with the new selection procedure.

Sine i [-] Selected Freq [Hz] Start [s] Stop [s]
S1 4 0.0044 476.9 1385.99
S2 4 0.0092 1433 1867.78
S3 6 0.0193 1962 2272.88
S4 8 0.0275 2365 2655.91
S5 11 0.0405 2735 3006.61
S6 13 0.06 3048 3264.67
S7 18 0.0848 3282 3494.26
S8 21 0.11 3540 3730.91
S9 41 0.1778 3755 3985.60
S10 65 0.3728 4009 4183.36
S11 139 0.7814 4219 4396.89
S12 211 1.637 4481 4609.89
S13 240 3.433 4630 4699.91
S14 431 7.19 4840 4899.94
S15 450 15.01 5020 5049.98
S16 632 31.644 5234 5253.97

The correct selected frequencies can be represented in a Frequency Response Function (FRF) estima-
tion. A FRF estimation represents the system dynamics per frequency of the output data set divided
by the input data set. In figure 3.5, the FRF estimation with the new frequency selection procedure is
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compared to the baseline FRF estimates from Martinus [1], for both the engine speed and shaft torque
as output and the engine speed set point as input. The figure suggests that the new frequency selec-
tion procedure is the better selecting approach because it has logical gradients and no strange outliers.
The methods are approximately the same for lower frequencies. However, at higher frequencies the
new frequency selection procedure becomes more accurate.
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Figure 3.5: Comparison in Bode plot of the FRF estimation with the new frequency selection procedure and the baseline FRF
estimates from Martinus [1].

3.3.2. Noise Variance
The data analysis of the torque performed by Martinus [1] showed that the noise present in the torque
measurement is correlated to engine and propeller frequencies. The other data sets also contain noise
in their measurements. Large amounts of noise cause a decrease of the reliability of a measurement,
therefore increasing the uncertainty. It is possible to express the reliability of a measurement with the
help of the signal to noise ratio (SNR). The SNR is calculated with the help of the variance. The power
spectral density is used to calculate the different variances.

Overall Noise Variance
The overall SNR of each measured data set is calculated with the help of the frequency domain data of
the multiple sine waves experiment. An overall SNR is calculated between the variance of the selected
data points (𝑋ፒ።፠፧ፚ፥) and the variance of the unfiltered frequency domain data (𝑋፨፯፞፫ፚ፥፥). Ideally, when
no noise is present, the calculated overall SNR is equal to 1. The closer the overall SNR gets to 0, the
higher the amount of noise is. It is expected that the noise in the measured data influences the obtained
fitting percentage during system identification. The overall SNR is rooted to make it comparable with
the fit percentage that is calculated by Matlab after each system identification. The fit percentage is
calculated with a root mean square and the variance is quadratic. When the overall SNR is lower than
1, the fitting percentage cannot become 100%. Table 3.6 shows the overall signal to noise ratio of
each data set, calculated with equation (3.9).

𝑆𝑁𝑅ፎ፯፞፫ፚ፥፥ = √
∑𝑉𝑎𝑟(𝑋ፒ።፠፧ፚ፥)
𝑉𝑎𝑟(𝑋ፎ፯፞፫ፚ፥፥)

(3.9)

Table 3.6: Overall signal to noise ratios of each data set.

Data Set 𝑆𝑁𝑅ፎ፯፞፫ፚ፥፥
𝑛፬፞፭ 0.9986
𝑛፞ 0.9451
𝑛፞ኻ 0.9475
𝑛፞ኾ 0.8610
𝑀፬ 0.5751



22 3. Data Processing & Improvements

Noise Variance per Input Frequency
The SNR per input frequency is calculated to obtain the quality of each sine waves experiment per data
set. Only local points in the frequency domain vector around the selected frequencies are taken into
account as noise. Local frequencies around the selected frequency, mostly influence the quality of the
selected frequency signals. Before and after the selected frequency signal, 20 points in the frequency
domain vector are taken into account as local noise. Variance of a selected signal (𝑋ፒ።፠፧ፚ፥) is divided
by the variance of the local noise (𝑋ፋ፨ፚ፥), creating a local SNR per experiment and data set. Ideally,
when no local noise is present, the local SNR in decibel converges to infinity. A local SNR of 0 [dB]
means that the variance of the local noise is equal to the variance of the selected frequency. The
boundary value of the local SNR is 3 [dB] [16]. Table 3.7 shows the local SNR in decibel of each data
set and sine waves experiment, calculated with equation (3.10). The values that are higher than the
boundary value are indicated green and the values lower than the boundary value are indicated red.

𝑆𝑁𝑅ፋ፨ፚ፥[𝑑𝐵] = 10 ⋅ logኻኺ (
𝑉𝑎𝑟(𝑋፬።፠፧ፚ፥)
𝑉𝑎𝑟(𝑋ፋ፨ፚ፥)

) (3.10)

Table 3.7: Local signal to noise ratio per data set and sine waves experiment.

.

Sine SNR [dB]
𝑛፬፞፭ 𝑛፞ 𝑛፞ኻ 𝑛፞ኾ 𝑀፬

S1 57.8 40.6 40.6 40.6 18.4
S2 59.2 40.4 40.5 40.1 25.3
S3 59.7 44.9 45.2 44.9 20.7
S4 63.8 45.3 45.4 44.6 22.7
S5 68.6 45.7 45.8 44.9 23.5
S6 26.5 25.6 25.5 25.6 24.2
S7 73.6 38.0 37.8 37.9 23.6
S8 73.8 41.3 41.4 41.2 27.2
S9 59.5 38.5 38.5 38.0 34.9
S10 52.7 35.9 36.0 36.1 34.3
S11 45.7 31.9 31.7 31.8 31.9
S12 59.1 17.0 16.7 17.1 17.2
S13 49.4 7.8 -4.1 7.4 9.0
S14 43.9 -11.6 -27.3 -11.6 4.6
S15 17.5 -18.3 -13.5 -31.1 -23.9
S16 16.1 -22.4 -2.8 -30.3 -23.0

The local SNR shows when the frequency of the sine waves becomes higher, the uncertainty of the
measurements becomes larger. As the boundary level is 3 [dB], it is clear the output of the sine waves
experiments 14, 15 and 16 are beneath that. Still, these sine waves experiments are used for compar-
isons and system identification. Due to the new selection procedure in frequency domain, the correct
data points are selected and these points still contain some information on response of the system.
However, the high uncertainties will be included during considerations.

During the performed experiments, three times the engine speed is measured. When combining the
results of the overall and local SNR, 𝑛፞ (𝑃𝑇𝑀፞ measurement of the engine speed at the diesel engine)
shows the highest overall certainty of the three engine speed measurements. Therefore, the measured
data sets 𝑛፬፞፭, 𝑛፞ and 𝑀፬ are used for system identification, validation and comparison.
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3.4. Data Sets
To conclude the data processing part of this research, the revised pre-processed and normalised data
sets used for system identification, comparisons and validation are presented. First, the frequency
domain data sets of the multiple sine waves experiment are shown. The frequency domain data sets
can be obtained in closed and open loop. Thereafter, the time domain data sets are shown. The long
chirp, short chirp and step response will be presented. Mainly, the frequency domain data sets will be
used for system identification because the noise is cancelled out and the system identification speeds
up in frequency domain.

3.4.1. Frequency Domain Data Sets

The frequency domain data sets represent the multiple sine waves experiment. The time domain mea-
surements that are pre-processed are put into frequency domain. With the new selection procedure,
the correct data point are selected and noise is mostly cancelled out of the data sets. The frequency
domain data will be used in closed and open loop form. ”The main difference between open loop and
closed loop is, the required output within the open loop does not depend on the controlled act whereas,
in closed loop, the required output mainly depends on the controlled act” [17]. The difference between
open loop and closed loop models and data is shown in figure 4.1. Figure 4.1 also shows the open
loop sub-models that are present.
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Figure 3.6: Model structure with open and closed loop sections.

Closed Loop

The closed loop frequency domain data sets are shown in figure 3.7. The input of the data sets is
the engine speed set point 𝛿𝑛∗፬፞፭ and the outputs are the engine speed 𝛿𝑛∗ and the shaft torque 𝛿𝑀∗፬ .
Clearly, the magnitude starts to decrease at approximately 10 [rad/s], for both the engine speed and
shaft torque. Furthermore, the amount of measurements after 1 [rad/s] is small compared to the
amount before 1 [rad/s]. The phase in figure 3.7a shows two points at approximately 90 degrees.
These points can be translated -360 degrees to be located at -270 degrees. Taking this translation
into account, both the phases of the engine speed and shaft torque show a decrease. The closed loop
frequency domain data sets are used for linear closed loop system identification and comparisons.
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Figure 3.7: Closed loop frequency domain data for both the shaft torque and engine speed as output.

Open Loop
The open loop frequency domain data sets are shown in figure 3.8 and correspond with the open
loop sub-models shown in figure 3.6. The open loop data set in figure 3.8a uses the error between
the engine speed and engine speed set point 𝛿𝑒∗፧ as input and the shaft torque 𝛿𝑀∗፬ as output. This
data set represents the relation between the input of the governor and the output of the diesel engine.
Unfortunately, no measurements are performed between the governor and diesel engine, therefore it is
impossible to obtain the response of the governor and diesel engine individually. The data set in figure
3.8b uses the shaft torque 𝛿𝑀∗፬ as input and the engine speed 𝛿𝑛∗ as output. This data set represents
the response of the core propulsion system that describes the shaft loop and torque balance. The open
loop frequency domain data sets are used for linear open loop system identification and comparisons.
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Figure 3.8: Open loop frequency domain data for both the shaft torque and engine speed as output.
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3.4.2. Time domain Data Sets
The time domain data used are the long chirp, short chirp and step response. The revised pre-
processing, transformed and normalised the raw time domain data into usable time domain data.
However, the time domain data still contains noise which is mostly cancelled for the frequency domain
data sets.

Long Chirp
The normalised and pre-processed long chirp in time domain is shown in figure 3.9, for both the engine
speed and shaft torque response. The engine speed set point is also shown in the figures. Clearly a
large amount of noise is present in the shaft torque response. At higher frequencies of the long
chirp, the engine speed and shaft torque response are no longer able to follow the input frequencies.
The normalised and pre-processed long chirp in time domain is used for linear closed loop system
identification.
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Figure 3.9: Long chirp time domain data for both the shaft torque and engine speed as output.

Short Chirp
The normalised and pre-processed short chirp in time domain is shown in figure 3.10, for both the
engine speed and shaft torque response. The engine speed set point is also shown in the figures.
The short chirp is the same as the long chirp, only difference is the amount of time used to increase
the frequency. The normalised and pre-processed short chirp in time domain is used for time domain
validation and comparisons.
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Figure 3.10: Short chirp chirp time domain data for both the shaft torque and engine speed as output.
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Step Response
The normalised and pre-processed step response in time domain is shown in figure 3.11. The measured
input 𝛿𝑛∗፬፞፭ and the outputs, engine speed 𝛿𝑛∗ and shaft torque 𝛿𝑀∗፬ are shown. The step response
presented, is indicated in table 2.3 as St2. As this step response has the least amount of disturbances
it is selected. There is a difference between the increasing steps and the decreasing steps of the
measured step response. This could indicate that possible nonlinear phenomena in the step response
are present. The step response is used for time domain validation and comparisons.
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Figure 3.11: Step response time domain data of engine speed(output), shaft torque(output) and engine speed set point(input).
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3.5. Overview of Conclusions
In this chapter multiple conclusions are stated. The following enumeration gives a summary of the most
important conclusions and findings of the the data analysis and improvements stated in this chapter.

• The measured data contains a time delay between the input and output data, which is approx-
imated at 0.4018 [s]. The four pulse measurement contains a rpm error. Due relatively small
differences, the error is appointed as acceptable and therefore not removed from the four pulse
four pulse measurement.

• The multiple sine waves data is converted from time domain to frequency domain. The new
frequency selection procedure is a better selecting approach compared to the approach used by
Martinus [1] because it has logical gradients and no strange outliers. The correct frequencies
with corresponding information are selected and the noise is cancelled out at the frequencies
where the sines have no power.

• The local SNR shows that when the frequency of the sine waves becomes higher, the uncertainty
of the measurements becomes larger. The sine waves experiments 14, 15 and 16 are beneath
the boundary condition but are still used for comparisons and system identification. Due to the
new selection procedure, the correct data points are selected and these points still contain some
information about the response of the system.

• When combining the results of the overall and local SNR, 𝑛፞ (𝑃𝑇𝑀፞ measurement of the engine
speed at the diesel engine) shows the highest overall certainty of the three engine speed mea-
surements. Therefore, the measured data sets 𝑛፬፞፭, 𝑛፞ and𝑀፬ are used for system identification,
validation and comparison.

• The data sets used are the open and closed loop frequency domain data sets of the multiple sine
waves experiment, the time domain long and short chirp data sets and the time domain step
response data set. Mainly, the frequency domain data sets are used for system identification
because the noise is cancelled out and the system identification speeds up in frequency domain.

