Delft University of Technology
Master of Science Thesis in Embedded Systems

Design and Analysis of a framework for
Dynamic Selection of TCP Congestion
Control Algorithms

Soovam Biswal

Embedded
Networked
Systems

Design and Analysis of a framework for Dynamic
Selection of TCP Congestion Control Algorithms

Master of Science Thesis in Embedded Systems

Embedded and Networked Systems Group
Faculty of Electrical Engineering, Mathematics and Computer Science
Delft University of Technology
Mekelweg 4, 2628 CD Delft, The Netherlands

Soovam Biswal
S.Biswal-1@Qstudent.tudelft.nl
soovamb1997Qgmail.com

14 October 2021

mailto:S.Biswal-1@student.tudelft.nl
mailto:soovamb1997@gmail.com

Author
Soovam Biswal (S.Biswal-1@student.tudelft.nl)

(soovamb1997@gmail.com)
Title

Design and Analysis of a framework for Dynamic Selection of TCP Congestion Control Algorithms
MSc Presentation Date

26 October 2021

Graduation Committee
dr. ir. Fernando Kuipers (chairman) Delft University of Technology

dr. Jan S. Rellermeyer Delft University of Technology
Belma Turkovic TNO

mailto:S.Biswal-1@student.tudelft.nl
mailto:soovamb1997@gmail.com

Abstract

Introduction of new, more advanced services to the networking paradigm has
led to an increased heterogeneity of media types and network traffic. Although
several transport protocols have been developed over the years to cater to the
Quality-of-Service requirements of these network services, the dynamic nature
of the network condition is a variable that creates a hindrance in the mapping
of an efficient transport protocol to a network service.

Dynamic Protocol Selection can serve as a potential solution for this by ap-
plying innovative techniques to adaptively select among pre-existing transport
protocols during run-time, thus catering to these requirements dynamically. Al-
though the concept has been proven to be beneficial, there are certain research
gaps that are yet to be addressed. In this thesis, we attempt to take a step
forward to address a few of these research gaps. As a result, we designed a
standardized conceptual framework (DPS framework) for the Dynamic Selec-
tion of various TCP congestion control algorithms (as the pre-existing transport
protocols). To enable this framework to function autonomously, we developed an
online learning strategy implemented in the framework design. Also, to ensure
efficient deployability of the framework in a real-network, we further proposed
a fairness framework to manage multiple DPS framework-enabled application
flows to co-exist sustainably.

Through our experiments, we demonstrated the trade-off between application
flow performance and learning time for the proposed online learning strategy
and the ways it can be tuned to benefit certain types of application flows.
We further presented results that showcased around 15% improvement in the
fairness performance between multiple application flows and stability in the
average flow performance due to the implementation of the proposed fairness
framework.

v

“It always seems impossible until it’s done.” — Nelson Mandela

vi

Preface

This thesis represents my final work as an Embedded Systems Masters student
at Delft University of Technology and comprises of the research that I carried out
in the past 9 months in the Embedded and Networked Systems (ENS) research
group. Although the journey was not easy but it was a fulfilling experience
and I am honoured to have experienced this time, although remotely, with the
members of the ENS group.

I would like to thank dr. ir. Fernando Kuipers for his extensive feedback and
guidance during this thesis. It was only through your constant questionnaires
during the literature survey that I was able to come up with a research question
for the thesis.

To Belma Turkovic, thank you for always taking out time to assist me with
setting up and troubleshooting the infrastructure for implementing the proposed
work and discussing about the types of experiments to conduct.

I would also like to express my gratitude to dr. Jan S. Rellermeyer for being
part of my thesis committee.

Last but not the least, I would like to thank my family and friends for their
constant support and encouragement in successfully completing this thesis, es-
pecially during a pandemic.

Soovam Biswal

Delft, The Netherlands
14th October 2021

vii

viii

Contents

|2__Background|
[2.1 Transmission Control Protocol (TCP)|
P11 TCP Operationl.
2.2 TCP Congestion Control|.
2.2.1 Categorizing TCP Congestion Control Algorithms|
2.3 Porttfolio Schedulingl

B Related Work]
4__Frameworkl

4.1 Framework Requirements|
4.2 Standardizing Dynamic Protocol Selection Framework Design| . .

4.2.1 Modifying the selection stage design principles|
4.3 Framework Components|

4.3.3 Switchingl Lo
4.3.4 Monitoring and Knowledge Update|.
4.4 Framework Operational Flow|
4.5 Online Learning Strategy|

6_Evaluationl
.1 Experiment Setup| oo oL
b.2 Protocol Switching Performance|
p.2.1 Switching Experiment|
5.2.2 Switching Observation|
p.2.3 Switching Analysis| oo oL
5.3 Online Learning Analysis|
p.3.1 Learning Experiment|.

ix

vii

13

19
19
19
20
21
22
23
25
27
28
29
32

[5.3.2 Learning Observation and Analysis[.

5.3.3 pplication of p as a tuning tool|

p.4.1 Fairness Experiment|

5.4.3 Fairness Analysis|

|A Fitting Parametric Distribution Models|

Chapter 1

Introduction

The past decade of the technology era has witnessed a dramatic growth in re-
volution of the Internet, especially in terms of its application coverage [53].
With greater and affordable bandwidth, the traditional data-handling methods
have moved from local file backups and mirrors to locations accessible over a
network. Further, the development of advanced networking concepts such as 5G
[4] and the Internet-of-Things [39] have enabled numerous services each demand-
ing superior network quality. For instance, services such as immersive virtual
reality [54], interactive gaming [65], or telementoring [37] have tight latency and
jitter tolerances to maintain an acceptable Quality of Experience (QoE) [42].
Moreover, sensitive services, e.g. cloud robotics [50], remote surgery [58], or
cooperative driving [21] have additional reliability and availability constraints.

Introducing these new services has led to increased heterogeneity of media
types and traffic, thus further augmenting network complexity. Thus, cater-
ing to such a wide spectrum of Quality of Service (QoS) requirements necessit-
ates customization of network connections for handling different traffic patterns,
types of data transmitted, and types of transmission media.

1.1 Motivation

Over the years, the transport layer protocols of the network stack have un-
dergone numerous customizations, either with a goal to improve upon earlier
versions or provide additional features for incrementing the number of use-cases
supported. A classic example showcasing this variability in customization is
the Transmission Control Protocol (TCP) [11] and its light-weight counterpart,
the User Datagram Protocol (UDP) [48]. While TCP, with its complex sys-
tem architecture ensures end-to-end reliable connectivity, it suffers from high
transmission delays due to large packet overheads (20 bytes). UDP, instead, ad-
dresses this limitation by forming much lower packet overheads (8 bytes) trading
off the complex reliability and connectivity features. Among other variations are
Stream Control Transmission Protocol (SCTP) [20] that employs datagrams as
packet-entities similar to UDP but closely aligns with many of TCP’s features.
Additionally, this protocol also supports multi-homing [52] and redundant paths
enhancing reliability and resiliency.

Apart from the general trend of designing protocols based on certain qual-

ity of service requirements, another category of formulation is solely based on
their application use-case. Licklider Transmission Protocol [8], developed for
space communications focuses on domain-specific requirements such as energy-
efficiency and prioritized reliability of data transmission. Sensor Transmission
Control Protocol (STCP) [32] aims to create a generic, scalable and reliable
transport protocol for wireless sensor networks (WSN). Similarly, transport pro-
tocols, for e.g. Interactive Real-time Protocols (IRTP) [47], Efficient Transport
Protocol (ETP) [64] or Hybrid Multicast Transport Protocol (HMTP) [6] are
designed for haptic data transmission (communication of the sense of physical
touch).

However, TCP, being the best-known and extensively implemented transport
protocol, majority of the transport protocol research is focused on improving
upon TCP’s impairments and ensuring fairness among its variants. This ar-
gument is evident with the large number of TCP versions (flavors) [46] that
currently exist, each designed to handle a particular set of network conditions.
This thesis, therefore, will present its further discussions taking the variabilities
among these TCP flavors into consideration.

All TCP variants basically differ in the methods they adapt to deal with net-
work congestion observed under specific traffic patterns or transmission media.
For instance, TCP’s Cubic [28] or BIC [67] variants perform best when operated
over high bandwidth-delay product (BDP) links. However, their performance
degrades with increasing link losses, commonly encountered in wireless connec-
tions. Due to its better handling of packet losses caused by transmission errors,
TCP’s Westwood variant [43] is generally a preferred choice for this environment
type. Moreover, as most of these variants depend on packet loss as a metric for
congestion indication, the packets inherently suffer from large round-trip times
(RTTs). This issue is addressed with variants such as Vegas [7] or Lola [29],
that depend solely on RTT as their congestion indication metric. However, from
the current trends of Internet evolution, it can be inferred that it is indeed dif-
ficult to estimate the number of possible application environments. Therefore,
adopting traditional methods to design protocols catering to a certain network
condition set or application requirement is an inefficient technique.

Application of learning techniques for congestion detection and control [34]
is a research area that serves a potential solution to this inefficiency. Remy
[63] designs a congestion control (CC) algorithm generated offline by mapping
(learning) congestion parameters to performance metrics via optimized state-
space exploration. However, it suffers from low-fairness in heterogeneous net-
works and inherently leads to performance degradation on deviation from the
actual input conditions. PCC Vivace [18] is another rate-control algorithm
that leverages the concept of online (convex) optimization in machine learning
to achieve superior performance to legacy TCP variants. Several algorithms
[67, BI, [66] also leverage the concept of re-inforcement learning (RL) to op-
timize specific performance metrics, e.g. packet loss, re-transmissions, jitter,
latency or throughput. However, these algorithms generally exhibit high com-
putational complexity, memory, and convergence time. An inherent issue with
these learning-based CC algorithms is incompatibility with current technology.
For instance, most of the recent Linux versions provide a choice between about
ten TCP variants. As most of these algorithms are tested in limited environ-
ments, further extensive research is required to resolve compatibility issues with
the traditional CC algorithms.

Dynamic Protocol Selection [9] is yet another solution that has recently been a
focus of research. It basically involves applying innovative techniques to adapt-
ively select among pre-existing transport protocols (for instance, TCP variants
offered by the Linux kernel) based on comparing these candidate protocols’ per-
formances. This solution inherently resolves the previously mentioned compat-
ibility issue and can be easily extended to include any future protocol versions.
Also, due to the offered flexibility in implementing protocols based on network
and application requirements, compared to their static counterpart, a signific-
ant performance gain is achieved [9] [49] 5T] [62]. However, as this direction of
research is in its early stages, several issues still persist. Research works are
mostly focused on few key areas:

e Demonstrating improved performance offered by dynamic protocol selec-
tion in different application domains such as wireless sensor networks [49],
reliable multicast [51]

e Schemes aimed at efficiently selecting a suitable transport protocol from
an available set of choices [22], 23] [35]

While the mentioned research goals are promising, they do not consider the
practical issues involved in implementing this technique over existing networking
solutions. To successfully identify and develop solutions for such problems, an
end-to-end run-time analysis of the dynamic selection framework is essential.

1.2 Problem Definition

In this report, we aim to investigate ways to design and analyze a dynamic
protocol selection framework to be implemented in the Linux kernel utilizing
its available TCP variants as the default protocol set for the framework. This
approach would help in better understanding of essential design parameters and
identifying key design issues of a dynamic protocol selection framework.

Some problems need to be addressed before designing such a framework. To
initiate protocol selection in a dynamic selection framework, some knowledge
about the candidate protocols’ performance needs to be available to make a
decision based on comparison. To implement this, the present works [49, [G1]
62, [35] assume the framework’s protocol set to be (pre) partially-trained with
their corresponding characteristic statistics before implementing to ensure lower
selection time after deployment. However, this initial training step would hinder
the framework’s possibility to autonomously operate in changing environments.
Addition of novel protocols to the framework would also suffer from a similar
issue as they would need some amount of training before deployment. Hence,
it is essential to consider designing a scheme implemented into the framework
architecture that would bypass this additional training step and simultaneously
learn about the candidate protocols while applying them to govern application
flows.

Further, during the framework run-time, when a new transport protocol, dif-
ferent from the previously implemented one is selected, the framework needs
to switch the currently applied protocol with the new one. A good framework
should ensure negligible impact on the application flow’s performance while

switching. As the framework’s transmission and reception modules’ logic dir-
ectly translates to the switching methodology, designing them in the framework
architecture should be given special attention.

Moreover, on deploying any application flow in a network, it should be en-
sured that the flow consumes network resources optimally and allows an equal
share of the available resources to existing flows. Fairness is a key performance
metric that quantifies this flow behaviour. As a typical dynamic protocol selec-
tion framework involves implementing multiple transport protocols during an
application flow’s lifetime, each of the candidate protocols might have different
fairness behaviors that would affect the effective fairness behavior of the applic-
ation flow. It is, therefore, important to also evaluate the framework’s fairness
performance.

These discussions can be summarized into the following research question:

How can we design an efficient framework for dynamic selection of
transport protocols?

This can be broken down into further sub-questions for a better idea about
this thesis’ research goals:

1. How can we design the framework to learn online with optimum efficiency
and accuracy?

2. How can we design transmission and reception components for the frame-
work for efficient protocol switching during run-time?

3. How can we ensure fairness among application flows running over the
dynamic protocol selection framework?

1.3 Contributions

Our key contributions are as follows:

1. We proposed a conceptual Dynamic Protocol Selection (DPS) framework
based on the design principles of a portfolio scheduler (Section SO as
to standardize the framework.

2. We designed a strategy to facilitate online learning in the proposed DPS
framework.

3. To maintain an acceptable fairness among multiple application flows gov-
erned by the proposed DPS framework, we further proposed a Fairness
Framework for guiding the deployed flows.

4. We evaluated and analysed the performance of the proposed learning
strategy and fairness framework.

1.4 Thesis Outline

The rest of the thesis is organized as follows: Chapter [2| provides brief descrip-
tions of some concepts that are essential to understand the work performed in
the thesis. Further, to highlight the research gaps and our motivation to develop
the Dynamic Protocol Selection framework, Chapter [3] summarizes the existing
literature on the concept. Finally, Chapter [4] provides a detailed description of
our contributions in the thesis. The proposed work is evaluated and analysed
in Chapter [5] To wrap up the report, a brief summary of our entire work in the
thesis and some potential future improvements in the proposed frameworks are
described in the final Chapter [f]

Chapter 2

Background

To gather a clear understanding of our work in this thesis, this chapter lays
emphasis on describing the fundamental concepts of several elements that form
the building blocks of the work.

2.1 Transmission Control Protocol (TCP)

The transport layer of the Internet Protocol Suite (IP-Suite) [I3] or Open Sys-
tems Interconnection model (OSI) [15] network stacks provides host-to-host con-
nectivity with its end-to-end message delivery services that are independent of
the functionalities of the lower layers. With its location between the application
layer at the top and network (IP) layer at the bottom, this layer encapsulates
data received from the application layer into data-blocks called segments and
forwards them to the network layer as IP-payloads. Moreover, to distinguish
between several process flows of applications running in a machine, the layer
introduces the concept of network ports, an operating-system allocated number
for each communication channel required by an application.

