
Bayesian Estimation of Multilevel Structural
Equation Models: Prior Specification for Random

Effects Variances

Jesse Vonk 5235960

Bachelor in Applied Mathematics

TU Delft 11-7-2025

June 2025

1

Abstract

Multilevel Structural Equation Modeling (MLSEM) is a framework for statisti-
cal modeling of hierarchical data and variables that are not observed directly,
so called latent variables. Hierarchical data, or nested data, is a data struc-
ture that is common in psychology, organizational- and educational sciences.
An example of hierarchical data is measurements made on students, such as
grades, sampled from multiple schools. In this example, students are said to
be nested within schools. The school that the student attends can be a causal
factor of the grades that the student gets, and students from the same school
thus share a common factor, namely the school. This causes the data collected
from students, that attend the same school, to be dependent, which violates an
assumption common in statistical modeling, namely that the samples need to
be independent. This violation of the assumption of independence thus needs
to be dealt with in a special manner, which leads to multilevel modeling, where
the sampled data is split into a component caused by the student (individual)
and a component that is caused by the school (group).
MLSEM combines the multilevel modeling framework with the Structural Equa-
tion Modeling (SEM) framework. The SEM framework models relationships
between variables that can not be observed directly, but are theorized to be
related to variables that can be observed directly. An example is academic per-
formance related to grades. Academic performance cannot be observed directly,
and as such is called a latent variable. However, it isrelated to variables that can
be observed directly, namely test scores. Academic performance can be related
to multiple test scores and through the SEM framework related to other latent
variables, such as stress.
MLSEM combines these frameworks by accounting for hierarchical data and the
use of latent variables. It does so by decomposing the data into within- (e.g.
student) and between- (e.g. school) components and specifying a SEM model
for both components.

In this thesis, in chapter 2 an overview of the mathematical foundations
underlying Multilevel Structural Equation Modeling (MLSEM) is given. This
chapter explains the basic components of MLSEMs, starting from the within-
between decomposition of the variance in equation 2.1.1. The independent com-
ponents, resulting from the within-between decomposition, are both described
by a single level SEM model. Together, these SEM models describe the multi-
level structure and the relationships among latent variables and between latent-
and observed variables. In chapter 3 the foundations of Bayesian estimation,
including an illustration of the influence of priors, are given and extended to
the Bayesian estimation of MLSEM. In chapter 4 a simulation study comparing
three priors for random effects variances, available in the R package Blavaan,
is done. This simulation study shows that the gamma distribution specified on
the standard deviation of random effects, rather than on the variance directly,
performs best especially when the true variance parameter is small. In chap-

2

ter 5, the results from the simulation study are applied to a real-life dataset
from the PRIME research program, which investigates the relationship between
cognitive load and perceived mental effort.

3

Contents

1 Introduction 6
1.1 Thesis Outline . 7

2 MLSEM 8
2.1 Multilevel SEM . 8
2.2 Two-level SEM . 10
2.3 Likelihood and Covariance . 22
2.4 Specification and Identification 22

3 Bayesian Estimation in MLSEM 23
3.1 Bayes’ Theorem . 24

3.1.1 Likelihood function, Prior & Posterior 24
3.1.2 Example: Application of Bayes’ Theorem 25

3.2 Influence of Priors . 26
3.3 Bayesian Estimation of MLSEM models 29
3.4 MCMC . 33

4 Simulation Study 35
4.1 Simulation Study . 35

4.1.1 Simulation Design . 36
4.1.2 Priors . 37

4.2 Blavaan . 38
4.3 Results . 39

4.3.1 Estimators . 39
4.3.2 Conclusion . 41

5 Application 44
5.1 Introduction . 44
5.2 PRIME Research . 44

5.2.1 SEM Model & Hypotheses 44
5.3 Data Collection . 47

5.3.1 Variables & Structure . 47
5.4 Data Preparation . 53

5.4.1 Transforming Variables 54
5.4.2 Filtering Data . 54

5.5 Model Estimation . 54
5.6 Results . 55

6 Conclusion 58

7 Discussion 59

4

A Invertibility Condition 60
A.1 Directed Acyclic Graph . 60
A.2 Nilpotency of Strictly Upper-Triangular Matrices 60
A.3 Result for nilpotent matrices . 61

B Deriving the Density of the Variance σ2 63

C Derivation Model-Implied Covariance Matrix 65

D Code 69
D.1 Preprocessing Data . 69
D.2 Simulate Data . 71
D.3 Simulation Study . 76
D.4 Simulation Result Plots . 80
D.5 PRIME research Model Fitting 86
D.6 Prior Plots . 89

5

1 Introduction

Bayesian multilevel structural equation modeling (MLSEM) is an important
statistical model to study relationships between latent variables with hierarchi-
cally structured data, as often encountered in educational- and organizational
settings. Bayesian estimation of MLSEMs allow researchers to use prior infor-
mation to get better estimates, especially when working with small sample sizes.
Over the past two decades significant progress has been made in the development
of Bayesian estimation methods for MLSEMs. Researchers have investigated
robust prior distributions to improve model stability and estimation accuracy.
Prior specifications have been investigated to improve the robustness of doubly
latent categorical multilevel models [8], addressing challenges associated with
small sample sizes and complex model structures (Zitmann et al.,2020) [1]. The
choice of prior distribution on random effects variances has been an important
component of Bayesian MLSEM research. Studies have shown that slightly in-
formative priors can stabilize estimators and can reduce the mean squared error
(MSE) of between-group slope estimates. Two methods have been proposed:
specifying informative priors directly for the slopes and for the between-group
variance of predictor variables. Both methods have shown effectiveness in im-
proving estimation accuracy, especially in small sample contexts (Zitmann et
al.,2020) [1]. A recent advance has been the integration of Bayesian estima-
tion of MLSEMs in statistical software. For example, the R package ’Blavaan’
enables Bayesian estimation of MLSEMs using Jags. ’Blavaan’ also provides
researchers with accessible tools for model fitting and result summarization
(Merkle & Rosseel, 2018)[17].
Despite these advances, several areas require further investigation.
For example, there is a great need for guidelines regarding prior specification
for random effects variances to ensure model stability and estimation accuracy
across research contexts.
Additionally, enhancing user-friendliness and computational efficiency of Bayesian
estimation tools can encourage wider adoption among applied researchers, fa-
cilitating the implementation of these advanced modeling techniques.
Because of the need for guidelines for prior specification and the influence priors
can have on estimation accuracy and model stability, analysis of these topics
is promising. Furthermore, since user-friendly packages, like ’Blavaan’, are im-
portant to the broader scientific community, analysis of prior specification and
guidelines regarding priors within these packages can offer value to researchers
from diverse disciplines.
This thesis will thus address the following objectives:

• Explore available prior distributions within ’Blavaan’ for MLSEMs

• Provide guidelines for prior specification for random effects variances within
’Blavaan’

6

1.1 Thesis Outline

To this end, this thesis will:

• Introduce the key concepts of Bayesian MLSEM

• Introduce the mathematical foundations of Bayesian estimation in MLSEM

• Perform a simulation study to examine the effect of prior specification on
estimation accuracy

• Apply the approach to real-world data from a psychology research study

7

2 MLSEM

2.1 Multilevel SEM

Multilevel modeling is a branch of statistics that addresses hierarchically struc-
tured or nested data. In hierarchical data - also known as clustered or nested
data - data points are best conceptualized as being nested within groups or clus-
ters. A good example of hierarchical data is students nested within classes. The
measurements we associate with students, for example test scores, are concep-
tualized to be nested within a cluster, which in this case is the class the student
belongs to. Multilevel models (MLM) also introduce group-level variables - mea-
surements that are associated with the group rather than with individuals, for
example teacher experience for a specific class. Multilevel models describe the
nested structure of the data with levels. In this example the students belong
to the lowest level, level 1, where as the classes belong to level 2. If we were
to sample classes - and students within these classes - from multiple schools,
we introduce a new level, level 3, to which the schools belong. These samples
within a common cluster or group are often not independent, which is something
that needs to be addressed, since many models such as ordinary linear regres-
sion assume complete independence of the samples. Failing to account for the
nested data structure can lead to biased estimates (Depaoli, 2015) [6]. In order
to address the group dependencies, multilevel models use group-level effects or
components to model variability that is shared by individuals in the same group.
An example of a group-level component, that will be used in this thesis, is a
random intercept, which models variability in group means. Equation 2.1.1 is a
simple example of a random intercept model.

Yij = µY + Uj + εij , (2.1.1)

Uj ∼ N (0,ΣU) , (2.1.2)

εij ∼ N (0,Σε) , (2.1.3)

where i = 1, · · · , Nj denotes the individual nested within group j = 1, · · · , J .
Here the term µY is the grand mean of Yij , Uj is the group-level variability
component and εij is the within-group variability component. In this example,
we denote the variance of Uj , which is known as a random effects variance, with
ΣU and the variance of εij with Σε.
We could alternatively write:

Yij = µj + εij ,

µj = µY + Uj ,
(2.1.4)

such that:

Yij ∼ N (µj ,Σε) ,

µj ∼ N (µY ,ΣU) ,
(2.1.5)

8

i.e. Yij is distributed with mean µj , where µj itself is a random variable with
mean µY , hence the name random intercept.
Equation 2.1.1 will be used later in this chapter to decompose observed data
into within and between components and plays an important role in MLSEM.
In MLM, it’s possible to also vary regression slopes between groups, but this is
beyond the scope of this thesis and won’t be used in the MLSEM models. For
a more thorough overview of multilevel models and multilevel relationships, I
refer the reader to Hox (2010)[11].

The Structural Equation Modeling (SEM) framework makes use of two types
of variables, observed variables (OVs) and latent variables (LVs). The latter
represents hypothetical (or theoretical) constructs that cannot be measured di-
rectly. Latent variables are defined by a set of observed variables that represent
the construct; this is made explicit in the so called measurement model of the
SEM model. SEM are widely applied in the social and behavioral sciences. An
example of this are the PRIME Research questionnaire items that measure the
various types of cognitive load. The measurement model, as we will see later
in this chapter, incorporates residual terms that represent measurement error
of the latent construct as a consequence of representing them with observed
variables. The SEM modeling framework furthermore allows the specification
of relationships between the latent variables. This enables researchers to study
effects between variables that cannot be measured directly. These relationships
are made explicit in the so called structural model of the SEM model. Thus
SEM models enable the study of relationships between variables that can not be
measured directly, while accounting for possible measurement error that occurs
when we represent these latent constructs with observed variables that measure
these constructs. Latent variables and the observed variables that measure them
often represent theoretical constructs. For example, the PRIME research repre-
sents cognitive load with latent variables and uses questionnaires that measure
cognitive load according to Cognitive Load Theory (see chapter 5).
The multilevel SEM (MLSEM) framework seeks to address both the hierarchi-
cal structure of the data and the study of latent constructs defined through
observed variables. The general MLSEM framework allows the investigation
of moderation effects between latent variables (through latent variable inter-
actions) as well as group differences as modeled by random intercepts. The
general framework has also been extended to nonlinear MLSEM models that
allow the use of nonlinear relationships between latent variables. In this thesis
we will be focusing on a two-level random intercept SEM model. In a two-level
random intercept SEM model, there are no latent variables interactions or ran-
dom coefficients (regression coefficients and factor loadings that vary between
groups); rather group differences will be modeled solely by random intercepts.
The reason this thesis will focus on the two-level random intercept SEM model
is the specific needs posed by the research questions of the PRIME Research.
This chapter will lay out the basics of the two-level MLSEM model, covering
model notation, the likelihood function, a derivation of model implied covariance
matrix, model specification and identification.

9

2.2 Two-level SEM

The two-level random intercept SEM model can be specified by defining a
measurement- and structural model at each level of the data (Muthén, 1994
& Depaoli, 2021)[7][16] . Each model describes the variability, i.e. variance
around the (group-) mean, at that level, i.e. within-level and between-level
variability.

Observed Variables First, we define the observed variables and the individ-
uals, nested within groups, they belong to.
To this end, let, for individual i = 1, · · · , Nj : nested within group j = 1, · · · , J
(level 2):

• Yij be a k-variate vector containing the observed endogenous variables,

• Xij be a p-variate vector containing the observed exogenous variables,

where J denotes the number of groups and Nj denotes the number of indi-
viduals within group j.

Endogenous (dependent) refers to the fact that variability in Yij will be
explained by other variables in the model, namely exogenous (independent)
variables Xij . The designation of variables as either endogenous or exogenous
is due to the use of the variables in the model and is not an intrinsic property
of the variables themselves. Variables that are designated as exogenous in one
model can be endogenous in another model.

Within-Between Decomposition The observed variables, Yij and Xij , are
decomposed into independent within and between components using the random
intercept model from 2.1.1:

Yij = µY + YW
ij + Y B

j ,

Xij = µX +XW
ij +XB

j .
(2.2.1)

where

• Y B
j , XB

j represent the between group variability, i.e. represents the vari-
ability between group-means

• YW
ij , XW

ij represent the within group variability, i.e. represents the vari-
ability around group-means

• µY and µX are the grand means of Yij and Xij , respectively.

The within and between components, for both Yij and Xij , have the property
that they are orthogonal and additive (Searle, Casella, & McCulloch, 1992) [18],

10

i.e. we can decompose the covariance matrices of the observed variables, denoted
ΣT

Y , ΣT
X and ΣT

XY , as follows:

ΣT
Y = ΣW

Y + ΣB
Y ,

ΣT
X = ΣW

X + ΣB
X ,

ΣT
XY = ΣW

XY + ΣB
XY .

(2.2.2)

For simplicity of notation, we define the covariances of (YW
ij , X

W
ij)T and (Y B

j , XB
j)T

as follows:

ΣW =

(
ΣW

Y ΣW
YX

ΣW
XY ΣW

X

)
(2.2.3)

ΣB =

(
ΣB

Y ΣB
YX

ΣB
XY ΣB

X

)
(2.2.4)

The SEM modeling framework conventionally assumes that the within and be-
tween components are multivariate normal distributed (Bollen, 1989)[2]:

(YW
ij , X

W
ij)T ∼ N (0,ΣW) , (2.2.5)

(Y B
j , XB

j)T ∼ N (0,ΣB) , (2.2.6)

such that the observed variables are also multivariate normal distributed:

(Yij , Xij)
T ∼ N ((µY , µX)T ,ΣW + ΣB) , (2.2.7)

Model Equations Now that we have decomposed the data into within and
between components, we describe them with level 1 and level 2 structural- and
measurement models, respectively.

Level 1

YW
ij = ΛW

Y ηWij + εWij , (2.2.8)

XW
ij = ΛW

X ξBij + δWij , (2.2.9)

ηWij = BW ηWij + ΓW ξWij + ζWij , (2.2.10)

Level 2

Y B
j = ΛB

Y η
B
j + εBj , (2.2.11)

XB
j = ΛB

Xξ
B
j + δBj , (2.2.12)

ηBj = BBηBj + ΓBξBj + ζBj , (2.2.13)

where we assume the following:

11

• εWij ∼ N (0,ΘW
ε) and εBj ∼ N (0,ΘB

ε) ,

• δWij ∼ N (0,ΘW
δ) and δBj ∼ N (0,ΘB

δ) ,

• ζWij ∼ N (0,ΨW) and ζBj ∼ N (0,ΨB) ,

• ξWij ∼ N (0,ΦW) and ξBj ∼ N (0,ΦB) ,

• Cov(ζWij , ξ
W
ij) = 0 and Cov(ζBj , ξBj) = 0 .

For a more extensive overview of the variables and parameters used in the two-
level random intercept MLSEM model, see tables 1 and 2, respectively.

Interpretation

Hierarchical Structure The model reflects that the data is nested by
specifying individuals i (level 1) within clusters j (level 2), for example multiple
questionnaires (level 1) per student (level 2). The multilevel structure allows for
group dependencies to be taken into account: questionnaires filled in by the same
student tend to be similar (see chapter 5). Furthermore, by partitioning the
variance into within-components (level 1) and between-components, MLSEM
allows researchers to test hypotheses for both within-level and between-level
processes, for example, by testing hypotheses on the between-level regression
coefficients to test contextual effects or by testing hypotheses on within-level
coefficients to test individual effects (Hox, J., 2010)[11].

Random Intercepts and Between-group Variability Latent variables
and between-components (e.g., ηBj , XB

j) model between group variability (Hox,

J., 2010)[11]. The between-components of the observed variables, Y B
j and XB

j ,
can be understood as random intercepts, as in equation 2.1.1. These latent
variables represent group-level effects that are shared by all individuals (level 1)
nested within the same group (level 2). Latent variables at the between level can
be used to model contextual effects. For example, they can be used to explain
why certain students (level 2) score higher overall on certain questionnaire items
after accounting for individual (level 1) effects.