• The frequency domain data of the sine waves showed that the amount of measurements after 1
[rad/s] is small compared to the amount before 1 [rad/s]. In open loop frequency domain, it is not
possible to obtain the responses of the governor and diesel engine individually. No measurements
are performed between the governor and diesel engine. Therefore, only the relation between
the input of the governor and the output of the diesel engine can be taken into account.





4
Linear Model Analysis &

Improvements

In this chapter possible improvements of the linear model structure are determined. This chapter exists
out of five main sections. In the first main section, a sensitivity analysis is performed of each system
parameter on the initial closed loop model. Besides, also an open loop sensitivity analysis is performed
that is compared with the initial closed loop model structure response. In the second main section, a
simplification of the diesel engine model is performed on the linear model structure. This simplification
is applied in both closed and open loop environment. In the third main section, zooming in on the
existing open loop sub-models with the simplified diesel engine model is discussed. The fourth main
section, discusses the implementation of possible new terms to the model structure to improve the
linear model. The chapter ends with an overview of the most important conclusions and findings.

The linear model presented in section 2.4 is used for analysis and improvement. To distinguish the
different models form each other, the linear model presented in section 2.4 is referred to as initial linear
model.

4.1. Sensitivity Analysis
The first main section discusses the sensitivity analysis of the initial linear model. A sensitivity analysis is
performed to get insight in the influence of parameter variations on the model. The sensitivity analysis
is executed with transfer functions and presented in frequency domain with Bode plots. Two different
sensitivity analyses are carried out, closed loop and open loop. The difference between open loop and
closed loop models is shown in figure 4.1. Figure 4.1 also shows the open loop sub-models of the
simulation model.
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Figure 4.1: Model structure with open and closed loop sections.

The values of the parameters of the closed and open loop sensitivity analysis are varied between the
upper and lower limits that are defined for the parameters[1]. The parameters that can be varied are

29
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𝜏፧, 𝐾፩, 𝐾።, 𝑔 and 𝑣. The initial values used for the sensitivity analyses are presented in equation (2.35).
The upper and lower limits of each parameter are shown in equation (2.36) to (2.40). These equations
can be found in section 2.5.

4.1.1. Closed Loop
The response of the initial linear model is also verified by Martinus [1]. However, the influence of
each parameter on the response is not yet investigated. The initial closed loop transfer functions that
are used for the sensitivity analysis can be seen in equation (2.26) to (2.28). The initial closed loop
model contains five parameters, 𝜏፧, 𝐾፩, 𝐾።, 𝑔 and 𝑣. In this section only the relation

᎑፧∗
᎑፧∗ᑤᑖᑥ

is presented

because it represents the whole closed loop system. The sensitivity analyses of the other closed loop
relations of the initial linear model can be found in appendix B. In figure 4.2, the five different Bode
plots for the variation of each parameter are shown.
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Figure 4.2: Sensitivity analysis of initial closed loop model with five different parameters.
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The response to lowest and highest frequencies of the magnitude of the model compare with the
expected values shown in table 2.4. In figure 4.2b the behaviour of 𝐾። is visible. Sensitivity is visible
in the low-frequency region up to 1 [rad/s]. Between 0.1 and 10 [rad/s], parameter 𝑔 is slightly
influencing the behaviour of the model. Outside this area different values of 𝑔 have the same path and
behaviour. From the five Bode plots of the sensitivity analysis, the parameters 𝐾፩, 𝜏፧ and 𝑣 show their
sensitivity in the high frequent region. Due to the sensitivity of most parameters in the high-frequency
region and almost no sensitivity in the low-frequency region, it is difficult to extract the influence of a
parameter on the response. This will make it more difficult to compare with measured data and see
the individual influence of parameters.

4.1.2. Open Loop
Before an open loop sensitivity can be performed, the corresponding transfer functions have to be
determined. For the open loop sensitivity analysis, the initial linear model is simplified by removing
all the feedback loops. This is performed by setting parameter 𝑔 to zero and therefore removing it
from the model, meaning that the engine torque dependency on actual engine speed is removed. It
is assumed that the influence of 𝑔 on the model is minimal and the removal simplifies the open loop
derivation. Further, the closed loop sensitivity analysis of parameter 𝑔 presented in figure 4.2e, shows
a low sensitivity. Moreover, the removal of 𝑔 decreases the amount of identifiable parameters. Setting
𝑔 to zero causes that equation (2.18) is transformed into equation (4.1).

𝛿𝑀∗ = 𝑣𝛿𝑋∗፟ (4.1)

The open loop model exist out of two sub-models, which are shown in figure 4.1. These sub-models
are described by the transfer functions shown in equation (4.2) and (4.3). Combining these two sub-
models creates the open loop transfer function with the error between engine speed set point and
engine speed as input and the engine speed as output. The open loop transfer function is shown in
equation (4.4), which is the generic form of a second order transfer function [18]. The derivations of
the open loop transfer functions is shown in appendix C.

𝐻ፂፏ =
𝛿𝑛∗
𝛿𝑀∗፬

= 1
𝜏፧𝑠 + 2

(4.2)

𝐻ፆዄፃ =
𝛿𝑀∗፬
𝛿𝑒∗፧

= 𝑣(𝐾፩ +
𝐾።
𝑠 ) (4.3)

𝐻ፎፋ = 𝐻ፆዄፃ ⋅ 𝐻ፂፏ =
𝛿𝑛∗
𝛿𝑒∗፧

=
፯ፊᑡ
Ꭱᑟ
𝑠 + ፯ፊᑚ

Ꭱᑟ
𝑠ኼ + ኼ

Ꭱᑟ
𝑠

(4.4)

With the open loop transfer function (4.4) a sensitivity analysis is performed. The four different
parameters,𝜏፧, 𝐾፩, 𝐾። and 𝑣 are varied to investigate the sensitivity. In figure 4.3 the four Bode
plots of the open loop sensitivity analysis are shown. The initial values and variation of the parameters
are shown in section 2.5.
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Figure 4.3: Sensitivity analysis of open loop system with four different parameters.

Clearly, the sensitivity of 𝐾። is visible in the low frequent region. At a frequency of 1 [rad/s] when the
influence of a varying 𝐾። becomes zero, the influence of 𝐾፩ starts to take effect on the model. The
sensitivity of 𝜏፧ starts to have effect in the same region as 𝐾፩. Parameter 𝑣, shown in figure 4.3d,
behaves like a gain. An increase of 𝑣 causes an overall increase of the open loop model in terms of
the magnitude. The value of 𝑣 does not effect the phase.

Concluding, in open loop the influence of each individual parameter is visible. All four parameters
show a good sensitivity and have a different influence on the response of the model. Compared to
the closed loop sensitivity analysis, the influence of an individual parameter can be determined much
better in an open loop environment.

4.2. Simplification
In the second main section a simplification to improve the linear model structure is discussed. The initial
linear model is already simplified in the previous section by the removal of parameter 𝑔. The initial
linear model presented in section 2.4 is further simplified by fixing parameter 𝑣 to one. First, setting 𝑣 to
one decreases the amount of identifiable parameters. Secondly, Damen Shipyards does not work with
fuel rack maps in their simulation models and expect that these parameters are not needed to obtain
the correct system behaviour. Further, the open loop sensitivity analysis of parameter 𝑣 presented in
figure 4.3d, shows that it behaves like a gain. Moreover, dependencies of the parameters indicate that
parameter 𝑣 is always coupled with 𝐾፩ or 𝐾።, making it impossible to identify the parameters individually.
By setting 𝑣 to one and 𝑔 to zero, the diesel engine changes into a constant torque machine. Equation
(2.18) describing the brake torque, changes into equation (4.5). The remaining identifiable parameters
are 𝐾፩, 𝐾። and 𝜏፧.

𝛿𝑀∗ = 1 ⋅ 𝛿𝑋∗፟ (4.5)
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The simplification of the initial linear model causes changes in transfer functions and state space no-
tation of the initial model structure. The closed loop simplified transfer functions, state space notation
and sensitivity analysis are shown in appendix D. The sensitivity analysis with the simplified closed loop
model structure compare, as expected, very well to figure 4.2a, 4.2b and 4.2c of the sensitivity analysis
of the initial linear model. Simplifying the initial linear model by omitting 𝑔 and fixing parameter 𝑣 to
one, does not affect the response of relation ᎑፧∗

᎑፧∗ᑤᑖᑥ
.

4.3. Open Loop Sub-models
In the third main section, zooming in on the existing open loop sub-models with the applied simpli-
fication is discussed. The open loop sensitivity analysis in section 4.1.2 is performed with transfer
function 𝐻ፎፋ that combines the sub-models. Zooming in on single sub-models creates more simple
model structures with a lower amount of identifiable parameters. Figure 4.1 shows the sub-models
that are present in the linear model of the propulsion system: governor described by a PI controller,
diesel engine and the core propulsion system. The governor and diesel engine is considered as one
sub-model, the governor+diesel engine sub-model, because between the governor and diesel engine
no measurements are performed.

4.3.1. Core Propulsion Sub-model
The core propulsion sub-model describes the ship dynamics, comprising the shaft loop and torque
balance. The simplification of the initial linear model does not affect the core propulsion sub-model.
Zooming in on the core propulsion in the open loop linear model shows a very simple sub-model. The
transfer function of the core propulsion sub-model is already derived for the open loop sensitivity anal-
ysis. The input is the shaft torque 𝛿𝑀∗፬ and the output is the engine speed 𝛿𝑛∗. Equation (4.6) shows
the transfer function of the core propulsion sub-model. The core propulsion system, only dependent
on parameter 𝜏፧, is shown in equation (2.23).

𝐻ፂፏ =
𝛿𝑛∗
𝛿𝑀∗፬

= 1
𝜏፧𝑠 + 2

(4.6)

The core propulsion sub-model is a single input, single output system with one state. With transfer
function (4.6) known, a state space notation is derived. For the conversion from transfer function to
state space notation, the controllable canonical method is used [19]. The state space notation is used
as model structure for the system identification of the core propulsion system. The continuous time
invariant state space notation of the core propulsion sub-model is shown in equation (4.7) to (4.11).
Corresponding with transfer function (4.6), the state space notation is only dependent on 𝜏፧.

̄�̇� = 𝐴�̄� + 𝐵�̄� (4.7)

�̄� = 𝐶�̄� + 𝐷�̄� (4.8)

�̄� = �̄� = 𝛿𝑛∗, �̄� = 𝛿𝑀∗፬ (4.9)

𝐴 = − 2𝜏፧
, 𝐵 = 1

𝜏፧
(4.10)

𝐶 = 1, 𝐷 = 0 (4.11)

With transfer function ᎑፧∗
᎑ፌ∗ᑤ

, a sensitivity analysis of the sub-model is performed. The sensitivity analysis
shows the response of parameter 𝜏፧ of the core propulsion sub-model. The sensitivity analyses of the
core propulsion sub-model is compared with the corresponding open loop frequency domain data ᎑፧∗

᎑ፌ∗ᑤ
.

Parameter 𝜏፧ is varied between 0 and 3 [s]. Figure 4.4 shows the sensitivity analysis of the core
propulsion system together with the open loop frequency domain data.
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Figure 4.4: Bode diagram of sensitivity analysis of open loop core propulsion system ᒉᑟ∗
ᒉᑄ∗ᑤ

with Ꭱᑟ varying and corresponding
open loop frequency domain data ᒉᑟ∗

ᒉᑄ∗ᑤ
.

The core propulsion sub-model ᎑፧
∗

᎑ፌ∗ᑤ
compares very well with the corresponding frequency domain data.

The behaviour of the model structure seems to be the same as the multiple sine wave data. It must be
noted that the last three points of the frequency domain data have a high uncertainty. In figure 4.4,
the magnitude and phase show that the value of 𝜏፧ is bigger than 0 [s] but smaller than 0.5 [s].

4.3.2. Governor and Diesel Engine Sub-model
The simplification is taken into account for the governor+diesel engine sub-model. Therefore, the
governor+diesel engine sub-model contains only two identifiable parameters. These parameters are
the proportional and integral gain 𝐾፩ and 𝐾። of the PI controller. Zooming in on the sub-model shows
the response of the governor and diesel engine with the engine speed error 𝛿𝑒∗፧ as input and the shaft
torque 𝛿𝑀∗፬ as output. In section 4.1.2, the transfer function of the governor+diesel engine sub-model
is derived. Parameter 𝑣 from equation (C.4) is set to one and is not an identifiable parameter anymore,
which is shown in equation (4.12).