Currently, several protocols [48, 11l 20, 27] exist that implement the ba-
sic functionalities of the transport layer along with some additional protocol-
specific features. Among these, the Transmission Control Protocol (TCP) [11]
is the most widely used. TCP is a connection-oriented protocol i.e., data trans-
fer, using TCP, is only possible after establishing a dedicated connection to the
receiver. This feature is just the first step among several others that TCP imple-
ments to ensure reliability in data transmission. Some of the key functionalities
that TCP provides are as follows:

e Lost packet re-transmission

Ordered data transfer

Error Detection

Flow Control

Congestion Control

Due to the complex functionalities supported by the protocol, a typical TCP
segment has a relatively large header size ranging from a minimum of 20 bytes

32 buts

: Source Port Number Destination Port Number

Sequence Number

Acknowledgement Number

! ula|p|r[S|F . .
TCP E:‘:L,I‘T: Reserved | r|C[s|s|¥|1 Wimdow Size
Header = G|K[H| T N|N|
TCP Checksum Urgent Powmnter

Options(0 to 10 words of 32 bits)

Data (if any)

Figure 2.1: TCP Header format. The options field has a variable length
ranging from 0 to 40 bytes.

to a maximum of 60 bytes depending on the length of the options field as shown
in Figure 2.1]

2.1.1 TCP Operation

The working of the protocol can be divided into three phases:

1. Connection Establishment: This is the first procedure that any TCP
connection undergoes to establish a dedicated connection between a TCP
client and server and is initiated by the client. However, for this procedure
to work successfully, the connection should always be in a passive-open
state i.e., the server should bind to and continuously listen at a specific
network port that clients could connect to. In addition to the normal ap-
plication data-carrying segment-types that TCP promises to transfer, the
protocol also introduces segment-types specifically for establishing TCP
connection: SYN, SYN-ACK and ACK (indicated by the specific TCP
flags in the header shown in Figure . These segments do not carry
any application data. Moreover, the sequential communication of these
special segments is called three-way handshake that alters the passive-
opened TCP connection state to active-open. As indicated in Figure
the handshake begins with the client sending a SYN (synchronization)
packet to the server. On SYN reception, the server identifies the new con-
nection, allocates machine resources for the connection and acknowledges
it with a SYN-ACK (synchronization acknowledgement) packet. Further,
on SYN-ACK reception for the transmitted SYN, the client sends an ACK
(acknowledgement) packet to the server for indicating the initiation of ap-
plication data-transmission shortly.

2. Data Transfer: During this phase, the client begins sending application-
data to the server over the established connection. The server, on receiving
each TCP segment (data packet), acknowledges the client with the special
ACK packet. However, TCP still needs to ensure guaranteed and ordered
delivery of data. It implements these features with proper monitoring of
the sequence (SEQ no.) and acknowledgement (ACK no.) numbers of the

Client Server

L]
1

V)

” 1]
pCK
cQ=Y
k(8
sIN-H

ACk
: (ACK ~ 1)
]]
]

(a) TCP Connection Initialization 3- (b) TCP Connection termination 4-
way handshake. way handshake.

Figure 2.2: TCP Connection signalling during initialization and ter-
mination phases.

transmitted packets as indicated in the TCP segment header in Figure
Normally, after the client sends a packet with a SEQ no., the server
replies with an ACK packet having an ACK no. equal to the sum of the
SEQ no. and the length of the received payload. Through this ACK no.,
the server indicates to the client for sending a next packet with the SEQ
no. equal to the ACK no. Apart from this, more complex processes such
as flow and congestion control also take place during this phase to ensure
good data throughput.

3. Connection Termination: This phase typically involves a four-way
handshake and can be initiated from either of the end-points. As illus-
trated in Figure when an end-point (A) wants to terminate the
connection, it sends a special TCP segment-type packet: FIN (finish).
On FIN reception, the other end-point (B) acknowledges it by sending
an ACK packet in response. After sending this ACK, the end-point B
tries to acknowledge all the unacknowledged received data packets from
A, if there is any and finally sends a FIN packet. A, on receiving the
FIN, acknowledges it with an ACK sent to B. This completely terminates
the connection. However, the corresponding resources reserved for the
connection is freed only after a few minutes, depending on the operating
system.

2.2 TCP Congestion Control

Network congestion is a condition when the incoming data to a network cannot
be processed at the normal rate due to overloaded network resources. Any
further incoming data only adds to the congestion and increases the load of
the already overloaded network leading to a worse situation. A simple solution

Network ~

T ot [s
Indication

=)

g Slow-start

; Threhold

2

= Congestion Reaction to

= Sow Start Avoidance Congestion

s

Z

= Cowndype

8 .

>

Round Trip Time —»

Figure 2.3: Typical congestion window behaviour in TCP congestion
control mechanism resulting in TCP congestion phases.

for the network to recover from this congested state can be prohibiting any
incoming flows into the network for a certain time duration or indicating the
flows to back-off. Such practices of reacting to congestion or in some cases,
taking preventive measures to avoid congestion is known as congestion control.

During the data transfer phase in TCP, it implements some of these congestion
control solutions to tackle network congestion. Basically, the TCP sender keeps
a check on the transmitting date rate by varying a metric known as Congestion
Window. This window indicates the maximum number of data-bytes that can
be transmitted by the sender without any interruptions, if it is lower than the
advertised receiver window (maximum data bytes that can be processed by the
TCP receiver). Depending on the network condition and TCP’s algorithm, this
congestion window can be varied in a number of ways throughout the data
transfer phase.

Figure 2.3 illustrates a typical TCP congestion control scenario. A TCP
connection always begins with a slow-start phase of the congestion control
mechanism increasing the congestion window appropriately to find a balance
between achieving high throughput and low probability of network congestion.
The slow-start phase continues to operate until either a packet drop, receiver
window threshold or a pre-calculated congestion window threshold (slow-start
threshold) is encountered. On encountering the slow-start threshold, TCP’s
congestion mechanism changes phase to congestion avoidance that further decel-
erates the congestion window rise as a pre-cautionary measure to avoid building
up large queues at network buffers. However, a loss encountered is assumed as
network congestion by TCP and it varies the congestion window along with tak-
ing other appropriate measures according to the congestion control algorithm
implemented by the specific TCP variant.

2.2.1 Categorizing TCP Congestion Control Algorithms

As mentioned in Chapter —[I] a large number of these TCP variants exist today,
each catered to solving issues that previous versions suffered from or taking
a completely new approach contrasting the current design practices. However,
based on the methods employed to detect and react to network congestion, TCP
congestion control algorithms can be broadly classified into four categories [60]:

10

e Purely-loss based algorithms: These algorithms depend only on packet
loss to detect network congestion. As packet loss in a network mostly oc-
curs due to excessive filling up of the network buffers, these algorithms
aggressively transmit packets into the network if no packet loss is de-
tected aiming to maximize the utilization of available resources. In-fact,
these variants are the most aggressive among all categories. Well know
TCP variants such as Cubic [28], Reno [I] or High-Speed (HS)-TCP [26]
among many others fall into this category.

e Delay-based algorithms: These are the least aggressive congestion con-
trol algorithms among all categories as they only depend on RTT (Round-
trip time) experienced by packets, a sensitive metric, for congestion detec-
tion. In contrast to pure-loss based algorithms, these algorithms signific-
antly reduce the chances of filling up of network buffers. They achieve this
by reducing the packet transmission rate into the network on detection of
packets experiencing higher RTT than a specific threshold that mainly
occurs due to higher waiting times at network buffers with long packet
queues. Variants such as Vegas [7] and Lola [29] fall into this category.

e Loss-delay based algorithms: As the name suggests, these algorithms
take a middle-ground between the two aforementioned categories. They
still employ packet loss as a metric to detect network congestion. However,
the calculations for varying the congestion window as a reactive measure
to the detected congestion depends on the delay (RTT) experienced by
the packets. Therefore, although these are less aggressive algorithms than
pure-loss based ones, they still require filling up the network buffers to
detect congestion. Variants such as TCP Illinois [40], Westwood [43] and
TCP-Compound [56] adopt such mechanisms.

e Model-based hybrid algorithms: These algorithms take a fundament-
ally different approach for congestion control. Instead of relying on packet
loss or RT'T as metrics for reactive measure, the algorithm tries to estimate
a model of the network that describes its present state and thus helps the
TCP sender to proactively modify the congestion window (sending rate).
TCP BBR [10] is a recent variant that tries to implement this mechanism
by periodically monitoring the network to update its estimated model.

2.3 Portfolio Scheduling

The basic idea of Portfolio Scheduling was proposed by Huberman et. al. [30].
A portfolio scheduler dynamically selects among a set of policies based on user-
defined rules and feedback mechanisms. Through this combination of policies,
the scheduler becomes more flexible and reactive to varying application require-
ments compared to the constituent policies considered in isolation. Apart from
its extensive application in finance [25] over the years, it has also been imple-
mented for scheduling workloads of varying natures in data centers [I7, [61, 41].

Deng et al. [I7] describes four basic stages of a portfolio scheduler as illus-
trated in Figure 2.4}

e Creation: This stage involves creating or preparing the set of policies to
be included in the portfolio scheduler. While including more policies en-

11

Scheduling
Policies

Creation

Results

Selection

Reflection

Selecfed Policy

Application

Figure 2.4: Finite-state machine of the four stages of a portfolio sched-
uler used to schedule workloads in data centers.

hances diversity, it necessitates more sophisticated algorithms to correctly
select among the wide range of choices.

e Selection: This stage involves selecting a single policy from the policy
set. The selection is generally based on the performance of corresponding
policies measured in a simulated environment taken as input for a portfolio
selection methodology (for instance, utility-based selection).

o Application: In this stage, the policy chosen in the selection stage is
implemented in the real application environment to perform tasks.

e Reflection: The performance of the implemented policy is analyzed in
this stage. The analysis report can serve as a basis for further improvement
of the selection criteria or tune policy parameters.

Apart from the creation stage which is processed once in the life-cycle of the
scheduler, all other stages are processed periodically.

12

Chapter 3

Related Work

As mentioned in Chapter [1} the research on the concept of Dynamic Protocol
Selection is mainly focused on either showcasing the performance improvement
achieved due to dynamic selection in several application areas or investigating
methodologies for efficient selection of protocols catering to the service level
requirements (SLRs) and network conditions.

In an effort to achieve better performance in MANETS, Rosenfeld et al. [49]
propose a technique to intelligently select protocols in the transport and ses-
sion layers based on the measured network conditions. The method utilizes
the concept of Markov Random Fields (MRF) to dynamically assign labels to
the network based on observation of certain network parameters. These labels
keep track of the performance of the cross-layer protocol combination and the
best performing combination is selected on encountering a similar network la-
bel. Although the work establishes a direct relation between performance gain
and dynamic protocol selection, the analysis, however looks more into domain
specific metrics such as average time for all nodes of the MANET to agree on a
protocol (Average Delay to Agreement) or percentage of nodes realizing the clas-
sified network state (Belief Percentage). These metrics do not provide insights
into the implementational or architectural aspect of the selection framework.

A similar issue persists in other works [51] 44]. In [51], Shibata et al. focus on
improving multicast communication efficiency using the dynamic protocol selec-
tion concept. They propose a framework to dynamically select among multicast
protocols by periodically monitoring the network based on the acquired receiver
reports and derived scale of the multicast group based on the topology inform-
ation. In addition to the demonstrated performance improvement, the authors
briefly address the inherent problem with protocol switching in the proposed
protocol selection framework and the overhead thus incurred. However, unlike
our work, it fails to provide a thorough analysis into the switching overhead
problem.

Enhancing flexibility and efficiency in Multi Agent Systems (MAS) [19] is yet
another application area that benefits from protocol selection. This is showcased
by Mehmood et al. [44] who propose a framework that enables an agent to
directly upload a suitable transport protocol at run-time, if it is authorized
by an adaptive behavior entity in the framework. The entity keeps track of
the frequency of requests for several transport protocols from agents and only
authorizes those protocol requests that are among the top three in terms of

13

request frequencies. This adaptability leads to a better resource usage in the
agents as it avoids loading all transport protocols in their memory at compile
time.

Another direction of research focuses on designing efficient architectures for
dynamic transport protocol selection framework. These works generally aim at
designing functional modules and suitable protocols for end-to-end framework
deployment. Nakajima [45] proposes an architecture for protocol selection that
is exclusively designed for Cobra [2] networks. Three design issues are considered
in the work that forms the basis of the proposed architecture. The first issue
concerns the ways in which transport protocols can be presented to the user.
The next issue focuses on the permissible level of flexibility allowed for protocol
selection. And the final issue concerns ways to handle exceptional situations
such as connection setup failure.

Quality of Transport (QoT) [38] is another architecture proposed at the inter-
face of transport and session layers of the OSI model [15]. It aims to autonom-
ously select among multiple transports in heterogeneous wireless environments.
QoT is comprised of sophisticated functional blocks for carrying out transport
and service discovery, object exchange, transport switching and transport se-
lection. Further, specific protocols are introduced for each functional block to
realize their functionalities. For instance, a multi-transport discovery algorithm
is implemented in the transport discovery block that enables devices (commu-
nicating end hosts) to discover common transport methods.

NEAT [36] is a user-space library that aims at reducing transport layer ossi-
fication [24] by decoupling the applications from the underlying transport pro-
tocols. Although its core design concept closely aligns the above-mentioned ar-
chitectures, it differs in its implementation of the various functional blocks and
transport selection strategy. NEAT’s architecture includes a policy manager
that ranks feasible transport protocols according to the destination information
stored in its policy (PIB) and characteristic information base (CIB), that further
undergo selection according to Happy Eyeballs algorithm [14].

Although the discussed dynamic selection frameworks aim to improve the
framework functionalities to enhance their feasibility to be deployed in real-
world networks, they can never be fully deployable without proper analysis of the
framework performance at an implementation level, which is the key goal of our
work. Moreover, the framework architectures have a general assumption that
the available protocol set either has an initial knowledge about the protocols’
characteristics [38] 5] or they undergo an initial training to learn about those
characteristics [36]. However, to be truly self-sufficient, the frameworks should
have a mechanism to autonomously learn about the protocol behaviors in any
network environment they are deployed, a concept which is further discussed in
our work.

The benefits obtained from dynamic protocol selection is largely dependent
on the process of selecting appropriate protocols at appropriate circumstances
during framework run-time, catering closely to the application requirements
and network condition. Proper decision making for selecting the right protocol,
therefore is an essential task in a dynamic selection framework and hence another
direction of research. Chan et al. [I2] propose a two-stage decision-making
algorithm for selecting among transport segments (GPRS, UMTS, Satellite,
etc.) based on their satisfaction of multiple objectives. The first stage fuzzifies
the system and network level information (measurements) and uses Analytic

14

Hierarchy Process (AHP) [55] for weighing application (user) requirements. In
the next stage, a decision making methodology introduced in [5] is performed
over the outputs from the first stage to finally select a specific segment.

Focusing on the transport selection functional block of the QoT architecture
[38], two decision-making approaches are introduced in [23] and [22] respectively.
In [23], Duffin et al. propose Prioritized Soft Constrained Satisfaction (PSCS),
an approach that involves selecting a suitable transport method based on user-
defined preferences and priorities for transport characteristics. It achieves this
by creating a binary tree with characteristic performance of transport methods
as nodes and corresponding characteristic’s user-defined priority as hierarchy.
A decision is finally made after traversing the tree using depth-first-search [3]
and reaching a single node (transport method).

In contrast to PSCS, a quantitative approach is proposed in [22]. In this
approach, the measured value of a specific transport characteristic is assigned a
utility based on the user-defined preferences of the corresponding characteristic.
The net-utility per transport method is calculated as a weighted sum of the util-
ities of its individual characteristics. And a transport method with the highest
calculated net utility is finally selected. As this approach has better alignment
to realistic scenarios and has low complexity, a slightly modified version of this
selection method is employed in the protocol selection stage of the framework
implemented in our work.