Latent- and Observed Variables At each level we include exogenous
latent variables ξ : these represent unobserved causes that influence endoge-
nous outcomes; endogenous latent variables η : these represent unobserved
traits or outcomes that are influenced by exogenous or other endogenous vari-
ables; observed indicator variables X ,Y : these variables are observed and
reflect the latent constructs or variables used in the model. We include a mea-
surement model at each level, which describes how latent variables are mea-
sured by the observed indicator variables, through the factor loadings (e.g. ΛW

Y),
and the measurement error (e.g. ΘB

δ). We can, for example, measure cognitive
load (latent) using questionnaire items. By specifying a measurement model at

12

each level we can measure within and between-level latent variables. Within-
level latent variables are measured by the within-components of the data (e.g.,
YW
ij ← ηWij , through ΛW

Y). Similarly, between-level latent variables are mea-

sured by between-components (e.g., XB
j ← ξBj , through ΛB

X).
Note that the dimensions of the within- and between-level latent variables may
be different. That is, the dimension of ηWij does not have to equal the dimension

of ηBj . The same goes for ξWij and ξWj .
For further information, I refer the reader to Depaoli (2021) [7], who gives an
example of a 3-level model with two LVs at level 1 and 1 LV at both level 2 and
3.

Model Assumptions

YW
ij ∼ N (0,ΣW

Y) ,

XW
ij ∼ N (0,ΣW

X) .

Y B
j ∼ N (0,ΣB

Y) ,

XB
j ∼ N (0,ΣB

X) .

ηWij ∼ N (0,ΣW
η) ,

ηBj ∼ N (0,ΣB
η) .

ξWij ∼ N (0,ΦW) ,

ξBj ∼ N (0,ΦB) .

ζWij ∼ N (0,ΨW) ,

ζBj ∼ N (0,ΨB) .

εWij ∼ N (0,ΘW
ε) ,

εBj ∼ N (0,ΘB
ε) .

δWij ∼ N (0,ΘW
δ) ,

δBj ∼ N (0,ΘB
δ) .

13

Symbol Name Dimension Definition Level

(Decomposed) Observed Variables (OV)
XW

ij X Within p× 1 Within component of exog. OV Level 1
XB

j X Between p× 1 Between component of exog. OV Level 2
YW
ij Y Within k × 1 Within component of endog. OV Level 1
µY
j Y Between k × 1 Between component of endog. OV Level 2

Latent Variables (LV)
ηWij Eta Within m1 × 1 Within component of endog. LV Level 1
ηBj Eta Between m2 × 1 Between component of endog. LV Level 2
ξWij Xi Within n1 × 1 Within component of exog. LV Level 1
ξBj Xi Between n2 × 1 Between component of exog. LV Level 2

Residuals and Measurement Error
δWij Delta Within p× 1 Within exog. measurement error Level 1
δBj Delta Between p× 1 Between exog. measurement error Level 2
εWij Epsilon Within k × 1 Within endog. measurement error Level 1
εBj Epsilon Between k × 1 Between endog. measurement error Level 2

Structural Residual
ζWij Zeta Within m1 × 1 Within structural residual Level 1
ζBj Zeta Between m2 × 1 Between structural residual Level 2

Table 1: Overview of the variables used in a two-level random intercept MLSEM
model. The table displays the symbol used, the name, the dimension, the defi-
nition and level for each variable

Model Variables

14

Symbol Dimension Definition Level

Factor Loadings
ΛW
X p× n1 Relates XW

ij to ξWij Level 1
ΛB
X p× n2 Relates XB

j to ξBj Level 2
ΛW
Y k ×m1 Relates YW

ij to ηWij Level 1
ΛW
Y k ×m2 Relates Y B

j to ηBj Level 2
Structural Regression Slopes

BW m1 ×m1 Within-level relationships between endog. LVs: ηWij Level 1
BB m2 ×m2 Between-level relationships between endog. LVs: ηBj Level 2
ΓW m1 × n1 Within-level relationships from exog. to endog. LVs: ξWij → ηWij Level 1
ΓB m2 × n2 Between-level relationships from exog. to endog. LVs: ξBj → ηBj Level 2

Measurement Error Covariance Matrices
ΘW

ε k × k Within-level endog. measurement error covariance: εWij Level 1
ΘB

ε k × k Between-level endog. measurement error covariance: εBj Level 2
ΘW

δ p× p Within level exog. measurement error covariance: δWij Level 1
ΘB

δ p× p Between-level exog. measurement error covariance: δBj Level 2
LV and Structural Residual Covariance Matrices

ΨW m1 ×m1 Within-level structural residual covariance: ζWij Level 1
ΨB m2 ×m2 Between-level structural residual covariance: ζBj Level 2
ΦW n1 × n1 Within-level exog. LV covariance: ξWij Level 1
ΦB n2 × n2 Between-level exog. LV covariance: ξBj Level 2

Table 2: Overview of model parameters for the two-level random-intercept
MLSEM model. The table displays the symbol used, the dimensions, the defi-
nitions and levels for each of the model parameters.

15

Figure 1: Path Diagram representation of a Single-Level SEM model. The
SEM model contains three endogenous latent variables measured by three ob-
served variables each and two exogenous latent variables also measured by three
observed variables each. The model contains structural relationships from ex-
ogenous latent variables to endogenous latent variables, as well as relationships
from an endogenous latent variable to another endogenous latent variable. The
path diagrams also specifies (residual) correlations for the latent variables and
measurement errors.

Example of a Single-Level SEM Model: Path Diagram MLSEM mod-
els, as well as SEM models, are often represented and specified with a graph.
Rather than using matrix notation, the graph notation used directed edges (ar-
rows), double headed arrows, rectangles and circles to specify relationships and
variables in the model. Figure 1 provides an example of a path diagram for a
single level model. Figure 2 contains an overview of the various elements that
make up a path diagram along with their definition.

16

Figure 2: This table contains the primary elements of a path diagram to specify
SEM models. Next to each element, a brief definition of the element is provided.

17

The model specified in 1 has nine observed endogenous variables, Yi, and
six observed exogenous variables, Xi, with corresponding measurement errors,
εi and δi:

Yi =

Y
1
i
...
Y 9
i

 , Xi =

X
1
i

...
X6

i

 ,

εi =

ε
1
i
...
ε9i

 , δi =

δ
1
i
...
δ6i

 .

In addition, it contains three latent endogenous variables, ηi , three struc-
tural residual terms, ζi and two latent exogenous variables, ξi :

ηi =

η1iη2i
η3i

 , ζi =

ζ1iζ2i
ζ3i

 , ξi =

(
ξ1i
ξ2i

)
.

Since we have nine observed endogenous variables, Yi , and three latent endoge-
nous variables, ηi , we know that the endogenous factor loadings, ΛY , should
be a (9 × 3)-matrix. If there is an arrow from the nth endogenous latent vari-
able, ηni , to the mth observed endogenous variable, Y m

i , we let (ΛY)mn = λYmn ,
otherwise (ΛY)mn = 0 , i.e. its fixed to zero. The same logic applies to the
exogenous factor loadings.
This yields the following factor loading matrices:

ΛY =



λY11 0 0
λY21 0 0
λY31 0 0
0 λY42 0
0 λY52 0
0 λY62 0
0 0 λY73
0 0 λY83
0 0 λY93


, ΛX =


λX11 0
λX21 0
λX31 0
0 λX42
0 λX52
0 λX62

 .

18

Remarks:

• Setting, for example, (ΛY)mn = λYmn means that this coefficient has to be
estimated and thus becomes a parameter.

• Its conventional to fix one factor loading per latent variable to be equal
to 1, e.g. for ΛX we could let λX11 = λX42 = 1 . This provides scale to the
model and is necessary for model identification (see section 2.4 for details
on identification). This is left out of this example to emphasize the link
between the path diagram and the model parameters.

We have three arrows (e.g. γ11) pointing from exogenous latent variables
to endogenous latent variables and one arrow (β23) from an endogenous latent
variable to another endogenous variable, where entries that don not correspond
to an arrow are again fixed to 0, as with the factor loadings. Since we have
three endogenous latent variables and two exogenous latent variables, B must
be a (3× 3)-matrix and Γ a (3× 2)-matrix.

19

This yields the following structural coefficient matrices:

B =

0 0 0
0 0 β23
0 0 0

 , Γ =

γ11 0
γ12 0
0 γ23

 ,

where again any entry of these matrices that does not correspond to an arrow
is fixed to 0 .

Lastly, we specify the covariance matrices. Covariance matrices for the mea-
surement errors and structural residuals are conventionally assumed to be diag-
onal, however, the path diagram specifies the presence of residual correlations.
The covariance matrices need to be square matrices, so from the dimensions
of their respective variables we derive that Θε must be a (9 × 9)-matrix, Θδ a
(6× 6)-matrix and Ψ a (3× 3)-matrix.

This yield the following covariance matrices:

Θε =



θε11 θε12 0 0 0 0 0 0 0
θε12 θε22 0 0 0 0 0 0 0
0 0 θε33 0 0 0 0 0 0
0 0 0 θε44 0 0 0 0 0
0 0 0 0 θε55 0 0 0 0
0 0 0 0 0 θε66 0 0 0
0 0 0 0 0 0 θε77 0 0
0 0 0 0 0 0 0 θε88 0
0 0 0 0 0 0 0 0 θε99


,

Θδ =


θδ11 0 0 0 0 0
0 θδ22 0 0 0 0
0 0 θδ33 0 0 0
0 0 0 θδ44 θδ45 0
0 0 0 θδ54 θδ55 0
0 0 0 0 0 θδ66

 ,

Ψ =

ψ11 ψ12 0
ψ21 ψ22 0
0 0 ψ33

 ,

Φ =

(
ϕ11 ϕ12
ϕ21 ϕ22

)
,

where the diagonal elements of these matrices (e.g. ψ11) denote variances
and the off-diagonal elements denote covariances (e.g. θε12). As is required
of covariance matrices, these matrices are symmetric, thus it must hold, for
example, thatψ21 = ψ12 .

20

Remark:

• Note that Φ is an exception to the previously stated rule that any un-
specified covariance (or regression coefficient) is fixed to equal 0. No as-
sumptions are made with regards to the covariance matrix of ξi and thus
we include all entries of the covariance matrix, specifically they are not
constrained by model equations.

21

2.3 Likelihood and Covariance

The likelihood function in MLSEM represents the likelihood of observing the
data given the model parameters. It forms the basis for estimation in both
frequentist and Bayesian frameworks. For a two-level MLSEM model, the like-
lihood is derived from the model implied covariance matrix and the observed
(sample) covariance matrix.

Using the model equations and model parameters, we can derive an expres-
sion of the covariance matrices (for both the within and between components)
as a function of model parameters. This is often denoted in the following way:

ΣW
Y = ΣW

Y (θ) , ΣB
Y = ΣB

Y (θ) , (2.3.1)

ΣW
X = ΣW

X (θ) , ΣB
X = ΣB

X(θ) , (2.3.2)

ΣW
YX = ΣW

YX(θ) , ΣB
YX = ΣB

YX(θ) . (2.3.3)

The complete expression of the likelihood function for two-level MLSEM, as
implemented in Blavaan, can be found in (Rosseel, 2021)[17].

2.4 Specification and Identification

Specification in MLSEM refers to translating theory into a formal MLSEM
framework, including paths between latent and observed variables as well as
regression paths between latent variables in the structural model. Specification
of a MLSEM can be done by constraining some parameters - usually equal to 0 -
and letting other parameters vary freely, which will then be estimated. Specifi-
cation often also includes conditions on covariances between residuals, which are
often assumed to be independent. In two-level MLSEM, both the within-group
(level 1) and between-group (level 2) structural and measurement models need
to be specified.

A model is said to be identified if there is a unique set of parameters that
can reproduce the model-implied covariance matrices. An alternative definition
is that if a parameter can be written as a function of the observed covariance,
then that parameter is identified; if all parameters are identified the model is
identified (Bollen, 1989)[2]. Typical strategies to identify (ML-)SEM models is
to fix one factor loading per latent variable to 1, to provide scale to the model or
alternatively to fix the variance of latent variables to 1. Overparameterization
can cause parts of the model to be under-identified. There are various heuris-
tics to test wether a MLSEM model is identified, most notably the t-rule, which
tests wether the amount of known information exceed the amount of unknown
information (Brouwer, 2021)[3]. These heuristics, however, don’t guarantee that
the model is identified, as such it is a necessary but not sufficient condition. En-
suring model identification is important to get reliable and interpretable results.
In Bayesian estimation, non-identified parameters can be overly influenced by
priors.

22

3 Bayesian Estimation in MLSEM

In the previous chapter, we laid out the basics of MLSEM models, including
model notation and derivation of the model implied covariance matrix. Fre-
quentist estimation of MLSEM models is most often done with maximum like-
lihood estimation (ML), employing an iterative algorithm to obtain estimates.
ML estimation often encounters problems with estimation of MLSEM models,
especially in a small sample size context or when estimating many group-level
variance components that are near or equal to zero.

Bayesian estimation is particularly suited for estimation in MLSEM, for
example, in cases when sample sizes are small, asymptotical analysis is not re-
liable and can give too small confidence intervals and p-values (Hox, 2010)[11].
Bayesian analysis quantifies the uncertainty in the resulting estimates through
the prior distribution, giving a probabilistic interpretation of the estimates that
is valid even for small sample sizes. The use of prior distributions offers a way
to incorporate prior knowledge into the estimation procedure, which has been
shown to reduce mean square error (MSE) of slope estimates in MLSEM (Zitz-
mann et al., 2020) [1]. Another benefit of Bayesian estimation in MLSEM is the
ability to take theoretical constraints into account by choice of priors or techni-
cal constraints regarding admissible parameter values. With the advent of com-
putational methods such as Markov Chain Monte Carlo simulation (MCMC),
Bayesian analysis and estimation of complex models, such as MLSEMs, has
become easier and wide spread in statistical software (e.g., Blavaan in R), al-
lowing estimation of models that were intractable with classic ML estimation
(Depaoli, 2021)[7]. MCMC methods sample the posterior distribution using
sampling algorithms offering additional benefits, such as the ability to directly
transform samples to obtain new quantities of interest (e.g., direct- and total ef-
fects) and to incorporate the sampling of latent variables, offering an alternative
to high dimensional numerical integration often encountered in ML estimation
of multilevel latent variable models.

In this section we will discuss the use of Bayesian statistics in the context of
MLSEM models. We will discuss the foundation of Bayesian inference, Bayes’
Theorem, and cover the influence of priors on estimation of MLSEM models.
The choice of prior is regarded as a subjective choice and has a great influence
on posterior estimates. In small sample sizes, informative prior distributions
can improve estimate accuracy and decrease variability (Depaoli, 2021)[7]. But
even when no prior information is known, a weakly informative prior can be
specified to regularize estimates (Depaoli, 2021)[7].

Bayesian vs Frequentist Bayesian statistics is a branch of statistics that
makes use of the Bayesian interpretation of probability, which is that a proba-
bility represents a (subjective) degree of belief or certainty in an event, given our
current state of knowledge. It’s different from frequentist (classical) statistics
in this regard, which interprets a probability as a long run relative frequency of
an event in repeated identical experiments or draws.

23

Bayesian- and frequentist statistics differ most notably in the way they treat
population parameters. In frequentist statistics, population parameters are in-
terpreted to be fixed but unknown values, where as, Bayesian statistics treats
population parameters as random variables with a distribution that represents
our current state of knowledge or certainty about those parameters.
Frequentist statistics makes use of sampling distributions to quantify certainty
of our estimates and hypothesis testing, where hypotheses may be accepted or
rejected based on the likelihood of the observed data under that hypothesis. It
can not, however, tell us how likely it is that a certain hypothesis is true; fre-
quentist statistics fundamentally assumes that this is a fixed but unknown state
of the world, and hence it can not have a probability assigned to it. Bayesian
statistics, instead, relies on prior distributions that quantify our beliefs about
the hypotheses and combines prior beliefs and observed data to update that
certainty.
Bayesian statistics can be used to incorporate prior knowledge about the data,
which can be especially helpful when little data is available. The results we
get from Bayesian statistics are, however, very sensitive to the choice of priors,
which is also subjective, where as frequentist methods only rely on data.

3.1 Bayes’ Theorem

One of the most important concepts in Bayesian statistics and probability in
general is Bayes’ Theorem. It defines the conditional probability of an event
conditional on another event.

Theorem 3.1 (Bayes’ Theorem). Let (Ω,Σ,P) be a probability space. Let
A,B ∈ Σ such that P(B) > 0. Then we have that:

P(A|B) =
P(A ∩B)

P(B)
=

P(B|A)P(A)

P(B)
∝ P(B|A)P(A) (3.1.1)

We can also formulate Bayes’ Theorem for the density of continuous random
variables.

Theorem 3.2 (Bayes’ Theorem Continuous Form). Let X and Θ be continuous
random variables. Suppose the conditional density of X is given by p(x|θ) and
the marginal distribution of Θ is given by π(θ). Then we have that:

p(θ|x) =
p(x, θ)

p(x)
=
p(x|θ)π(θ)

p(x)

=
p(x|θ)π(θ)∫
p(x|θ)π(θ)dθ

∝ p(x|θ)π(θ)

(3.1.2)

3.1.1 Likelihood function, Prior & Posterior

Often, statistical models are defined using a distribution of the data conditional
on the model parameters, denoted p(x|θ). When the data are observed and this

24

function is seen as a function of model parameters, we call it a likelihood func-
tion and denote it by L(θ|x).(Levy & Mislevy, 2016)[14]. In frequentist statistics
the data are treated as random, modeled by this conditional distribution and
the model parameters are treated as fixed. In Bayesian statistics we treat both
the data and the parameters as random.
This furthermore requires us to specify a distribution on the parameters, p(θ),
which is known as the prior distribution. Multiplying the likelihood function
and the prior distribution on the parameters, we get the joint distribution on
both the data and the parameters. Using Bayes’ Theorem (theorem 3.2) we can
then also calculate the distribution of the parameters conditional on the data,
p(θ|x), which is known as the posterior distribution.