𝐻ፆዄፃ =
𝛿𝑀∗፬
𝛿𝑒∗፧

= 1 ⋅ (
𝐾፩𝑠 + 𝐾።

𝑠 ) (4.12)

The governor+diesel engine sub-model is also a single input, single output system with one state.
With transfer function (4.12) known, a state space notation is created using the controllable canonical
method [19]. The state space notation is used as model structure for the system identification of
the governor+diesel engine system. The continuous time invariant state space notation of the gov-
ernor+diesel engine sub-model is shown in equation (4.13) to (4.17). Corresponding with transfer
function (4.12), the state space notation is dependent of the parameters 𝐾፩ and 𝐾።. The input is the
error 𝛿𝑒∗፧ and the output is the shaft torque 𝛿𝑀∗፬ .

̄�̇� = 𝐴�̄� + 𝐵�̄� (4.13)

�̄� = 𝐶�̄� + 𝐷�̄� (4.14)

�̄� = �̄� = 𝛿𝑀∗፬ , �̄� = 𝛿𝑒∗፧ (4.15)

𝐴 = 0, 𝐵 = 1 (4.16)

𝐶 = 𝐾። , 𝐷 = 𝐾፩ (4.17)



4.4. Implementations 35

A sensitivity analysis is performed with transfer function ᎑ፌ∗ᑤ
᎑፞∗ᑟ

to investigated the response of the gover-
nor+diesel engine sub-model dependent on parameters 𝐾፩ and 𝐾።. The sensitivity analyses is compared
with the corresponding open loop frequency domain data. The variation of the values of 𝐾፩ and 𝐾። are
bounded by upper and lower limits presented in section 2.5. The initial values for 𝐾፩ and 𝐾። are respec-
tively 5 and 3. Figure 4.5 shows the sensitivity analysis of the governor+diesel sub-model dependent
on two parameters, together with the open loop frequency domain data.
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Figure 4.5: Bode diagrams of sensitivity analysis of open loop governor+diesel sub-model with two different parameters and
corresponding open loop frequency domain data ᒉᑄ∗ᑤ

ᒉᑖ∗ᑟ
.

The magnitude of the governor+diesel sub-model seems to compare fine with the corresponding fre-
quency domain data. The conclusion can be drawn that the system contains at least a gain and an
integral term for the controller. At low frequencies up to 1 [rad/s], the influence of 𝐾። is visible and
compares with the data. The magnitude shows that the value of 𝐾። probably lies between 3 and 5.
Between 1 and 10 [rad/s], the influence of 𝐾፩ is visible and compares with the data. The magnitude
shows that the value of 𝐾፩ probably lies between 1 and 5. At high frequencies, the magnitude of the
data becomes smaller than that of the model. The phase shows an even bigger difference, the data
becomes more negative and the model converges to zero. It must be noted that the last three points
of the frequency domain data have a high uncertainty. These differences between governor+diesel
engine sub-model and the corresponding frequency domain data can be explained by the absence
of actuators, sensors, inertia in the diesel engine and certain software of the governor in the model
structure. Such components can induce delays and lag which change the behaviour of the system.

4.4. Implementations
In the fourth main section, the implementation of possible new terms to improve the linear model
structure is discussed. Martinus [1] recommended the implementation of multiple terms to the model
structure. Together with the findings during the comparison of the governor+diesel engine sub-model
with the corresponding data, three implementation are investigated. The addition of a derivative term
to the governor, adding a time delay and the addition of a second order system are determined. The
following points give some additional explanation why these terms might improve the model structure.

• A derivative term changes the governor and could be an improving addition. Besides, it is un-
known if the Stan Tug 1205 is equipped with a PI or PID controller. The derivative term will
influence the magnitude and phase response of the governor+diesel engine sub-model.

• The phases of the measured data and model shown in figure 4.5 behave differently. The phase of
the measured data shows a path downwards, which can be caused by a time delay. Time delays
can be induced by actuators, sensors present in the system [20] and by the diesel engine and
software in the governor. Time delays are very common in computer controlled systems [21].
Besides, a time delay of 0.4 [s] is estimated in section 3.2.1.
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• The magnitude in figure 4.5 of the governor+diesel engine sub-model and the corresponding
frequency domain data behave differently in the high frequent region. The addition of a second
order system could improve the model structure. A second order system induces lag and causes
that the frequency response of the magnitude and phase becomes smaller in the middle to high
frequent region. The presence of lag could be explained by different things. Lag could be induced
by actuators, sensors, inertia in the diesel engine and software in the governor.

4.4.1. PID Controller
Adding a derivative term changes the PI controller into a PID controller. A continuous-time PID con-
troller with proportional, integral, and derivative gains 𝐾፩, 𝐾።, and 𝐾፝ with a first-order derivative filter
time constant 𝑇 is implemented in the model[22]. The first order derivative filter time constant 𝑇 is
added to prevent the PID controller from overloading to infinity. Equation (4.18) shows the transfer
function of the governor and diesel engine sub-model with a PID controller. Equation (4.19) shows the
standard form of the transfer function of the governor+diesel engine sub-model.

𝐻ፆዄፃ,ፏፈፃ =
𝛿𝑀∗፬
𝛿𝑒∗፧

= (𝐾፩ +
𝐾።
𝑠 +

𝐾፝𝑠
𝑇 𝑠 + 1) (4.18)

𝐻ፆዄፃ,ፏፈፃ =
(𝐾፩𝑇 + 𝐾፝)𝑠ኼ + (𝐾።𝑇 + 𝐾፩)𝑠 + 𝐾።

𝑇 𝑠ኼ + 𝑠 (4.19)

To investigate if the governor of a Stan Tug 1205 can be described with a PID controller, a sensitivity
analysis is performed. The sensitivity analyses is compared with the corresponding open loop frequency
domain data. The sensitivity analysis is performed with the transfer function shown in equation (4.19).
The initial values of 𝐾፩ and 𝐾። are respectively 10 and 3. The parameters 𝐾፝ and 𝑇 are varied for the
sensitivity analysis. The value of 𝐾፝ is varied between 0 and 5 with an initial value of 1 and 𝑇 is varied
between 0 and 0.05[s] with an initial value of 0.01[s]. Figure 4.6 shows the sensitivity analysis of
the governor+diesel engine sub-model with a PID controller and the corresponding frequency domain
data.
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Figure 4.6: Bode diagrams of sensitivity analysis of open loop governor+diesel engine sub-model with a PID controller and
corresponding open loop frequency domain data ᒉᑄ∗ᑤ

ᒉᑖ∗ᑟ
.

The governor+diesel engine sub-model with a PID controller does not compare well with the corre-
sponding frequency domain data. The differences which were indicated do not resolve but become
bigger by the addition of a derivative term 𝐾፝ with a first-order derivative filter time constant 𝑇 . The
magnitude of the frequency domain data becomes smaller. However, the magnitude of the model
becomes more positive. Comparing the phase of the data and model shows the same difference that
was observed with a PI controller, the data becomes more negative and the model converges to zero.
It must be noted that the last three points of the frequency domain data have a high uncertainty. Con-
cluding, the system does not contain a derivative term. Therefore, a PID controller will not be taken
into account during the system identification.
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4.4.2. Time Delay
To create a possible better response of the phase, a time delay is implemented. A time delay described
by an exponential function does not affect the magnitude but only the phase of a system [21]. Martinus
[1] also showed that the data contains a time delay. This is verified in section 3.2.1 by comparing the
step response time domain data of the engine speed set point with the engine speed. The time delay
is implemented in the governor+diesel engine sub-model as exponential function 𝑒ዅ፭ᑕ⋅፬ [21]. This
results in a model structure with three identifiable parameters. Parameter 𝑡፝ is indicates the time delay
is seconds. The transfer function with time delay is shown in equation (4.21).

𝐻፭፝ = 𝑒ዅ፭ᑕ⋅፬ (4.20)

𝐻ፆዄፃዄ፭፝ =
𝛿𝑀∗፬
𝛿𝑒∗፧

= 𝑒ዅ፭ᑕ⋅፬ ⋅ (
𝐾፩𝑠 + 𝐾።

𝑠 ) (4.21)

To investigate if a time delay has a positive influence on the response of the governor+diesel engine sub-
model, a sensitivity analysis is performed. The sensitivity analyses is compared with the corresponding
open loop frequency domain data. With transfer function (4.21) a sensitivity analysis is executed. The
initial values of 𝐾፩ and 𝐾። are respectively 3 and 4. The parameter 𝑡፝ is varied between 0 and 0.5
seconds. Figure (4.7) shows the sensitivity analysis of the governor+diesel engine sub-model with a
time delay and the corresponding frequency domain data.
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Figure 4.7: Bode diagram of sensitivity analysis of open loop governor+diesel engine sub-model with varying time delay and
corresponding open loop frequency domain data ᒉᑄ∗ᑤ

ᒉᑖ∗ᑟ
.

Clearly. the addition of a time delay function to the governor+diesel engine sub-model influences the
phase in a positive manner. The time delay causes that the phase becomes more negative at higher fre-
quencies. This response compares well with the corresponding frequency domain data, noted that the
last three point have a high uncertainty. The magnitude of the sub-model stays unchanged although a
time delay is added. The sensitivity analysis shows that the value of 𝑡፝ probably lies between 0.1 and
0.5 [s]. The time domain data shows a time delay and that the phase of the frequency domain data
compares well with the governor+diesel engine sub-model with time delay. Therefore, an exponential
function as time delay will be taken into account with the linear system identification.

Rewriting transfer function (4.21) to a state space notation is very difficult with an exponential function.
Besides, the System Identification Toolbox of Matlab is not very fond of time delays in state space no-
tation. Therefore, the system identification of the governor+diesel engine sub-model with time delay
will be performed with a transfer function as model structure.
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4.4.3. Second Order System
To create a possible better response of the magnitude, a second order system is implemented to induce
lag. In transfer function (4.22) a second order system is shown, which is indicated as 𝐻፥ፚ፠. This second
order system is based on a mass-spring-damper system and contains the parameters 𝜔፧ and 𝜁 [23].
Parameter 𝜔፧ determines the break frequency in [rad/s] and parameter 𝜁 determines the amount of
damping of the peak at the break frequency [23]. Adding the second order system transfer function
to the governor+diesel engine sub-model generates transfer function (4.23).

𝐻፥ፚ፠ =
𝜔ኼ፧

𝑠ኼ + 𝜁𝜔፧𝑠 + 𝜔ኼ፧
(4.22)

𝐻ፆዄፃዄ፥ፚ፠ =
𝛿𝑀∗፬
𝛿𝑒∗፧

= (
𝐾፩𝑠 + 𝐾።

𝑠 ) ⋅ 𝜔ኼ፧
𝑠ኼ + 𝜁𝜔፧𝑠 + 𝜔ኼ፧

(4.23)

To investigate if a second order system has a positive influence on the response of the governor+diesel
engine sub-model, a sensitivity analysis is performed. The sensitivity analyses is compared with the
corresponding open loop frequency domain data. With transfer function (4.23) a sensitivity analysis is
executed. The initial values of 𝐾፩ and 𝐾። are respectively 3 and 4. Parameter 𝜔፧ is varied between 6
and 18 [rad/s] and has an initial value of 10 [rad/s]. Parameter 𝜁 is varied between 0 and 1 [-] and
has an initial value of 0.5 [-]. Figure 4.8 shows the sensitivity analysis of the governor+diesel engine
sub-model with a second order system and the corresponding frequency domain data.
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Figure 4.8: Bode diagram of sensitivity analysis of open loop governor+diesel engine sub-model with varying second order
system parameters Ꭶᑟ and ᎓ s and corresponding open loop frequency domain data

ᒉᑄ∗ᑤ
ᒉᑖ∗ᑟ

.

The second order system has a clear effect on the FRF magnitude. In the high frequent region, the
response of the governor+diesel engine sub-model with second order system becomes smaller. This
behaviour compares with the corresponding frequency domain data, noted that the last three points
have a high uncertainty. However, the phase still needs improvement despite the fact that the second
order system influences the phase in a positive way. This could be improved by adding the time delay.
The expectation is that the best estimation with parameters 𝜔፧ and 𝜁 is between the values respectively
7 and 13 [rad/s] and 0.4 or higher. The addition of the second order system improves the response of
the model but can be seen as a black box addition. The ope loop system identifications with second
order system will be performed with transfer functions, therefore the state space notation is not given.
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4.4.4. Closed Loop Implementation
The second order system and the time delay showed to be improvements for the model structure.
These improvements are implemented in the open loop governor+diesel engine sub-model. To perform
a system identification and comparisons in closed loop, these implementations are integrated in a
closed loop model structure. However, implementing a time delay in closed loop as 𝑒ዅ፭ᑕ⋅፬ creates an
internal delay. Internal delays are not supported by the System Identification Toolbox and therefore
it is chosen to use a Padé approximation. A Padé approximation can be used as an approximation
of a time delay 𝑒ዅ፭ᑕ⋅፬ and with different orders. How higher the order, the better the approximation
of 𝑒ዅ፭ᑕ⋅፬. However, high-order Padé approximations tend to be very sensitive for perturbations in the
system [24]. Therefore, it is chosen to use a fifth order Padé approximation for the closed loop model
structure. A fifth order Padé approximation of a time delay with parameter 𝑡፝ is shown in equation
(4.24).