Further, as our work focuses on looking at implementation of the conceptual
design of a dynamic protocol selection framework, in contrast to the architec-
tural design works of the framework discussed previously, and makes use of
the available TCP congestion control algorithms as framework protocol set to
analyze the performance of dynamic protocol selection framework, it can be
considered as a closely related or extended version of the works in [9] 62, 35].
In [35], Johnson et al. propose a method to select among transport protocols
based on the output from a Bayesian network, a directed acyclic graph com-
prising of nodes that represent protocol characteristics or variables that affect
protocol selection. The conditional probabilities of the variables’ states stored
in these nodes are regularly updated with the most recent observations so as to
enhance protocol selection accuracy. Selection is based on those transport pro-
tocols that report highest conditional probabilities for the preferred states in the
leaf nodes of the network. However, as selection is based on a certain number
of pre-defined states, it leads to a lower resolution for selection. Moreover, this
method also assumes an initial training of the proposed framework to gather
protocol statistics, which is an issue addressed in our work.

A similar issue occurs in ADYTIA [62], a dynamic selection framework that
considers TCP congestion control algorithms as the framework’s protocol set. It
assumes a pre-defined mapping between network conditions (represented by cer-
tain network parameters), application type and preferred protocol to be present
in its database before its deployment. At run-time, the framework measures the
network conditions and selects appropriate protocols according to given applica-
tion type. To summarize, the work mainly focuses on demonstrating the impact
of dynamic selection on communication performance. Fortunately, the authors
also take a step towards addressing the issue of unfairness that is inevitable with
multiple flows of the framework, but fail to propose a solution for it. Our work,
therefore, drives this discussion forward and approaches to solve it.

The works of Caini et al. in [9] is one of the first to analyze the performance

15

improvement achieved through dynamic protocol selection, specifically taking
TCP congestion control algorithms as the protocol set similar to our work. It
further proposes some brief ideas on feasibility and implementation of the selec-
tion framework in the existing network infrastructure. This literature, therefore
can be considered a major motivation to our work in this thesis.

Table presents a brief summary of the available research works in the
domain of Dynamic Protocol Selection and thus highlights the research gaps
that this thesis tries to address.

16

Category of

Research Areas Covered in the Literature

‘Work Literature . Selection Online L .
Application . Switching | Fairness
Area Strategy Learning Analysis | Analysis
Adopted Analysis
Ad-Hoe Network-label to
Application | Rosenfeld [J9] Network/ﬂ Protocol No No No
Domain ' 7 Mapping
Based Multicast Network-state to
DPSF* Shibata [51] Npti'(;rl;sj Protocol No Partial No
-~ i Mapping
Multi-Agent]]]
Mehmood [77] Systems met;)eccﬁ 01:? l,leht No No No
Communication a Y
DPSF“ Nakajima [{5] COBRA Generalized? No No No
Architecture Networks
Desien Heterogeneous
g Knutson [38] Wireless PSCS Algorithm No No No
Environments®
Khademi [36] Generalized® Happy E.yebaus No No No
7 Algorithm
Heterozeneous Fuzzy Multiple
2 & P
Decision Chan [12] Mobile .O].[)Je(‘me. N.(ot No N.O t
. y . » | Decision-making | Applicable Applicable
Making Environments .
Algorithm
Schemes -
Heterogeneous Depth-first Not Not
uffin ireless earch orithm . o .
Duffin [23] Wirel Search Algoritk) N)
y . b . . Applicable Applicable
Environments in a binary-tree
Heterogeneous Overall
uan 2 1reless barameters’ . o .
Duan [22] Wirel I | oo | N Apleable
Environments® utility pphcable pphcable
o TCP base . . .
DPSF© Caini [9] 1\?6 WE;I:] Not Applicable No No No
Conceptual State’s
Design conditional
Johnson [35] Generalized® probability in a No No No
Bayesian
Network
i Network-state to
Vanzara [62] Tl\(ch ij:r;id Protocol No No No
' s Mapping
Overall
Our work Tl\?c lzwl()iiosd parameters’ Yes Yes Yes

statistics’ utility

“Dynamic Protocol Selection Framework.

*The work can be extended to accommodate other environments.
“No application area is specified and hence, can be applied with any application use case.
9The architecture provides library to declare selection policies according to application use cases.

Table 3.1: An overall summary of the existing literature describing the
range of research work performed in the domain of Dynamic Protocol

Selection.

17

18

Chapter 4

Framework

To address the research gaps in the domain of Dynamic Protocol Selection (DPS)
as can be inferred from Table{3.I] this chapter follows a systematic approach.
In Section it starts with defining a few high level requirements of a ba-
sic DPS framework and goes on to address each of those requirements in the
following sections. Basically, it proposes a standardized model for the concep-
tual DPS framework design (Section and provides a deeper understanding
of its constituent components (Section and operational flow (Section [4.4).
Additionally, it also proposes a strategy for autonomous learning of the DPS
framework (Section and a framework for addressing the fairness issue (Sec-

tion pointed out in Chapter

4.1 Framework Requirements

This section provides a list of requirements that should be met for designing an
efficient framework for protocol selection.

e RQ1: The conceptual design of the dynamic protocol selection framework
should have features that enable the framework to be standardized.

e RQ2: The framework should be truly autonomous, i.e., it should have
the capability to operate without any external training in any network
environment it is deployed.

e RQ3: The candidate protocols within the framework should be able to
switch at framework run-time with minimum degradation of the applica-
tion flow’s performance.

e RQ4: Multiple flows deployed with the framework should demonstrate
acceptable fairness.

4.2 Standardizing Dynamic Protocol Selection
Framework Design

From Chapter[3] it can be inferred that previous works on DPS framework design
proposals have either been inconsistent or vague with applying and presenting

19

their functionalities and implementations respectively. Two essential and basic
components: a finite framework protocol set and a protocol selection stage are
the most common and hence, the only consistent components of those proposed
DPS frameworks. Although attaining a performance gain is possible with these
basic components in the DPS framework, in practice, these solutions are prone
to some issues such as availability and fairness, thus making them difficult to
implement.

In an attempt to remove these inconsistencies, we adopt the concept of port-
folio scheduling into designing our DPS framework. The four key stages of a
portfolio scheduler stated in Section [2.3] align closely with the basic compon-
ents of a DPS framework (i.e., finite protocol set (creation stage) and protocol
selection stage (selection stage)). Apart from this, it also comprises of ad-
ditional stages (application and reflection stages) that could potentially cater
to the framework requirements RQ2 and RQ3. Moreover, this concept has
demonstrated promising performance gains in the field of scheduling data cen-
ter workloads. Thus, basing our DPS framework design on the design principles
of a well-tested and implemented concept such that of a portfolio scheduler
would ensure standardization of the DPS framework along with preservation of
the fundamental functionalities of the DPS concepts (RQ1).

4.2.1 Modifying the selection stage design principles

The selection stage of a typical portfolio scheduler involves choosing a particular
candidate policy based on its performance obtained from simulations. However,
adding a simulation step comes at a price. Although simulating each policy
provides an approximate policy performance information aiding better policy
selection, the time complexity involved in simulating all the policies increases
with the addition of candidate policies, leading to an overall high selection time.
In [I6], Deng et. al. propose a rank-based approach to simulating policies in a
portfolio scheduler, where they continuously categorize policies based on their
simulation performance during the scheduler run-time and select among the
“best” category policies. Although this solution leads to an eventual simulation
of all policies, the simulation step itself adds an extra time and computational
overhead to the selection stage.

Apart from the general drawbacks of including a simulation step, designing
one for our DPS framework would pose additional challenges. To roughly rep-
licate the actual network the framework is deployed in, at the very least, a fre-
quently updated overview of the network state and topology information should
be available at the simulation step, along with other minute network statistics to
further increase simulation performance accuracy. However, frequent update of
these information would require additional (overhead) communication signals,
thus adding to the network congestion. Moreover, this would also increase the
design complexity of the framework. Therefore, to circumvent these issues, we
neglect the simulation step in the selection stage of our adopted portfolio sched-
uler design and deploy policies purely based on their performance in the real
network. To remove ambiguity, this modified version of the portfolio scheduler
is addressed as “modified portfolio scheduler” in further discussions.

20

’ Declare Protocol Set 4
’ 1
' 1
: Receive Protocol —_ Fetch and Update . :

Information [Fe— ——— Protocol Data |

i Protocol e Knowledge !
Selection | | update 1
: Database | e 1
i 2 1
! 1
! 1
: Selectsd Protocol FeportHiocenses !
' Statistics 1
! 1
1 1
! 1
N - = B 1
] Switching Monitering 1
1 1
] T Manage Socket Query and Receive - 1
L) I Configuration Socket Statistics T ’
LS)

2 >
o R R g g -
Tx Queue) * #
Application
Packets In * TCP Socket :H To (From) Rx

(a) DPS Framework (main) at the sender based on the mod-
ified version of portfolio scheduler.

T Indicatii |
X Gueny Incheation | Received Data

Processing

Framework Rx Gueue-1
Received | | }
Anplicati » ~
N
. .
Query and Receive
-

Socket Statistics Framework Rx Queue2 . Packet Out
~A - from Active
Queue

Monitoring €

Processed
Application Data

Application
To From). Tx | Packet Out
Rx Queue

(b) DPS Framework (supporting) at the receiver implement-
ing a receive buffer switching mechanism to ensure received
data integrity.

Figure 4.1: A schematic diagram of the Dynamic Protocol Selection
(DPS) framework implemented at the sender (Tx) and receiver (Rx)
end-points of a connection.

4.3 Framework Components

Based on the design principles of the modified portfolio scheduler, Figure (4.1
represents a schematic view of the designed DPS framework. Although parts of
the framework are present at both the connection end-points, the sender side
includes the main DPS framework (Figure that is based on the modified
portfolio scheduler and the receiver side includes the supporting DPS frame-
work (Figure that enables certain features at the receiver necessary for
desired functionality of the main DPS framework at the sender. The sender,
being the initiator of a typical TCP connection, has greater control and access-
ibility over the transmitting data than the receiver. Therefore it is considered
a better location for the main DPS framework’s placement that demands such
functionalities.

The following discussions describe different components of the main DPS

21

[Framework Database J

[Framework-specific Parameters }

‘ Available States

Application-specific Parameters]

Protocol Description

| QoS Parameters Parameter Priority |

State Label Protocol Name
State Value Protocol State Label

Protocol Statistics

Figure 4.2: An overview of the stored fields in the DPS Framework
database.

framework and their dependency on the supporting DPS framework.

4.3.1 Framework Database

The framework database is the storage space for framework and application
specific information as illustrated in Figure [.2] This is where the framework
gathers knowledge about the protocols and network. The framework-specific
information includes two types of mappings: network state mapping and pro-
tocol mapping. In the network state mapping, if the framework is equipped
with a mechanism that allows it to obtain current network state, the database
has provisions to record these states by identifying them as specific State Labels
mapped to the data represented by them in the State Value field. In protocol
mapping, the framework initially includes a list of protocols, identified either
by their name or a unique identity number (Protocol Name), that comprise
the candidate protocol set of the selection framework and hence, reflects the
“creation” stage of the modified portfolio scheduler. The framework, upon
operating, updates this protocol list with protocol statistics (throughput, delay,
packet loss, etc) that can be stored in specific formats (parametric, raw, com-
pressed, etc) in a protocol-protocol statistics mapped Protocol Statistics field.
To represent the protocol characteristics under a certain network condition, the
framework also keeps a record of the aforementioned network state label during
which it collects these protocol statistics, in a similarly mapped Protocol State
Label field.

On the other hand, the application-specific information part of the frame-
work database provides an interface for the application flows to indicate their
preferred quality of service (QoS) by providing a range (single-value) for various
network parameters (latency, throughput, jitter, etc) to the framework. In our
DPS framework, this application-provided QoS is represented as a set of four
values ([4, B, C, D)), ranging from high (low) to low (high) utilities as illustrated
in Figure This method is chosen over single valued-QoS requirements as it
better reflects the true application constraints. An additional priority inform-
ation (0-1) per stated QoS parameter (that defaults to equal priority for all
parameters) can also be indicated by the application flows for the framework to
prioritize specific parameters over others during protocol selection.

22

-

Wility (U) —»

Y

QoS Value —»

Figure 4.3: Description of the syntax of QoS requirement to be
provided to the framework by the application: [A, B, C, D]. The
QoS value range (A - B) is the desired protocol’s parameter’s per-
formance with the highest utility of 1. The utility decreases linearly
until a low (C) or high (D) threshold value is reached, beyond which
the performance levels are unacceptable to the application.

4.3.2 Protocol Selection

This component of the DPS framework reflects the “selection” stage of the
modified portfolio scheduler. An efficient protocol selection methodology aims
for finding out the best performing protocol (high selection accuracy) within a
short time duration (low processing time). Previously, this statement served as
a convincing argument for eliminating the simulation step from the selection
stage of the traditional portfolio scheduler. For the DPS framework, to reduce
time and computational complexity in the selection component, a simple utility-
based selection criteria is adopted for choosing among the candidate protocols.

However, for enhancing selection accuracy, it is equally important to decide on
what protocol parameters to include in the utility calculations and the ways in
which those parameters’ statistics should be represented or used in the calcula-
tions so as to effectively reflect protocol behavior in the network. Firstly, it can
be expected that as the number of protocol parameters increases, the selection
accuracy would generally tend to improve because an increase in the parameter
set provides a better reflection of the protocol behavior and highlights signi-
ficant differences among protocols’ characteristics. Therefore, without further
investigation in this aspect, for simplicity, two protocol parameters: Round-trip
time (RTT) and Throughput are considered in our DPS framework.

Next, regarding the representation of the protocols’ parameters, a straight-
forward approach could be to create a distribution of the measured parameter
values through a histogram. The resolution of this distribution would depend on
the number of histogram intervals (bins)ﬂ However, storing the entire histogram
in the framework database would lead to a large memory consumption. A better
representation would be fitting the distribution to one of the existing parametric
distribution models and storing only the fixed set of parameters of the fitted
model in the framework database. The specific protocol parameters’ distri-
bution can then be approximated from their corresponding fitted-parameters
during utility calculations. In an effort to achieve this, we tried fitting and

IFor achieving comparable resolution to a narrow distribution, a larger number of bins is
required for a wide distribution.

23

Algorithm 1: Pseudo Code for Protocol Selection Algorithm.

Input : Protocol Set with Description, Pp
Output: Selected Protocol, Ps;

1 for each candidate protocol P in Pp do

2 Calculate Ugpqr < vazl (u,»j.dij);

3 if (Ustar > thressiat) V Parameters then

4 ‘ Valid_Set < Valid_Set U P ; > app. constraint satisfied
5 end

6 end

7 for P in Valid_Set do

8 Calculate U,,¢; ; > calc. net utility
9 Utemp — Utemp U Unet
10 end

11 Upaz ¢ Max(Utemp);
12 if Upyee occurs > 1 in Ugemp then

13 for all occurrences do

14 Calculate Unet ; > calc. net mean utility
15 Utemp < Utemp U Upet;

16 end

17 Unmaz < Max(Utemp);

18 if Umaz occurs > 1 in Utemp then

19 ‘ Pse; < corresponding Random(Umw occurrences)
20 else

21 ‘ Pse; + corresponding Umaz;

22 end

23 else

24 ‘ Py + corresponding U, qz;

25 end

estimating these parameters for the measured RTT and throughput obtained
with some TCP variants (Appendix [A]). However, the resulting fits were not
consistent i.e., different parameters for different TCP variants, approximated to
different distribution models. Also, the best fits did not always produce good
accuracies due to multi-modal nature of some distributions. However, even after
ignoring these inaccuracies, an extensive trial and error method to determine the
best distribution model fit is necessary to capture a protocol’s behavior. Similar
to the simulation step in the traditional portfolio scheduler, introduction of this
additional trial and error step would again lead to an increased computation
and time complexity in the selection component.