Definition 3.1. Let X be a random variable with density (or probability mass
function for discrete X) pθ depending on parameters θ. Then, for fixed x, the
likelihood function is the function:

θ 7→ L(θ;x) = pθ(x) (3.1.3)

Definition 3.2. Let X be a random variable with likelihood function L(θ; x).
A prior distribution is a probability distribution π(θ) on the parameters θ.

Definition 3.3. Let X be a random variable with likelihood function L(θ; x)
and π(θ) a prior distribution on the parameter θ.
The posterior distribution p(θ|x) is the conditional distribution of the parameter
θ after observing the data. The posterior distribution for a given prior and
likelihood function can be found using Bayes’ Theorem.

Definition 3.4. Let X be a random variable with likelihood function L(θ; x).
A conjugate prior distribution, π(θ), is a prior distribution that, when combined
with the likelihood function, results in a posterior distribution p(θ|x) that is in
the same family of distributions as π(θ).

3.1.2 Example: Application of Bayes’ Theorem

Suppose we have n independent draws, X = (X1, X2, . . . , Xn), from a normal
distribution with unknown mean µ and known variance, σ2. That is:

Xi ∼ N(µ, σ2) . (3.1.4)

Note that equation 3.1.4 specifies our statistical model and also specifies a like-
lihood function for the data. For convenience, we assume that we know the
variance and are only interested in µ. We assume a normal prior on µ,

µ ∼ N(µ0, τ
2
0) . (3.1.5)

25

We can rewrite equations 3.1.4 and 3.1.5 into a likelihood function and prior
distribution:

P (X|µ) =

n∏
i=1

P (xi|µ) =

n∏
i=1

1√
2πσ2

exp

(
− (xi − µ)2

2σ2

)
,

P (µ) =
1√

2πτ20
exp

(
− (µ− µ0)2

2τ20

)
,

(3.1.6)

where P (X|µ) is the likelihood function and P (µ) is the prior distribution on
µ. We can then apply Bayes’ Theorem to the likelihood function and prior
distribution to get the posterior distribution,

P (µ|X) =
P (X|µ)P (µ)

P (X)
,

∝ P (X|µ)P (µ) ,

∝ exp

(
−1

2

[
n

σ2
(x̄− µ)2 +

1

τ20
(µ− µ0)2

])
,

(3.1.7)

where x̄ is the sample mean of the observed data and P (X) is the marginal
distribution of the data after integrating out the parameter µ. This is only a
function of the data and is thus regarded as a normalizing constant. We have
furthermore left out any terms that are not functions of X or µ and collected
them in the normalizing constant.

3.2 Influence of Priors

Influence of the Prior Distribution Where frequentist statistics only rely
on data and a likelihood function to produce estimates, Bayesian statistics also
makes use of priors. The choice of prior is subjective and the resulting poste-
rior distribution is thus also subjective. Levy & Mislevy (2016) [14]provide a
great example describing the influence of the prior distribution on the resulting
posterior distribution.

Example: Beta-Binomial Model Let Y be a Binomial(J, θ) distributed
variable, where J is a fixed integer. Then for observed y we have the following
likelihood function:

L(θ|y, J) = p(y|θ, J) =

(
J
y

)
θy(1− θ)J−y ∝ θy(1− θ)J−y . (3.2.1)

We specify a Beta(α, β) prior on θ:

π(θ) = p(θ|α, β) =
θα−1(1− θ)β−1

B(α, β)
∝ θα−1(1− θ)β−1 , (3.2.2)

26

where B(α, β) = Γ(α)Γ(β)
Γ(α+β) and Γ(x) is the Gamma-function.

Then, by Bayes’ Theorem, we have that:

p(θ|y, J) ∝ L(θ; y, J)π(θ) (3.2.3)

∝ θy+α−1(1− θ)J−y+β−1 . (3.2.4)

The form of the resulting posterior distribution can be recognized as a Beta
distribution (Levy & Mislevy, 2016)[14], i.e.:

p(θ|y, J) = Beta(θ|y + α, J − y + β) . (3.2.5)

Note that, by definition 3.4, the Beta distribution is a conjugate prior as the
resulting posterior distribution is also a Beta distribution.

To visualize the influence of prior distributions on posterior distributions,
we look at the example by Levy & Mislevy (2016)[14]. The authors use the
Beta-Binomial model specified above with y = 7 and J = 10 and consider three
different priors. The priors used, the likelihood for the given parameters and
the resulting posterior distributions are visualized in figure 3.

27

Figure 3: (Levy & Mislevy, 2016)[14]: Prior, likelihood function, and posterior
for the Beta-binomial model with y = 7 with J = 10 and three different cases
defined by different prior distributions. Reading down the columns presents the
prior, likelihood, and posterior for each case. Where applicable, the mode of
the distribution (solid) and the MLE (dotted) is indicated with a vertical line.

28

Asymptotical Equivalence It is important to note, however, that the Bayesian
approach is asymptotically equivalent to the frequentist approach as the number
of data points increases to infinity. In this case the posterior distribution limits
to the likelihood function. The influence of the prior becomes less dominant in
the posterior in this limit.

Posterior Distribution Using Bayesian stats we obtain a posterior distribu-
tion, which is the main result of the analysis (Levy & Mislevy, 2016)[14]. There
are several ways we can summarize the posterior distribution. We could for
example compute the posterior mean or posterior median, but we could also use
the mode of this distribution, the value with the highest probability, this last
estimate is known as the Maximum a Posteriori estimate (MAP).

Another common statistic is the credible interval, which is similar to a
confidence interval from frequentist statistics. Where confidence are usually
constructed using sampling distributions of the statistics, and thus relying on
asymptotical properties and arguments, the credible interval is directly derived
from the posterior distribution.
For example, a 100(1 − α)% interval is constructed by computing the 100α

2 %
percentile and the 100(1−α

2)% percentile. The former becomes the lower bound-
and the latter becomes the upper bound of this interval.

Model Comparison Since the output of Bayesian estimators rely on pos-
terior probability distributions, we can compute the actual probability of our
hypothesis being true (assuming the likelihood and prior are correct). A com-
parable statistic from frequentist stats is the p-value, which is the probability of
observing the data assuming the null hypothesis is true. The interpretation of
p-values can be quite tricky and often misleading, where as the interpretation
of the posterior probability is as an actual probability.

3.3 Bayesian Estimation of MLSEM models

Bayesian methods can help regularize estimates of parameters. This is espe-
cially useful for MLSEM models with many random effects variances, where
ML estimates might be inadmissible, such as negative variances, or fail to con-
verge. This is especially prevalent with small sample sizes and random effects
variances equal to or near zero(Hox, J., 2012 & Depaoli, 2015)[11][6]. Variances
(and covariances) are more difficult to estimate than means due to a flatter
likelihood function (Depaoli, 2021)[7]. The use of priors can help to regularize
estimates by shrinking them to the a-priori mean or by restricting inadmissible
parameters by specifying a prior with support on allowed values only. When
little prior knowledge is available a weakly informative prior can be specified
over a range of ‘reasonable’ parameter values. Another benefit of Bayesian esti-
mation in MLSEM models is the computational efficiency of sampling methods.

29

Rather than the iterative approach often applied by ML estimation, MCMC
approximates the posterior distribution to obtain estimates. This may include
latent variables used in the model, which prevents numerical integration required
for some multilevel latent variable models. Multilevel latent variable models,
such as MLSEMs, that include latent variable interactions are regarded as com-
putationally infeasible for ML estimation (Muthen & Asparouhov, 2020)[15].
Bayesian estimation makes it possible to estimate more complex models, con-
tributing to the types of research questions that can be answered with multilevel
models.

Prior Specification To estimate MLSEM models with Bayesian estimation
we need to specify priors for each parameter of the model. That is, we need to
specify priors for the factor loadings (ΛW

X , ΛB
X , ΛW

Y and ΛB
Y), regression coeffi-

cients (BW , BB , ΓW and ΓB), measurement error (co)variances (ΘW
X , ΘB

X , ΘW
Y

and ΘB
Y), structural residual (co)variances (ΨW and ΨB) and exogenous latent

covariances (ΦW and ΦB), at each level of the data, i.e. within- and between
level for the two-level random intercept SEM model.

Factor Loadings & Regression Coefficients A common (weakly informa-
tive) prior for the factor loadings and regression coefficients is a (multivariate)
normal distribution, where the normal prior for the factor loadings is centered
at 1 and for the regression coefficients is centered at 0. For the factor loadings
and regression coefficients an informative prior may also be specified with the
normal distribution, where the variance of the prior is set to a lower value and
the mean is set to an informative value. Zitzmann (2020) [1] has shown that
the use of informative priors on regression coefficients can improve estimates for
group level variances.

If we let θnormal = (B,Γ,Λ)T be a vector of parameters assumed to follow
a multivariate normal distribution, we can specify the prior as follows:

θnormal ∼ N (µMVN ,ΣMVN), (3.3.1)

where µMVN is the mean hyperparameter in vector form and ΣMVN is the
variance hyperparameter in covariance matrix form and B = (BW , BB), Γ =
(ΓW ,ΓB), Λ = (ΛW

Y ,ΛW
X ,ΛB

Y ,Λ
B
X) are row-vectors containing the structural

coefficients and factor loadings, respectively. Technically, this approach puts a
normal prior on each of the individual elements of the matrices.

Variance Parameters A common prior for variance parameters is the inverse
gamma distribution. For an unknown variance parameter σ2 we can specify the
inverse gamma prior as follows:

σ2 ∼ IG[aσ2 , bσ2] , (3.3.2)

30

where the hyperparameter a and b represent the shape and scale of the inverse
gamma distribution, respectively. To obtain a proper prior, i.e. an actual
probability distribution, both the hyper-parameters need to be set to positive
values.
Equivalently, we could specify a gamma prior (G) on the inverse of the variance,
1/σ2, also known as the precision, denoted as follows:

1/σ2 ∼ G[a1/σ2 , b1/σ2], (3.3.3)

where the hyper-parameters a and b are again the shape and scale parameters,
respectively and also need to have positive values to obtain a proper prior.
Again, this prior specification is identical to specifying a inverse gamma prior
on the variance.
We will also consider two alternatives to the inverse gamma prior (IG). We
consider a gamma prior, specified on the variance, σ2, and on the standard
deviation, σ. We denote this as follows:

σ2 ∼ G[aσ2 , bσ2] , (3.3.4)

σ ∼ G[aσ, bσ] . (3.3.5)

The reason we consider these alternatives is that these prior specifications, along
with the gamma prior on the precision, are the available prior specifications of
variance parameters in the R package Blavaan.
For an unknown variance parameter, we can specify the gamma prior on the
variance directly, on the standard deviation or on precision, the latter two can
be transformed back to variance. Because we specify the gamma prior on trans-
formed variables, the effective density for the variance parameter changes. To
highlight this effect, the three different options for prior (gamma distribution)
specification on an unknown variance parameter are plotted in figure 4, with
different parameters for the gamma distribution. For a full derivation of the
densities, refer to the Appendix B. In the next chapter, we will study the influ-
ence of these different specifications on the estimation of variance parameters
in a simulation study.
To highlight the differences in these priors, the different priors are plotted in
figure 4.

31

Figure 4: This figure shows multiple plots of the densities of three distribu-
tions of a variance parameter. The densities are annotated by ’var’, ’sd’ and
’precision’, where each represents the density of a variance parameter when the
gamma distributions is specified on the variance directly (’var’), on the standard
deviation (’sd’) or on the precision (’precision’). The plots in this figure are the
three densities with varying parameters of the gamma distribution, as indicated
by the title.

32

3.4 MCMC

For simple models with conjugate priors we have analytical solutions with the
same form as the prior distribution. Many statistical models, however, do not
enjoy the benefit of having conjugate priors. Computing the posterior distribu-
tion from the prior distribution and likelihood function can often prove to be
intractable, as it often requires computing a high-dimensional integral. This in-
tegral is only a function of the observed data and is a constant. An alternative
to this problem is to simulate values from the posterior distribution and use
it as an empirical estimate. Markov Chain Monte Carlo (MCMC) refers to a
collection of methods that construct a Markov chain which is sampled to obtain
samples from a target distribution.

Definition 3.5. A Markov chain is a sequence of random variables (Xi)i>=0,
satisfying the following property:

P(Xi|Xi−1, ..., X0) = P(Xi|Xi−1) (3.4.1)

Some additional properties of Markov chains: (Levy & Mislevy, 2016)[14]

• The Markov chain is called irreducible if from any point the chain can reach
any other point with positive probability in a finite number of iterations.

• The Markov chain is called positive recurrent if in the long-run the chain
visits each point an infinite number of times.

• The Markov chain is called aperiodic if it does not oscillate between two
states with a regular period.

If a Markov chain is irreducible, positive recurrent and aperiodic, it is called
ergodic and will converge to a unique stationary distribution π.

Markov Chain Monte Carlo Markov Chain Monte Carlo (MCMC) refers
to any method that samples data points from a distribution π by constructing
an ergodic Markov chain that converges to the target distribution π. In case of
Bayesian statistics, we choose π to be the posterior distribution of the parame-
ters θ. Several algorithms exist that implement this approach, each with differ-
ent characteristics. (Metropolis-Hastings, Hamiltonian, Gibbs) MCMC methods
are very popular because of the relative ease when dealing with high dimensional
problems.

Instead of computing the posterior distribution and its moments analyti-
cally, we construct a Markov chain that converges to the posterior distribution
and compute its moments or any other function of the samples empirically.
It is important to take enough samples from the posterior distribution as this
method imposes its own sampling error on the estimates obtained, however this
is under our control and can be chosen to satisfy our needs.

33

Convergence The convergence of MCMC methods refers to the point where
the Markov chain reaches its target distribution. Convergence of MCMC meth-
ods is important because if a Markov chain converges, i.e. reaches its target
distribution, the samples generated can be used as representative samples from
our target distribution. If this fails however, these samples can not be used to
reliably represent the posterior distribution.
MCMC usually provides a few key metrics to evaluate the validity of the pos-
terior samples. MCMC methods usually run the sampling algorithms multiple
times, each run is referred to as a chain, typically 4 chains are used.

If these chains are very similar, we assume that the algorithms converges.
That is, the MCMC algorithm consistently provides a similar output and thus
we conclude that the algorithm did not get stuck anywhere or was very spo-
radic in its runs. This is measured by a metric called R̂ (”r-hat”), which is the
ratio of the outputs of different chains. Values close to 1, (0.995 ≤ R̂ ≤ 1.005),
indicate that the independent chains converge to the same posterior distribution.

Another important metric to use is the effective sample size. The effective
sample size is another way to quantify the certainty of our posterior distribution
samples. High effective sample sizes indicate that we have a reliable estimate
of our posterior distribution, while lower values indicate a low certainty. Effec-
tive sample size estimates the number of independent samples we got from the
algorithm.

34

4 Simulation Study

In the previous chapter we discussed the basics of Bayesian inference as well as
the influence of priors on estimation of parameters of the Beta-Binomial model.
In this chapter, we will test three different priors for random effects variances.
Insights in the influence of prior distributions can help guide us to pick the right
prior for the application to real data. The results from this simulation study
will be used in selecting a prior for random effects variances in the application
to the PRIME research data.
We will specify a random intercept MLSEM model and simulate datasets based
on various underlying parameter values. Specifically, we will vary the random
effects variances and generate multiple datasets per model. These datasets will
then be analyzed using the Blavaan R package, which was created for Bayesian
estimation of (ML)SEM models. By applying different prior specifications on
the random effects variances, we aim to compare and evaluate the performance
of these priors. Through these simulations, we can better understand how dif-
ferent priors impact parameter recovery and estimation stability, particularly in
multilevel contexts where data dependencies play a crucial role.

4.1 Simulation Study

We simulate a model with observed variables, Y 1
ij , Y

2
ij , Xij , that are trans-

formed into latent variables for the estimation process, that is, we use latent
variables that are measured by one observed variable with factor loading 1 and
without measurement error. The reason we do this is because, as we will see in
the next chapter, this is also done in the application of MLSEM to the PRIME
research data. The model will also include a group level variable, Wj . As was
discussed in chapter MLSEM, to estimate MLSEM models an expression for the
model-implied covariance matrices in terms of model parameters must be de-
rived. Introducing an exogenous predictor variable at specific levels changes the
expression of model-implied covariance at that level. This won’t be discussed
further in this thesis, see Bollen (1989)[2] for more details.

We introduce the following measurement equations. Note that each observed
variable measures the corresponding latent variable perfectly. We do not specify
a measurement equation for Wj , since this is a variable that exists only at one

35

level, in this case the group-level.