𝐻፭፝,ፏፚ፝ =
30240 − 15120𝑡፝ + 3360𝑡ኼ፝ − 420𝑡ኽ፝ + 30𝑡ኾ፝ − 𝑡፝
30240 + 15120𝑡፝ + 3360𝑡ኼ፝ + 420𝑡ኽ፝ + 30𝑡ኾ፝ + 𝑡፝

(4.24)

The closed loop transfer functions with Padé approximation and second order system of the relations
᎑፧∗
᎑፧∗ᑤᑖᑥ

and ᎑ፌ∗ᑤ
᎑፧∗ᑤᑖᑥ

are shown in (4.25) and (4.26). Due to the fifth order Padé approximation the whole

function is not shown because it becomes extremely large and unclear. Equation (4.27) shows the
transfer function of the combined relations, creating a model structure with one input and two outputs.

𝛿𝑛∗
𝛿𝑛∗፬፞፭

=
𝐻፩ ⋅ 𝐻ፆዄፃ ⋅ 𝐻፥ፚ፠ ⋅ 𝐻፭፝,ፏፚ፝

𝐻፩ ⋅ 𝐻ፆዄፃ ⋅ 𝐻፥ፚ፠ ⋅ 𝐻፭፝,ፏፚ፝ + 1
(4.25)

𝛿𝑀∗፬
𝛿𝑛∗፬፞፭

=
𝐻ፆዄፃ ⋅ 𝐻፥ፚ፠ ⋅ 𝐻፭፝,ፏፚ፝

𝐻፩ ⋅ 𝐻ፆዄፃ ⋅ 𝐻፥ፚ፠ ⋅ 𝐻፭፝,ፏፚ፝ + 1
(4.26)

⎡
⎢
⎢
⎢
⎢
⎣

᎑፧∗
᎑፧∗ᑤᑖᑥ

᎑ፌ∗ᑤ
᎑፧∗ᑤᑖᑥ

⎤
⎥
⎥
⎥
⎥
⎦

=

⎡
⎢
⎢
⎢
⎢
⎢
⎣

ፇᑔᑡ⋅ፇᐾᎼᐻ⋅ፇᑝᑒᑘ⋅ፇᑥᑕ,ᑇᑒᑕ
ፇᑔᑡ⋅ፇᐾᎼᐻ⋅ፇᑝᑒᑘ⋅ፇᑥᑕ,ᑇᑒᑕዄኻ

ፇᐾᎼᐻ⋅ፇᑝᑒᑘ⋅ፇᑥᑕ,ᑇᑒᑕ
ፇᑔᑡ⋅ፇᐾᎼᐻ⋅ፇᑝᑒᑘ⋅ፇᑥᑕ,ᑇᑒᑕዄኻ

⎤
⎥
⎥
⎥
⎥
⎥
⎦

(4.27)

Equation (4.27) is rewritten to state-space notation with Matlab function ’ss’[25]. Other combinations
of sub-models can also be used for the closed loop model structure. For instance, the fifth order Padé
approximation of a time delay can be left out of (4.27) to create a closed loop model structure with only
the addition of a second order system. The closed loop model structures with second order system and
fifth order Padé approximation will be used for linear closed loop system identification and comparisons
in time and frequency domain.
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4.5. Overview of Conclusions
In this chapter multiple conclusions are stated. The following enumeration gives a summary of the most
important conclusions and findings of the linear model structure improvements stated in this chapter.

• In open loop the influence of each individual parameter is visible. All four parameters show a
good sensitivity and have a different influence on the response of the model. Compared to the
closed loop sensitivity analysis, the influence of an individual parameter can be determined much
better in an open loop environment.

• The initial model is simplified by setting 𝑣 to one and 𝑔 is set to zero. The diesel engine changes
into a constant torque machine and the parameters 𝐾፩ or 𝐾። are not dependent on parameter 𝑣
anymore. The remaining identifiable parameters of the simplified model structure are 𝐾፩, 𝐾። and
𝜏፧.

• Zooming in on the core propulsion system, reveals a very simple system that is dependent on
one parameter, 𝜏፧. The core propulsion sub-model compares very well with the corresponding
frequency domain data.

• The governor+diesel engine sub-model shows differences with the corresponding frequency do-
main data. Therefore, new terms are implemented in the open model structure to investigate
possible improvements. The addition of a derivative term, changing the governor in a PID con-
troller, does not have the desired improving effect on the response. However, the addition of
a time delay and second order system have the desired effect on respectively the phase and
magnitude. The time delay is implemented in open loop as an exponential function.

• The second order system and time delay are also implemented in the closed loop model structure.
However, internal delays are not supported by the System Identification Toolbox. Therefore, it is
chosen to use a fifth order Padé approximation of a time delay for the closed loop model structure.

With the conclusions and findings from this chapter, the linear model/sub-model structures that will
be used for the linear system identification are selected. The model structures that will be determined
during the linear system identification are divided in closed loop and open loop model structures. In
open loop, the core propulsion sub-model and the governor+diesel engine sub-model will be used. The
second order system and exponential time delay will be implemented in the governor+diesel engine
sub-model. In closed loop, the simplified model structure will be used and the second order system
and fifth order Padé approximation of the time delay will be implemented.



5
Linear System Identification

In this chapter the results of different performed identifications are presented. This chapter exist
out of eight main sections. In the first main section, the searching criterion used for these system
identifications is discussed. In the second main section, the assembly of the measured data sets
and the model structures to perform a system identification is presented. In the third and fourth
main sections, the results of open and closed loop identifications are shown. In the fifth and sixth
main sections, the best results of the open and closed loop system identification are compared and
validated in frequency and time domain. In the seventh main section, the obtained parameter values
are discussed. This chapter ends with an overview of the conclusions and findings from the linear open
and closed system identification results, comparisons and validation.

5.1. Searching Criterion
In this main section, the searching criterion needed to perform a system identification is discussed. The
optimisation approach and boundary conditions of the system identification are also discussed in this
section. In section 2.5 the searching criterion used during the benchmark identification is introduced.
For the linear system identifications that will be performed in this chapter, the same searching criterion
is used. Important is that the cost function contains a weighted cost function term. This term is added
to optimize the minimisation for multiple outputs. The open loop sub-models presented in section 4.3
are single input, single output systems. For the identification of the open loop sub-models the weighted
cost function term is removed from the cost function. Besides, the regularization extension used by
Martinus [1] is also removed because it did not improve the system identification.

For the optimisation of the linear system identification, different constraints and approaches are used.
The problem might arise that a local minimum is found instead of the preferable global minimum. An
approach to optimise the identification by using a large amount of different initial parameters sets is
selected. There will be 50 random but feasible starting sets of initial parameters per system identi-
fication to find the global minimum. From these 50 different identifications, the lowest cost function
minimum is selected. However, the chance exist that the identified parameter set with the lowest cost
function minimum is an unstable system. When this occurs, the parameter set with the lowest cost
function minimum that is stable is selected. Important to note, the lowest cost function compares with
the highest fitting percentage. Therefore, the fitting percentage of each selected identification will be
presented.

To prevent that the searching criterion runs for a very long time in search for the ideal zero optimum,
stopping criteria are used to constraint each identification. An easy way of constraining an identifica-
tion is the addition of a maximum amount of iteration steps. For the linear system identifications a
maximum of 100 iterations per identification is added. To avoid that the minimum is already found
during these 100 iterations or that the improvement steps become extremely small, also a tolerance
is used as stopping criteria. The tolerance is set to 0.001 percentage difference between the current
value of the cost function and the expected improvement of the next iteration.

41
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Boundaries of the parameters are also introduced to prevent that the searching criterion searches for
an optimum for a very long time. These boundary conditions are also the range within the 50 random
but feasible starting sets of initial parameters are varied. The boundary conditions of the identifiable
parameters are presented in table 5.1.

Table 5.1: Overview of boundary conditions of the identifiable parameters.

𝜏፧ [s] 𝐾፩ [-] 𝐾። [-] 𝑡፝ [s] 𝜁 [-] 𝜔፧ [rad/s]
Lower bound 0 0 0 0 0.3 7
Upper bound 5 10 10 0.5 4 13

5.2. Data & Model Structure
This main section presents the assembly of the improved measured data sets and the model struc-
tures to perform a system identification. For system identification, a data set, model structure and
searching criterion are needed. In the previous section the searching criterion for the linear system
identification is introduced. In section 3.4 the data sets available for system identification are shown.
The step response and short chirp data set are used for the time domain validation, see section 5.6.
The frequency domain data sets of the multiple sine waves and the time domain data set of the long
chirp are used for the system identifications.

In chapter 4 different open and closed loop model structures are presented. The closed loop sim-
plified model is identified with and without the implementations that are discussed. The open loop
sub-models are the core propulsion sub-model and the governor+diesel engine sub-model with differ-
ent additions. These different model structures can be combined with different data sets to perform a
system identification. However, the measured data is of closed loop origin. Due to the characteristics
of the multiple sine waves in frequency domain, it will work as an instrumental variable and make an
open loop system identification possible. Therefore, an identification with open loop sub-models is only
possible with the frequency domain data of the multiple sine waves. The following two summations
show the combinations of model structures and data sets that are used to perform a system identifi-
cation. CL indicates the closed loop identifications that are performed. OL represents the open loop
identification with sub-models that are executed.

• OL1: Core propulsion sub-model with multiple sine waves open loop frequency domain
data ᎑፧∗

᎑ፌ∗ᑤ
. Identifiable parameter is 𝜏፧.

• OL2: Governor+diesel engine sub-model with multiple sine waves open loop frequency
domain data ᎑ፌ∗ᑤ

᎑፞∗ᑟ
. Identifiable parameters are 𝐾፩ and 𝐾።.

• OL3: Governor+diesel engine sub-model with a time delay, combined with multiple sine
waves open loop frequency domain data ᎑ፌ∗ᑤ

᎑፞∗ᑟ
. Identifiable parameters are 𝑡፝, 𝐾፩ and 𝐾።.

• OL4: Governor+diesel engine sub-model with a second order system, combined with
multiple sine waves open loop frequency domain data set ᎑ፌ

∗ᑤ
᎑፞∗ᑟ

. Identifiable parameters
are 𝐾፩, 𝐾።, 𝜁 and 𝜔 .

• OL5: Governor+diesel engine sub-model with a second order system and time delay,
combined with multiple sine waves open loop frequency domain data ᎑ፌ∗ᑤ

᎑፞∗ᑟ
. Identifiable

parameters are 𝐾፩, 𝐾።, 𝜁, 𝜔 and 𝑡፝.
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• CL1: Closed loop simplified model structure with multiple sine waves closed loop fre-
quency domain data. Identifiable parameters are 𝜏፧, 𝐾፩ and 𝐾።.

• CL2: Closed loop simplified model structure with long chirp closed loop time domain data.
Identifiable parameters are 𝜏፧, 𝐾፩ and 𝐾።.

• CL3: Closed loop simplified model structure with a second order system, combined with
multiple sine waves closed loop frequency domain data. Identifiable parameters are 𝜏፧,
𝐾፩, 𝐾።, 𝜁 and 𝜔.

• CL4: Closed loop simplified model structure with time delay (Padé) and second order sys-
tem, combined with multiple sine waves closed loop frequency domain data. Identifiable
parameters are 𝜏፧, 𝐾፩, 𝐾።, 𝜁, 𝜔 and 𝑡፝.

5.3. Results Open Loop System Identification
In this section the results and figures of the open loop system identifications are discussed. Five
different open loop system identifications are performed which are indicated with OL1 to OL5. The
results of the best sub-models are combined to create a parameter set that can be compared with the
closed loop system identifications. The estimated results of the open loop system identifications are
shown in table 5.2. The open loop estimated parameters show resemblances concerning the parameter
𝐾።. However, differences are visible in the estimation of parameter 𝐾፩.

Table 5.2: Results of different full-scale open loop linear system identifications.

Parameters Fitting
𝜏፧ [s] 𝐾፩ [-] 𝐾። [-] 𝑡፝[s] 𝜔፧ [rad/s] 𝜁 [-] 𝛿𝑛∗ [%] 𝛿𝑀∗፬ [%]

OL1 0.3897 - - - - - 56.01፱ -
OL2 - 1.003 4.2725 - - - - 54.99፱፱

OL3 - 3.4363 4.2639 0.4022 - - - 55.17፱፱

OL4 - 2.902 4.2699 - 8.2912 0.5616 - 55.17፱፱

OL5 - 4.36 4.2664 0.1023 8.202 0.88 - 54.88፱፱

ᑩ: This is the fitting of ᒉᑟ
∗

ᒉᑄ∗ᑤ
.

ᑩᑩ: These are the fittings of
ᒉᑄ∗ᑤ
ᒉᑖ∗ᑟ

.