Alternatively, instead of estimating a parameters’ overall behaviour, its beha-
viour only within a certain utility carrying region i.e., the application-provided
QoS (parameter) range could be recorded through a histogram with a constant
interval (bin) size. As recording would be performed within a constant and
relatively short parameter range, the memory usage would also be constant and
low. For instance, if the parameter: RTT, represented as [0,300,0,400]ms is
stored as a QoS requirement by an application, according to this approach, a
histogram with a fixed bin size (say, 10) would be created within 300ms and

24

400ms RTT range. All values lower than 300ms are equally important and
above 400ms are equally useless and therefore, do not require further resolution
using definitive bins. This can be considered a reasonable approach because
the selection among transport protocols is based on those whose performance
satisfies application constraints and therefore comparing their performance only
within this satisfaction region (QoS range) would suffice to produce an efficient
selection. If none of the transport protocols’ performance satisfy the application
constraints, a coarser comparison metric such as parameter’s mean, variance,
etc or a combination of these could be used for protocol selection.

In our DPS framework, the second approach is considered and applied ac-
cording to Algorithm[I]} For a set of M protocol parameters with corresponding
priorities P;, a distribution ratio per bin d;;, calculated from a histogram of
N bins with a corresponding bin utility u;;, the net utility (Une:) per protocol
can be obtained from Equation (Alg. line 8). However, the protocols
considered for this calculation must be valid, i.e., they must satisfy application
constraints (verified using a framework-specific tunable threshold, threshgiqs)
(Alg. [1} lines 1-6). Finally, the protocol corresponding to the maximum U, is
selected as the best performing protocol (Alg. [1} line 24). However, if multiple
protocols have the same maximum (Alg. line 12), mean (Meany;) of the
measured protocol parameter is considered a coarser comparison metric among
those protocols. For a set of T' transport protocols, the net utility per protocol
(Unet); under such circumstances can be obtained from Equation (Alg.
line 14). Following similar steps as the previous comparison method, the pro-
tocol corresponding to the maximum Upner is selected as the best performing
protocol (Alg. [1} line 21). Although with a very low probability of occurrence,
if a utility tie between some protocols still occurs, a random selection among
those protocols becomes a preferred choice (Alg. (1} line 19).

M N
Unet = Z Pj. (uij~dij) (41)
j=1 i=1
M
Unet = Z Pj~xtj7 (42)
j=1
Mean; . . .
where. 1, — m if high Mean is better
rY 1-— % if low Mean is better

4.3.3 Switching

This component of the framework involves configuring the application flow to
run using the selected protocol obtained from the protocol selection component.
Therefore, it can be considered to reflect the “application” stage of the mod-
ified portfolio scheduler. To implement this switching functionality and start
data transmission, we use the concept of network sockets. In software terms,
network sockets are data structures that provide a means for the higher layers
of the network stack to communicate with the transport and lower layers, i.e.,
they provide APIs to communicate with those layers. In logical terms, network
sockets at both the end-hosts behave as end-points of a communication pro-
cess and are identified by the [transport protocol, sender IP address, receiver

25

IP address, sender port, receiver port] unique combination. Moreover, as our
DPS framework includes only TCP variants in its protocol set, we only deal
with a specific socket type i.e., stream socket, which deals with reliable data
transmission using TCP.

Before initiating an application flow, to define the type of TCP congestion
control (TCP variant) for governing the flow, a simple setsockopt function from
the socket APEI library can be used that modifies the stream socket’s configura-
tion before its creation. However, the API does not provide any additional func-
tionality for further modifications of a socket’s configuration after its creation.
This slightly complicates the switching component’s design as its functionality
involves modifying the TCP variant during framework run-time.

As our DPS framework aims to work with the existing network infrastruc-
ture, without any modifications to the socket API functionalities, we tackle the
aforesaid issue with the only viable approach of creating a new stream socket
configured with the appropriate protocol every time a protocol different from
the existing implemented protocol is obtained from the protocol selection com-
ponent. However, before creating the new socket, the existing (old) socket is
instructed to close and all the application-flow’s data is buffered to be channeled
to the new socket. Meanwhile, the old socket does not have to necessarily stop
transmitting application data the moment it is instructed to be closed. This is
because, it still needs to transmit all the packets that were already buffered at
its transmission buffer just before receiving the close command (FIN command
for initiating TCP connection termination). Also, the socket being inherently
reliable, closes only after confirming the delivery of all the transmitted packets
(i.e., receiving ACKs for all transmitted packets). Even between this period of
receiving the close command and actually closing, the socket still performs all
operations according to the TCP congestion control algorithm it was configured
with.

Looking from an application flow’s perspective, the flow expects to benefit
from all the advantages offered from a single continuous TCP connection, i.e.,
guaranteed and in-order data delivery, flow control, error control, etc., in ad-
dition to its indicated QoS requirements to the DPS framework. Therefore,
the framework’s multiple initiation and termination mechanisms of TCP con-
nections within a single application flow to realize “protocol switching” might
devoid the flow of some of these advantages. While these advantages remain
valid within any configured TCP connection, the point of switching between
these connections possess a significant risk of violating some TCP features. Tak-
ing a closer view at this switching point, as the old socket already guarantees the
delivery of all unacknowledged packets transmitted before delivering the close
command, it is essential to decide on ways to handle further application data
transmission using the new socket.

As mentioned earlier, even after instructing the old socket to close and start
transmitting data with the new socket, buffered data from the old socket still
transmits. Therefore, at the receiver, data from the old socket and the new
socket are both received in the corresponding sockets’ receive buffer. As the
received data are from different TCP connections, there is no provision to ensure
in-ordered data delivery to the application layer. Therefore, the supporting
DPS framework at the receiver (Figure comprises two separate framework

2Python Socket API: https://docs.python.org/3/library/socket.html

26

https://docs.python.org/3/library/socket.html

receive buffers. The incoming data from the old socket are queued in a first
buffer, while the simultaneously incoming data from the new socket are queued
in the other buffer. As soon as the old socket ends transmission, the first
buffer inserts an end-of-read flag to indicate the receiver processing pipeline
about the connection’s end. The processing pipeline initially processes data
from the first buffer and after encountering the end-of-read flag, switches to
processing data from the second buffer and the cycle continues throughout the
application flow. As data queued in the individual buffers are already in-order
due to the corresponding TCP connection’s inherent feature, the use of this
two-buffer mechanism ensures in-order delivery to the application layer even
during connection switching. Thus, the application flow preserves TCP’s data
integrity along with other features while running over the DPS framework, thus
partially satisfying RQ3.

4.3.4 Monitoring and Knowledge Update

The last stage of the modified portfolio scheduler, “reflection” is reflected by
these components of the DPS framework. The monitoring component’s im-
plementation in the framework solely depends on what protocol parameters are
required for efficient protocol selection. As mentioned previously, to avoid design
complexity by adding multiple parameters for monitoring, we simply consider
two basic parameters: Round-Trip time (RTT) and Throughput experienced by
the application flow utilizing a specific transport protocol.

To monitor these parameters, ss monitoring tool is used. Socket statistics
(ss E is a tool that allows an application to obtain various network statistics
by querying the sockets. Although, technologies like eBPFEl, that allows better
accessibility and coverage of parameters for monitoring in the network stack,
could be adopted as the monitoring tool, ss is much simpler and light-weight
that sufficiently exposes the required monitoring parameters and hence is a
suitable design choice.

As RTT and throughput statistics of an application flow initiated by the
sender are available at the sender and receiver end-hosts respectively, the mon-
itoring component at the sender monitors RTT and throughput is measured at
the monitoring component at the receiver. To obtain an overall parameter’s
statistics, the parameter values are accumulated (monitored) over a specific
period of time called monitoring period and at the end of this period, the col-
lected values are flushed out of the monitoring buffer and processed to obtain
suitable statistics and the cycle continues again. These suitable statistics refer
to the protocols’ parameter representation discussed in Section Based on
the discussion, two types of statistics are calculated:

e a histogram of parameter values within application-specified QoS range
(H).

e a mean of the parameter values (M).

Additionally, a total count of the parameter’s observations (N) is also ob-
tained that is necessary for the knowledge update component, resulting in total

3ss Tool’s Manual: https://man7.org/linux/man-pages/man8/ss.8.html
4Monitoring with eBPF: https://www.brendangregg.com/blog/2021-07-03/
how-to-add-bpf-observability.html

27

https://man7.org/linux/man-pages/man8/ss.8.html
https://www.brendangregg.com/blog/2021-07-03/how-to-add-bpf-observability.html
https://www.brendangregg.com/blog/2021-07-03/how-to-add-bpf-observability.html

Algorithm 2: Pseudo Code for the Knowledge Update Component.

Input: histogram H, mean M, net-count N, protocol P
1 Pytars < Get_protocol_statistics(P);

2 if Pstats 7é ¢ then

3 Nnew<_Nold+N;

4 Mo — Muld-%zledw-i-ﬂfi\/;
5 Dyew — DoLdN{X:LJd+H;

6 Pstats — Update(Pstatsa [-Dnewa Mnewa Nnew]);
7 else

8 D «+ %;

9 PstatsepstatsU[DaM7N];

10 end

11 Store_protocol_statistics(P, Pstats);

three post-processed statistical outputs.

While keeping track of these processes at the sender is easier as it is a part
of the main DPS framework, synchronising the monitoring component of the
supporting DPS framework with it requires some indication from the main DPS
framework. Therefore, at the end of the monitoring period, the sender sends a
DPS framework-specific keyword along with the application data called magic-
string. The monitoring component at the receiver continually records the meas-
ured throughput until it receives this magic-string. On receiving this string, it
flushes the recorded parameter values and processes them similar to the sender
to generate the three post-processed statistical outputs and finally, sends them
back to the sender.

With the obtained post-processed parameter statistics, the knowledge update
component modifies the corresponding protocol’s statistics in the framework
database according to Algorithm In case the framework has no knowledge
about the protocol behaviour (Alg. [2| line 7), it simply stores the post-processed
values in the framework database (Alg. line 9). Otherwise, it updates the
stored parameters (Noiq, Moid, Dorg in Algorithm according to lines 3 — 5
of the algorithm. However, it should be noted that the obtained histogram is
always converted into a distribution before storing because it can be directly
used by the protocol selection component without further processing. Also, as
the net count of observations increases, only one field i.e, N increases constantly
in memory, while the other fields remain unaffected. This constant growth of
the net-count field has a tendency of leading to a memory overload issue and is
indeed one of the drawbacks of this parameter representation type. However,
due to moderate observation sampling frequency, the rate of growth of this
variable is very low. However, it is important to address this issue in future
modifications of the framework.

4.4 Framework Operational Flow
After a detailed discussion on the various components of the DPS framework, the

following pointers highlight the interactions among these components through
a description of the operational flow of the framework (Figure .

28

. For an application flow utilizing the DPS framework, when the flow initi-
ates, it also creates an instance of the DPS framework. This is necessary
for creating the appropriately configured stream socket for data transmis-
sion. However, it should be noted that at this point in time, only the main
DPS framework (Figure is created. The supporting DPS framework
instance (Figure would be created only after the receiver gets an
initial connection request from the client for the application flow.

. Assuming the main DPS framework has knowledge about the flow’s QoS
requirements and candidate TCP variants’ statistics, by gathering this in-
formation from the database, the protocol selection component is triggered
and decides on a selected TCP variant according to Algorithm

. On receiving this protocol information, the switching component creates
a socket instance configured with the selected protocol and initiates the
normal connection initiation process to the remote host (receiver). With
the reception of the connection request, the receiver also creates a socket
instance for the sender along with the supporting DPS framework instance.
This is followed by normal application data transmission according to the
two-buffer mechanism (Section [£.3.3).

. During data transmission, the monitoring modules of both the main and
supporting frameworks record the corresponding parameter values. How-
ever, as only the main framework is aware of the monitoring period, to in-
dicate this to the supporting framework, at the end of this period, the main
framework sends a magic-string to the receiver along with the application-
data. At the receiver, before moving on to the main application queue,
all received data pass through a post processing component that searches
for the presence of framework-specific keywords, if any. When this com-
ponent finds the magic-string, it forwards it to the monitoring module
(Tx Query Indication), that stops monitoring and sends the monitored
parameter statistics to the sender. The monitoring, further restarts after
sending.

. The main framework, upon receiving all the required parameter statistics,
reports to the knowledge update component that updates the framework
database according to Algorithm [2 With this step, the framework com-
pletes, what is termed as one operation cycle (framework cycle). The
framework cycle repeats throughout the application flow following the
same sequence of steps mentioned in pointers 2 - 5, except the additional
process of creating new socket instances (if the selected protocol is the
same as the previously implemented one) or new framework instances.

4.5 Online Learning Strategy

To understand this section, consider the DPS framework to be deployed for the
first time, with a finite protocol set and no information about the candidate
protocols’ behavior. In other words, the framework database only includes the
protocol identities (names) that declare the protocol set. Now an application
flow wants to utilize this DPS framework and so, provides its QoS require-
ments to the framework. However, at this point in time, the protocol selection

29

Algorithm 3: Pseudo Code for Online Learning Strategy.
Input: Protocol List P,
Protocol List satisfying application constraints Psayis fy,
Protocol List with no parameter statistics info. Peppiy
1 if random_trigger == ON then
2 if Peppty # 0 then
3 random_choice(Permpty);
4 set_monitor_period(t);
5 else
6
7
8
9

random_choice(P);
set_monitor_period(t);

end

end
10 if Pygtispy == 0 and Peyypry # 0 then
11 random_choice(Permpty);
12 set_monitor_period(t);
13 end
14 if Pogiispy == 0 and Peyypry == 0 then
15 protocol_selection(P);
16 set_monitor_period(T);
17 end
18 if Pygrispy # 0 and Peppiy # 0 then
19 protocol_selection(Psqatis £);
20 set_monitor_period(T);
21 end

component of the framework cannot make a valid selection as it does not have
any information about the parameters’ statistics of any protocol, although the
application-specific parameter is present in the framework database. In such a
situation, without further appropriate steps the framework is certain to fall into
a deadlock.

To deal with such situations, previous works generally prefer an initial para-
meters’ statistics to be present for all candidate protocols in the framework
database. While this is a viable solution, it devoids the framework of its ease of
deployability feature. This is because, whenever such a framework is planned
to be deployed, an additional training step for gathering parameters’ statistics
of all candidate protocols needs to be performed before actually using it for the
real application. Also with the simulation step ruled out due to previously dis-
cussed arguments, this necessitates the development of a strategy through which
the framework can autonomously learn about its candidate protocols’ behavior
while dealing with application flow transmission or in other words, learn online.

The DPS framework, therefore applies the online learning strategy according
to Algorithm [3] aiming to satisfy requirement RQ2. This learning strategy is
driven by its objective to maintain a balance between learning time and overall
application performance. Learning time refers to the total time taken by the
strategy to gather required parameters’ statistics for all the candidate protocols.
And overall application performance refers to the net satisfaction or utility level

30

obtained from the concerned application-QoS metrics’ performance.

According to the learning strategy, there are two phases of the DPS frame-
work: learning phase, during which the framework learns about its candidate
protocols’ behavior and, learnt phase, when the framework has at-least some
knowledge about all its candidate protocols. With the initial state of the frame-
work having no protocol behavior information (i.e., Pempty == P), the frame-
work obviously moves to a learning phase and the only option available is to
make a random choice among the candidate protocols in Pey,ps, (Alg. lines
10-11). Fortunately, if the statistics obtained from the implementation of the
selected protocol satisfy the application constraints, it becomes a valid protocol
and is moved to Psgtispy from Peynpey and the strategy can again select the
same protocol for the next framework cycle (Alg. lines 18-19). However,
if the statistics do not satisfy the constraints, the strategy continues the same
process with the remaining protocols in Pey,py, (Alg. [3] lines 10-11) hoping to
find a protocol whose performance does satisfy the constraints. In the worst
case, after learning about all the candidate protocols’ behavior (Pempry == ¢),
if none of the protocols’ performance satisfy the application constraints, the
strategy simply selects among the candidate protocols based on the protocol
selection method described in Section [4.3.2] (Alg. [3] lines 14-15). This would at-
least ensure that the best performing protocol is implemented, despite of their
constraint violation.