YW,1
ij = ηW,1

ij ,

YW,2
ij = ηW,2

ij ,

XW
ij = ξwij

Y B,1
j = ηW,1

j ,

Y B,2
j = ηW,2

j ,

The structural model is as follows. Note that we could have used Yij and Xij

directly in these equations, since they measure the latent variables perfectly.
However, that is not done to keep this notation consistent with the previously
introduced notation.

η1ij = βW
12 η

2
ij + γW1 ξij + ζW,1

ij

ηWij = γW2 ξij + ζW,2
ij

η1j = µ1
Y + γB1 Wj + ζB,1

j

η2j = µ2
Y + γB2 Wj + ζB,2

j .

Besides minor differences in this model from the model as introduced in chapter
2, its still possible to derive an expression for the model implied covariance in
terms of the model parameters. This is also the reason that its possible to
include arbitrary, even non-normal distributed, exogenous predictor variables.
The covariance matrices of these exogenous predictors are estimated freely, i.e.
equated to the sample covariance, and related to the covariance matrix of the
latent endogenous variables through the regression equations that include them,
similar to how the exogenous latent variables are related to the endogenous
latent variables.

4.1.1 Simulation Design

We know from chapter 2 that we can express the covariance matrices as a func-
tion of model parameters, ΣW (θ) ,ΣB(θ). This allows us to sample data given
the parameters of a model. In addition to model parameters, we also need to
specify the number of groups, J , and the number of individuals within each
group (group-size), Nj . For simplicity, we will be using the same group-size
for each group, i.e. Nj = N . The focus of this simulation study is the ef-
fect of different priors on the estimation of random effects variances (variances
of group-level components). The simulation will use three different priors for
the variances to estimate the model. The estimates that this yields have some
sampling variability and thus we will replicate the datasets and estimation pro-
cedure M = 50 times. Finally, since we don’t apriori know the true value of

36

the variance parameter in practical applications, we will also vary the variances
in the model parameters. This gives us a sense of how well the different priors
under study perform across values of the true parameter values.

4.1.2 Priors

We will be using the gamma distribution in this simulation study. Blavaan
offers a few optional arguments to specify wether the gamma prior is specified
on the standard deviation, precision or variance. Specifying the gamma prior
on these options changes the prior slightly. See chapter 3 for more information
on Bayesian estimation and the priors that will be used in the simulation study.

Sampling Algorithm Below we will reiterate some of the fixed settings of
the simulation study:

• Number of groups, J = 40

• Group-size, N = 5

• Number of replications, M = 50

Given a parameter setting, θ, number of groups, J and cluster sizes, N , we
can sample data using the following algorithm:

• For each j = 1, · · · , J :

– Sample (Y B
j , XB

j) ∼ N (0,ΣB(θ))

– For each i = 1, · · · , Nj :

∗ Sample (YW
ij , X

W
ij) ∼ N (0,ΣW (θ))

∗ Let Yij = µY + YW
ij + Y B

j

∗ Let Xij = µX +XW
ij +XB

j

• Store data inD(θ, J,Nj) = {(Yij , Xij) | j = 1, · · · , J and i = 1, · · · , Nj}

Simulation Algorithm For generality, the simulation algorithm is fully pa-
rameterized.

• K(= 4) is number of parameter settings

• L(= 3) is number of priors

• πn for n = 1, · · · , L different priors to test

• θi for i = 1, · · · ,K parameter settings for which we can derive model-
implied covariance Σi = Σ(θi)

For (θm, πn) with n = 1, · · · , L and m = 1, · · · ,K:

37

Setting Variance of ζB,1
j Variance f ζB,2

j

1 1.0 1.0
2 1.0 0.04
3 0.04 1.0
4 0.04 0.04

Table 3: Parameter settings that will be used to generate the data. We will
only vary the variances of the random effects. All other parameters will be kept
constant.

• For p = 1, · · · ,M :

– Sample dataset Dp(θm)

– Estimate model with prior πn and store results in Rp(θm, πn)

• Return all results R(θm, πn) = {Rp(θm, πn) | p = 1, · · · , P}

Remarks The results set was intentionally specified in an abstract manner to
separate the specifics of the simulation study from the procedure of the simula-
tion. In this simulation study, posterior means, convergence diagnostics (Rhat),
and effective sample sizes (ESS) are recorded. Only results from converged runs
are included in the final analysis. Convergence is determined by monitoring
Rhat values and effective sample size (ESS), where Rhat values near 1 and
sufficiently large ESS indicate that the Markov chains have reached a stable
posterior distribution. Specifically, we will be filtering the estimation results
with the following criteria ESS ≥ 100 and 0.95 ≤ Rhat ≤ 1.05. The default
hyper-parameters for each prior are used to maintain consistency in scope.

Parameter Settings We design four main parameter settings to explore vary-
ing levels of random effects variance. This helps identify scenarios where certain
priors might outperform others. For each setting, we compute both bias and
RMSE across priors, noting patterns that may reveal when certain priors are
more appropriate for use in multilevel models.

4.2 Blavaan

Blavaan is a R package that allows Bayesian estimation of MLSEMs. It uses a
special type of model syntax (see table 4) to define the MLSEM model and then
translates the specified model into JAGS and Stan code, which will be used to
fit the models using Bayesian estimation.
Blavaan provides the option to specify priors that are included in JAGS or Stan
to be used in model fitting. For multilevel SEM models, however, Blavaan only
allows specific parametric priors to be specified on the parameters. For variance
parameters, Blavaan offers a few optional arguments, it allows the user to specify
wether to put the prior distribution on the standard deviation, the precision or
on the variance itself.

38

Operator Pronunciation Use
∼ Regressed on Specify structural regression equations
∼= Is measured by Specify measurement equations
∼∼ Variance Denotes estimation of variance component

Table 4: Operators used in the blavaan package to specify a SEM model.

Syntax Blavaan uses a text file or string to specify the models to estimate. In
tabel 4, we will outline the operators used to specify a SEM model in Blavaan.

4.3 Results

In this section we will present plots that display the performance of the different
priors used for the various parameter settings that are used in the simulation
study. Performance will be measured by the estimator metrics bias and Root
Mean Square Error (RMSE).

4.3.1 Estimators

We use various estimator metrics to assess estimation performance and param-
eter recovery. These estimator metrics are used to inform us on important
qualitative properties of the estimators. The bias metric is intended to give an
estimate of systemic difference between the parameter estimate and the true pa-
rameter. Root-mean-square-error (RMSE) is a common metric in statistics that
combines both bias of the estimator and variance of the estimator. Variance of
an estimator refers to the variability of the estimated value under a constant
underlying true parameter. Estimators with high variance can be seen as less
reliable, since their estimated values vary a lot and may be spread out over a
large range, we can put less confidence in any single value that is produced by
the estimator. RMSE combines measures of bias and variance into one single
metric and is thus very useful to compare reliability of estimators.

Below we will give definitions for bias and RMSE.

Definition 4.1. For an estimator T and underlying parameter θ we define the
bias of the estimator to be the following:

Bias(T ; θ) = E(T (X)− θ) (4.3.1)

Bias is the average difference between the estimated value of the parameter and
the true value of the parameter.

Definition 4.2. For an estimator T and underlying parameter θ, the root-
mean-square-error or RMSE is defined as:

RMSE(T ; θ) = E((T (X)− θ)2) (4.3.2)

39

RMSE combines a measure of bias and variance of the estimator. Variance
of the estimator referes to the variability of the estimated value. Estimators
with low RMSE are considered to be good estimators.

Four different plots, two plots containing the bias metric (figures 5 and 6)
and two plots containing the RMSE metric (figures 7 and 8). For both bias and
RMSE we have a single plot per variance parameter. Each of these plots is then
divided into four different subplots, one for each parameter setting.

40

Figure 5: This figure shows the biases of the variance estimates of ζB,1
j . The

plot is faceted over the four different parameter settings used. The prior used
for estimation is denoted by the color of the bar.

4.3.2 Conclusion

From the plots we can see that the effects of priors depend on the parameter set-
tings. The prior standard deviation performs best when the true random effects
variance is small. When the random effects variance is bigger, in the simulation
this means a variance of 1, the precision prior performs best. Furthermore, from
the bias plots it becomes apparent that all estimators overestimate the variance,
indicated by a positive bias for all estimators. This result is inline with liter-
ature, where the overestimation of random effects variances is described as a
common phenomenon. Much of the literature is devoted to priors on variances,
when these variances are small. In multilevel modeling, researchers often include
a variance / random component and use the estimate of this variance to decide
whether it is large enough to be a significant contributor in the model. Because
of this use case, especially the performance of priors in the small variance set-
ting is interesting. Higher variances lead to bigger between-groups differences,
since the parameters are significantly different. The standard deviation prior
performs best in the low variance setting and is thus the most favorable option.
It overestimates the variance the least of all available priors in this scenario and
offers very comparable performance in the high variance setting. This leads us
to conclude that it is the most robust prior of all the options.

41

Figure 6: This figure shows the biases of the variance estimates of ζB,2
j . The

plot is faceted over the four different parameter settings used. The prior used
for estimation is denoted by the color of the bar.

Figure 7: This figure shows the RMSE of the variance estimates of ζB,1
j . The

plot is faceted over the four different parameter settings used. The prior used
for estimation is denoted by the color of the bar.

42

Figure 8: This figure shows the RMSE of the variance estimates of ζB,1
j . The

plot is faceted over the four different parameter settings used. The prior used
for estimation is denoted by the color of the bar.

43

5 Application

5.1 Introduction

This chapter applies Bayesian MLSEM to PRIME research data gathered to
examine how different cognitive load components interact with variables such
as working memory capacity (WMC) and mental effort. By using the Blavaan
package, we estimate the model and test hypotheses about these relationships.
In the previous chapter, chapter 4, three different priors for variance parame-
ters, specifically random effects variances, were investigated through a simula-
tion study. From the literature its known that ML estimates of random effects
variances that are close to zero, or otherwise close to a boundary, fail to con-
verge or are underestimated. The simulation study showed that the gamma
prior specified on the standard deviation, rather than on the variance directly,
has the best performance, as measured by RMSE, for small true values of ran-
dom effects variances. Therefore, this prior will be used in the estimation of the
MLSEM model as applied to the PRIME research data.

5.2 PRIME Research

Self-monitoring and perceived mental effort (PME) play a crucial role in the pro-
cess of regulating students’ effort and pursuing their goals. However, how stu-
dents experience and interpret their mental effort remains unexplored. PRIME
research builds on the effort monitoring and regulation (EMR) framework pro-
posed by de Bruin et al. (2020)[4], which integrates cognitive load theory (CLT)
and self-regulated learning. The EMR framework proposes that effort monitor-
ing occurs at two levels: an object level, where input is influenced by intrinsic-,
extraneous- and germane cognitive load (ICL, ECL, GCL) and a meta-level,
where meta-cognitive monitoring and regulation are influenced by the cues learn-
ers use and the beliefs they hold.
The PRIME research aims to explore how students perceive mental effort in a
real-life setting by including various cognitive load measures, potential factors
influencing their perception of mental effort and student performance.

5.2.1 SEM Model & Hypotheses

The aims of the PRIME research program can be summarized by the following
list of effects and relationships:

• How do ICL, ECL and GCL relate to PME

• How do students’ prior knowledge, self-efficacy and working memory ca-
pacity relate to PME

• How is the relationship between PME and students’ prior knowledge, self-
efficacy and working memory capacity mediated by ICL, GCL and ECL,
respectively

44

To clarify these hypotheses in the context of the MLSEM framework, they
will be be summarized in a table. The variable names will be related through
arrows, the sign describing the hypothesis will be stated as well as the level of
the relationship the hypothesis pertains to.

Relationship Hypothesis Level

GCL → PME + Within

ECL → PME + Within

ICL → PME + Within

Prior Knowledge → PME − Between

Self-Efficacy → PME Explorative Within

WMC → PME − Between

Prior Knowledge → ICL → PME Explorative Between

Self-Efficacy → GCL → PME Explorative Within

WMC → ECL → PME Explorative Between

Table 5: This table summarizes the hypotheses of the PRIME research formu-
lated in links between variables in the MLSEM model. The table contains three
columns: Relationship, containing the relationship to be studied as indicated
with arrows, Hypothesis, indicating the sign of the relationship under the hy-
pothesis or explorative to indicate the sign is not yet specified but is a quantity
of interest, Level, indicating the level of the relationship, i.e. the level of the
regression paths under study in the MLSEM model.

Path Diagram We can describe these research questions with a MLSEM
model. As explained in chapter 2, we can specify MLSEM models using a path
diagram. The model describing the PRIME research hypotheses is specified in
figure 9.

45

Figure 9: Path diagram specifying the MLSEM model that represent the PRIME
research hypotheses. The figure includes specification of both the within and the
between level. Some arrows have been colored to signify that they correspond
to the same hypothesis on an indirect or mediated effect, as specified in table 5.
Variables that exist at both the within and between level should be interpreted
as their within and between components.

46

5.3 Data Collection

Data was collected through six surveys administered to students over a six-
week period. After completing an online exercise on Grasple, students filled out
surveys assessing cognitive load and related constructs. Each of the six surveys
was identical, with the exception of the first and last surveys. The first survey
included a single-item scale regarding prior knowledge in the content offered by
the course and two cognitive tasks that measure the working memory capacity
of the participants.
The survey responses are structured hierarchically, multiple students were asked
on multiple occasions to fill out surveys. Surveys filled out by the same student
share a common cause, namely the student that filled them out. The data is
thus structured as surveys (within-level) nested within students (between-level).

5.3.1 Variables & Structure

In this section we will outline the variables used in the research and give a brief
description of the variables. Furthermore, we will state and explain the level of
the variable in terms of their collection method.

Working Memory Capacity Working memory capacity (WMC) refers to
the ability of a person to work with- and hold multiple pieces of information in
memory. If you are doing a task, the brain needs to process information related
to the test. The amount of memory one can hold at any single time is often a
constraining factor and is referred to as WMC.

Students take two cognitive tests that are meant to measure their working
memory capacity (WMC). Their performance on these tests are then combined
and averaged to get a score of their WMC. WMC is measured only once and
not with every survey.

WMC is thought to be (approximately) constant within one individual. This
makes WMC a group-level variable in our research.

Measuring WMC Working memory capacity of the participants was
measured with a task proposed by Castro-Alonso et al. (2019) [5]. Each par-
ticipant had to complete two sets of tasks. The maximum score a participant
could obtain is 42 and the minimum score is 0.

Perceived Mental Effort Perceived mental effort is the level of cognitive
strain a task causes within an individual. It is similar- and related to the dif-
ficulty of the task but there may be other factors that influence mental effort,
such as various forms of cognitive load. Cognitive load causes a person to ex-
perience mental effort. This may be due to the difficulty of the task but can
also be caused by distraction during the task. Mental effort is a subjective ex-
perience an individual has. Various forms of cognitive load cause the individual
to experience mental effort. This research delves into the relationships between
the various forms of cognitive load and the amount of mental effort students

47

experience.
On each survey students are asked to report the amount of mental effort they
feel they invested in the exercise. Because mental effort is measured at each
survey and can differ depending on the exercise, we include it as a within-level
variable in our research.

Measuring Mental Effort Mental effort was measured with a single-item
nine-point scale. The scale item used was proposed by Paas et al. (1992). The
item read as follows:

How much mental effort did you invest into this Grasple exercise?

Respondents had to reply according to an ordinal scale, taking the following
values in order:

• Very, very low mental effort

• Very low mental effort

• Low mental effort

• Rather low mental effort

• Neither low nor high mental effort

• Rather high mental effort

• High mental effort

• Very high mental effort

• Very, very high mental effort

Difficulty The difficulty of an exercise relates to the self-reported level of
difficulty students experienced during the exercise. Difficulty is a subjective
measure and may depend on the inherent difficulty of the topic but also on the
prior knowledge of the student.
On each survey students are asked to report the difficulty of the exercises. Dif-
ficulty depends on the specific task and is thus measured after each task. This
makes difficulty a within-level variable in our research.

Measuring Difficulty Difficulty was measured by a single-item nine-point
scale, similar to mental effort. The item read as follows:

Please rate the level of difficulty of this Grasple exercise for you.

Respondents had to reply according to an ordinal scale, taking the following
values in order:

• Very, very low difficulty

48

• Very low difficulty

• Low difficulty

• Rather low difficulty

• Neither low nor high difficulty

• Rather high difficulty

• High difficulty

• Very high difficulty

• Very, very high difficulty

Prior Knowledge The prior knowledge of students is a self-reported item
students have to fill out. It asks students about their prior knowledge about-
or experience with the general topics within this mathematics course, such as
linear algebra and calculus.
Prior knowledge affects how students approach tasks and how their brain or-
ganizes information related to tasks. Students’ prior knowledge is assessed at
the start of the course and is constant within each student. This makes prior
knowledge a group-level variable in our research.

Measuring Prior Knowledge Prior knowledge was measured by a single-
item five-point scale. Respondents were asked to rate their prior knowledge in
the content offered by the course. The item on this scale read as follows:

Please rate your prior knowledge about the content offered in this mathematics
course.