5.3.1. Core Propulsion Sub-model
The core propulsion sub-model is only dependent on the parameter 𝜏፧. The estimated value is 0.3897,
which is between the predicted area 0 and 0.5 from the sensitivity analysis in section 4.3.1. However,
𝜏፧ is lower than the expected value based on the system inertia. Section 5.7.1 elaborates on this dif-
ference. The response of the core propulsion sub-model with the identified parameter 𝜏፧ is compared
with the corresponding open loop frequency domain data ᎑፧∗

᎑ፌ∗ᑤ
and the benchmark. This comparison is

presented in figure 5.1.

System identification OL1 has almost a perfect fit when compared to the corresponding frequency
domain data. The response compares very well for low and high frequencies, for both the magnitude
and phase. Besides, all 50 identification with a different initial parameter set resulted in the same
estimated value of 𝜏፧. Due to the measurement noise, the last three points of the measured data
slightly deviate from the sub-system response. The benchmark shows a less good comparison. The
break frequency at 2 [rad/s] does not compare, 𝜏፧ is to low.
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Figure 5.1: Bode diagram of system identification of open loop core propulsion sub-model OL1, benchmark and corresponding
open loop frequency domain data ᒉᑟ∗

ᒉᑄ∗ᑤ
.

5.3.2. Governor and Diesel Engine Sub-model
The governor+diesel engine sub-model identifications correspond with OL2, OL3, OL4 and OL5. The
estimations of the governor+diesel engine sub-models can be seen in table 5.2. All the identified values
fall within the expected range that is determined with the sensitivity analysis in section 4.3.2. When
zooming in on the identification of parameter 𝐾።, four times the same value is identified. Compared to
the calculated value, the identified value for the time delay is estimated approximately the same with
system identification OL3. System identification OL5 identifies a lower time delay due to the addition
of the second order system. The second order system also influences the phase, therefore a lower
estimated value than the calculated time delay was expected.

The values of 𝐾፩ that are identified differ from each other. This could be caused by the low amount of
measurement points in the sensitivity region of 𝐾፩ between 1 and 10 [rad/s]. The value of 𝜔፧ is esti-
mated two times approximately the same and the two estimated values of 𝜁 are somewhat different.
The response of the governor+diesel engine sub-model is compared to the corresponding open loop
frequency domain data ᎑ፌ∗ᑤ

᎑፞∗ᑟ
. The comparison is presented in figure 5.2a.
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Figure 5.2: Bode diagram of system identification of open loop governor+diesel engine sub-models, benchmark and correspond-
ing open loop frequency domain data ᒉᑄ∗ᑤ
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.
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The benchmark does not compare with the open loop frequency domain data, the values of 𝐾፩ and
𝐾። are not correct. The four identifications with the governor+diesel engine sub-model compare well
up to 1 [rad/s], which is the sensitivity region of 𝐾።. Identification OL2 without time delay does not
compare well with the corresponding frequency domain data. The phase does not show the correct
behaviour and the magnitude does not compare after a frequency of 1 [rad/s]. System identification
OL3 with time delay compares well with the corresponding frequency domain data up to a frequency of
10 [rad/s], for both the magnitude and phase. System identification OL4 with a second order system
shows a good response overall concerning the magnitude. However, the behaviour of the phase does
not converge enough to the negative region. The identification OL5 of the governor+diesel engine
sub-model with second order system and time delay compares very well with the frequency domain
data, concerning the phase and magnitude response.

In figure 5.2b, the response of all different open loop identifications of the governor+diesel engine
sub-model in the region between 1 and 10 [rad/s] is presented. In this region, the parameters 𝐾፩, 𝜁,
𝜔 and 𝑡፝ influence the behaviour of the model. All four the open loop models have difficulties with the
identification between 1 and 10 [rad/s]. As already mentioned, there is a low amount of measurement
points between 1 and 10 [rad/s].

Concluding, the implementation of a second order system and time delay increases the quality of the
open loop system identification of the governor+diesel engine sub-model. The second order system
and time delay seem to cover the absence of certain actuators, sensors, inertia in the diesel engine and
certain software of the governor in the model structure. The result of the core propulsion sub-model
and the best results of the governor+diesel engine sub-model are combined. An identified parame-
ter set that is implementable in the closed loop model structure and comparable with the closed loop
system identifications is created. The core propulsion sub-model has only one result which compares
very well with the measured data. The identifications of the governor+diesel engine sub-model with
second order system and with/without a time delay show the best behaviour. Besides, the estimated
parameters fall within the expected range and are reliable. Therefore, the identifications OL4 an OL5
are combined with identification OL1 and are referred to as OL1+OL4 and OL1+OL5.

5.4. Results Closed Loop System Identification
In this main section, closed loop models are directly fitted to the measurement data to estimate the
model parameters. Four different closed loop models are fitted which are indicated with CL1 to CL4.
The best closed loop models are selected, to be compared with the open loop model fits. The estimated
results of the four different closed loop fitted models are presented in table 5.3.

Table 5.3: Results of different full-scale closed loop linear system identifications.

Parameters Fitting
𝜏፧ [s] 𝐾፩ [-] 𝐾። [-] 𝑡፝ [s] 𝜔፧[𝑟𝑎𝑑] 𝜁 [-] 𝛿𝑛∗ [%] 𝛿𝑀∗፬ [%]

CL1 0.278 0.01 5.99 - - - 54.77 32.37
CL2 0.6027 0.01 5.0534 - - - 51.84 18.86
CL3 0.3537 1.1833 5.3967 - 7.2133 0.4 67.93 40.07
CL4 0.3290 1.6004 4.4388 0.1161 9.7705 0.4 74.50 62.10

The results of the closed loop system identifications without any implementations CL1 and CL2 show
unreliable results concerning the value of 𝐾፩. Parameter 𝐾፩ is estimated at the minimum of the bound-
ary condition. The obtained values of 𝐾፩ are small, this means that an error will be cancelled out very
slow. This phenomena is not visible in the measured input and output signals shown in section 3.4.
System identification CL3 and CL4 show far more reliable results. The values of 𝜏፧ and 𝐾። converge to
the open loop fitted values, which compared very well with the data. However, the values estimated
by CL3 and CL4 of 𝐾፩ and 𝜔 differ somewhat from each other and the open loop estimated values.
Important to note is that the estimated values of 𝜁 are identified at the lowest bound of the boundary
condition. The results of the closed loop system identification are plotted with the corresponding closed
loop frequency domain data. In figure 5.3, the relation ᎑፧∗

᎑፧∗ᑤᑖᑥ
and ᎑ፌ∗ᑤ

᎑፧∗ᑤᑖᑥ
presented.
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Figure 5.3: Comparison of closed system identifications with corresponding closed loop frequency domain data and benchmark.

At frequencies up to 2 [rad/s] the magnitude of the benchmark and the closed loop identifications
respond the same, concerning the magnitude. This response is in line with what is expected. How-
ever, the break frequency of the magnitude of the benchmark, system identification CL1 and CL2 is
to early, for both engine speed and shaft torque response. The addition of a second order system for
identification CL3, pushes the break frequency forward to almost 10 [rad/s]. Still, the break frequency
of identification CL3 is to early. Therefore, the response of identification CL3 has an offset in the high
frequent region. System identification CL4 with a second order system and time delay compares very
well with the measured data up to a frequency of 30 [rad/s], concerning the magnitude of the engine
speed and shaft torque. However, a peak is visible between 5 and 10 [rad/s], which is to a lesser
extend visible in identification CL3.

When zooming in on the phase responses of the closed loop system identifications, different behaviour
can be seen. Important to note is that the two points at 90 degrees in figure 5.3b can be translated
-360 degrees to a phase of approximately -270 degrees. The benchmark, system identification CL1
and CL2 do not compare well, for both the phase of the engine speed and shaft torque. The quality
of the response of the phase of system identification CL3 increases due to the addition of the second
order system. The addition of a time delay and second order system for identification CL4 improves
the phase response even more, for both the engine speed and shaft torque.

Concluding, system identification CL3 and CL4 show the best behaviour concerning magnitude and
phase, for both engine speed and shaft torque. Besides, the parameters fall within the expected range
and converge to the values of the best identified open loop parameters. The addition of a second
order system and time delay increases the quality of the behaviour of the closed loop identified models
in frequency domain. Therefore, system identification CL3 and CL4 are used for comparison with the
open loop identifications. Important to note is that system identification CL3 and CL4 show a peak
between 5 and 10 [rad/s].

5.5. Frequency Domain Comparison
In this main section, the selected closed and open loop identified parameter sets are compared with
each other, the open/closed loop frequency domain data and the benchmark from section 2.6. First,
the identified models are compared in closed loop. Thereafter, the identified models are compared in
the open loop relation ᎑ፌ∗ᑤ

᎑፞∗ᑟ
. These comparisons are performed to see if there are any resemblances

and/or differences. The best identified parameter sets that are selected are: CL3, CL4, the combination
OL1+OL4 and OL1+OL5.
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For the closed loop comparison, the identified parameter sets are implemented in the closed loop model
structure to simulate a closed loop response in frequency domain. Important to note is that the time
delays in closed loop are all implemented with the Padé approximation. In figure 5.4 the comparisons
for relations ᎑፧∗

᎑፧∗ᑤᑖᑥ
and ᎑ፌ∗ᑤ

᎑፧∗ᑤᑖᑥ
are shown. The open loop identified parameter sets are indicated with a

dashed line and the closed loop identified parameters sets including the benchmark with a solid line.
This denotation is used in all the following graphs with closed loop and open loop parameter sets.
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Figure 5.4: Comparison of selected identified parameter sets with corresponding closed loop frequency domain data and bench-
mark.

Clearly visible is that the benchmark shows a less good response compared to the other identification.
The benchmark compares well up to a frequency of 5 [rad/s]. Thereafter the response is not correct.
System identifications CL4, OL1+OL4, OL1+OL5 and CL3 to some lesser extend, compare well with the
closed loop data, concerning the magnitude. Besides, the magnitudes show about the same response
for both the engine speed and shaft torque. Up to a frequency of 1 [rad/s] and after 10 [rad/s], the open
and closed loop identifications compare well with the data. Differences arise between 1 and 10 [rad/s].

Between 1 and 5 [rad/s], a small difference between the data and system identifications CL3, CL4,
OL1+OL4 and OL1+OL5 is present. The closed and open loop identifications show a small dip. The dip
is mainly present at the open loop identifications OL1+OL4 and OL1+OL5. However, the benchmark
does not show this dip. Between 5 and 10 [rad/s], a more clear difference in the magnitude is present.
A small peak is present in the measured data of the shaft torque response and no peak is present in
the measured data of the engine speed response. The open and closed loop identifications have much
larger peaks which all differ in size. These peaks possibly arise because the damping in the identified
models is not high enough.

Focusing on the phase, differences arise also between 1 and 10 [rad/s]. The benchmark does not
compare well with the phase of the measured data, for both the engine speed and shaft torque. The
identification with second order system CL3 and OL1+OL4, show already a better phase response but
still not sufficient. The addition of a time delay generates a better phase response which compares
with the measured data up to a frequency of approximately 10 [rad/s].

In open loop it is easier to determine which parameters have influence on for instance the region
between 1 and 10 [rad/s]. For the open loop comparison the identified parameter sets are imple-
mented in open loop model structure of the governor+diesel engine sub-model to simulate an open
loop response in frequency domain. Important to note is that the time delays in open loop are all
implemented with an 𝑒ዅ፭፝⋅፬. In figure 5.5 the comparison for relation ᎑ፌ∗ᑤ

᎑፞∗ᑟ
is shown.
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Figure 5.5: Comparison of selected identified parameter sets with corresponding open loop frequency domain data and bench-
mark.

Clearly, the benchmark does not compare with the open loop frequency domain data of the multiple
sine waves experiment. The open and closed loop identifications show a good comparison with the
open loop frequency domain data up to a frequency of 1 [rad/s] and in the higher frequent region after
10 [rad/s]. However, system identification CL3 has an offset in both these regions. When zooming in
on the frequencies of the multiple sine waves between 1 and 10 [rad/s], again clear differences are
present for the open and closed loop identifications, which can be seen figure 5.5b. In this region,
the parameters 𝐾፩, 𝜁, 𝜔 and 𝑡፝ influence the behaviour of the model. The closed loop identifications
CL3 and CL4 show a lower response compared to the magnitude of the measured data. The open
loop identifications OL1+OL4 and OL1+OL5 show a higher response compared to the magnitude of
the measured data.

The difficulties for system identifications CL3, CL4, OL1+OL4 and OL1+OL5 between 1 and 10 [rad/s]
can be explained by the fact that parameters 𝐾፩, 𝜁, 𝜔 and 𝑡፝ are fluctuating around the correct value
but are still not correct. Besides, there is also a low amount of measurement points in this region. An-
other explanation is that there is not enough damping in the model structure. A response with too little
damping could be flattened by limiters. Limiters are nonlinear and not incorporated in the nonlinear
model structure. Such limits are induced by the fuel actuator, which is assumed ideal and the limits of
the diesel engine concerning maximum brake power and engine speed output. Other limits are ramp
and response limiters, which could be present in the governor of the Stan Tug 1205.