On the other hand, it is logically correct if the strategy finds a valid pro-
tocol and continues selecting it for further framework cycles because it would
anyway adequately satisfy the application requirements. However, with this
approach, there is a finite chance for the framework to miss out on some better
performing protocols that might be present within the framework protocol set
that could enhance overall application performance. Also, the main purpose
of the strategy to simultaneously learn about the protocols while transmitting
application data fails with this approach as learning stops on finding the valid
protocol. Therefore, the concept of random._trigger event is introduced into the
online learning strategy. This random_trigger event basically refers to one of
the framework cycles when the protocol selection component makes a random
selection among candidate protocols irrespective of the performance of those
protocols, but prioritizing protocols in Peppty (Alg. [3} lines 1-6). As protocols
are randomly selected with this trigger, it ensures that the framework does not
implement a single protocol throughout the application flow and hence, keeps
gathering and updating knowledge about other candidate protocols even during
its learnt phase. Moreover, the priority to Pep,pty protocol set guarantees the
learning of all candidate protocols’ behavior by the framework.

However, learning time depends on the probability of occurrence of this ran-
dom_trigger event. Out of N total framework cycles (i.e., implicitly N pro-
tocol selection triggers), if one of the selection triggers is governed by the ran-
dom_trigger event, its probability of occurrence is defined as % If this probab-
ility of occurrence increases, frequency of random_trigger events increases and
thus, protocols in Pey,piy set are selected more frequently, resulting in lower
learning time. However, a considerable risk of selecting an inadequately per-
forming protocol also rises, resulting in an overall application performance de-
gradation. Therefore, to handle this trade-off, the probability of occurrence is a
tool that can be used to maintain a proper balance between learning time and
overall application performance, which is the main objective of the online learn-

31

ing strategy. In addition to this tool, to further reduce application performance
degradation, the monitoring period can also be tuned appropriately. Therefore,
using the learning strategy, while applying protocols selected according to a ran-
dom selection step, a lower monitoring period is allotted (¢) to that framework
cycle than when the selection is performed through a protocol selection step
(T). As random selection always poses a risk of selecting a poor performing
protocol, a lower monitoring period leading to a lower framework cycle time,
would effectively reduce the impact of the performance degradation caused by
that protocol over the framework cycle time.

4.6 Fairness Framework

Now that a standardized Dynamic Protocol Selection (DPS) conceptual frame-
work is designed, to make it truly usable, it is essential to enable its deployment
in a real-network (which is generally heterogeneous in nature). A heterogen-
eous network comprises of traffics of different intensities and types, governed by
different protocols and transmitting between different host operating systems.
Fairness of a flow is a metric that measures the overall impact the flow creates
on other co-existing flows in the network. It measures this impact in terms of
its resource sharing capability, for e.g., if a flow is introduced into a network
link with a few existing flows, a fair flow would tend to share an equal amount
of link bandwidth with the other flows. As the flow is governed by a protocol,
the flow’s fairness can also be defined as the protocol’s fairness. Therefore,
fairness between flows can be used as a metric to ensure deployability of the
DPS-governed application flows.

Focusing on the fairness only among TCP variants, Belma et. al. [59] per-
formed an extensive survey on the fairness attained with the co-existence of flows
governed by different TCP variant combinations. The survey demonstrated the
different levels of fairness attained for different TCP variant combinations along
with additional effects due to combination of flows running over network paths
with unequal RTTs. Therefore, taking into account these variabilities in fair-
ness obtained due to different TCP variant combinations, the DPS framework
can potentially leverage its dynamicity in protocol selection functionality to ap-
ply only those protocols that showcase an acceptable fairness level at run-time,
resulting into an overall fair application flow.

However, the DPS framework designs considered in the previous works or
this work are not yet capable to achieve this functionality. Therefore, as a
starting point for further research into this direction and an attempt to satisfy
requirement RQ4, we propose a fairness framework to deploy multiple fair DPS
governed-application flows (referred as DPS flows in further discussion) from
the same sender host machine. To understand this framework, we consider a
sender trying to deploy two DPS flows to either same or different receiver(s).
For simplicity, we also consider each DPS framework to include two candidate
protocols (P1 and P2) in their protocol sets, without any initial protocol be-
havior knowledge. The sequence diagram in Figure [£-4] represents this scenario
and further illustrates the operational flow of the proposed fairness framework.

The proposed fairness framework (FF) can be considered as a higher-level
framework that manages several DPS frameworks. So, an application trying
to utilize the DPS framework, first needs to access the FF, that would then

32

admit the flow according to a certain schedule. The proposed FF, schedules
(manages) multiple DPS flows in a round-robin fashion. Therefore, even when
multiple flows arrive simultaneously, the FF admits them one-at-a-time, as is
illustrated by DPS Flows - 1 and 2 in Figure [£:4] The FF manages each flow
through a lock and unlock methodology. As it manages one DPS flow at a time,
it unlocks only that flow while the remaining flows are in the locked state. The
flows in the locked state are not permitted to change protocols while flows in
the unlocked state are permitted.

In Figure step - 1, the FF initially unlocks the DPS Flow-1 along with
an additional State information. Although, the notion of a State in the DPS
framework database (Section refers to the measured network state, the
FF uses it to provide each DPS flow with its own state information, i.e., a list
of corresponding protocol names (identities) that each existing flow managed
by the FF is locked with. With this information, the DPS Flow-1 updates its
framework database for the corresponding State after undergoing a learning
phase according to the online learning strategy (Section . After moving to
a learnt phase, the flow indicates it to the FF, which further indicates the DPS
Flow-1 to lock itself with a specific protocol (Fig. steps 2-3). The DPS
Flow-1, on receiving the lock command, selects the best performing protocol
according to the selection strategy (Section , locks itself and indicates it
to the FF along with the protocol’s identity (P1) with which it is locked (Fig.
step 4). After a lock confirmation from DPS Flow-1, the FF searches for
the presence of other DPS flows. If none are present, it would again go back
to unlocking DPS Flow-1. However, in our considered scenario, the FF goes
on to unlock DPS Flow-2 using similar steps as with Flow-1 (Fig. step 5).
However, due to presence of multiple flows, the FF simultaneously also initiates a
violation detection mechanism to detect unacceptable fairness situations, during
the learning phase of DPS Flow-2. The FF implements this violation detection
mechanism according to Algorithm [4] that calculates and observes an estimate
of the fairness of the deployed DPS flows from the flow sending rates monitored
using the ss tooﬂ The fairness is calculated using Jain’s fairness index [33]. In
case a violation is detected (Alg. {4} line 9), the FF indicates it to the unlocked
flow (DPS Flow-2 in this scenario) (Fig. step 6). On receiving this violation
signal, the flow assumes that this violation was caused due to the application
of the currently implemented protocol and therefore, promptly modifies it and
marks its as a “violating” protocol in the database for the current State. When
DPS Flow-2 moves to the learnt phase, it carries out the same sequence of steps
as Flow-1 (Fig. steps 7-9) to move to the locked state. The FF again
unlocks DPS Flow-1, but now with a different State (P2), which is the protocol
with which other flows (DPS Flow-2) managed by the FF is locked (Fig. [4.4}
step 10). However, unlike the previously unlocked DPS Flow-1 scenario, the
violation detection mechanism initiated previously still keeps running due to
the existence of multiple flows in the FF (Fig. step 11). However, during
further FF operation, if the FF unlocks a flow with an already learnt state for
the provided State information, the flow simply makes a selection according to
Algorithm [3] runs for the appropriate monitoring period, updates the database

5The FF, being located at the sender side, sending rates can be monitored seamlessly
without any communication overhead compared to throughput rates and the trends in
throughput and sending rates, being similar, an approximate calculation of fairness can there-
fore also be obtained from sending rates of the concerned flows.

33

DPS Flow-1 DPS Flow-2

1 1
- I I
1. Unlock Flow -1 (State: "0") . F
— —1 I 9
1 . 1
Learning Phase
1 1
2, Flow -1 Learnt 1
i Learnt Phase Begins
1 | [~ Flowarrival
3. Lock Flow -1 i State | P1 F2 i
’* P1 Set a ISmn;-PfIS:a:s-P?
4. Flow - 1 Locked (State: "P1") |
1

5. Unlock Flow - 2 (State: "PT") . | =

7. Flow - 2 Learnt

8. Lock Flow - 2 ~ |

“ @ Pz et

9. Flow - 2 Locked (State: "P2")

“
--- _6._V_io|_ati_o|l D.EE:'C.':EE et _>_| Learning Phase
?

Learnt Phase Begins

State P1

P2

10. Unlock Flow - 1 (State: "P2")

b}
-

Pfl X IS:a:s-PZ

11. Violation Detected Learning Phase

AN T IANTATTT]T

Sending Rate Observation for Fairness Estimation

1 1
ki: 12. Further Interactions
” Learnt Phase Begins
1 1 State | P4 F2
I I 0 |5tars-P1 | Srars-F2
=1 1
F2 X Srars-F2 --

Figure 4.4: Sequence Diagram for the fairness framework (FF) mech-
anism during its initial stage of operation. The locked states of the
DPS application flows (DPS Flow-N) are represented by semi-opaque
vertical blocks over the flows’ lifelines. The tables represent flow-
corresponding DPS framework database’s states at specific instances
and the opaque dots over flows’ lifelines mark important events in the
respective DPS frameworks. The dashed arrows represent uncertain
interactions.

for the applied protocol and indicates the FF with a learnt signal for locking
itself as in Figure [4.4] steps 2-4.

Moreover, there can be situations where a protocol is wrongly marked as
“violating” in the framework database due to reasons such as irregular network
fluctuations during protocol implementation or inaccuracies within the violation
detection strategy. In such situations, due to the existence of the random_trigger
event in the online learning strategy, the “violating”-marked protocol still gets
a fair chance to rectify its behavior information recorded in the database as it
has an equal probability to be selected as any other candidate protocol during
the random_trigger event.

34

Algorithm 4: Pseudo Code for Fairness Violation Detection.

Input: Threshold Fairness Fipresh,
Estimated Fairness F,
Previous Estimated Fairness Fjc,
1 violationcount, Vinresh: No. of consecutive fairness threshold violations,
corresponding count threshold;
2 decreasecount, Dinresh: NO. of consecutive fairness drops, corresponding
count threshold;

3 if F' < Fipresn then
4 V10l atioNcount <— violationcount + 1;
5 if I < Fprep then
6 ‘ decrease oynt < decreasecount + 1;
7 end
8 if decreasecount > Dinresh 0T violationcount > Vinresn then
9 violating < True ; > violation detected
10 reset_to_zero(violation ount, decreasecount);
11 end
12 else
13 ‘ decrement_by_1_until_zeroed(violationcoynt, decreasecount);
14 end

35

36

Chapter 5

Evaluation

Through a series of experiments and further analysis on the observations, this
chapter validates our proposed frameworks discussed in Chapter [l Through
a systematic approach, it initially describes the environment used to conduct
the experiments in Section It further describes the different types of exper-
iments performed to analyze and validate the functionalities of different com-
ponents our proposed frameworks: Protocol Switching Component (Section|5.2)),
Online Learning Strategy (Section and Fairness Framework (Section

5.1 Experiment Setup

All experiments were conducted using the Mininet network emulatorﬂ in a Linux
(version 4.10.0-27 generic) system configured with Ubuntu 16.04.6 LTS operat-
ing system. Figure [5.1] illustrates the network topology used in the Mininet
environment for performing the experiments. As most of the complexities of
our proposed work lies at the end-hosts, considering a simple topology as in
Figure [5.1] suffices for our purpose. The implementations of our proposed DPS
and Fairness Frameworks at the end-hosts were done using Python3.7. Addi-
tionally, to perform measurements for the experiments, we relied on notcnﬂ and
tcpdumpﬂ

Further, to verify and analyze the proposed solutions correspondingly ad-
dressing the previously stated DPS framework requirements (Section , three
different types of experiments were performed:

1. Protocol Switching Performance (verifying RQ3)
2. Online Learning Analysis (verifying RQ2)

3. Fairness Framework Performance (verifying RQA4)

IMininet Github Repository: https://github.com/mininet/mininet
2TC-NETEM Manual: https://man7.org/linux/man-pages/man8/tc-netem.8.html
3TCPDUMP Manual: https://www.tcpdump.org/manpages/tcpdump. 1. html

37

https://github.com/mininet/mininet
https://man7.org/linux/man-pages/man8/tc-netem.8.html
https://www.tcpdump.org/manpages/tcpdump.1.html

| Senderi RTT: 40ms, BW: 10Mbps EReceiver:

Figure 5.1: Mininet topology used for the experiments. The link
between the routers “1” and “2” is configured to have a bandwidth
of 10Mbps and a round-trip delay (RTT) of 40ms for all experiments.
To tune the RTTs of the network paths towards receivers “R1” and
“R2”, the corresponding variables, “RTT,” and “RT7T,” are appropri-
ately set in some experiments (default: Oms).

5.2 Protocol Switching Performance

As described in Section [£:3:3] despite of the creation of a new connection during
protocol switching, the characteristics of a typical single TCP connection are
preserved due to: (i) inherent nature of the stream socket (guaranteed packet
delivery) and, (ii) two-buffer mechanism in the supporting DPS framework (in-
order packet delivery). However, to minimize the effects of protocol switching
and mimic a single connection behavior, it is equally important to ensure an
unaffected delivery rate during the switching period and the upcoming switch-
ing instance. We define switching period as the total time taken by the old
TCP connection to complete data transmission after receiving a termination
command. The switching instance is the point in time when the application
just begins receiving data from the new TCP connection.

5.2.1 Switching Experiment

To examine this behavior during the switching period we considered two ex-
treme scenarios of switching methods in our experiment. In the first scenario
(Scenario-1), during switching, we configured the DPS framework to start data
transmission from the new connection immediately after indicating the old con-
nection to terminate (simultaneous data transmissions from the corresponding
connections during the switching period). In the second scenario (Scenario-2),
we configured the framework to start data transmission from the new connec-
tion only after the old connection ends, i.e., after receiving a FIN packet from
the receiver in the old connection (single data transmission from the old connec-
tion during the switching period). For both the scenarios, we used the topology
in Figure with a single application flow from S1 to R1. To observe the
switching behavior under extreme circumstances, the application sending rate
was configured to be much higher than the topology’s link bandwidth (10Mbps).
Also, to track minor details in the application’s delivery rate, a high applica-
tion receive rate was configured. In the experiment, we basically configured the
framework to run a first protocol for a pre-defined duration and then perform
protocol switching with a second protocol. The configuration details are listed

38

SN |
AL\, A |
NANAANAAA~AMA

| |

—~/

L

(a) Throughput for Scenario-1. (b) Application goodput (magnified) for
Scenario-1.

(¢) Throughput for Scenario-2. (d) Application goodput (magnified) for

Scenario-2.

Figure 5.2: Plots demonstrating the impacts of the switching methodo-
logies in the two considered scenarios on throughput and correspond-
ing application goodput during the switching period at the receiver.
In the throughput plots, red indicates TCP Cubic and blue indicates
TCP Vegas. The horizontal square brackets indicate the duration of
a single TCP connection. The switching period is indicated by the
start of the blue and end of the red horizontal square brackets.

in Table (.11

Parameters Values
Application Sending Rate | 1 Gbps
Application Receive Rate | 80 Mbps

Run-time per Protocol 15 secs

Table 5.1: Configuration for the switching experiment.