Respondents had to reply according to an ordinal scale, taking the following
values:

• None at all

• A little

• A moderate amount

• A lot

• A great deal

Self-Efficacy Self-efficacy refers to an individual’s belief in their ability to
successfully perform and complete tasks or achieve specific goals. In the context
of cognitive load theory and mental effort, self-efficacy plays an important role
in how learners approach, persevere, and ultimately succeed when faced with
complex tasks. Self-efficacy is measured after each exercise, since it’s dependent
on the task. This makes self-efficacy a within-level variable in our research.

49

Measuring Self-Efficacy Self efficacy was measured on a 100-point single-
item scale. The item on this scale read as follows:

Please indicate your degree of confidence in your ability to be successful in
studying the content offered in this course by recording a number from 0-100.

Cognitive Load Cognitive load refers to the mental resources and energy
used when performing a task. There are different types of cognitive load related
to different sources of resource usage. Cognitive load influences the mental effort
experienced by students. The total amount of mental resources is constrained
and (roughly) measured by WMC. Some types of cognitive load are related to
the actual learning process, where as others are related to external factors or
the intrinsic difficulty of the information. The learning process is benefited by
dedicating resources to the learning itself. Thus higher levels of Germane CL
are related to better learning of the topic. Because the brain is limited and
CLs compete for these resources, it’s important to minimize resources spent on
external factors and maximize resources spent on learning. We will outline the
definitions of three types of cognitive load as defined by John Sweller below.

Extraneous Cognitive Load Extraneous cognitive load (ECL) refers to
the additional mental effort imposed on learners due to inefficient or poorly
designed instructional materials, methods, or environmental factors. Unlike in-
trinsic load, this type of load does not arise from the complexity of the content
itself but rather from obstacles that distract learners from the primary learn-
ing goal. It can include confusing instructions, irrelevant information, poorly
organized content, or distractions like background noise.

Germane Cognitive Load Germane cognitive load (GCL) involves the
mental effort required for constructing and strengthening schemas, which are
organized knowledge structures that help learners categorize and understand
complex concepts. Unlike intrinsic and extraneous load, germane load is consid-
ered beneficial to learning because it supports deeper processing and long-term
knowledge retention.

Intrinsic Cognitive Load Intrinsic cognitive load (ICL) refers to the
mental effort required to process the complexity of a task or learning material
that is directly tied to its inherent structure and interrelated concepts. This
type of cognitive load is determined by how much information a learner must si-
multaneously hold and manipulate in their working memory to fully understand
the material. The complexity depends on factors like the number of elements,
their interconnections, and the learner’s prior knowledge.

Measuring Cognitive Load On each survey, students are asked to fill
out items related to the three forms of cognitive load. These survey items

50

attempt to measure the degree of cognitive load experienced by the students
during the exercise. This makes the three types of cognitive load within-level
variables in our research.
Cognitive load is measured by a thirteen-item eleven-point Likert-type scale,
four items for ICL, four items for ECL and five items for GCL. The scale is
based on the ten-item scale proposed by Leppink et al.(2013)[12], with an addi-
tional mental-effort item for each of the three types of cognitive load (Leppink
et al., 2014)[13], which increases reliability for ICL and ECL. The thirteen scale
items are listed in table 6 along with the type of cognitive load they correspond
to. Each of these items is responded to on an eleven-point Likert-type scale,
ranging from 0 - ”Not at all the case” to 10 - ”Completely the case”.

These variables provide a multi-faceted view of cognitive processing and ef-
fort across different tasks and individuals. The preliminary results of the PRIME
study highlight that both within-level measures, such as PME and cognitive
load components (ICL, ECL, GCL), and between-level measures, like WMC
and prior knowledge, significantly affect student performance and perception of
task difficulty. The table below summarizes the variables and their levels:

51

Cognitive Load Type Survey Item

ICL The topics in this exercise were very complex.

ICL The formulas used in this exercise were very com-
plex.

ICL In this exercise, very complex terms were men-
tioned.

ICL I invested a very high mental effort in the complex-
ity of this exercise.

ECL The explanations and instructions in this exercise
were very unclear.

ECL The explanations and instructions in this exercise
were full of unclear language.

ECL The explanations and instructions in this exercise
were, in terms of learning, very ineffective.

ECL I invested a very high mental effort in unclear and
ineffective explanations and instructions in this ex-
ercise.

GCL This exercise really enhanced my understanding of
the topics that were covered.

GCL This exercise really enhanced my understanding of
the formulas that were covered.

GCL This exercise really enhanced my knowledge of the
terms that were mentioned.

GCL This exercise really enhanced my knowledge and
understanding of how to deal with this kind of ques-
tions.

GCL I invested a very high mental effort during this exer-
cise in enhancing my knowledge and understanding.

Table 6: This table shows the scale items of the thirteen-item scale used to
measure cognitive load as experienced by the participants along with the type
of cognitive load the item corresponds to (ICL, ECL, GCL).

52

Variable Description Level

Perceived Mental Effort Self-reported scale of cognitive re-
sources allocated to the task

Within-level

Difficulty Self-reported perception of difficulty Within-level

WMC Cognitive resource capacity Group-level

Prior Knowledge Self-reported understanding of
course topics

Group-level

Self-Efficacy Self-confidence in task performance Within-level

ECL Cognitive load related to external
factors

Within-level

GCL Cognitive load related to learning
and building schemas

Within-level

ICL Cognitive load related to the inher-
ent complexity of the instructional
material

Within-level

Table 7: Overview of the variables used in the research. The table states the
name of the variable, a short description, and the level of the variable in the
research.

5.4 Data Preparation

In this section we will go over the data preparation process that is done before
the data was used to fit the MLSEM model. Most of the data that we will be
working with are scale items from a survey. The assumptions of the MLSEM
modeling framework state that the observed variables must be (multivariate)
normal distributed. The scale items used in the PRIME research are ordinal
variables, i.e. they can be ordered from low to high. Ordinal variables are dis-
crete variables and don’t take values on a continuous spectrum, nor are they
normal distributed. That means that these scale items can not be used directly
in the MLSEM model. A common method to use ordinal items, like the scale
items used in the PRIME research, in MLSEM is to model them with a la-
tent threshold model. Unfortunately, this method is not available for multilevel
SEM models in Blavaan, therefore the scale items need to be transformed before
they are used in the MLSEM models. The transformations applied are intended
to address the violations of the assumptions underlying the MLSEM model,
specifically the assumption that the observed variables are normal distributed
and thus continuous.
Furthermore, to get reliable estimates the group-sizes need to be of some min-
imum size. In this research the minimum group-size was taken to be three.
The data will be filtered to satisfy this requirement, i.e. students (group-level)
with less than three surveys (within-level) filled out will be excluded from the
analysis.

53

5.4.1 Transforming Variables

To address the violations of the assumptions due to ordinal scale items, the data
are transformed by the so called log-transform. Applying the log-transform can
reduce skewness of the data and thus makes the data more symmetric (Fox,
J., 2016) [9]. It also distributes the data over a larger range than the bounds
imposed by the ordinal scale. Lastly, since the log-transform is a strictly increas-
ing function, positive parameter estimates after applying the log-transform can
still be interpreted as a positive effect. After applying the log-transform to the
ordinal scale items, the scores of the multi-items scales are averaged, resulting
in a sort of sum-score. This sum-score is used directly as a value of the latent
variable corresponding to the survey items. Using sum-scores instead of relating
observed variables to latent variables through the measurement model is allowed
if Cronbachs’ alpha is sufficiently large (α ≥ 0.7).

The log-transform is defined as follows, where fN denotes the log-transform
and N denotes the maximum value the ordinal variable can take:

pN (x) =
x+ 1

2

N + 1
, (5.4.1)

fN (x) = log

(
p

1− p

)
(5.4.2)

The log-transform is applied to the self-efficacy, difficulty, PME, ICL, ECL
and GCL. The resulting transformed values for ICL, ECL and GCL are then
averaged over the different scale items relating to that type of cognitive load.
The code that applies this transformation can be found in appendix D.

5.4.2 Filtering Data

Before proceeding the analysis further, the data is filtered according to the
following requirements:

• Filtered students based on number of surveys filled out; minimum 3 sur-
veys.

• Filtered students based on within student variance, must have within level
variance.

5.5 Model Estimation

Using Blavaan, we estimate the SEM model and assess model fit using Bayesian
methods. The simulation study results inform our choice of priors, with the
gamma distribution on the standard deviation (SD) of random effects proving
robust across scenarios. Key findings include the influence of WMC on cognitive
load components and the mediation effects of difficulty and mental effort.

54

While posterior predictive checks are not available in Blavaan, convergence
diagnostics provide crucial insights into model stability. Metrics such as R-hat
values and effective sample size (ESS) confirm that the Markov chains have
converged to a stable posterior distribution. The simulation studies further
support the reliability of the parameter estimates, demonstrating consistent
results across multiple datasets and parameter settings.

5.6 Results

In this section, the hypothesis will be answered based on parameter estimates.
The full resulting parameter estimates are listed in table 8. Indirect or mediated
effects are the product of the relationships comprising them, e.g. the indirect
relationship between prior knowledge and PME, mediated by ICL, is the rela-
tionship between PME and ICL multiplied by the relationship between ICL and
PME, both at the between level in this case. If one of the constituent relation-
ships is insignificant, the indirect relationship will be regarded as insignificant.

Relationship between GCL and PME The estimated relationship be-
tween GCL and PME is 0.040, which is a positive as hypothesized, however
the 95% credible interval has a lower bound of −0.082, which indicates that
the effect might not be positive. It also has an upped bound of 0.160, indicat-
ing that the posterior distribution is positively skewed, supporting the positive
parameter estimate. Nonetheless, it will be regarded as an insignificant result.

Relationship between ECL and PME The estimated relationship between
ECL and PME is −0.002, which is slightly negative contrary to the hypothesis.
It has a credible interval ranging from −0.096 to 0.091, indicating that the
estimated negative effect is insignificant.

Relationship between ICL and PME The estimated relationship between
ICL and PME is 0.347, which is a positive effect as hypothesized. It has a
credible interval ranging from 0.246 to 0.448 indicating that the relationship is
significant and supports the hypothesis.

Relationship between Prior Knowledge and PME The estimated re-
lationship between prior knowledge and PME is −0.041, which is a negative
effect as hypothesized. It has a credible interval ranging from −1.400 to 1.125
indicating the estimated negative is insignificant.

Relationship between Self-Efficacy and PME The estimated relation-
ship between self-efficacy and PME is 0.076, which is positive. There was not
a hypothesized sign on this relationship. It has a credible interval ranging from
−0.061 to 0.207, indicating that the positive effect was not significant.

55

Relationship between WMC and PME The estimated relationship be-
tween WMC and PME is −0.001, which is negative as hypothesized. It has
a credible interval ranging from −0.016 to 0.014 indicating that the estimated
negative effect is not significant.

Indirect relationship between Prior Knowledge and PME The esti-
mated indirect effect between prior knowledge and PME, mediated by ICL, is
0.005. Since the relationship between prior knowledge and PME is insignificant,
the estimated indirect effect is insignificant.

Indirect relationship between Self-Efficacy and PME The estimated
indirect effect between self-efficacy and PME, mediated by GCL, is 0.003. Since
both constituent relationships are insignificant, the estimated indirect effect is
insignificant.

Indirect relationship between WMC and PME The estimated indirect
effect between WMC and PME, mediated by ECL, is 0.002. Since both con-
stituent relationships are insignificant, the estimated indirect effect is insignifi-
cant.

Table 8: Unstandardized Posterior Estimates with 95% Credible Intervals

Readable Mean SD CI lower CI upper Type Level

MentalEffort ˜ GCL
(within)

0.040 0.062 -0.082 0.160 regression within

MentalEffort ˜ ECL
(within)

-0.002 0.047 -0.096 0.091 regression within

MentalEffort ˜ SelfEfficacy
(within)

-0.094 0.059 -0.212 0.021 regression within

MentalEffort ˜ ICL
(within)

0.347 0.052 0.246 0.448 regression within

GCL ˜ SelfEfficacy (within) 0.076 0.068 -0.061 0.207 regression within

MentalEffort˜˜MentalEffort
residual variance (within)

0.171 0.019 0.138 0.211 residual variance within

GCL˜˜GCL residual vari-
ance (within)

0.275 0.029 0.223 0.336 residual variance within

MentalEffort ˜ Prior-
Knowledge (between)

-0.041 0.545 -1.400 1.125 regression between

MentalEffort ˜ SelfEfficacy
(between)

-0.058 0.086 -0.235 0.106 regression between

MentalEffort ˜ Global-
score WMC1 (between)

-0.001 0.008 -0.016 0.014 regression between

56

Readable Mean SD CI lower CI upper Type Level

MentalEffort ˜ GCL (be-
tween)

0.239 0.209 -0.165 0.663 regression between

MentalEffort ˜ ECL (be-
tween)

0.091 0.085 -0.076 0.262 regression between

MentalEffort ˜ ICL (be-
tween)

0.025 4.092 -10.970 9.064 regression between

ICL ˜ PriorKnowledge (be-
tween)

-0.127 0.042 -0.208 -0.045 regression between

ECL ˜ Globalscore WMC1
(between)

-0.012 0.018 -0.049 0.024 regression between

MentalEffort˜˜MentalEffort
residual variance (between)

0.031 0.022 0.000 0.081 residual variance between

ICL˜˜ICL residual variance
(between)

0.021 0.028 0.000 0.097 residual variance between

ECL˜˜ECL residual vari-
ance (between)

0.581 0.160 0.334 0.970 residual variance between

MentalEffort intercept (be-
tween)

0.536 1.149 -1.801 3.372 intercept between

ICL intercept (between) 0.247 0.143 -0.027 0.528 intercept between

ECL intercept (between) -0.706 0.564 -1.784 0.410 intercept between

57

6 Conclusion

This thesis aimed to explore available prior distributions within ’Blavaan’ for
Multilevel Structural Equation Models (MLSEMs) and to provide guidelines
for prior specification for random effects variances within ’Blavaan’. The liter-
ature indicates that Bayesian estimation of MLSEM is a promising field that
enables more complex models, and thus more complex research questions, to be
estimated. This thesis specifically investigates the prior specification for ran-
dom effects variances because of two reasons: random effects variances are often
unreliably estimated by maximum likelihood estimation and prior specification
was shown to be influential on posterior estimates and random effects variances.

The research introduced the key concepts and mathematical foundations of
Bayesian MLSEM. Chapter 2 focused on the foundation of MLSEM, covering
model specification in terms of model equations, model assumptions and model
parameters. This chapter introduced the foundations of estimation of MLSEM
models by showing how the model-implied covariance is derived from model
parameters, with the full derivation being given Appendix C. Chapter 3 delved
into the basics of Bayesian inference, the influence of prior distributions and the
extension of Bayesian estimation to MLSEM models. This chapter also intro-
duced the priors that are used in the simulation study.

In chapter 4, a simulation study was conducted to examine the effect of prior
specification on estimation accuracy. A significant finding from this study was
that the gamma prior, when specified on the standard deviation rather than
directly on the variance, demonstrated the best performance, as measured by
Root Mean Squared Error (RMSE), particularly for small true values of random
effects variances. This informed the choice of prior used in the application of
the MLSEM model to real-world data from the PRIME research study.

The application chapter focused on analyzing the PRIME research data to
understand how different cognitive load components interact with variables like
working memory capacity (WMC) and mental effort. The Blavaan package was
utilized for model estimation and hypothesis testing. The thesis contributes
to the field by addressing the need for guidelines regarding prior specification
in Bayesian MLSEM, emphasizing their influence on estimation accuracy and
model stability. The insights gained, particularly regarding the effectiveness of
the gamma prior on standard deviation, offer valuable guidance for researchers
employing Bayesian MLSEM in diverse disciplines.

58

7 Discussion

This thesis investigated the role of prior specification for random effects vari-
ances in Bayesian Multilevel Structural Equation Models (MLSEM), with par-
ticular attention to the prior options available in the R package blavaan. Using
both a simulation study and an applied example, we demonstrated how differ-
ent prior specifications influence parameter recovery, especially in models with
small group-level variances. While Blavaan provides an user-friendly interface
for Bayesian estimation of MLSEM models, one key limitation was the limited
set of priors that are available in Blavaan. The priors were constrained to the
gamma-type priors, that is the gamma prior specified on the variance, the preci-
sion and the standard deviation. Many more priors have been suggested in the
literature for the estimation of variance parameters, including the half-Cauchy,
half-Students’-t, and half-normal distributions. This limited set of priors pre-
vents researchers from tailoring distributions to their research.
While these priors are currently not available in Blavaan, future research into
more prior specifications on variance parameters can prove both insightful as
provide guidelines to researchers for prior specification in software packages such
as Blavaan.
This thesis focused on random-intercept MLSEM models, which decompose the
data into components between components and describe them separately with a
MLSEM model. Although this model aligns with the research questions of the
applied case (PRIME Research), not including random slopes and interaction
effects limits the generalizability to more flexible MLSEM structures.
Taken together, these results emphasize the importance of thoughtful prior
specification in Bayesian MLSEM, particularly when estimating random effects
variances. While blavaan lowers the barrier to Bayesian SEM estimation, the
current limitations in its prior specification framework call for further develop-
ment. Expanding prior options and improving transparency in how priors are
implemented could significantly enhance its utility for applied researchers.