A solution to enhance the quality of the identification is increasing the amount of experiments of the
sine waves between 1 and 10 [rad/s]. Another solution is tightening up the boundary conditions of the
parameters during the identifications. Creating a smaller area of movement of the parameters during
system identification, forces the searching criterion to vary the parameters in a smaller but expected
region. Moreover, adding limits to the nonlinear model structure could flatten the areas where too little
damping is present and increase the quality of the identification between 1 and 10 [rad/s]. However,
limiters are nonlinear and therefore nonlinear system identification should be performed. Damping is
also induced by torsional vibration dampers which are not incorporated in the model structure. The
TVC report in appendix E shows that the propulsion system of the Stan Tug 1205 contains such dampers.

Concluding, system identifications CL3, CL4, OL1+OL4 and OL1+OL5 compare very well with the data
up to a frequency of 1 [rad/s] and in the higher frequent region after 10 [rad/s]. Problems arise be-
tween 1 and 10 [rad/s] in open and closed loop and it is easier to see which parameters have influence
in open loop. In open loop the benchmark does not compare well with the measured data and in closed
loop only up to a frequency of 5 [rad/s].
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5.6. Time Domain Validation
In this main section the selected parameter sets and benchmark that are compared in frequency do-
main in section 5.5 are validated with obtained time domain data. For the time domain validation, a
step response and short chirp are used, both measured during the backward bollard push experiment.
A step response is a high frequent event, in a very short time a fast response is asked. The short chirp
contains different frequencies varying from 0.001 [rad/s] to 25 [rad/s]. Important to note is that the
short chirp and the step response are closed loop time domain data sets.

The short chirp is cut up in three parts, from low to high frequencies. The response of the open
and closed loop identified models with a second order system and time delay, CL4 and OL1+OL5, are
plotted in one figure. The response of the open and closed loop identified models with only a second
order system, CL3 and OL1+OL4, will also be plotted in one figure. The benchmark is shown in both
figures. In figure 5.6 the short chirp up to a frequency of approximately 1 [rad/s] is shown.
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Figure 5.6: Comparison of selected identified parameter sets with short chirp data and benchmark up to approximately 1 [rad/s].

The frequency domain comparison showed that system identifications CL3, CL4, OL1+OL4, OL1+OL5
and the benchmark compare well with the measured data up to a frequency of 1 [rad/s]. This can also
be seen in time domain in figure 5.6. All the simulated responses compare good with the short chirp
data, for both the engine speed and shaft torque. Figure 5.7 shows the simulated responses between
the frequencies of 1 and 5 [rad/s] of the short chirp data in time domain.
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Figure 5.7: Comparison of selected identified parameter sets with short chirp data and benchmark from approximately 1 to 5
[rad/s].
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The frequency domain comparisons showed that system identifications CL3, CL4, OL1+OL4 and OL1+OL5
have difficulties concerning their response between 1 and 5 [rad/s]. A small dip in the magnitude was
present for system identification CL3, CL4, OL1+OL4 and OL1+OL5, which is not present in the bench-
mark. System identifications CL3, CL4, OL1+OL4 and OL1+OL5 also show a small dip in the amplitudes
in figure 5.7, which is not present at the benchmark. Figure 5.8 shows the simulated responses between
the frequencies of 5 and 10 [rad/s] of the short chirp data in time domain.
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Figure 5.8: Comparison of selected identified parameter sets with short chirp data and benchmark higher than approximately 5
[rad/s].

The open and closed loop frequency domain comparisons showed that system identifications CL3,
CL4, OL1+OL4 and OL1+OL5 have difficulties concerning their response between 5 and 10 [rad/s].
The closed and open loop frequency domain identifications showed peaks and offsets. Moreover, the
benchmark compared well with closed loop frequency domain data up to 5 [rad/s]. In figure 5.8 these
phenomena are also present. The peaks of the simulated responses of system identifications CL3,
CL4, OL1+OL4 and OL1+OL5 correspond with the peaks in closed loop frequency comparison and the
offsets in open loop frequency comparison. Difficult to see is that the benchmark starts too lag to early
at 5 [rad/s], corresponding with the too early break frequency. At higher frequencies than 10 [rad/s]
all the simulated responses and the time domain data start to lag concerning the amplitude. In figure
5.9 a better response of the phase at a frequency of 10 [rad/s] of the short chirp data is shown.
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Figure 5.9: Comparison of selected identified parameter sets with short chirp data and benchmark at approximately 10 [rad/s].
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System identifications CL3, CL4, OL1+OL4, OL1+OL5 and the benchmark all show a time delay in figure
5.9. The addition of a second order system for system identification CL3 and OL1+OL4 decreases this
time delay. The addition of a time delay and second order system for CL4 and OL1+OL5 decreases this
delay even more. The benchmark shows the largest delay compared to the measured short chirp data.
However, the identified time delays are not sufficient and therefore an offset is present at approximately
10 [rad/s]. That the identified systems still have a delay is also visible in simulated step responses.
Figure 5.10 shows the overall step responses of the measured data, identifications and benchmark.
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Figure 5.10: Comparison of selected identified parameter sets with step response data and benchmark.

System identifications CL3, CL4, OL1+OL4, OL1+OL5 and the benchmark follow the overall behaviour
of the step response. Differences are present at the response and stabilisation during a single step.
Zooming in on the simulated responses of one step shows more details. Important to note is that the
engine speed set point is only present in the comparison of the engine speed response. Figure 5.11
zooms in on one response.
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Figure 5.11: Zoomed comparison of selected identified parameter sets with step response data and benchmark.
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The engine speed and shaft torque measured data of the step response shown in figure 5.11, have
a frequency of approximately 9 [rad/s]. The benchmark compares with the data, for both the engine
speed and shaft torque. However, the measured data shows an overshoot, this is to a very less extend
visible in the benchmark. Besides, the benchmark does not contain any time delay and therefore starts
the step response at the same time as the engine speed set point. The behaviour of the benchmark
corresponds with the bad phase response and too early break frequency of the magnitude in frequency
domain.

System identifications CL3, CL4, OL1+OL4 and OL1+OL5 all show different behaviour during the step
response. In closed loop frequency domain the system identification showed large peaks between ap-
proximately 5 and 10 [rad/s]. The larger the peak, the larger the overshoot and stabilisation time be-
comes during the simulated step response. Besides, the slopes of the simulated responses are steeper
than the measured data. This could indicate that nonlinear limiters are present in the system and are
exceeded by the simulated responses of system identifications CL3, CL4, OL1+OL4 and OL1+OL5. The
identified time delays are not sufficient and therefore a clear offset is present during the step response.

Concluding, the time domain validations confirm what is stated and concluded during the frequency
domain comparison in section 5.5. Behaviour that can be seen in frequency domain, is also present in
time domain simulations of the short chirp and step response. The validation with the short chirp and
step response confirm that the identifications between 1 and 10 [rad/s] have difficulties. However, in
frequency domain it was difficult to evaluate how good the phase response was and if the identified
time delay was sufficient. The simulations of the short chirp and step response showed that a time de-
lay was still present despite the addition of a time delay and second order system to the model structure.

Remarkable is that the benchmark shows good behaviour in time domain, but in frequency domain
the behaviour was not very good. Mainly in open loop, the benchmark did not show a good response.
Besides, the parameters estimated do not have a realistic value. An explanation for the good response
in time domain, is that the searching criterion combines the parameters such way that the behaviour of
the system gets imitated and dynamics, not explicitly included in the model structure, are still covered.
This is done without taking into account whether the parameters have realistic values.

5.7. Parameter Validation
In this main section, the identified parameters for both the open and closed loop identification are dis-
cussed and compared. It is difficult to validate the parameters 𝐾፩, 𝐾።, 𝜁 and 𝜔. These values are not
known and therefore the estimated values cannot be compared with the expected values. However, it
is possible to evaluate the estimations and determine if these are realistic. In addition, the reliability
can be determined with the different identifications that are performed.

In open loop, 𝐾። is estimated four times the same and compares very well with the open loop data.
In closed loop, the estimated values of 𝐾። converges to the same value when a second order system
and a time delay are present in the model structure. The obtained value of 𝐾። during the open loop
identifications can be labelled as reliable and correct.

The parameters 𝐾፩, 𝜁, 𝜔 and 𝑡፝ are fluctuating around the correct value but are still not correct,
both for closed loop and open loop identifications. This can be seen in open loop between 1 and 10
[rad/s]. The value of the time delay parameter is calculated in section 3.2.1. As expected, 𝑡፝ decreases
when a second order system is present. However, the time domain validations showed that the total
delay identified by the combination of a second order system and time delay is not sufficient. The
following section evaluates the estimated value of 𝜏፧.
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5.7.1. Inertia
The estimated value of 𝜏፧ can be compared with the calculated value. The value of 𝜏፧ is calculated
with the help of the mass moment of inertia and the normalisation points defined in section 3.1. The
total mass moment of inertia is obtained with the help of a torsional vibration calculation (TVC). For the
propulsion line of the Stan Tug 1205 a TVC report is available. The mass moment of inertia overview
from a TVC report of the Stan Tug 1205 can be seen in appendix E. The open loop system identification
of the core propulsion sub-model OL1 compared very well with the data. Therefore, the estimated
value 0.3897 for 𝜏፧ will be used for the comparison.

Figure 5.12: The propulsion system with the indicated measurement point of the shaft torque.

The total reflected mass moment of inertia of the propulsion system seen from the propeller is equal
to 66.2960[𝑘𝑔 ⋅𝑚ኼ]. The total reflected mass moment of inertia is a summation of the mass moments
of inertia up to the measurement point. The gearbox has a quadratic influence on the magnitude of
the total reflected mass moment of inertia [26]. However, the measurement point of the shaft torque
is not located at the propeller, see figure 5.12. Therefore, the total reflected mass moment of inertia is
deducted with the mass moment of inertia of the propeller and equals 54.0060[𝑘𝑔 ⋅𝑚ኼ]. The expected
value of 𝜏፧ is calculated, shown in equation (5.1).

𝜏፧ =
2𝜋𝐼፩𝑛ኺ
𝑀፬,ኺ

=
2𝜋 ⋅ 54.0060 ⋅ ኻኻዂኾ

ኽ.ዂኼ⋅ዀኺ
1725 = 1.016 (5.1)

The estimated value of 𝜏፧ is almost a factor 3 smaller than the expected value. However, all 50 identifi-
cation of the open loop system identification of the core propulsion sub-model OL1 with different initial
parameter resulted in the same estimated value of 𝜏፧. Besides, the sensitivity analysis in figure 4.4
shows that a value of 1.016 does not compare very well with the corresponding data. The difference
is possibly explainable by deficiencies in the model structure.

The parameter 𝜏፧ is a product from the linearisation of the nonlinear model structure. Multiple assump-
tions are done for the nonlinear model and the linearisation of the model structure. These assumptions
are taken into account during the system identifications and the calculations of the inertia with equation
5.1. The assumptions of the shaft speed dynamics are presented by Stapersma and Vrijdag [8], which
are shown in the following enumeration.

• The shaft speed dynamics are described by equation 2.1. The shaft inertia is assumed con-
stant, therefore the change of mass of water, entrained by the propeller and the inflow angle are
neglected [8].

• The linearised equation for 𝜏፧ is only valid for a nominal point that is in equilibrium [8].

• For steady nominal conditions the shaft and propeller torque are equal. Therefore, only small
changes are of importance [8].

During the experiments with the Stan Tug 1205, multiple sine waves and different chirps are performed.
Although, these experiments fluctuate around one working point, still accelerations take place. These
accelerations cause that the propeller and shaft torque are not equal anymore. Besides, the accel-
erations provoke the change of mass of water entrained by the propeller, which is neglected for the
linearisation and the nonlinear model.
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The propeller torque in the model structure is described by the open water propeller diagram, which is
a static description. The dynamics, that take into account the change of mass of water entrained by
the propeller and the inflow angle, are neglected. Equation 5.2 shows the formula that describes the
shaft loop of the model structure with the assumptions stated by Stapersma and Vrijdag [8]. In reality
the shaft loop is described by equation 5.3, with the inertia changing over time when accelerations take
place. The accelerations cause change of mass of water entrained by the propeller and different inflow
angles, which have influence on the magnitude of the propeller torque. The differences between the
model structure and the reality have influence on the calculation of 𝜏፧ and therefore the inertia.

2𝜋 ⋅ 𝐼፩
𝑑(𝑛፬)
𝑑𝑡 = 𝑀፬ −𝑀፩ (5.2)

2𝜋
𝑑(𝐼፩ ⋅ 𝑛፬)
𝑑𝑡 = 𝑀፬ −𝑀፩ (5.3)

The system identification of the core propulsion sub-model matches with the measured data but the
model structure does not match the system. The incorrectness of the model structure of the shaft loop
dynamics explains some of the factor 3 difference between the expected and the estimated value of 𝜏፧.
Adding the dynamics could solve a part of this factor 3 difference. However, a factor 3 is very large.
Therefore, there is also a suspicion that the test set-up of the backward bollard push with the Stan
Tug 1205 has influence on the difference between the expected and the estimated value of 𝜏፧. The
test was performed in restricted water, which could affect the water flow of the propeller. A possible
solution concerning the test set-up is to perform the experiment in free sailing conditions.