5.2.2 Switching Observation

With the aforementioned switching experiment setup, for a protocol switch from
TCP’s Cubic to Vegas variant, Figure demonstrates the impact on applica-
tion delivery performance for the two scenarios at the receiver.

In Scenario-1, as both TCP connections are involved in transmission during
the switching period and share the same link (Link 1-2 in Figure , they
compete for the link’s available bandwidth throughout this period, resulting in
a drop in the respective connection’s throughputs (Figure . However, from
the application flow’s perspective, data received from the Vegas connection is

39

not useful until there is an incoming data flow from the old (Cubic) connection.
Therefore, the reduced throughput of the Cubic connection leads to a reduc-
tion in the application flow goodput during the switching period (Figure .
However, at the switching instance, as all incoming data from the Cubic con-
nection are already processed, incoming data from the new (Vegas) connection
becomes useful. Hence, there is a sharp momentary rise in application goodput
due to the already buffered data from the Vegas connection during the switching
period (Figure [5.2b).

In contrast to Scenario-1, Scenario-2 has an opposite trend of the switching
behavior. As Cubic connection is the only one to transmit data during the
switching period, there is no such competition for the link’s bandwidth like in
Scenario-1. Therefore, the connection’s throughput remains unchanged (Figure
. And this directly translates to an unchanged (higher than in Scenario-1)
application flow goodput during the switching period (Figure . However,
the switching instance experiences a momentary dip in the application goodput
(Figure [5.2d). This is caused due to the absence of any data to process from
the new (Vegas) connection just after finishing processing data from the Cubic
connection. In Scenario-2, as data transmission in the new (Vegas) connection
begins only after receiving a FIN for the old (Cubic) connection, it takes 1 RTT
(% RTT for FIN transmission from receiver to sender + % RTT for transmission
of first packet from sender to receiver) after the end of the Cubic connection to
start processing data from the Vegas connection.

Moreover, comparing the lengths of the switching periods of both scenarios
(Figures and, it is much shorter in Scenario-2 as the total data buffered
in the old (Cubic) connection’s transmit buffer is transferred much faster (high
throughput) than in Scenario-1.

5.2.3 Switching Analysis

Similar switching experiments were performed for different combinations of TCP
variants. As there are a large number of TCP variants today, to reduce evalu-
ation complexity and make a generalized analysis, we considered including one
variant from each congestion control category (Section|2.2.1)) resulting in a total
of 4 variants (i.e., Cubic (Loss-based), Vegas (Delay-based), Illinois (Loss-Delay-
based), BBR (Model-based)) and 12 switching combinations. Also, rather than
only considering extreme scenarios of switching methodologies, we added three
other scenarios taking a middle ground between the aforementioned scenarios.
The 5 considered switching methods are as follows:

e Full-Rate: Start sending data at application rate from the new connec-
tion immediately after indicating to close the old connection (previously,
Scenario-1).

e 250pps-Rate: Start sending data at a rate slightly lower than the ap-
plication rate (250pps (packets-per-second)) from the new connection im-
mediately after indicating to close the old connection.

e Variable-Rate: Start sending data at a non-linearly increasing rate, r
(rn = ((3)"r,, where neN) limited by 5pps (r,) and 250pps from the new
connection immediately after indicating to close the old connection.

40

e 5pps-Rate: Start sending data at a rate much lower than the application
rate (5pps (packets-per-second)) from the new connection immediately
after indicating to close the old connection.

e Full-pause: Start sending data at application rate from the new connec-
tion only after termination of the old connection (receiving a FIN indica-
tion from the old connection) (previously, Scenario-2).

For all these combinations and scenarios, we analysed two performance met-
rics during the switching period: average application goodput and average dur-
ation of the switching periodﬂ Figure presents our findings.

Among the considered scenarios, 5pps-Rate and Full-pause switching meth-
ods are the most consistent in presenting desirable values of both switching
performance metrics for all the protocol switch combinations. Therefore, these
can be considered the best switching methods among others. Moreover, the
application goodput’s momentary dip at the switching instance, discussed pre-
viously, is an issue for the full-pause switching method that 5pps-Rate method
does not experience due to the presence of data transmission (although at a
very low rate) from the new connection during the switching period. However,
the overall average performance is relatively high for full-pause. Therefore, this
is a trade-off that needs be addressed while further selecting among the two
methodd7]

Comparing the impact of switching methods per protocol switch combination,
switches from Vegas have the worst switching performances because, Vegas be-
ing a delay-based variant, is the least aggressive among all and so, the new
TCP connection governed by another variant takes over most of the bandwidth
share during the switching period. On the other hand, Cubic, being a loss-based
variant, is the most aggressive and, therefore, switches from Cubic have an over-
all consistent and good switching performance. The duration of the switching
period is a direct result of the combined effects of the size of the old connection’s
untransmitted data at the beginning of the switching period and the simultan-
eous data transmission of the new connection. Therefore, although switches
from Illinois mostly have good application goodputs being a loss-delay-based
variant, its switching period’s duration is exceptionally high. This is because
Illinois, in an attempt to utilize more bandwidth before encountering conges-
tion, increments its congestion window curve in a concave fashion rather than
the regular convex trend leading to a much higher data injection into the con-
nection’s transmit buffer compared to other variants, ultimately resulting into
long untransmitted data queues during switching period initiation. Looking at
BBR, it has an inherent mechanism to periodically estimate the network path’s
true RTT by momentarily making a steep increase and then decrease in its
congestion window to fill up and empty the network buffers respectively. As a
typical BBR flow always initiates with this estimation mechanism, if a new con-
nection is governed by BBR, the connection would always take over the available
bandwidth momentarily from the old connection. Therefore, during a switch to

4 Although switching period’s duration does not affect the application performance directly,
it can be an important parameter for the efficient operation of the DPS framework.

5 Although the 5pps-Rate method might seem to have a significantly lower switching per-
formance than Full-pause, according to the trend, the performance can improve for further
lower-rate methods making the trade-off more significant. The basic takeaway, here, is to
demonstrate the competitive nature of both full-pause and lower-rate switching methods.

41

Protocol Switches

V-C V-1 V-B C-v C-1 C-B -V 1-C I-B B-Vv B-C B-1
Full-Rate 0.37 0.34 1.28 26 .09 g 8.05 7
250pps-Rate | 0.81 0.64 1.57 8.04
Var.-Rate £ 3 8.11 . 5 6.19
5pps-Rate .4 7.82 d 8.12
Full-pause 9.79 9.79 8.61

*C = Cubic, V = Vegas, I = Illinois, B = BBR

Scenarios

(a) Average application goodput achieved during protocol switching (in Mbps).

Protocol Switches
V-C V-1 V-B C-v C-I C-B -V I-C I-B B-V B-C B-I
" | FullRate | 4195 115.20
250pps-Rate | 33.51 70.00
Var.-Rate 38.77
5pps-Rate

Scenarios

Full-pause
(b) Average duration of switching period (in seconds).

Figure 5.3: Effects on the considered switching performance metrics for
different scenarios during protocol switching. The darker the shade of
the cell, the more preferred is the corresponding performance metric
value within the cell. Each scenario (row) was run 10 times for each
protocol switch combination (column).

BBR, Ilinois, being a loss-delay-based variant, reacts to this momentary con-
gestion with a slow rising congestion window similar to a delay-based variant
and thus, leads to a worse performance compared to its other protocol switches.
On the other hand, switches from BBR have a fairly good performance because
of BBR’s periodic estimation mechanism.

However, it should be noted that the switching performances presented in
Figure [5.3] are obtained only from the first protocol switch in the proposed
DPS framework. The subsequent switches in the upcoming framework
cycles will always result in a better or similar switching performance
to the first. To justify this statement, consider a switching scenario: (P1-P2,
P2-P1, P1-P2), where protocols P1 and P2 are consecutively switched for three
framework cycles. Considering this scenario taking place in an isolated network,
protocol P1 would initiate by increasing its congestion window to a higher range
in the first framework cycle than in the third. This is because during the
third cycle, when P1 initiates, it would already be sharing part of the link
bandwidth with the previous P2 connection that limits its congestion window
rise compared to the first framework cycle, when P1 utilizes the entire bandwidth
to increase its congestion window. And as higher congestion window results into
higher data injection into a connection’s transmit buffer, it ultimately results
into forming longer data queues during switch from P1 in the first cycle than
in the third. As a result, P1-P2 switch, during the first framework cycle has a
longer switching period’s duration (resulting in a worse switching performance)
than any subsequent P1-P2 switches.

42

5.3 Online Learning Analysis

As discussed in Section while learning online through the proposed learn-
ing strategy, the DPS framework experiences a trade-off between the overall
application flow performance that it governs and learning time. However, the
strategy also introduces the concept of random_trigger event whose probability
of occurrence (p) can be used as a tool to regulate this trade-off, either statically
(p remains the same throughout the application flow) or dynamically (p can be
modified during the application flow).

5.3.1 Learning Experiment

In this experiment, we analyzed the impact of this probability of occurrence of
random_trigger event (p) on overall application performance and learning time
by the DPS framework. For obvious reasons, all experiments were performed
during the learning phase of the DPS framework. To realize this experiment,
a single application flow governed with our DPS framework was deployed in
the Mininet network of Figure from S1 to R1 and run until the framework
completed learning. Similar to the protocol switching experiment, the applic-
ation sending rate was configured to a high value due to the same reason. As
per the discussions in Section [4.5] within the learning strategy, the monitoring
period for framework cycles with a random selection step is configured with
a lower value compared to framework cycles with a protocol selection steﬂﬂ
Moreover, drawing conclusions from the switching experiments (Section ,
we configured the DPS framework with the Full-pause switching methodology
due to its superior switching performance. However, as a protocol would have
a relatively higher probability to misalign from its actual behavior during the
switching period, it is best to avoid recording its behavior during this period
to further avoid selection inaccuracies. Therefore, in addition to the monitor-
ing period, we introduce a switch period that begins just after initiating the
new connection during protocol switching. During this period, no monitoring
takes place. Therefore, the switch period is configured to a value slightly higher
than the maximum switching period from Figure for Full-pause switching
method. These configured values are listed in Table

Parameters Values
Application Sending Rate 1 Gbps
Monitoring Period,otocol—setection 60 secs
Monitoring Period,qndom—selection 30 secs
Switching Method Full-pause
Switch Period 10 secs
Application Priority gprr 0.4
Application Priorityrhroughput 0.6
Application Constraints gyr [0,300,0,350] ms
Application Constraintsraroughput | [9.5,50,8, 0] Mbps

Table 5.2: Configuration for the online learning experiment.

6 Although monitoring period can be tuned appropriately to regulate the degree of applic-
ation performance degradation, we do not make further analysis on this as direct inferences
can already be drawn without any specific experiments

43

5.3.2 Learning Observation and Analysis

Figure presents our findings. The learning cycles represent the number of
framework cycles it takes for the DPS framework to complete learning. As
the duration of a framework cycle is governed by the monitoring and switch
period, the learning time is directly proportional to the learning cyclesﬂ The
Net Utility field represents the overall application performance during learning.
For a single experiment, it is calculated as the sum of the utilities of the selected
protocols for all learning cycles during the learning time. However, to reflect
the impact of random_trigger event occurrence probability (p) with a relatively
small number of experiment iterations, the method to calculate utility values
from the observations are as follows:

e If a selected protocol satisfies application constraints, the utility is 1.

e If a selected protocol does not satisfy application constraints, the utility
is 0.

For a DPS framework with 2 candidate protocols, it can be observed from Fig-
ure that with a decrease in the occurrence probability (p) of random_trigger
event, the framework learning time (learning cycles) increases. This observation
correctly aligns with one of the goals of p as a tuning tooﬂ From observing the
trend in the net utility, one might infer that the overall application performance
improves with a drop in p. However, the presented utility value is the overall
utility over the learning time. So, calculating net utility over a higher learning
time would anyways result in a corresponding higher net utility. Hence, the
observed trend does not correctly represent the second goal of p as a tuning toll
i.e., improving overall application performance with reducing p. To verify the
second goal, a similar trend should be obtained with a constant time interval.
Figure demonstrates this trend by evaluating net utilities over constant
times. For a simple yet effective analysis of comparing among utilities obtained
for different p values, these constant times are set to learning times correspond-
ing to one of the p values (¢; and ¢ 5 respectively for each observation table,
where ¢, = average learning time of DPS framework configured with occurrence
probability p). Therefore, from Figures and the role of p as a tuning
tool can be justified.

Moreover, to further demonstrate the validity of our findings to different
framework configurations, we also verified the existence of a similar nature of the
impact of different p values on the overall application performance and learning
time(cycles) for a DPS framework with 4 protocols as illustrated in Figures
and [£.50

"Learning cycles and learning time are presented side-by-side to give an idea that learning
time does not always hold such a high value and thus, can be tuned appropriately based on
the monitoring and switch periods.

81t should, however be noted that this impact of p can only be observed if at least one of
the candidate protocols satisfies the application constraints. Because, if none of the protocols
satisfy the constraints, the learning strategy would consecutively select all the candidate
protocols to find the one that does satisfy the constraints and as a result would always lead
to a learning time(cycles) corresponding to p = 1 despite of any configured p values.

44

Protocol Set: (Cubic, Vegas)

Occurrence Prob. (p) [Net Utility | Learning Time (f,) | Learning Cycles

1 1.40 £0.19 101.69 + 0.99s 240
0.5 1.70 £0.33 131.43 £19.31s 2.45+0.29
0.25 2.50 £0.78 177.97 £ 40.01s 3.15+£0.62

(a) Effect with 2 protocols in the framework protocol set.

Protocol Set: (Cubic, Vegas, Illinois, BBR)
Occurrence Prob. (p) ‘ Net Utility ‘ Learning Time (1) ‘ Learning Cycles

1 2.75£0.28 220.69 £ 5.96s 4+£0
0.5 4.25 £0.57 345.83 £ 27.25s 5.8+ 0.41
0.25 8.95 £ 1.41 636.92 £ 84.54s 10+ 1.23

(b) Effect with 4 protocols in the framework protocol set.

Figure 5.4: Impact of the random_trigger event occurrence probabil-
ity (p) on overall application performance (represented in terms of
utility) and learning time. For each value of p, the experiment was
repeated 20 times. Results with 90% confidence are presented.

Occurrence Prob. (p) | Net Utility Occurrence Prob. (p) | Net Utility
1 1.40 +£0.19
0.5 1.70 £ 0.33
05 148+ 0.16 0.25 1.97 +0.19
0.25 1.70 £0.12 : . .

(a) Effect with 2 framework protocol-set configuration (Vegas, Cubic). The con-
stant time interval is set to the learning time corresponding to p =1 (left table)
and p = 0.5 (right table).

Occurrence Prob. (p) | Net Utility Occurrence Prob. (p) | Net Utility
1 2.75£0.28
0.5 4.25 £0.57
0.5 2.82+0.17 095 it 018
0.25 3.35+0.10 = ' '

(b) Effect with 4 framework protocol-set configuration (Vegas, Cubic, Illinois,
BBR). The constant time interval is set to the learning time corresponding to
p =1 (left table) and p = 0.5 (right table).

Figure 5.5: Impact of the random_trigger event occurrence probability
p on overall application performance (represented in terms of utility)
over a constant time interval. For each table, this constant time in-
terval is taken to be equal to the average learning time corresponding
to the highlighted p value (row). For each value of p (non-highlighted
rows), the net utility calculation within the constant interval was done
for all 20 iterations of the experiment. Results with 90% confidence
are presented.