59

A Invertibility Condition

A.1 Directed Acyclic Graph

Let G = (V,E) be a directed graph. Then G is a directed acyclic graph (DAG)
if and only if its vertices can be put in topological ordering. That is, the vertices
can be labeled v1, v2, . . . , vn such that for every edge (vi, vj) ∈ E we have that ij.

Let A be the adjacency matrix of G under this topological ordering defined
as follows:

Aij =

{
1 if (vi, vj) ∈ E else 0 (A.1.1)

Given the topological ordering, for any edge (vi, vj) ∈ E, we have that ij, thus
we have that for any i ≥ j no such edge can exist and hence Aij = 0. Thus A
is strictly upper-triangular.

Now let G = (V,E) be a DAG on n vertices. Let A be its adjacency matrix
under an arbitrary labeling and Â be its adjacency matrix under the topological
ordering, which is strictly upper triangular by the previous result. Let P ∈
{0, 1}n×n be a permutation matrix representing the topological ordering.

A.2 Nilpotency of Strictly Upper-Triangular Matrices

Theorem

Let A ∈ Rn×n be a strictly upper triangular matrix, i.e.,

Aij = 0 for all i ≥ j.

Then A is nilpotent. In fact,
An = 0.

Proof (by induction on n)

Base Case: n = 1 A strictly upper triangular 1× 1 matrix must be zero:

A = [0] ⇒ A1 = 0.

So the base case holds.

Inductive Hypothesis Assume that the statement holds for all strictly upper
triangular matrices of size (n − 1) × (n − 1). That is, if B ∈ R(n−1)×(n−1) is
strictly upper triangular, then

Bn−1 = 0.

60

Inductive Step Let A ∈ Rn×n be a strictly upper triangular matrix. Write
A in block form:

A =

[
0 u⊤

0 B

]
,

where

• 0 in the top-left is a scalar (the (1, 1) entry),

• u⊤ ∈ R1×(n−1),

• 0 ∈ R(n−1)×1,

• B ∈ R(n−1)×(n−1) is strictly upper triangular.

We compute powers of A by induction. Suppose that for some k ≥ 1,

Ak =

[
0 v⊤k
0 Bk

]
.

Then,

Ak+1 = A ·Ak =

[
0 u⊤

0 B

][
0 v⊤k
0 Bk

]
=

[
0 u⊤Bk

0 Bk+1

]
.

Hence, we obtain the recurrence relation:

v⊤k+1 = u⊤Bk,

and in general:
v⊤k = u⊤Bk−1, for k ≥ 1.

Since B ∈ R(n−1)×(n−1) is strictly upper triangular, by the inductive hypothesis
we have:

Bn−1 = 0 ⇒ v⊤n = u⊤Bn−1 = 0.

Therefore,

An =

[
0 0

0 0

]
= 0.

Thus, A is nilpotent with index at most n.

A.3 Result for nilpotent matrices

Theorem Let B ∈ Rn×n be a nilpotent matrix of order p ≤ n. Then (I −B)
is invertible and is given by

∑∞
i=0B

i

61

Proof Define T : Rn×n −→ Rn×n as follows:

T (B) :=

∞∑
i=0

Bi (A.3.1)

Then if B is nilpotent of index p, we have the following:

T (B) =

∞∑
i=0

Bi (A.3.2)

=

p−1∑
i=0

Bi +

∞∑
i=p

Bi (A.3.3)

=

p−1∑
i=0

Bi , (A.3.4)

this follows from the fact that Bp = 0.
To show that T (B) = (I−B)−1, we show that (I−B)T (B) = I = T (B)(I−B).

(I −B)T (B) = T (B)−B T (B) (A.3.5)

=

p−1∑
i=0

Bi −
p−1∑
i=0

BBi (A.3.6)

=

p−1∑
i=0

Bi −
p−1∑
i=0

Bi+1 (A.3.7)

=

p−1∑
i=0

Bi −
p∑

i=1

Bi (A.3.8)

=

p−1∑
i=0

Bi −
p−1∑
i=1

Bi −Bp (A.3.9)

=

0∑
i=0

Bi −Bp (A.3.10)

= B0 −Bp = I − 0 = I (A.3.11)

Similarly, it follows that T (B)(I−B) = I. Hence T (B) is the inverse of (I−B).

62

B Deriving the Density of the Variance σ2

We consider two cases for deriving the density of the variance σ2:

Case 1: Standard Deviation σ ∼ Gamma(α, β)

Let the standard deviation follow a Gamma distribution:

σ ∼ Gamma(α, β)

with probability density function:

fσ(s) =
βα

Γ(α)
sα−1e−βs, s > 0

We define:
v = σ2 ⇒ σ =

√
v

Using the change-of-variable theorem, if Y = g(X) is a one-to-one differen-
tiable transformation of a random variable X, then (see [10]):

fY (y) = fX(g−1(y))

∣∣∣∣ ddy g−1(y)

∣∣∣∣
Here, v = σ2, so:

dσ

dv
=

1

2
√
v

Thus, the density of v becomes:

fV (v) = fσ(
√
v) ·

∣∣∣∣ ddv√v
∣∣∣∣ = fσ(

√
v) · 1

2
√
v

Substituting the expression for fσ, we get:

fV (v) =
βα

Γ(α)
(
√
v)α−1e−β

√
v · 1

2
√
v

=
βα

2Γ(α)
v

α
2 −1e−β

√
v, v > 0

Case 2: Precision τ = 1
σ2 ∼ Gamma(α, β)

Assume the precision is Gamma distributed:

τ =
1

σ2
∼ Gamma(α, β)

Let:

v = σ2 =
1

τ
⇒ τ =

1

v
,

dτ

dv
= − 1

v2
⇒
∣∣∣∣dτdv

∣∣∣∣ =
1

v2

The PDF of τ is:

fτ (t) =
βα

Γ(α)
tα−1e−βt, t > 0

63

Therefore, the density of v is:

fV (v) = fτ (1/v) · 1

v2
=

βα

Γ(α)

(
1

v

)α−1

e−β/v · 1

v2

Simplifying:

fV (v) =
βα

Γ(α)
v−α−1e−β/v, v > 0

This is the inverse gamma distribution:

v ∼ Inv-Gamma(α, β)

64

C Derivation Model-Implied Covariance Matrix

For individual i = 1, · · · , Nj nested in cluster j = 1, · · · , J let:

• Yij be a k-variate vector containing the endogenous observed variables

• Xij be a p-variate vector containing the exogenous observed variables

• For simplicity of notation, let Zij =

(
Yij

Xij

)
be a (k + p)-variate vector

containing all observed data

The data, Yij and Xij is assumed to follow a joint normal distribution. That
is:

Zij ∼ N (µZ ,ΣZ) , (C.0.1)

µZ =

(
µY

µX

)
, (C.0.2)

ΣZ =

(
ΣY ΣY X

ΣXY ΣX

)
, (C.0.3)

where ΣY is the covariance matrix of Yij , ΣX is the covariance matrix of Xij

and ΣY X is the covariance between Yij and Xij .
We decompose the observed data into independent within- and between com-
ponents:

Zij = µZ + ZW
ij + ZB

j , (C.0.4)

ΣZ = ΣW
Z + ΣB

Z , (C.0.5)

where

ΣW
Z =

(
ΣW

Y ΣW
YX

ΣW
XY ΣW

X

)
, (C.0.6)

ΣB
Z =

(
ΣB

Y ΣB
YX

ΣB
XY ΣB

X

)
, (C.0.7)

and we have the following distribution for ZW
ij and ZB

j :

ZW
ij ∼ N (0,ΣW) , (C.0.8)

ZB
j ∼ N (0,ΣB) . (C.0.9)

65

Recall the model equations from chapter MLSEM: Level 1

YW
ij = ΛW

Y ηWij + εWij , (C.0.10)

XW
ij = ΛW

X ξBij + δWij , (C.0.11)

ηWij = BW ηWij + ΓW ξWij + ζWij , (C.0.12)

Level 2

Y B
j = ΛB

Y η
B
j + εBj , (C.0.13)

XB
j = ΛB

Xξ
B
j + δBj , (C.0.14)

ηBj = BBηBj + ΓBξBj + ζBj , (C.0.15)

What follows is a short derivation of ΣW
Y in terms of model parameters.

ΣW
Y = Var(YW

ij) (C.0.16)

= Cov(ΛW
Y ηWij + εWij ,Λ

W
Y ηWij + εWij) (C.0.17)

= Cov(ΛW
Y ηWij ,Λ

W
Y ηWij) + Cov(εWij , ε

W
ij) (C.0.18)

= ΛW
Y ΣW

η (ΛW
Y)T + ΘW

ε . (C.0.19)

We substitute the left hand side of C.0.10 into C.0.16 to obtain C.0.17, then
we use linearity of Cov(X ,Y) and the fact that ηWij and εWij are independent

to equate C.0.17 to C.0.18 and we use Cov(εWij , ε
W
ij) = Var(εWij) = ΘW

ε and

basic covariance algebra (specifically, to move ΛW
Y outside of the Cov function)

to equate C.0.18 to C.0.19 (for information on the definition of ΘW
ε or other

model parameters, see table 2).

The derivations for ΣB
Y , ΣW

X and ΣB
X are nearly identical and thus only the

result will be stated:

ΣW
Y = ΛW

Y ΣW
η (ΛW

Y)T + ΘW
ε , (C.0.20)

ΣB
Y = ΛB

Y ΣB
η (ΛB

Y)T + ΘB
ε , (C.0.21)

ΣW
X = ΛW

X ΦW (ΛW
X)T + ΘW

δ , (C.0.22)

ΣB
X = ΛB

X ΦB (ΛB
X)T + ΘB

δ . (C.0.23)

Note that the expressions for ΣW
Y and ΣB

Y contain the terms ΣW
η and ΣW

η . These

covariance matrices of ηWij and ηBj are not parameters of the model, rather we
will derive an expression for them using the within and between structural
models. First, however, we will derive an expression for ΣW

YX and by similarity
state the result for ΣB

YX .

ΣW
YX = Cov(YW

ij , XW
ij) (C.0.24)

= Cov(ΛW
Y ηWij + εWij ,Λ

W
X ξBij + δWij) (C.0.25)

= ΛW
Y Cov(ηWij , ξ

W
ij) (ΛW

X)T (C.0.26)

= ΛW
Y ΣW

η ξ (ΛW
X)T . (C.0.27)

66

We again substitute the left hand sides of C.0.10 and C.0.11 into the right
hand side of C.0.24 to obtain C.0.25. Then by linearity of Cov, independence
of εWij and δWij and covariance algebra to obtain C.0.26. Again we encounter a

term, labeled ΣW
ηξ in C.0.27, that is not a model parameter. We will derive an

expression for this term in terms of model parameters.
Below, the results for ΣW

YX and ΣB
XY are stated:

ΣW
XY = ΛW

Y ΣW
η ξ (ΛW

X)T , (C.0.28)

ΣB
XY = ΛB

Y ΣB
η ξ (ΛB

X)T . (C.0.29)

It remains to find expressions for Ση and Ση ξ at both the within and between
levels. We will show a derivation of ΣW

η and ΣW
η ξ and by similarly state the

results for the between results.
We start with equationC.0.12 and derive the following using matrix algebra:

ηWij = BW ηWij + ΓW ξWij + ζWij ⇒
(I −BW) ηWij = ΓW ξWij + ζWij ⇒

ηWij = (I −BW)−1 (ΓW ξWij + ζWij)

(C.0.30)

Here we assumed that (I − BW) is invertible. In appendix A, we show that
this matrix is invertible if the directed graph consisting of only the structural
relationships, i.e. we only keep the directed arrows between latent variables and
disregard factor loadings and residual covariances, of the path diagram corre-
sponding to the (within-level) SEM model is a Directed Acyclic Graph.
If we substitute the right hand side of the last line in C.0.30 into ΣW

η ξ =

Cov(ηWij , ξ
W
ij), we get the following:

ΣW
η ξ = Cov((I −BW)−1 (ΓW ξWij + ζWij) ξWij) (C.0.31)

= (I −BW)−1 ΓW ΦW . (C.0.32)

We used linearity of Cov, independence of ζWij and ξWij and covariance algebra
to derive C.0.32 from C.0.31.

We now employ a similar strategy to derive ΣW
η by substituting the right

hand side of the last line in C.0.30 into Cov(ηWij , η
W
ij).

ΣW
η = Cov((I −BW)−1 (ΓW ξWij + ζWij) , (I −BW)−1 (ΓW ξWij + ζWij))

(C.0.33)

= (I −BW)−1
[

ΓW ΦW (ΓW)T + ΨW
]

((I −BW)−1)T

(C.0.34)

We apply linearity of Cov, independence of ξWij and ζWij to nullify the cross-
terms and covariance algebra to move the matrices outside of the Cov function.

67

Finally, we replace the Cov(ξWij , ξ
W
ij) and Cov(ζWij , ζ

W
ij) with their respective

model parameters, ΦW and ΨW .
Now we state the results for both within and between components:

ΣW
η = (I −BW)−1

[
ΓW ΦW (ΓW)T + ΨW

]
((I −BW)−1)T , (C.0.35)

ΣB
η = (I −BB)−1

[
ΓB ΦB (ΓB)T + ΨB

]
((I −BB)−1)T , (C.0.36)

ΣW
η ξ = (I −BW)−1 ΓW ΦW , (C.0.37)

ΣB
η ξ = (I −BB)−1 ΓBΦB , (C.0.38)

(C.0.39)

If we now substitute equations C.0.35 and C.0.36 into equations C.0.20 and
C.0.21, respectively, we get expressions for ΣW

Y and ΣB
Y in terms of model pa-

rameters. Similarly, if we substitute equations C.0.37 and C.0.38 into equations
C.0.28 and C.0.29, respectively, we get expressions for ΣW

YX and ΣB
YX in terms

of model parameters. We had already obtained expressions for ΣW
X and ΣB

X in
terms of model parameters in equations C.0.22 and C.0.23.
Since these substitutions can get quite lengthy, we abbreviate it to:

ΣW
Y = ΣW

Y (θ) , (C.0.40)

ΣB
Y = ΣB

Y (θ) , (C.0.41)

ΣW
X = ΣW

X (θ) , (C.0.42)

ΣB
X = ΣB

X(θ) , (C.0.43)

ΣW
YX = ΣW

YX(θ) , (C.0.44)

ΣB
YX = ΣB

YX(θ) , (C.0.45)

(C.0.46)

68

D Code

D.1 Preprocessing Data

import pandas as pd
import numpy as np
import s c ipy as sp
import s c ipy . s t a t s as s t a t s

import matp lo t l i b . pyplot as p l t
import matp lo t l i b as mpl
import seaborn as sns

df = pd . r e a d e x c e l (r ” . / Data/PRIME CL study Se l f −r epor t
F ina l Dataset to J e s s e f i n a l . x l sx ”)

d r o p c o l s =\
[” Lecture ” , ”BookHomework” , ” Collegerama ” , ”Date WMC1

” , ”Age” , ”Gender” , ” Gender other ” , ” Fin i shed S1 ” ,
”Judgement S1” , ”Judgement S6”] +\

df . columns [df . columns . str . c onta in s (” Duration ”)] .
t o l i s t () +\

df . columns [df . columns . str . c onta in s (”Recorded”)] .
t o l i s t ()

df = df . drop (drop co l s , a x i s =1) . s e t i n d e x (” Analys isID ”)

s u r v e y c o l s = df . columns [df . columns . str . c onta in s (r ”S [\d] ”
, regex=True)]

non su rv ey co l s = df . columns [˜ df . columns . str . c onta in s (r ”S
[\d] ” , regex=True)]

c o l d f = s u r v e y c o l s . str . e x t r a c t a l l (r ” (. ∗) S (\d) | S(\d)
(. ∗) ”)

c o l d f . l o c [c o l d f [0] . i sna () , [0 , 1]] = c o l d f . l o c [c o l d f
[0] . i sna () , [3 , 2]] . to numpy ()

new survey co l s = pd . MultiIndex . f rom arrays (c o l d f [[0 ,
1]] . to numpy () . t ranspose () , names=[’ var ’ , ’ survey ’])

survey data = df [s u r v e y c o l s] . copy ()
survey data . columns = new survey co l s