Another explanation is the linearisation of the propeller torque. Equation 5.4 shows the nonlinear
and linearised propeller torque. When the fluctuations around the working point increase, the error
between the nonlinear model and linear model will increase as well. It is possible that the fluctuations
of the experiments are to large and cause a large error which has influence on the difference between
the expected and the estimated value of 𝜏፧. Performing nonlinear system identification with the actual
measured data and nonlinear model structure could reduce the difference between the expected and
the estimated value of 𝜏፧.

𝑄 = 𝜌𝑛ኼ𝐷𝐾ፐ → 𝛿𝑄∗ = 2𝛿𝑛∗ (5.4)

It is important to note that the change of mass of water entrained by the propeller is neglected in
most of the simulation models that are build. However, influence of the change of mass entrained
the propeller is scarcely investigated in the literature. Therefore, research is needed to learn how to
implement these propeller dynamics. One of the few investigations concerning the influence of the
change of mass of water is performed for simulations models of ROVs [27][28]. The total mass of
these ROVs is very small and therefore the influence of the change of mass entrained by the thrusters
is large.
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5.8. Overview of Conclusions
In this chapter multiple conclusions are stated. The following enumeration gives a summary of the
most important conclusions and findings from the linear open and closed system identification results,
comparisons and validation stated in this chapter.

• To increase the chance to find the global minimum, 50 random but feasible starting sets of initial
parameters are used per identification. The lowest cost function minimum is selected combined
with the fact that the identified model is stable. Stopping criteria and boundary conditions of the
parameters are used to constraint each identification.

• The open loop identification of the core propulsion sub-model, identified 50 times the same result
(𝜏፧ = 0.3890) for parameter 𝜏፧. The response compares very well for low and high frequencies,
for both the magnitude and phase. The estimated value falls within the identified range but is
lower than expected.

• The addition of a time delay and second order system improve the open and closed loop identi-
fications and compare very well up to a frequency of 1 [rad/s] and after 10 [rad/s]. Difficulties
arise between between 1 and 10 [rad/s]. The parameters of these open and closed loop identi-
fications fall within the expected range and show trustworthy results. The second order system
and time delay seem to cover the absence of certain actuators, sensors, the diesel engine and
certain software of the governor in the model structure.

• Difficulties arise between 1 and 10 [rad/s]. An explanation for these problems is that parameters
𝐾፩, 𝜁, 𝜔 and 𝑡፝ are fluctuating around the correct value but are still not correct. Besides, there
is also a low amount of measurement points in this region. Another explanation is that there is
not enough damping in the model structure.

• A solution to enhance the quality of the identifications is increasing the amount of experiments
of the sine waves between 1 and 10 [rad/s]. Another solution is tightening up the boundary
conditions of the parameters during the identifications, forcing the searching criterion to vary
the parameters in a smaller but expected region. Moreover, adding limits to the nonlinear model
structure could flatten the areas where too little damping is present and increase the quality of
the identification. However, limiters are nonlinear and therefore nonlinear system identification
should be performed. Damping is also induced by torsional vibration dampers which are present
in the system and not in the model structure.

• The time domain validations confirm what is stated and concluded during the frequency domain
comparison. Behaviour that can be seen in frequency domain, is also present in time domain
simulations of the short chirp and step response.

• The benchmark shows good behaviour in time domain, but in frequency domain the behaviour was
not very good. Besides, the parameters estimated do not have a realistic value. An explanation
for the good response in time domain, is that the searching criterion combines the parameters
such way that the behaviour of the system gets imitated and dynamics, not explicitly included
in the model structure, are still covered. This is done without taking into account whether the
parameters have realistic values.

• The obtained value of 𝐾። during the open loop identifications is labelled as reliable and correct.
Four times the same value of 𝐾። is estimated and the response compares very well with the open
loop measured data. The parameters 𝐾፩, 𝜁, 𝜔 and 𝑡፝ are fluctuating around the correct value but
are still not correct, both for closed loop and open loop identifications. The total delay identified
by the combination of a second order system and time delay is not sufficient.

• There is factor 3 difference between the expected and the estimated value of 𝜏፧. First, the
absence of the dynamics that take into account the change of mass of water entrained by the
propeller and the inflow angle explains some of the factor 3 difference. Secondly, there is a
suspicion that the test set-up of the backward bollard push with the Stan Tug 1205 has influence
on this difference. Moreover, it is possible that the fluctuations of the experiments are to large
and cause an error due to the linearisation of the propeller torque.





6
Conclusions & Recommendations

In this final chapter, conclusions are drawn based on the findings in this thesis. Furthermore, rec-
ommendations are given concerning future research and use of full-scale system identification of ship
propulsion systems.

6.1. Conclusions
In section 1.4, the main question and sub-questions of this research were presented. First, all three
sub-questions are answered. Thereafter, with the help of the sub-questions, the main question is
answered.

6.1.1. First Sub-question
The first sub-question is: ”What are possible improvements concerning data, model structure and
searching criterion for the linear system identification of a full-scale propulsion system?”. This sub-
question is answered with the help of the three pillars of system identification that can be improved,
which is shown in figure 1.1. As stated in section 1.3, this research aims to improve the system
identification results obtained by Martinus [1].

Data
Obtaining a good model depends on the quality of the measured data of the system. Different improve-
ments concerning the measured data are performed in chapter 3. The multiple sine waves experiment
is put into frequency domain because the noise can be cancelled out easily at the frequencies where
the sines have no power. As a result, the system identification speeds up. A new procedure is used
that calculates the correct frequencies to be selected in frequency domain. The Gaussian approach
makes it possible to select the frequency of interest out of the measured sine waves data sets. Based
on figure 3.5 and table 3.5, it is concluded that the new selection procedure of data points in frequency
domain improves the measured data and is a better selecting approach compared to the method used
by Martinus [1]. Due to the advantages and improved selecting procedure, mainly frequency domain
data sets are used for the linear system identification

With the correct selected frequencies in frequency domain, the reliability of each data set with re-
spect to the amount of noise is evaluated. The overall and local signal to noise ratios are determined
in section 3.3.2. Based on the signal to noise ratios presented in table 3.6 and 3.7, it is concluded that
𝑛፞ (𝑃𝑇𝑀፞ measurement of the engine speed at the diesel engine) has the highest overall certainty of
the three different performed engine speed measurements. Therefore, the measured data sets 𝑛፬፞፭,
𝑛፞ and 𝑀፬ are used for system identification, validation and comparison.
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However, during the linear system identification and the analysis of the data, several deficiencies are
found. The frequency domain figures 3.7 and 3.8 showed that there is a low amount of measurements
after 1 [rad/s]. Combined with the results presented in section 5.5, this concludes that the amount
of measurements is to low between 1 and 10 [rad/s] specific for the measurements of the propulsion
system of the Stan Tug 1205. Besides, with these performed measurements it is not possible to obtain
the responses of the governor and diesel engine individually.

Model Structure
The initial linear closed loop model structure used by Martinus [1] is adjusted and different implemen-
tations are determined. The initial linear model structure is simplified by omitting parameter 𝑔 and
fixing 𝑣 to one, changing the diesel engine in a constant torque machine. Therefore, the parameters
𝐾፩ or 𝐾። are not dependent on parameter 𝑣 anymore. Based on the sensitivity analysis in section 4.1
and 4.3, it is concluded that in open loop the influence and a more clear response of the individual
parameters is visible compared to closed loop. Besides, zooming in on the open loop core propulsion
and the governor+diesel engine sub-model creates more simple model structures with a lower amount
of identifiable parameters.

The open loop identification of the core propulsion sub-model, identified 50 times the same result
(𝜏፧ = 0.3890). Although the estimated value falls within the identified range, the estimated value is
lower than expected. However, based on the sensitivity analysis in figure 4.4 and the results of the
system identification shown figure 5.1, it is concluded that the open loop core propulsion sub-model
has almost a perfect fit with the corresponding FRF measured data.

Differences between the governor+diesel engine sub-model and the corresponding frequency domain
data were visible in figure 4.5. Besides, section 3.2.1 showed that a time delay is present between the
input and output of the measured data. New terms are added to the model structure for improvement.
Based on figure 4.6, the conclusion is drawn that the addition of a derivative term to the governor does
not improve the response of the model structure. However, with the sensitivity analysis in figure 4.7
and 4.8 and the system identification results presented in section 5.3 and 5.4, the conclusion is that
the addition of a time delay and second order system improve the linear system identification.

The figures in section 5.5 and 5.6 show that the open and closed loop system identifications with
a time delay and second order system, compare well in frequency and time domain up to a frequency
of 1 [rad/s] and after 10 [rad/s]. However, difficulties arise between between 1 and 10 [rad/s]. Based
on the simulated response in time and frequency domain of these model structures between 1 and 10
[rad/s] in figure 5.4, 5.8 and 5.11, it is concluded that there is not enough damping present in the
model structure.

The identified parameters are evaluated and if possible compared with the expected value. Table
5.2 shows that parameter 𝐾። is estimated four times the same. Based on this finding combined with
figure 5.2 and 5.5, it is concluded that obtained value of 𝐾። in open loop is reliable and correct. Fur-
thermore, the conclusion is drawn that parameters 𝐾፩, 𝜁, 𝜔 and 𝑡፝ are fluctuating around the correct
value but are still not correct, both for closed loop and open loop identifications with a second order
system and time delay. Figure 5.9 and 5.11 show that the identified models still have a time delay.
Therefore, it is concluded that the total delay identified by the combination of a second order system
and time delay is still not sufficient. The calculated expected value of 𝜏፧ in section 5.7.1 is a factor 3
larger than the estimated value. This and the evaluation in section 5.7.1, concludes that the system
identification of the core propulsion sub-model matches with the measured data but the sub-model
structure does not match the system.

Searching Criterion
The type of model structure influences the selection of a searching criterion. The System Identification
Toolbox chooses the searching criterion method to determine a minimum. The methods that can be
selected and used are the subspace Gauss Newton Least Squares (GNLS), Levenberg Marquard Least
Squares (LMLS) and the Matlab function ’fmincon’ [10]. Mainly the searching criterion is improved con-
cerning optimisation strategies. In section 5.7.1 the approach to optimise the identification by using
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a large amount of different initial parameters sets is presented. Based on this and the different per-
formed identifications in chapter 5, it is concluded that the 50 random but feasible starting sets of initial
parameters used per identification, increase the chance to find the global instead of a local minimum.
To have a better optimisation of the searching criterion, stopping criteria are used to constraint each
identification. Besides, boundary conditions are set up for parameters to decrease the searching range
of the searching criterion.

Figure 5.5 showed that between 1 and 10 [rad/s] the parameters 𝐾፩, 𝜁, 𝜔 and 𝑡፝ are fluctuating
around the correct value but are still not correct. Although boundary conditions of the parameters are
present, shown in figure 5.1, it is concluded that the freedom of movement between the lower and
upper bound of the boundary conditions of the parameters is to large. Besides, the searching criterion
is still able to identify unstable models.

Section 5.4 and 5.6 showed that the benchmark has good behaviour in time domain and closed loop
frequency domain. However, figure 5.5 showed that the response of the benchmark in open loop is
not very well and Martinus [1] concluded that the identified parameters are not trustworthy. From
these findings, the conclusion is drawn that the searching criterion is able to combine the parameters
such way that the behaviour of the system gets imitated and dynamics, not explicitly included in the
model structure, can still be covered. This is behaviour is determined without taking into account if
the parameters have realistic values.

6.1.2. Second Sub-question
The second sub-question is: ”How does the implementation of a nonlinear model structure affect the
full-scale system identification?”. Although a nonlinear system identification is not performed, based on
the findings of the performed linear system identifications advantages and disadvantages of nonlinear
system identification can be determined.

To perform a nonlinear system identification, a nonlinear model structure is needed. In section 5.5
is stated that the addition of nonlinear limiters to the model structure could flatten the areas where
too little damping is present and increase the quality of the identification. In section 5.7.1 is stated
that it is possible that the fluctuations of the performed experiments are too large and cause an error
due to the linearisation of the propeller torque. Based on this, it is concluded that nonlinear system
identification will have the advantages that nonlinear limits can be implemented and it is possible to use
non normalised ’real’ data. However, nonlinear system identification is only possible with time domain
data. In section 3.3 the advantages of the use of frequency domain as data for system identification
are stated. Concluding, nonlinear system identification loses the advantage of the usage of frequency
domain data and therefore the identification becomes more complex.