5.3.3 Application of p as a tuning tool

Now that the goals of p as a tuning tool is verified, it is equally essential to
identify potential application areas where this tuning can prove to be beneficial.

Based on the duration of existence of a typical TCP connection (application
flow), flows can be broadly categorized into two types: (i) Short flow and, (ii)
Long flow. Let us define short flows as those flows that complete within the
DPS framework learning time (fy, < t,). And long flows as those flows that

45

run for a much longer duration than the framework learning time (tyun >> t;).
Let us consider the framework starts with the learning phase (i.e., it has no
initial knowledge about the candidate protocols’ behavior) and the application
flow (short/long) starts with the initiation of the DPS framework. After the
framework completes learning, in case of the long flow, as it would still have a
significant duration of run-time to complete, it can easily benefit from a learnt
DPS framework during its remaining run-time. However, in case of the short
flow, the flow would have already completed its run-time before the framework
completes learning and therefore can only benefit while the framework learns.
Therefore, to enable both types of flows to benefit from the DPS framework,
the following strategy can be used:

e For long flows, a faster learning method can be adopted. The faster the
framework completes learning, the higher the proportion of the applica-
tion flow run-time governed by the learnt phase of the DPS framework.
Therefore, the DPS framework can be configured with a higher value of p
while governing such types of flows.

e For short flows, application performance during the learning phase of the
framework can be prioritized over learning time. Reducing the learning
time does not make much sense to the application flow here as the flow
would anyway complete within the learning time. Therefore, the DPS
framework can be configured with a smaller value of p while governing
such types of flows.

5.4 Fairness Framework Performance

To enable the co-existence of multiple DPS framework governed-application
flows (DPS flows) originating from a single sender, Sectionproposed a frame-
work, referred to as Fairness Framework (FF), that ensures an acceptable fair-
ness between these flows. Rather than directly influencing what protocols are to
be implemented in the DPS flows, as the FF only aids the corresponding DPS
frameworks during their learning phase, the instantaneous fairness between the
application flows are not always guaranteed to be satisfactory.

5.4.1 Fairness Experiment

In this experiment, we observed and analyzed the overall fairness and flow per-
formance achieved with the application of the Fairness Framework (FF) while
deploying multiple DPS flows. For simplicity, we deal with 2 application flows
deployed in the Mininet topology in Figure 5.1} originating from S1 to receivers
R1 and R2 respectively and run for a pre-defined duration. Although the FF
is designed to benefit multiple DPS flows originating from the same sender, to
observe the nature of fairness in case of flows originating from multiple senders,
a separate scenario with two DPS flows each originating from S1 and S2 to R1
and R2 respectively is also considered. Inferring from Section to speed
up the process of observing the overall fairness both during the learning and
learnt phase of the DPS flows, we tuned the random_trigger event occurrence
probability (p) to a higher value during the learning phase. However, we dy-
namically reduced p during the learnt phase of the flows to minimize the risk of

46

application performance degradation. The remaining configurations were kept
similar to the previous experiment set up. Table lists these configurations.

Parameters Values
Application Sending Rate 1 Gbps
Application Receive Rate 10 Mbps

Monitoring Period,otocol—setection 60 secs
Monitoring Period,qpndom—selection 30 secs
Switching Method Full-pause
Switch Period 10 secs
Application Priority grr 0.4
Application Priorityrhroughput 0.6
Application Constraintsgpr [0,350,0,450] ms
Application Constraintsraroughput | [9.5, 50,8, 0] Mbps
Occurrence Probability (piearning) 1
Occurrence Probability (piearnt) 0.25
Threshold Fairness 0.80
Experiment run-time 1200 secs

Table 5.3: Configuration for the fairness framework performance ex-
periment.

5.4.2 Fairness Observation

With the set configuration, Figure [5.6] illustrates the variation in the fairness
obtained throughout the operation of the FF. For simplicity in understanding
the reasoning behind these fairness fluctuations, this observation is made for
DPS flows with only 2 protocols (Vegas and Cubic) in their frameworks’ protocol
set. Moreover, as the FF manages each flow in a round-robin fashion, the
observations are recorded only after the moment when the FF begins managing
the second flow (after locking the first flow) i.e., when 2 flows start to co-exist
in the network.

The blue-shaded region indicates the consecutive learning phases of the DPS
flows respectively. However, due to the availability of only 2 candidate protocols
in the frameworks, it is relatively simple and fast to find the protocol combin-
ation that provides the best fairness in the existing network and therefore the
learning phase completes within a short duration. As a result of the decisions
made by the DPS flows during their learning phases, a good overall fairness is
thus achieved during their learnt phases (regions except blue-shaded). Moreover,
due to the occurrence of random_trigger events during learnt phase, there might
be situations where a poorly performing protocol (in terms of fairness) is imple-
mented, leading to a drop in the fairness (indicated in the grey-shaded regions).
Although the violation detection algorithm manages to detect the fairness drop
and prevent further performance degradation, the duration of this drop (degree
of performance degradation) depends on the algorithm’s detection speed and
accuracy.

Therefore, the overall fairness is directly influenced by the fairness perform-
ance during the learning phase and the learnt phase. While a relatively good
fairness can be expected in the learnt phase, the fairness obtained in the learning
phase highly depends on the nature of the candidate protocols in the network

47

Fairness

T jw
’ |
: |

200 400 600
Time (seconds)

I

1000 1200

Figure 5.6: Variation of instantaneous fairness between the two DPS
flows deployed in the Mininet topology. Each DPS flow includes 2 pro-
tocols (Cubic and Vegas) in their framework protocol set and these
flows are managed by the proposed Fairness Framework (FF). The
blue-shaded region corresponds to the fairness obtained during learn-
ing phases of the DPS flows. The grey-shaded region corresponds to
the fairness obtained due to implementation of “violating” protocols
during random_trigger events in the flows’ DPS frameworks.

and their fairness properties while co-existing with flows governed by differ-
ent(same) protocol.

5.4.3 Fairness Analysis

The nature of the observed fairness variations are expected to vary depending
on the number of candidate protocols considered for the DPS flows and the be-
havior of these protocols in different network conditions. Therefore, to further
validate our inference from Section [5.4.2] we extended our experiment scenario
to also observe fairness between DPS flows with a framework protocol set con-
sisting of 4 candidate protocols (Vegas, Cubic, Illinois, BBR) in addition to the
previously discussed 2-candidate protocol scenario. For emulating variation in
the network condition, we again assume 2 scenarios: (i) Application flows with
similar network path delay (RTTy; = RTT> = Oms in Figure and , (ii) Ap-
plication flows with different network path delays (RTT) = Oms, RTT> = 100ms
in Figure .

Further, to validate the importance of the existence of our proposed Fair-
ness Framework (FF), for each of the above mentioned scenarios, we carried
out similar experiments using DPS flows without the FF, i.e., we simply de-
ployed DPS flows in the network without any entity managing the flows. As
a comparison baseline, we also evaluated the fairness obtained with flows de-
ployed without any DPS framework i.e., the flows’ governing protocols remain
constant throughout their run-time (static flows). As stated previously, we also
carried out experiments with flows originating from multiple senders. Similar
to the protocol switching experiments, each TCP variant considered for this
experiment represents one of the congestion control categories (Section

48

so as to enhance the generality of our experiment.

Figure presents the average fairness obtained between static flows for dif-
ferent protocol combination scenarios. The low fairness obtained for some com-
binations highlights the limitation of the static nature (no provision to change
protocols) of the flows. Further, on comparing Figures and it can be
inferred that the fairness does not remain constant with different network condi-
tions (in this case, degrades with an increase in RTT difference). However, the
existence of some protocol combinations with acceptable (high) fairness values
in both the network conditions highlights the potential improvements in fairness
that can be brought about by dynamically configuring the flows to one of these
protocol combinations.

Our proposed DPS framework along with the support from FF, therefore
leverages the existence of these protocol combinations with acceptable fairness
to produce acceptable overall fairness, even with different network conditions
as represented by the second scenario in Figure 5.8l As discussed previously
and presented in Figure for the scenario with the support of FF (same
sender), the average fairness obtained during the learnt phase (Learnt Fairness)
is relatively higher than during the learning phase (Learning Fairness). And as
the average fairness obtained in these phases directly affects the average fairness
obtained over the total emulation time (Net Fairness), it is relatively lower.

However, despite of using the DPS framework, the average fairness between
DPS flows is much lower when deployed without the support of our proposed
FF (no FF scenario in Figure . This low fairness further highlights the
importance of the FF and the necessity of another entity to manage the DPS
flows. When multiple DPS flows are deployed without proper management,
each DPS framework independently (simultaneously) tries to implement the
most efficient protocol according to its recorded statistics. A protocol switch
in a single DPS flow could potentially change the network state and behavior
of the protocols governing neighboring flows, which might further lead to a
protocol switch in the neighboring DPS flows as well. This would eventually
lead to a domino effect, resulting in frequent protocol switch, unstable and
hence, unreliable overall application performance and fairness.

Moreover, as previous works only deal with the DPS framework (i.e., no
additional fairness framework), the fairness obtained for the “no FF” scenario
can be considered to represent the fairness performance of the existing literature.
Therefore, our work can be considered to improve the fairness performance of
the deployed DPS flows by = 15%.

On the other hand, when multiple DPS flows originating from different senders
(with FF (different senders) scenario in Figure are considered, even with
the FF implemented, their fairness performance is similar to the no FF scen-
ario. This is because, as each flow is guided by a different FF (located at the
corresponding sender), both flows are unaware of each others existence and as
a result the fairness drops.

Further, taking a closer look at the individual application flow performance
(utility)ﬂ for the aforementioned scenarios, Figure provides some inference.
As the scenario with FF (FF}) is systematic and presents a better fairness per-
formance, it directly translates to a stable and an approximately equal applica-

9The calculated utility per experiment iteration is the average utility based on equation
with the configured parameter constraints and priorities (Table [5.3]) for a 100 seconds sliding
window over the experiment run-time.

49

Vegas 0.96 b .64 Vegas b 0.56

Cubic 0.60 0.89 Cubic 0.64

Illinois 0.64 0.95 Illinois 0.86

BBR 0.72 0.98 BBR 0.88
(a) Inter- and Intra-fairness with (b) Inter- and Intra-fairness with un-
equal RTT (ARTT = Oms). equal RTT (ARTT = 100ms).

Figure 5.7: Fairness between two application flows governed by differ-
ent(same) TCP variants that remain static (i.e., no dynamic changes
of protocols) throughout the respective flows’ duration. The darker
the shade of the cell, the more preferred is the corresponding fair-
ness value within the cell. The experiment for each combination of
variants was repeated 10 times.

Scenario Protocol Set Net Fairness Learnt Fairness Learning Fairness
[6AY
no FF

C,V.,1,B

with FF [eRY
(same sender) C,V,I,B

with FF [eRY
(different senders) C,V,I,B

*C = Cubic, V = Vegas, I = Illinois, B = BBR, FF = Fairness Framework
(a) Fairness with equal RTT (ARTT = 0ms).

Scenario Protocol Set Net Fairness Learnt Fairness Learning Fairness
Cc,v
no FF

C,V,ILB

with FF [eAY
(same sender) C,V,I,B

with FF [eAY
(different senders) C,V,I.B

*C = Cubic, V = Vegas, I = Illinois, B = BBR, FF = Fairness Framework
(b) Fairness with unequal RTT (ARTT = 100ms).

Figure 5.8: Fairness between two application flows governed by our
proposed DPS framework and fairness framework. The darker the
shade of the cell, the more preferred is the corresponding fairness
value within the cell. The experiment for each combination of variants
was repeated 10 times.

tion performance for both flows every time. This is evident from comparing the
average and worst-case (maximum difference between utilities of both flows)
utilities for the scenarios. In other scenarios (no FF and FFy), the utilities
between the flows frequently fluctuate due to relatively low fairness, resulting
in much higher or inversely lower performance in either of the flows.

50

o Application Flow - 1

o Application Flow - 2

> 0.45 [> 0.5
= £
= 04 = 0.4 |-
" - |
[D [0.3 ﬂ m
no FF with FFFy with FFy no FF with FFy, with FFy
Scenarios Scenarios
2 pro-

(a) Equal RTT (ARTT = Oms).
tocol set configuration.

2 pro-

Average per-

(b) Equal RTT (ARTT = Oms).

tocol set configuration. Worst-case per-

formance. formance.
[- 0.6 [~
> 0.4 >
B R
2 035 g 0.4 |
- = Wl
0.3 D‘ A m
no FF with FFFy with FFy no FF with FFFy with FFy
Scenarios Scenarios

(¢) Equal RTT (ARTT = 0ms).
tocol set configuration.

4 pro-
Average per-

(d) Equal RTT (ARTT = Oms). 4 pro-
tocol set configuration. Worst-case per-

formance. formance.
0.42
g 0.4 g 0.5
= = 0.4 N
5 0.38 DD H 5
0.36 lflm | 03 = D‘D =l
no FF with FFy with FFy no FF with FF; with FFy
Scenarios Scenarios
(e) Unequal RTT (ARTT = 100ms). 2 (f) Unequal RTT (ARTT = 100ms). 2
protocol set configuration. Average protocol set configuration. Worst-case
performance. performance.
0.45 - -
> >
= 0.4 pe 0.4 .
0.35 |
1 o 0.2 ‘D o
no FF with FFy with FFy no FF with FF; with FFy
Scenarios Scenarios
(g) Unequal RTT (ARTT = 100ms). 4 (h) Unequal RTT (ARTT = 100ms). 4
Average protocol set configuration. Worst-case

protocol set configuration.

performance.

performance.

*FF, = with FF (same sender), FF, = with FF (different senders)

Figure 5.9: Plots representing application flow performance (in terms
of utility) for both the flows governed by our proposed DPS frame-
work and fairness framework in different configurations. The plots
to the left represent the average performance and those to the right
represent worst-case performance. The experiment for each config-

uration was repeated 10 times.

o1

52

Chapter 6

Conclusion

This chapter summarizes our work in this thesis by briefly describing the solution
to the research question stated in Chapter[f} In Section[6.2] it further identifies
potential improvements that are currently limiting factors of our work.

6.1 Conclusion

This thesis involved the development of the conceptual building blocks of a
Dynamic Protocol Selection framework. Despite of the rich literature high-
lighting the performance improvements incurred using the Dynamic Protocol
Selection concept, through our literature survey, we further identified research
gaps in defining a proper conceptual framework for the same and looking into
its run-time behavior. Therefore, in this thesis, we proposed a standardized Dy-
namic Protocol Selection (DPS) framework based on the design principles of a
portfolio scheduler. Considering only TCP variants as the candidate protocols
of the DPS framework, we, further, made design decisions while defining the
constituent components of the DPS framework and in doing so, addressed the
main research question: How can we design an efficient framework for dynamic
selection of transport protocols?

The following pointers briefly describe the solutions to further sub-questions
stated in Chapter

1. How can we design the framework to learn online with optimum
efficiency and accuracy?
We proposed an online learning strategy in Section to address this
question. By performing random and efficient selection of protocols at
appropriate circumstances, the strategy enables the DPS framework to
autonomously learn about the candidate protocols’ behavior in any net-
work condition while transferring application data, thus making the frame-
work plug-and-play enabled. We further introduced the concept of ran-
dom_trigger event within this strategy whose probability of occurrence
acts as a tool to tune the degree of trade-off between learning time and
overall application performance.

2. How can we design transmission and reception components for
the framework for efficient protocol switching during run-time?