69

su rvey data s tacked = survey data . s tack (l e v e l=’ survey ’ ,
f u t u r e s t a c k=True) . r e s e t i n d e x () . s e t i n d e x (” Analys isID
”)

non survey data = df [non su rv ey co l s] . copy ()

j o i n e d d f = pd . merge (
survey data s tacked ,
non survey data ,
how=’ l e f t ’ ,
l e f t i n d e x=True ,
r i g h t i n d e x=True
) \
. r e s e t i n d e x ()

j o i n e d d f [’ E f f i c a c y ’] = j o i n e d d f [’ E f f i c a c y ’] / 10 .0

def l o g t r an s f o rm (x , N=10) :
p = (x + 0 . 5) / (N + 1)

return np . l og (p / (1−p))

tCol s = [” E f f i c a c y ” , ” D i f f i c u l t y ” , ” Menta lEf fort ” , ”ICL” ,
”GCL” , ”ECL”]

j o i n e d d f [tCols] = log t ran s f o rm (j o i n e d d f [tCols])

def center group means (df : pd . DataFrame , g roup co l : str ,
c o l s : l i s t) :
d f = df [[g roup co l] + c o l s] . copy ()
group means = df . groupby (g roup co l) . mean ()
l e f t , r i g h t = df . s e t i n d e x (g roup co l) . a l i g n (

group means)

return (l e f t − r i g h t) . r e s e t i n d e x () , r i g h t .
r e s e t i n d e x ()

group mean cols = [” E f f i c a c y ” , ” Menta lEf fort ” , ”
D i f f i c u l t y ” , ”ECL” , ”GCL” , ”ICL”]

group centered , group means = center group means (
j o i n e d d f , ” Analys isID ” , group mean cols)

70

new co l s = {
f ”{ c o l } c ” : group centered [c o l]
for c o l in group mean cols

}

f i n a l d f = j o i n e d d f . a s s i g n (∗∗ new co l s)
f i n a l d f = pd . merge (f i n a l d f , group means . i l o c [: , 1 :] ,

how=’ l e f t ’ , l e f t i n d e x=True , r i g h t i n d e x=True ,
s u f f i x e s =[’ ’ , ’ mean ’])

f i l t e r l i s t i d s = f i n a l d f \
. dropna (a x i s =0, how=’ any ’) \
. groupby (” Analys isID ” , a s index=False) \
. count () \
. where (lambda x : x . survey >= 3) \
. dropna (a x i s =0, how=’ any ’) \
[” Analys isID ”]

f i n a l d f \
. l o c [f i n a l d f [” Analys isID ”] . i s i n (f i l t e r l i s t i d s) ,

:] \
. dropna (a x i s =0, how=’ any ’) \
. t o c s v (” . / Data/ t r a n s f o r m e d f i n a l d a t a s e t . csv ” , index

=False)

D.2 Simulate Data

import pandas as pd
import numpy as np

import matp lo t l i b . pyplot as p l t
import seaborn as sns

import i n s p e c t
import os

Si z e s
n c l u s = 40 # number o f c l u s t e r s
c l u s s i z e = 5 # Clus t e r s i z e

de fau l t params = {
Error / Random component var iances
’ s igma eps ’ : [1 . 5 , 1 . 5] ,

71

’ s igma u ’ : [0 . 7 , 1 . 2] ,

Covaria te var iances
’ s igma x ’ : [1 . 5 , 1 . 0] ,

Regress ion params
Within
’w ’ : [1 . 5 , −0.2] ,

Between
’ b ’ : [0 . 4 , 0 . 0] ,

endogenous w i th in
’ lam ’ : [[1 . 0 , 0 . 0] ,

[0 . 3 , 1 . 0]] ,

Fixed e f f e c t s
’ e ta0 ’ : [0 . 4 , 1 . 0] ,

Clus t e r s i z e params
’ n c l u s ’ : n c lus ,
’ c l u s s i z e ’ : c l u s s i z e

}

def p a r s e b a s e c a s e (l abe l , item) −> dict :
return {” l a b e l ” : l abe l , ” va lue ” : item}

def par s e a r r ay (l s t : l i s t , p r e f i x=” ar ray ”) −> l i s t :
r e s = []
i = 0
for item in l s t :

l a b e l = f ”{ p r e f i x }{ i }”
i f isinstance (item , l i s t) :

r e s += par s e a r r ay (item , l a b e l)
else :

r e s . append (p a r s e b a s e c a s e (l abe l , item))

i += 1

return r e s

def parse params (params : dict) −> l i s t :
r e s = []
for l abe l , item in params . i tems () :

i f isinstance (item , l i s t) :

72

r e s += par s e a r r ay (item , l a b e l)
else :

r e s . append (p a r s e b a s e c a s e (l abe l , item))

return r e s

def params to df (params : dict) −> pd . DataFrame :
parsed params = parse params (params)

df = pd . DataFrame . f rom records (parsed params)

return df

class SimulationModel (object) :

def i n i t (s e l f , de fau l t params : dict=dict ()) :
s e l f . de fau l t params = defau l t params

def transform params (s e l f , params : dict) −> dict :
return params

def model (s e l f , ∗ args , ∗∗kwargs) −> pd . DataFrame :
. . .

def get params (s e l f , ∗∗kwargs) :
p = dict (∗∗ s e l f . de fau l t params)
p . update (kwargs)

return p

def s imu la t e data (s e l f , ∗∗kwargs) −> pd . DataFrame :
params = s e l f . get params (∗∗ kwargs)
working params = s e l f . transform params (params)

df = s e l f . model (∗∗ working params)

return df

class Simulat ionExec (object) :

def i n i t (s e l f , f o l d e r p a t h=r ” . / s imu la t i on ”) :
s e l f . f o l d e r p a t h = f o l d e r p a t h

Checks i f roo t f o l d e r e x i s t s , o the rw i s e r a i s e s

73

error
i f not os . path . e x i s t s (s e l f . f o l d e r p a t h) :

raise OSError (f ”Root f o l d e r : ’{ s e l f .
f o l d e r p a t h } ’ does not e x i s t . Make sure
the provided root f o l d e r e x i s t s . ”)

def i n i t d i r s (s e l f , s im id) :
i f os . path . e x i s t s (f ”{ s e l f . f o l d e r p a t h }/{ s im id }”)

:
raise OSError (f ” Provided s im id : ’{ s im id } ’

i s a l r eady used . Provide an unused va lue . ”
)

else :
Makes a l l r e qu i r ed d i r s
os . makedirs (f ”{ s e l f . f o l d e r p a t h }/{ s im id }/

data ”)

def run s imu la t i on (s e l f , model : SimulationModel ,
s im id=”mysim” , n s ims =10) :
I n i t i a l i z e r e qu i r ed f o l d e r s
s e l f . i n i t d i r s (s im id)

f o l d e r p a t h = f ”{ s e l f . f o l d e r p a t h }/{ s im id }”

run params = model . get params ()
run param df = params to df (run params)
run param df . t o c s v (f ”{ f o l d e r p a t h }/params . csv ” ,

header=True)

for i in range (n s ims) :
df = model . s imu la te data ()
df . t o c s v (f ”{ f o l d e r p a t h }/ data /sim−{ i } . csv ” ,

header=True)

class MyModel(SimulationModel) :

def i n i t (s e l f , params : dict=dict ()) :
super () . i n i t (params)

def transform params (s e l f , params : dict) −> dict :
working params = dict (∗∗ params)

working params [’ s igma u ’] = np . diag (params [’
s igma u ’])

74

working params [’ s igma eps ’] = np . diag (params [’
s igma eps ’])

working params [’ s igma x ’] = np . array (params [’
s igma x ’])

working params [’ lam ’] = np . array (params [’ lam ’])
working params [’w ’] = np . array (params [’w ’])
working params [’b ’] = np . array (params [’b ’])
working params [’ eta0 ’] = np . array (params [’ eta0 ’])

return working params

def model (s e l f , eta0 , lam , w, b , sigma x , sigma u ,
s igma eps , n c lus , c l u s s i z e) −> pd . DataFrame :

Clus t e r i n d i c e s
c l u s i d = np . arange (0 , n c l u s) . r epeat (c l u s s i z e)

Sample c o va r i a t e s / p r e d i c t o r s
x1 = sigma x [0] ∗ np . random . randn (n c l u s ∗

c l u s s i z e)
x2 = sigma x [1] ∗ np . random . randn (n c l u s) . r epeat (

c l u s s i z e)

Sample random comps / r e s i d u a l s
e p s i j = np . random . randn (n c l u s ∗ c l u s s i z e , 2) @

sigma eps

u j = np . random . randn (n c lus , 2) . r epeat (c l u s s i z e
, a x i s =0) @ sigma u

Random in t e r c e p t
e t a j = eta0 + x2 . reshape (−1 , 1) @ b . reshape (1 ,

−1) + u j

Response v a r i a b l e
y i j = e t a j + x1 . reshape (−1 , 1) @ w. reshape (1 ,

−1) + e p s i j @ lam

Create dataframe ho l d ing s imu la t i on data
df = pd . DataFrame ({

’ c l u s t e r i d ’ : c l u s i d ,
’ y1 ’ : y i j [: , 0] ,
’ y2 ’ : y i j [: , 1] ,
’ x1 ’ : x1 ,
’ x2 ’ : x2

75

})

return df

param var ia t ions = [
{

’ s igma u ’ : [1 . 0 , 1 . 0] ,
’name ’ : ’ param−1 ’

} ,
{

’ s igma u ’ : [0 . 2 , 1 . 0] ,
’name ’ : ’ param−2 ’

} ,
{

’ s igma u ’ : [1 . 0 , 0 . 2] ,
’name ’ : ’ param−3 ’

} ,
{

’ s igma u ’ : [0 . 2 , 0 . 2] ,
’name ’ : ’ param−4 ’

}
]

executor = SimulationExec (r ” . / s imu la t i on /run−5”)

n s ims = 50
for p var in param var ia t ions :

p = dict (∗∗ de fau l t params)
p [’ s igma u ’] = p var [’ s igma u ’]

model = MyModel(p)
executor . run s imu la t i on (model , s im id=p var [’name ’] ,

n s ims=n sims)

D.3 Simulation Study

l ibrary (t i d y v e r s e)
l ibrary (lavaan)
l ibrary (blavaan)
l ibrary (readr)
l ibrary (ggp lot2)

76

model <− ’
 l e v e l : with in
 # Regres s ion
 y1 ˜ w1∗x1 + lam1∗y2
 y2 ˜ w2∗x1

 # Var iances
 y1 ˜˜ e1∗y1
 y2 ˜˜ e2∗y2

 l e v e l : between
 # Regre s s i ons
 y1 ˜ b1∗x2
 y2 ˜ b2∗x2

 # I n t e r c e p t s
 y1 ˜ e ta1∗1
 y2 ˜ e ta2∗1

 # Var iances
 y1 ˜˜ u1∗y1
 y2 ˜˜ u2∗y2
’

f i tMode l <− function (f i l e path , p r i o r) {
Read in data frame
data <− read csv (

f i l e path ,
col types = c o l s (c l u s t e r id = col integer ())

)

f i t <− bsem (
model = model ,
data = data ,
c l u s t e r=” c l u s t e r id ” ,
dp=d p r i o r s (p s i=p r i o r)

)

return (f i t)
}

e x t r a c t R e s u l t s <− function (f i t) {
median <− b lav In spec t (f i t , ” postmedian ”)
mode <− b lav In spec t (f i t , ”postmode”)
mean <− b lav In spec t (f i t , ”postmean”)

77

rhat <− b lav In spec t (f i t , ” rhat ”)
n e f f <− b lav In spec t (f i t , ” n e f f ”)

median$var <− ”median”
mode$var <− ”mode”
mean$var <− ”mean”
rhat$var <− ” rhat ”
n e f f $var <− ” n e f f ”

r e s <− l i s t (
median ,
mode,
mean,
n e f f ,
rhat

)

#res <− do . c a l l (rbind , re s)

return (r e s)
}

p r o c e s s F i l e <− function (f i l e path , p r i o r) {
f i t <− f i tMode l (f i l e path , p r i o r)
r e s <− e x t r a c t R e s u l t s (f i t)

return (r e s)
}

p r o c e s s F i l e s <− function (f i l e s , p r i o r) {
l s t <− l i s t ()
for (k in 1 : length (f i l e s)) {

r e s k <− p r o c e s s F i l e (f i l e s [[k]] , p r i o r)
l s t <− append(l s t , r e s k)

}

l s t <− do . ca l l (rbind , l s t)
df r e s <− data . frame (l s t)
for (c name in colnames (df r e s)) {

df r e s [c name] <− unlist (df r e s [c name])
}

return (df r e s)
}

78

g e t F i l e s <− function (wi ldcard path) {
f i l e s <− Sys . g lob (wi ldcard path)
return (f i l e s)

}

proce s sFo lde r <− function (f o l d e r path , p r i o r) {
wi ldcard path <− paste (f o l d e r path , ”/data/∗” , sep=””)
f i l e s <− g e t F i l e s (wi ldcard path)

df r e s <− p r o c e s s F i l e s (f i l e s , p r i o r)

return (df r e s)
}

paths = l i s t (
”param−1” ,
”param−2” ,
”param−3” ,
”param−4”

)

p r i o r s = l i s t (
” [sd] ” ,
” [var] ” ,
” [prec] ”

)

p r i o r form <− ”gamma(1 , . 5) ”

out f o l d e r <− ” . . /notebooks/ s imulat ion−out/run−5/”
in f o l d e r <− ” . . /notebooks/ s imu la t i on/run−5/”

for (path in paths) {
fp <− paste (in f o l d e r , path , sep=””)

for (k in 1 : length (p r i o r s)) {
p r i o r <− paste (p r i o r form , p r i o r s [[k]] , sep=””)

df r e s <− proce s sFo lde r (fp , p r i o r)
df r e s$simId <− path
df r e s$p r i o r <− p r i o r s [[k]]

out f i l e <− paste (out f o l d e r , path , ”−pr io r −” , k , ” .

79

csv ” , sep=””)

write . csv (df res , out f i l e)
}

}

#f i t <− f i tMode l (” . . /notebooks/ s imu la t i on/run−2/param−4/
data/sim−0. csv ” , p r i o r=”gamma(1 , . 5) [prec] ”)

#summary(f i t)

D.4 Simulation Result Plots

import pandas as pd
import numpy as np

import matp lo t l i b . pyplot as p l t
import seaborn as sns

import os
from typing import Dict , Ca l l ab l e

p l t . s t y l e . use (” ggp lo t ”)

RUN ID = ’ run−5 ’

ALIASES = {
’w1 ’ : ’w0 ’ ,
’w2 ’ : ’w1 ’ ,
’ lam1 ’ : ’ lam10 ’ ,
’ e1 ’ : ’ s igma eps0 ’ ,
’ e2 ’ : ’ s igma eps1 ’ ,
’ b1 ’ : ’ b0 ’ ,
’ b2 ’ : ’ b1 ’ ,
’ eta1 ’ : ’ eta00 ’ ,
’ eta2 ’ : ’ eta01 ’ ,
’ u1 ’ : ’ s igma u0 ’ ,
’ u2 ’ : ’ s igma u1 ’

}

REVERSE ALIASES = dict ()
for key , va l in ALIASES . items () :

REVERSE ALIASES [va l] = key

def l oad s imu la t i on ouput (run id : str) :

80

f o l d e r p a t h = f r ” . / s imulat ion−out /{ run id }”

d f s = []
for f i l e n a m e in os . l i s t d i r (f o l d e r p a t h) :

d f k = pd . r ead c sv (f ”{ f o l d e r p a t h }/{ f i l e n a m e }”)
d f s . append (d f k)

d f = pd . concat (dfs , a x i s =0)\
. drop (”Unnamed : 0” , a x i s =1)\
. r e s e t i n d e x (drop=True)

d f = d f \
. a s s i g n (new idx=d f . index . to numpy () // d f [” var ”

] . nunique ()) \
. p ivot (index=” new idx ” , columns=” var ”) \
. swap leve l (0 , 1 , a x i s =1)

return d f

def load params (run id : str) :
f o l d e r p a t h = f r ” . / s imu la t i on /{ run id }”

d f s = []
for path in os . l i s t d i r (f o l d e r p a t h) :

d f = pd . r ead c sv (f ”{ f o l d e r p a t h }/{path}/params .
csv ” , u s e c o l s =[1 , 2])

d f [” simId ”] = path
d f s . append (d f)

df = pd . concat (d f s , a x i s =0)
p i v d f = df . p ivot (columns=’ l a b e l ’ , index=’ simId ’ ,

va lue s=’ va lue ’) . rename (REVERSE ALIASES, a x i s =1)

v a r c o l s = [”e1” , ” e2” , ”u1” , ”u2”]
p i v d f [v a r c o l s] = p i v d f [v a r c o l s]∗∗2

return p i v d f

def i s o u t l i e r (arr , s c a l e =2.5) :
a r r = np . array (ar r)

l h i n g e = np . q u a n t i l e (arr , 0 . 2 5)
median = np . median (ar r)

81

uhinge = np . q u a n t i l e (arr , 0 . 75)

i q r = uhinge − l h i n g e

dev = np . abs (a r r − median) / i q r

return (dev >= s c a l e)

def check rhat (df : pd . DataFrame , lb =0.995 , ub=1.005) :
’ ’ ’
This f unc t i on expec t s a DataFrame conta in ing the rha t

s t a t i s t i c s f o r a l l t he v a r i a b l e s .
I t checks i f the rha t l i e s in an ac c ep t a b l e region ,

so the e s t ima t e s can be seen as r e l i a b l e .
’ ’ ’
b o o l d f = (lb < df) & (df < ub)
bo o l i d x = b o o l d f . a l l (1)

return bo o l i d x

def c h e c k e s s (df : pd . DataFrame , min val =100) :
’ ’ ’
This f unc t i on expec t s a DataFrame conta in ing the es s

f o r a l l t he v a r i a b l e s .
I t checks i f the e s s i s h igh enough to i n t e r p r e t the

p o s t e r i o r e s t ima t e s as r e p r e s e n t a t i v e .
’ ’ ’
b o o l d f = df > min val
bo o l i d x = b o o l d f . a l l (1)

return bo o l i d x

def c h e c k r e l i a b l e (df : pd . DataFrame) :
’ ’ ’
This f unc t i on expec t s a DataFrame conta in ing a l l

s imu la t i on data . That i s , a l l the measures
ga thered from the f i t o b j e c t s in R.
I t checks i f the rha t o f the v a r i a b l e s are a c c ep t a b l e

and the e f f e c t i v e sample s i z e i s l a r g e enough .
Each s imu la t i on corresponds to a s i n g l e row , i f one

v a r i a b l e does not s a t i s f y the rha t and es s
cond i t ions , the en t i r e

row i s t o s s ed .