Although some of the advantages and disadvantages of nonlinear system identification are known,
the full affect is still unknown. To find out the full affect of the implementation of a nonlinear model
structure on the system identification of a propulsion system, it is necessary to perform such system
identification. Concluding, further research is needed to know the full affect of a nonlinear model
structure on the system identification of a full-scale propulsion system.

6.1.3. Third Sub-question
The third sub-question is: ”What is required to implement the most suitable fingerprinting method on
a Damen ship?”. Although the linear system identification is very much improved, no in depth analysis
is performed concerning implementation of a fingerprinting method on a ship. The initial plan was to
determine what kind of sensors and measurement equipment were needed to implement a fingerprint-
ing method on a ship. However, this sub-question will be answered with an helicopter view, using the
findings and lessons learned of the different performed and improved linear system identifications.

With a fingerprinting method on board of a ship, predictive maintenance can be executed. Decay
of parameters can be registered over time and can be used to predict possible upcoming problems of
the propulsion system. Anther purpose of a fingerprinting method on board of a ship, is that it can be
used to obtain up to date performance simulations models of the propulsion system.
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In section 3.4 and 5.2 is stated that mainly the frequency domain data of the multiple sine waves
experiment is used for linear system identification. During the revised pre-processing of the measured
data in section 3.1, constant input and output measurements of the step response are used. Further-
more, data sets in section 3.4 are obtained with the engine speed set point, engine speed and shaft
torque measurements. Concluding that the implementation of a fingerprinting method with linear sys-
tem identification, at least a step response, frequency domain data of a multiple sine waves experiment
and the three different performed measurements are needed. To enhance the quality of a fingerprint,
it is recommended to increase the amount of experiments of the sine waves between 1 and 10 [rad/s]
specifically for the propulsion system measurements of the Stan Tug 1205. Besides, measurements
between the governor and the engine are recommended.

As already stated, open loop model structures, a second order system and time delay improve the
linear system identification. Based on this, it is concluded that for the implementation a fingerprinting
method with linear system identification, the usage of open loop model structures, a second order
system and time delay are needed. Important is that the deficiencies concerning the data between 1
and 10 [rad/s], the shaft loop with parameter 𝜏፧, the too little damping in the model structure and the
fluctuation of the parameters 𝐾፩, 𝜁, 𝜔 and 𝑡፝ are resolved before such a method is implemented on a
Damen ship.

6.1.4. Main Question
With the three sub-questions answered, it is possible to answer the main question. The main question
is: ”What is a suitable method to obtain dynamic model- behaviour and parameters of a
full-scale propulsion system in short time, based on controlled tests?”.

Based on the answers on the sub-questions, it is concluded that linear system identification is a suitable
method to obtain dynamic model- behaviour and parameters of a full-scale propulsion system in short
time. There are still some deficiencies concerning data, model structure and searching criterion. How-
ever, these deficiencies are solvable and possibly further increase the quality of the obtained dynamic
model- behaviour and parameters of a full-scale propulsion. Therefore, it is recommended to continue
developing linear open loop system identification with a second order system and time delay combined
with open loop frequency domain data.

6.2. Recommendations
This final section contains recommendations concerning future research and use of full-scale system
identification. Recommendations are stated to enhance the quality of the system identification of the
propulsion system and for future researches.

• It is recommended to increase the amount of measurements of the sine waves experiment be-
tween 1 and 10 [rad/s]. The results showed that this is a critical region during the system
identification of the propulsion system of the Stan Tug 1205. More measurement points between
1 and 10 [rad/s] make it easier to identify the parameters that have their sensitivity in that region.
Besides, the certainty of all the measurements combined increases when more measurements
are added. Important to note is that this critical region is possibly located somewhere else for
different propulsion systems and ships.

• A very suitable method to obtain obtain dynamic model- behaviour and parameters of a full-
scale propulsion system is with open loop model structures and measured data. With the current
measurements it is not possible to evaluate the governor and diesel engine individually. It is
recommended to perform measurements between the governor and diesel engine during the
experiments. However, measuring the output of the governor is very difficult and appointed as
almost impossible. Another possible solution is to start the conversation with the manufacturer
of the governor and diesel engine to obtain more knowledge and information.
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• During this research problems arose with the use of the System Identification Toolbox of Matlab.
The System Identification Toolbox of Matlab has restrictions and does not support internal delays.
In the future it is recommended to perform system identifications without the help of the System
Identification Toolbox of Matlab. It is possible to write these algorithms without the help of the
Matlab toolbox.

• The conclusion is drawn that not enough damping is present in the identified model structures.
The addition of nonlinear limiters to the model structure could flatten the areas where too little
damping is present and increase the quality of the identification. It is recommended to incorporate
limiters in a nonlinear model structure. To investigate the effect of nonlinear limiters, nonlinear
system identification is necessary to perform. Furthermore, the propulsion system of the Stan Tug
1205 contains torsional vibration dampers. These are not incorporated in the model structure.
Such dampers can be implemented in the model structure as a mass-spring-damper system.
Therefore, it is also recommended to investigate the affect of the implementation of torsional
vibration dampers in the model structure.

• Although some of the advantages and disadvantages of nonlinear system identification are known,
the full affect is still unknown. To find out the full affect of the implementation of a nonlinear model
structure on the system identification of a full-scale propulsion system, it is necessary to perform
such system identification. Further research on the affect of nonlinear system identification of a
full-scale propulsion system is recommended.

• The identifications between 1 and 10 [rad/s] showed that the parameters 𝐾፩, 𝜁, 𝜔 and 𝑡፝ are
fluctuating around the correct value but are still not correct. Tightening up the boundary condi-
tions of the parameters during the identification is recommended. This creates a smaller area of
movement for the parameters during system identification and forces the searching criterion to
vary the parameters in a smaller but expected region. It is also recommended to take into account
the stability of identified models when tightening up the boundary conditions of the parameters.

• The validation of the parameter 𝜏፧ showed that the model structure does not match the reality
concerning the shaft loop. To decrease the difference between the estimated value and calculated
value of the inertia, it is recommended to add dynamics that take into account the change of mass
of water entrained by the propeller and the inflow angle to the model structure. Incorporating
propeller dynamics creates a more realistic and truthful model structure. Important to note is
that the change of mass of water entrained by the propeller is neglected in most of the simulation
models and is scarcely investigated in the literature. Therefore, research is needed to learn how
to implement these propeller dynamics.

• It is recommended to perform system identification with measured data obtained during free
sailing conditions. First of all because possible deficiencies during the backward bollard push
measurements could be removed. Furthermore, with measured data obtained during free sailing
it will also be possible to identify hydrodynamic coefficients (wake and thrust deduction) of a ship.
However, the model structure of the propulsion system will become more complex because the
speed loop has to be taken into account.

• Last but not least, this research shows that linear system identification is a suitable method to
obtain dynamic model- behaviour and parameters of a full-scale propulsion system of a ship.
Therefore, it is a recommendations to continue developing linear system identification for full-
scale propulsion systems.
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Figure B.1: Sensitivity analysis of closed loop model ᒉᐼ∗ᑟ
ᒉᑟ∗ᑤᑖᑥ

with five different parameters.
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Figure B.2: Sensitivity analysis of closed loop model ᒉᐼ∗ᑟ
ᒉᑟ∗ᑤᑖᑥ

with five different parameters.
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Figure B.3: Sensitivity analysis of closed loop model ᒉᑄ∗ᑤ
ᒉᑟ∗ᑤᑖᑥ

with five different parameters.
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Figure B.4: Sensitivity analysis of closed loop model ᒉᑄ∗ᑤ
ᒉᑟ∗ᑤᑖᑥ

with five different parameters.





C
Derivation Open Loop Transfer

Functions

For the derivation of the transfer function concerning the core propulsion, equation (2.13) is used.
Equation (C.1) is a Laplace transform of the shaft loop equation 2.13. Rewriting equation (C.1) shows
the relation between the engine speed 𝛿𝑛∗ and the shaft torque 𝛿𝑀∗፬ . The core propulsion of the ship
is described by transfer function C.2.

𝜏፧𝑠𝛿𝑛∗ = 𝛿𝑀∗፬ − 2𝛿𝑛∗ (C.1)

𝐻ፂፏ =
𝛿𝑛∗
𝛿𝑀∗፬

= 1
𝜏፧𝑠 + 2

(C.2)

The governor+diesel engine sub-model is described by the transfer function𝐻ፆዄፃ. With equation (2.17)
concerning the governor and with use of a Laplace transform, equation (C.3) is derived. Implementing
equation (C.3) in equation (4.1), the simplified shaft torque characteristics, creates equation (C.4).
Rewriting equation (C.4) to the relation with the error 𝛿𝑒∗፧ as input and the shaft torque 𝛿𝑀∗፬ as output,
creates the transfer function of the governor+diesel engine sub-model in equation (C.5).

𝛿𝑋∗፬፞፭ = (𝐾፩ +
𝐾።
𝑠 )𝛿𝑒

∗
፧ (C.3)

𝛿𝑀∗፬ = 𝑣𝛿𝑋∗፬፞፭ = 𝑣(𝐾፩ +
𝐾።
𝑠 )𝛿𝑒

∗
፧ (C.4)

𝐻ፆዄፃ =
𝛿𝑀∗፬
𝛿𝑒∗፧

= 𝑣(𝐾፩ +
𝐾።
𝑠 ) (C.5)

With the transfer functions of the core propulsion sub-model and the governor+diesel sub-model
known, the open loop transfer function 𝐻ፎፋ can be derived. The derivation is shown in equation
(C.6) to (C.8).

𝐻ፎፋ = 𝐻ፆዄፃ ∗ 𝐻ፂፏ =
𝛿𝑛∗
𝛿𝑒∗፧

(C.6)

𝐻ፎፋ = 𝑣(𝐾፩ +
𝐾።
𝑠 ) ∗

1
𝜏፧𝑠 + 2

(C.7)

𝐻ፎፋ =
𝛿𝑛∗
𝛿𝑒∗፧

=
፯ፊᑡ
Ꭱᑟ
𝑠 + ፯ፊᑚ

Ꭱᑟ
𝑠ኼ + ኼ

Ꭱᑟ
𝑠

(C.8)
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D
Closed Loop Simplification

D.1. Transer Functions
𝛿𝑛∗
𝛿𝑛∗፬፞፭

=
ፊᑡ
Ꭱᑟ
𝑠 + ፊᑚ

Ꭱᑟ
𝑠ኼ + ፊᑡዄኼ

Ꭱᑟ
𝑠 + ፊᑚ

Ꭱᑟ

(D.1)

𝛿𝐸∗፧
𝛿𝑛∗፬፞፭

=
𝑠 + ኼ

Ꭱᑟ
𝑠ኼ + ፊᑡዄኼ

Ꭱᑟ
𝑠 + ፊᑚ

Ꭱᑟ

(D.2)

𝛿𝑀∗፬
𝛿𝑛∗፬፞፭

=
𝐾፩𝑠ኼ +

ፊᑚᎡᑟዄኼፊᑡ
Ꭱᑟ

+ ኼፊᑚ
Ꭱᑟ

𝑠ኼ + ፊᑡዄኼ
Ꭱᑟ
𝑠 + ፊᑚ

Ꭱᑟ

(D.3)

Table D.1: Overview of responses of the closed loop simplified transfer functions subjected to highest and lowest frequencies

Relation s → 0 [abs] s →∞[abs] s → 0 [dB] s →∞[dB]
᎑፧∗
᎑፧∗ᑤᑖᑥ

1 0 0 -∞
᎑ፄ∗ᑟ
᎑፧∗ᑤᑖᑥ

ኼ
ፊᑚ

0 log( ኼፊᑚ ) -∞
᎑ፌ∗
᎑፧∗ᑤᑖᑥ

2 𝐾፩ 0.3 log(𝐾፩)

D.2. State Space Notation
̄�̇� = 𝐴�̄� + 𝐵�̄� (D.4)

�̄� = 𝐶�̄� + 𝐷�̄� (D.5)

�̄� = [𝛿𝑛
∗

𝛿𝐸∗፧] , �̄� = 𝛿𝑛∗፬፞፭ , �̄� = [𝛿𝑛
∗

𝛿𝑀∗፬ ] (D.6)

𝐴 = [
ዅ(ኼዄፊᑡ)

Ꭱᑟ
ፊᑚ
Ꭱᑟ

−1 0
] , 𝐵 = [

ፊᑡ
Ꭱᑟ
1
] (D.7)

𝐶 = [ 1 0
−𝐾፩ 𝐾።] , 𝐷 = [ 0𝐾፩] (D.8)
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74 D. Closed Loop Simplification

D.3. Sensitivity Analysis
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Figure D.1: Bode diagrams of sensitivity analysis of closed loop simplified system with three different parameters.



E
Inertia from TVC Report

Figure E.1: Overview of different mass moment of inertia of the propulsion line of the Stan Tug 1205.
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76 E. Inertia from TVC Report

Figure E.2: The propulsion line with indicated masses taken into account for the total mass moment of inertia.
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