82

I t r e tu rns a copy o f the f i l t e r e d DataFrame .
’ ’ ’
ess min = 100
rhat min = 0.995
rhat max = 1.005

d f r h a t = df [” rhat ”] . i l o c [: , : −2]
d f e s s = df [” n e f f ”] . i l o c [: , : −2]

rha t boo l = check rhat (d f rhat , rhat min , rhat max)
e s s b o o l = c h e c k e s s (d f e s s , ess min)

r e l i a b l e b o o l = rha t boo l & e s s b o o l

return df . l o c [r e l i a b l e b o o l , :] . copy ()

def compute d i f f (e s t i m a t e s d f : pd . DataFrame , params df :
pd . DataFrame , c o l : str) −> np . ndarray :
e s t imate s = e s t i m a t e s d f [c o l] . to numpy ()
t r u e v a l s = params df . l o c [e s t i m a t e s d f [” simId ”] , c o l

] . to numpy ()

b i a s = es t imate s − t r u e v a l s

return b ia s

def compute d i f f s (e s t i m a t e s d f : pd . DataFrame , params df :
pd . DataFrame , c o l s : l i s t [str]) −> pd . DataFrame :
data = {

c o l : compute d i f f (e s t imat e s d f , params df , c o l)
for c o l in c o l s

}
df = pd . DataFrame (data)

df [” simId ”] = e s t i m a t e s d f [” simId ”]
df [” p r i o r ”] = e s t i m a t e s d f [” p r i o r ”]
df . index = e s t i m a t e s d f . index

return df

def compute biases (e s t i m a t e s d f : pd . DataFrame , params df :
pd . DataFrame , c o l s : l i s t [str]) −> pd . DataFrame :
d i f f s d f = compute d i f f s (e s t imat e s d f , params df ,

83

c o l s)

b i a s e s d f = d i f f s d f . groupby ([” p r i o r ” , ” simId ”] ,
a s index=False) . mean ()

return b i a s e s d f

def compute rmse (e s t i m a t e s d f : pd . DataFrame , params df :
pd . DataFrame , c o l s : l i s t [str]) −> pd . DataFrame :
df = compute d i f f s (e s t imat e s d f , params df , c o l s)

df [c o l s] = df [c o l s]∗∗2

rmse df = df . groupby ([” p r i o r ” , ” simId ”] , a s index=
False) . mean ()

rmse df [c o l s] = np . s q r t (rmse df [c o l s])

return rmse df

def f a c e t b o x p l o t (df : pd . DataFrame , var name : str , c o l :
str , hue : str) :

d f = df . l o c [˜ i s o u t l i e r (df [var name]) , :]

g r i d = sns . FacetGrid (data= df , c o l=col , co l wrap =2,
l egend out=True)

g r id . map dataframe (sns . boxplot , x=var name , hue=hue)
g r id . add legend ()

l a t e x v a r = {
”u1” : r ”\ ze ta ˆ{1 , B}” ,
”u2” : r ”\ ze ta ˆ{2 , B}”

}

def p l o t b i a s e s (b i a s e s d f : pd . DataFrame , params df : pd .
DataFrame , var : str) :
temp = pd . merge (

b i a s e s d f ,
params df [[”u1” , ”u2”]] .map(lambda x : f ”{x : . 2 f }”)

,
l e f t o n=” simId ” ,
r i g h t i n d e x=True ,

84

s u f f i x e s =[”” , ” param”]
)

g = sns . FacetGrid (
data=temp ,
row=”u1 param” , c o l=”u2 param” , hue=” p r i o r ” ,
he ight =4, aspect=1

)
g . map dataframe (sns . barplot , y=var , x=” p r i o r ”)
g . s e t y l a b e l s (r ”$\ t ex t {Bias :} ” + l a t e x v a r [var] + r ”

$”)
g . add legend ()

return g

def plot rmse (rmse df : pd . DataFrame , params df : pd .
DataFrame , var : str) :
temp = pd . merge (

rmse df ,
params df [[”u1” , ”u2”]] .map(lambda x : f ”{x : . 2 f }”)

,
l e f t o n=” simId ” ,
r i g h t i n d e x=True ,
s u f f i x e s =[”” , ” param”]

)

g = sns . FacetGrid (
data=temp ,
row=”u1 param” , c o l=”u2 param” , hue=” p r i o r ” ,
he ight =4, aspect=1

)
g . map dataframe (sns . barplot , y=var , x=” p r i o r ”)
g . s e t y l a b e l s (r ”$\ t ex t {RMSE:} ” + l a t e x v a r [var] + r ”

$”)
g . add legend ()

return g

df params = load params (RUN ID)

d f = load s imu la t i on ouput (RUN ID)
df = c h e c k r e l i a b l e (d f)

85

df mean = df [”mean”] . copy ()

c o l s = l i s t (ALIASES . keys ())
b i a s e s d f = compute biases (df mean , df params , c o l s)
rmse df = compute rmse (df mean , df params , c o l s)

df mean . l o c [i s o u t l i e r (df mean [”u2”]) , ”u2”]

g1 = p l o t b i a s e s (b i a s e s d f , df params , ”u1”)
g2 = p l o t b i a s e s (b i a s e s d f , df params , ”u2”)

g3 = plot rmse (rmse df , df params , ”u1”)
g4 = plot rmse (rmse df , df params , ”u2”)

l a t e x l a b e l s = {
’ u1 param = 1 .00 | u2 param = 1 .00 ’ : r ”$\ zeta ˆ{1 , B}

= 1 .00 | \ ze ta ˆ{2 , B} = 1 .00 $” ,
’ u1 param = 1 .00 | u2 param = 0 .04 ’ : r ”$\ zeta ˆ{1 , B}

= 1 .00 | \ ze ta ˆ{2 , B} = 0 .04 $” ,
’ u1 param = 0 .04 | u2 param = 1 .00 ’ : r ”$\ zeta ˆ{1 , B}

= 0 .04 | \ ze ta ˆ{2 , B} = 1 .00 $” ,
’ u1 param = 0 .04 | u2 param = 0 .04 ’ : r ”$\ zeta ˆ{1 , B}

= 0 .04 | \ ze ta ˆ{2 , B} = 0 .04 $”
}

for g in [g1 , g2 , g3 , g4] :
for ax in g . axes . f l a t t e n () :

c u r r e n t t i t l e = ax . t i t l e . g e t t e x t ()
ax . s e t t i t l e (l a t e x l a b e l s [c u r r e n t t i t l e])

g1 . s a v e f i g (” . / f i g u r e s / b ia s u1 . png”)
g2 . s a v e f i g (” . / f i g u r e s / b ia s u2 . png”)

g3 . s a v e f i g (” . / f i g u r e s / rmse u1 . png”)
g4 . s a v e f i g (” . / f i g u r e s / rmse u2 . png”)

D.5 PRIME research Model Fitting

l ibrary (t i d y v e r s e)
l ibrary (lavaan)
l ibrary (blavaan)
l ibrary (readr)
l ibrary (x tab l e)

86

l ibrary (dplyr)

Read in data frame from CSV f i l e con ta in ing
preproces sed data

data <− read csv (
”C: /Users/31620/OneDrive − GE/BEP/notebooks/Data/

transformed f i n a l datase t . csv ” ,
col types = c o l s (

survey = col integer ()
)

)

Apply f i l t e r to data to f i l t e r out s t uden t s wi th no
wi th in l e v e l var iance (same score across surveys)

data <− f i l t e r (data , ! (Analys isID %in% c (”C39” , ”A44” , ”
A38” , ”C58”))) # New problem id : no wi th in var iance

Model d e f i n i t i o n
model <− ’
 l e v e l : with in
 Menta lEf fort ˜ GCL + ECL + E f f i c a c y + ICL
 GCL ˜ E f f i c a c y

 l e v e l : between
 Menta lEf fort ˜ PriorKnowledge + E f f i c a c y +

Globa l s core WMC1 + GCL + ECL + ICL
 ICL ˜ PriorKnowledge
 ECL ˜ G loba l s co re WMC1

’

Fit model us ing bsem blavaan func t i on . De fau l t p r i o r
f o r var iances i s based on s imu la t i on r e s u l t s

b f i t <− bsem (model=model , data=data , dp=d p r i o r s (p s i=”
gamma(1 , . 5) [sd] ”) , c l u s t e r=” Analys isID ” , mcmcfi le =
TRUE)

Summary e x t r a c t i on
Extrac t p o s t e r i o r samples
samples l i s t <− b lav In spec t (b f i t , ”mcmc”)
samples mat <− do . ca l l (rbind , samples l i s t)

87

Get column names
p o s t e r i o r names <− colnames (samples mat)

C l a s s i f y type and l e v e l
c l a s s i f y param <− function (name) {

l e v e l <− i f (g r ep l (” \\ . lbetween$” , name)) ”between”
else ” with in ”

i f (g r ep l (”˜1” , name)) {
type <− ” i n t e r c e p t ”
c l ean <− gsub (”˜ 1 (\\ . lbetween) ?” , ”” , name)
l a b e l <− paste0 (c lean , ” i n t e r c e p t (” , l e v e l , ”) ”)

} else i f (g r ep l (”˜˜” , name)) {
vars <− gsub (” \\ . lbetween ” , ”” , name)
l a b e l <− paste0 (vars , ” r e s i d u a l va r i ance (” , l e v e l ,

”) ”)
type <− ” r e s i d u a l va r i ance ”

} else i f (g r ep l (”˜” , name)) {
par t s <− s tr sp l i t (gsub (” \\ . lbetween ” , ”” , name) , ”˜”)

[[1]]
l a b e l <− paste0 (par t s [1] , ” ˜ ” , par t s [2] , ” (” ,

l e v e l , ”) ”)
type <− ” r e g r e s s i o n ”

} else {
type <− ”unknown”
l a b e l <− name

}
return (c (type = type , l e v e l = l e v e l , l a b e l = l a b e l))

}

Apply c l a s s i f i c a t i o n
c l a s s i f i e d <− t (sapply (p o s t e r i o r names , c l a s s i f y param))
mapping df <− data . frame (

Parameter = p o s t e r i o r names ,
Type = c l a s s i f i e d [, ” type ”] ,
Leve l = c l a s s i f i e d [, ” l e v e l ”] ,
Readable = c l a s s i f i e d [, ” l a b e l ”] ,
s t r i ng sAsFac to r s = FALSE

)

Compute p o s t e r i o r summaries
summaries <− lapply (mapping df$Parameter , function (param)

{
vec <− samples mat [, param]
data . frame (

Parameter = param ,

88

Mean = mean(vec) ,
SD = sd (vec) ,
CI lower = quantile (vec , 0 . 025) ,
CI upper = quantile (vec , 0 . 975) ,
s t r i ng sAsFac to r s = FALSE

)
})

r e s u l t s df <− do . ca l l (rbind , summaries)

Merge wi th readab l e l a b e l s
r e s u l t s df <− l e f t j o i n (r e s u l t s df , mapping df , by = ”

Parameter”)

#xt <− x t a b l e (
r e s u l t s d f [, c (” Readable ” , ”Mean” , ”SD” , ”CI lower ” , ”

CI upper ” , ”Type” , ” Leve l ”)] ,
d i g i t s = 3 ,
capt ion = ”Unstandardized Pos t e r i o r Est imates wi th

95\\% Cred i b l e I n t e r v a l s ”
#)

D.6 Prior Plots

import numpy as np
import s c ipy . s t a t s as s t a t s
import matp lo t l i b . pyplot as p l t
import p l o t l y . g raph ob j e c t s as go

def gamma(x , alpha , beta) :
return s t a t s . gamma. pdf (x , alpha , s c a l e =1/beta)

def gamma sd (x , alpha , beta) :
return gamma(np . s q r t (x) , alpha , beta) / (2 ∗ np . s q r t (

x))

def gamma prec (x , alpha , beta) :
return (1 / (x∗∗2)) ∗ gamma(1/x , alpha , beta)

def g e n e r a t e p l o t (x , alpha , beta , ax : p l t . Axes) :
ax . p l o t (x , gamma(x , alpha , beta) , l a b e l=’ var ’)
ax . p l o t (x , gamma sd (x , alpha , beta) , l a b e l=’ sd ’)

89

ax . p l o t (x , gamma prec (x , alpha , beta) , l a b e l=’
p r e c i s i o n ’)

ax . g r id (True)
ax . l egend ()
ax . s e t t i t l e (f ” alpha = { alpha : . 2 f } beta = {beta : . 2 f }”

)

a lphas = [0 . 5 , 1 , 3]
betas = [0 . 5 , 1 , 3]
x = np . l i n s p a c e (0 . 0 1 , 10 , 200)

f i g = p l t . f i g u r e (f i g s i z e =(12 , 12))
axes = f i g . subp lo t s (3 , 3)

for i , a lpha in enumerate(a lphas) :
for j , beta in enumerate(betas) :

ax = axes [i] [j]

g e n e r a t e p l o t (x , alpha , beta , ax)

p l t . s a v e f i g (’ . / p r i o r p l o t s ’)

90

References

[1] Zitzmann et al. “Prior Specification for More Stable Bayesian Estimation
of Multilevel Latent Variable Models in Small Samples: A Comparative
Investigation of Two Different Approaches”. In: Frontiers in Psychology
(2020).

[2] K. A. Bollen. Structural Equations with Latent Variables. Wiley, 1989.

[3] A. C. Brouwer. “Structural Equation Modeling: Explained and applied to
educational science”. Available at the TU Delft Library. 2021.

[4] H. de Bruin Anique B. et al. “Synthesizing Cognitive Load and Self-regulation
Theory: a Theoretical Framework and Research Agenda”. In: Educational
Psychology Review 32.4 (2020), pp. 903–915. doi: 10.1007/s10648-020-
09576-4.

[5] Juan Cristóbal Castro-Alonso, Paul Ayres, and John Sweller. “Instruc-
tional visualizations, cognitive load theory, and visuospatial processing”.
In: Visuospatial Processing for Education in Health and Natural Sciences.
Ed. by Crist’obal Castro-Alonso Juan. Advances in Experimental Medicine
and Biology. Springer, 2019, pp. 111–143. doi: 10.1007/978-3-030-
20969-8_5.

[6] Sarah Depaoli. “A Bayesian Approach to Multilevel Structural Equation
Modeling With Continious and Dichotomous Outcomes”. In: Structural
Equation Modeling: A Multidisciplinary Journal, 22, 327-351 (2015).

[7] Sarah Depaoli. Bayesian structural equation modeling. The Guilford Press,
2021.

[8] S. van Erp and W. J. Browne. “Bayesian multilevel structural equation
modeling: An investigation into robust prior distributions for the doubly
latent categorical model”. In: Structural Equation Modelling: A Multidis-
ciplinary Journal (2021).

[9] J. Fox. Applied Regression Analysis & Generalized Linear Models. Sage,
2016.

[10] G. Grimmet and D. Welsh. Probability: An Introduction. Oxford Univer-
sity Press, 2014.

[11] J. J. Hox. Mulitlevel Analysis Techniques and Applications. Routledge,
2010.

[12] J. Leppink et al. “Development of an instrument for measuring differ-
ent types of cognitive load”. In: Behavior Research Methods 45.4 (2013),
pp. 1058–1072. doi: 10.3758/s13428-013-0334-1.

[13] J. Leppink et al. “Effects of pairs of problems and examples on task perfor-
mance and different types of cognitive load”. In: Learning and Instruction
30 (2014), pp. 32–42. doi: 10.1016/j.learninstruc.2013.11.001.

[14] R. Levy and R. J. Mislevy. Bayesian Psychometric Modeling. Chapman
& Hall, 2016.

91

[15] B. Muthen and T. Asparouhov. “Bayesian estimation of single and mul-
tilevel models with latent variable interactions”. In: Structural Equation
Modeling: A Multidisciplinary Journal (2020).

[16] B. O. Muthen. “Multilevel Covariance Structure Analysis”. In: Sociological
Methods and Research, 22, 376-398 (1994).

[17] Y. Rosseel. “Evaluating the Observed Log-Likelihood Function in Two-
Level Structural Equation Modeling with Missing Data: From Formulas
to R Code”. In: Psych (2021).

[18] Shayle R Searle, George Casella, and Charles E McCulloch. Variance
Components. New York: Wiley, 1992.

92