93

To enable switching among protocols at the transmitter (sender), every
time a different TCP variant needs to be implemented, we proposed to ter-
minate the old TCP connection configured with the previous variant and
create a new TCP connection with the currently selected variant (Section
4.3.3]). We further proposed various switching methods and analyzed their
impacts on the application goodput during switching and the switching
duration (Section[5.2.3). At the receiver, to preserve the functionalities of
a single TCP connection even while switching between two TCP connec-
tions (old to new), we proposed a two-buffer mechanism concept in the
DPS framework at the receiver that ensures in-order data arrival (Section
4.3.3)).

3. How can we ensure fairness among application flows running
over the dynamic protocol selection framework?
In Section[4.6] we proposed a Fairness Framework to ensure an acceptable
fairness between DPS framework governed application flows (DPS flows).
This framework behaves as an entity above the DPS frameworks which
observes the behavior of all the DPS flows and indicates the flows in case
of any fairness violations. The superior fairness performance (=~ 15%) ob-
tained with the support of this Fairness Framework (Section , further
showcased the importance and validity of the framework.

6.2 Future Work

There are plenty of opportunities for potential improvements to our proposed
work.

e Switching Methodology: In our work, we analyzed various protocol
switching methods based on the ways in which we vary packet transmission
rates in the new TCP connection during the switching period. However, in
all of these methods, we initiated data transmission in the new connection
immediately after its creation due to which data from both the old as well
as new TCP connection co-existed during the entire switching period.
However, if we somehow manage to track the length of the packet buffer
of the old connection in real-time, based on the additional knowledge
about the remaining data to be transmitted in the old connection, the
new connection can decide on when to initiate its own transmission so as
to reduce the time duration of packets from both connections to co-exist.
This would prove to be a highly efficient switching method.

e Monitoring Component: Currently, the monitoring component in our
proposed DPS framework is not able to identify network states i.e., there
is no mechanism for the framework to detect a change in the network con-
dition. The only way we were able to use the concept of network state was
in the functioning of the fairness framework, where the framework feeds
a DPS flow with the network state that is basically the set of protocols
the neighboring flows are locked-in with. To identify a network condition
(state), it is important to decide on ways to distinguish between different
network conditions. This would further lead to another question on what
network parameters to consider to distinguish.

54

e Fairness Framework: Our proposed Fairness Framework currently op-
erates specifically when multiple DPS flows originate from the same client.
However, this severely limits its application in a realistic network where
multiple DPS flows can originate from multiple clients. One way to ap-
proach this issue is to locate this Fairness Framework at the bottleneck
routers (switches) in the network which would manage the encountered
DPS flows by interacting with the corresponding senders and further in-
dicate the corresponding flows on detecting fairness violations similar to
its current operating principle. Although this method would introduce
some communication overheads while interacting with the flows’ senders,
but the potential benefits would easily outweigh this minor drawback.

95

56

Bibliography

1]
2]

3]

Transmission Control Protocol. RFC 793, September 1981.

Common object request broker architecture. https://www.omg.org/spec/
CORBA/2.1/About-CORBA/, Sept. 1997. Last accessed: Aug. 21, 2021.

Admin AfterAcademy. Graph traversal: Depth first search. https://
afteracademy.com/blog/graph-traversal-depth-first-search, Feb.
2020. Last accessed: Aug. 21, 2021.

Arun Agarwal, Gourav Misra, and Kabita Agarwal. The 5th generation mo-
bile wireless networks- key concepts, network architecture and challenges.
American Journal of FElectrical and Electronic Engineering, 3:22-28, 03
2015.

R. R. Ager. Multiple objective decision-making using fuzzy sets. Int. J.
Man Mach. Stud., 9:375-382, 1977.

Azzedine Boukerche and Haifa Maamar. An efficient hybrid multicast trans-
port protocol for collaborative virtual environment with networked haptic.
In 2006 IEEE International Workshop on Haptic Audio Visual Environ-
ments and their Applications (HAVE 2006), pages 78-83, 2006.

Lawrence S. Brakmo, Sean W. O’Malley, and Larry L. Peterson. Tcp vegas:
New techniques for congestion detection and avoidance. In Proceedings of
the Conference on Communications Architectures, Protocols and Applica-
tions, SIGCOMM ’94, page 24-35, New York, NY, USA, 1994. Association
for Computing Machinery.

S. Burleigh, M. Ramadas, and S. Farrell. Licklider transmission protocol -
motivation. RFC, 5325:1-23, 2008.

Carlo Caini, Rosario Firrincieli, and Daniele Lacamera. The tcp ”adaptive-
selection” concept. In IEEE GLOBECOM 2007 - IEEE Global Telecom-
munications Conference, pages 5026-5030, 2007.

Neal Cardwell, Yuchung Cheng, C. Stephen Gunn, Soheil Hassas Yeganeh,
and Van Jacobson. Bbr: Congestion-based congestion control. ACM Queue,
14, September-October:20 — 53, 2016.

V. Cerf and R. Kahn. A protocol for packet network intercommunication.
IEEFE Transactions on Communications, 22(5):637-648, 1974.

o7

https://www.omg.org/spec/CORBA/2.1/About-CORBA/
https://www.omg.org/spec/CORBA/2.1/About-CORBA/
https://afteracademy.com/blog/graph-traversal-depth-first-search
https://afteracademy.com/blog/graph-traversal-depth-first-search

[12]

(18]

23]

P.M.L. Chan, Y.F. Hu, and R.E. Sheriff. Implementation of fuzzy multiple
objective decision making algorithm in a heterogeneous mobile environ-
ment. In 2002 IEEE Wireless Communications and Networking Conference
Record. WCNC 2002 (Cat. No.02TH8609), volume 1, pages 332-336 vol.1,
2002.

Craig Hunt. Tcp/ip network administration, 3rd edition. https:
//www.oreilly.com/library/view/tcpip—network-administration/
0596002971/ch01.html. Last accessed: Aug. 21, 2021.

D. Wing and A. Yourtchenko. Happy eyeballs: Success with dual-stack
hosts. http://www.ietf.org/rfc/rfc6555.txt, Apr. 2012. Last accessed:
Aug. 21, 2021.

John Day and Hubert Zimmermann. The osi reference model. Proceedings
of the IEEE, 71:1334 — 1340, 01 1984.

Kefeng Deng, Jungiang Song, Kaijun Ren, and Alexandru Iosup. Exploring
portfolio scheduling for long-term execution of scientific workloads in iaas
clouds. page 55, 11 2013.

Kefeng Deng, Ruben Verboon, Kaijun Ren, and Alexandru Iosup. A peri-
odic portfolio scheduler for scientific computing in the data center. In
Narayan Desai and Walfredo Cirne, editors, Job Scheduling Strategies for
Parallel Processing, pages 156—176, Berlin, Heidelberg, 2014. Springer Ber-
lin Heidelberg.

Mo Dong, Tong Meng, Doron Zarchy, Engin Arslan, Yossi Gilad, Brighten
Godfrey, and Michael Schapira. PCC vivace: Online-learning conges-
tion control. In 15th USENIX Symposium on Networked Systems Design
and Implementation (NSDI 18), pages 343-356, Renton, WA, April 2018.
USENIX Association.

Ali Dorri, Salil Kanhere, and Raja Jurdak. Multi-agent systems: A survey.
IEEFE Access, 6:1-1, 04 2018.

Thomas Dreibholz, Erwin P. Rathgeb, Irene Riingeler, Robin Seggelmann,
Michael Tiixen, and Randall R. Stewart. Stream control transmission pro-
tocol: Past, current, and future standardization activities. IEEE Commu-
nications Magazine, 49(4):82-88, 2011.

Falko Dressler, Florian Klingler, Michele Segata, and Renato Lo Cigno.
Cooperative driving and the tactile internet. Proceedings of the IEEE,
107(2):436-446, 2019.

Qiuyi Duan, Lei Wang, C.D. Knutson, and M.A. Goodrich. Axiomatic
multi-transport bargaining: a quantitative method for dynamic trans-
port selection in heterogeneous multi-transportwireless environments. In
IEEE Wireless Communications and Networking Conference, 2006. WCNC'
2006., volume 1, pages 98-105, 2006.

H.R. Duffin, C.D. Knutson, and M.A. Goodrich. Prioritized soft constraint
satisfaction: a qualitative method for dynamic transport selection in het-
erogeneous wireless environments. In 2004 IEEE Wireless Communications

58

https://www.oreilly.com/library/view/tcpip-network-administration/0596002971/ch01.html
https://www.oreilly.com/library/view/tcpip-network-administration/0596002971/ch01.html
https://www.oreilly.com/library/view/tcpip-network-administration/0596002971/ch01.html
http://www.ietf.org/rfc/rfc6555.txt

[24]

[25]

[30]

[31]

[32]

and Networking Conference (IEEE Cat. No.04TH8733), volume 4, pages
2527-2532 Vol.4, 2004.

Korian Edeline and B. Donnet. A bottom-up investigation of the transport-
layer ossification. 2019 Network Traffic Measurement and Analysis Con-
ference (TMA), pages 169-176, 2019.

Alejandra Flechas, Leonardo Gomes, and Paulo Nascimento. The evol-
ution of project portfolio selection methods: from incremental to radical
innovation. Revista de Gestdo, 26, 06 2019.

Sally Floyd. Highspeed tcp for large congestion windows, 2003.

Sally Floyd, Mark J. Handley, and Eddie Kohler. Datagram Congestion
Control Protocol (DCCP). RFC 4340, March 2006.

Sangtae Ha, Injong Rhee, and Lisong Xu. Cubic: A new tcp-friendly high-
speed tcp variant. SIGOPS Oper. Syst. Rev., 42(5):64-74, July 2008.

Mario Hock, Felix Neumeister, Martina Zitterbart, and Roland Bless. Tcp
lola: Congestion control for low latencies and high throughput. In 2017
IEEFE 42nd Conference on Local Computer Networks (LCN), pages 215—
218, 2017.

Bernardo A. Huberman, Rajan M. Lukose, and Tad Hogg. An economics
approach to hard computational problems. Science, 275(5296):51-54, 1997.

Kaoshing Hwang, Mingchang Hsiao, Chengshong Wu, and Shunwen Tan.
Multi-agent congestion control for high-speed networks using reinforcement
co-learning. In Jun Wang, Xiao-Feng Liao, and Zhang Yi, editors, Advances
in Neural Networks — ISNN 2005, pages 379-384, Berlin, Heidelberg, 2005.
Springer Berlin Heidelberg.

Y.G. Iyer, S. Gandham, and S. Venkatesan. Stcp: a generic transport layer
protocol for wireless sensor networks. In Proceedings. 14th International
Conference on Computer Communications and Networks, 2005. ICCCN
2005., pages 449454, 2005.

Rajendra K Jain, Dah-Ming W Chiu, William R Hawe, et al. A quantitat-
ive measure of fairness and discrimination. Fastern Research Laboratory,
Digital Equipment Corporation, Hudson, MA, 1984.

Huiling Jiang, Qing Li, Yong Jiang, Gengbiao Shen, Richard O. Sinnott,
Chen Tian, and Mingwei Xu. When machine learning meets congestion
control: A survey and comparison. CoRR, abs/2010.11397, 2020.

Darrin P Johnson, Cesar A.C. Marcondes, and Anders D Persson. Method
and system for using bayesian network inference for selection of transport
protocol algorithm, U.S. Patent 7 672 240, Jun. 2008.

Naeem Khademi, David Ros, Michael Welzl, Zdravko Bozakov, Anna Brun-
strom, Gorry Fairhurst, Karl-Johan Grinnemo, David Hayes, Per Hurtig,
Tom Jones, Simone Mangiante, Michael Tuxen, and Felix Weinrank. Neat:
A platform- and protocol-independent internet transport api. IEEE Com-
munications Magazine, 55(6):46-54, 2017.

59

[37]

[39]

[40]

[41]

[43]

[45]

[46]

[47]

Yoon Sang Kim. Surgical telementoring initiation of a regional telemedicine
network: Projection of surgical expertise in the wwami region. In 2008
Third International Conference on Convergence and Hybrid Information
Technology, volume 1, pages 974-979, 2008.

C.D. Knutson, H.R. Duffin, J.M. Brown, S.B. Barnes, and R.W. Wood-
ings. Dynamic autonomous transport selection in heterogeneous wireless
environments. In 2004 IEEE Wireless Communications and Networking
Conference (IEEE Cat. No.04TH8733), volume 2, pages 689-694 Vol.2,
2004.

Sachin Kumar, Prayag Tiwari, and Mikhail Zymbler. Internet of things
is a revolutionary approach for future technology enhancement: a review.
Journal of Big Data, 6, 12 2019.

Shao Liu, Tamer Bagar, and R. Srikant. Tcp-illinois: A loss- and delay-
based congestion control algorithm for high-speed networks. Performance
FEvaluation, 65(6):417-440, 2008. Innovative Performance Evaluation Meth-
odologies and Tools: Selected Papers from ValueTools 2006.

Shenjun Ma, Alexey Ilyushkin, Alexander Stegehuis, and Alexandru Iosup.
Ananke: A g-learning-based portfolio scheduler for complex industrial
workflows. In 2017 IEEE International Conference on Autonomic Com-
puting (ICAC), pages 227-232, 2017.

Enrico Masala and Antonio Servetti. Performance vs quality of experience
in a remote control application based on real-time 3d video feedback. In
2013 Fifth International Workshop on Quality of Multimedia FExperience
(QoMEX), pages 28-29, 2013.

Saverio Mascolo, Claudio Casetti, Mario Gerla, M. Y. Sanadidi, and Ren
Wang. Tcp westwood: Bandwidth estimation for enhanced transport over
wireless links. In Proceedings of the 7th Annual International Conference
on Mobile Computing and Networking, MobiCom ’01, page 287-297, New
York, NY, USA, 2001. Association for Computing Machinery.

Amjad Mehmood, Abdul Ghafoor, H. Farooq Ahmed, and Zeeshan Igbal.
Adaptive transport protocols in multi agent system. In Fifth International
Conference on Information Technology: New Generations (itng 2008),
pages 720-725, 2008.

T. Nakajima. Dynamic transport protocol selection in a corba system. In
Proceedings Third IEEFE International Symposium on Object-Oriented Real-
Time Distributed Computing (ISORC 2000) (Cat. No. PR00607), pages
42-51, 2000.

Amol P. Pande and S. R. Devane. Study and analysis of different tcp
variants. In 2018 Fourth International Conference on Computing Commu-
nication Control and Automation (ICCUBEA), pages 1-8, 2018.

Li Ping, Lu Wenjuan, and Sun Zengqi. Transport layer protocol reconfigur-
ation for network-based robot control system. In Proceedings. 2005 IEEE
Networking, Sensing and Control, 2005., pages 1049-1053, 2005.

60

[48] J. Postel. User Datagram Protocol. RFC 768, August 1980.

[49] Aaron Rosenfeld, Robert Lass, William Regli, and Joseph Macker. Dy-
namic selection of persistence and transport layer protocols in challenged
networks. In MILCOM 2013 - 2013 IEEE Military Communications Con-
ference, pages 1470-1475, 11 2013.

[50] Olimpiya Saha and Raj Dasgupta. A comprehensive survey of recent trends
in cloud robotics architectures and applications. Robotics, 7, 08 2018.

[61] K. Shibata, K. Okamura, and K. Araki. Design and evaluation of dynamic
protocol selection architecture for reliable multicast. In Proceedings 2002
Symposium on Applications and the Internet (SAINT 2002), pages 262—
269, 2002.

[62] Hyo-Jeong Shin, Dan Pei, M. Lad, Yanghee Choi, and Lixia Zhang. The
impact of multi-homing on network reliability and stability: a case study. In
Proceedings. 14th International Conference on Computer Communications
and Networks, 2005. ICCCN 2005., pages 543 — 548, 11 2005.

[63] Simon Kemp. Digital trends 2020: Every single stat you need
to know about the internet. https://thenextweb.com/news/
digital-trends-2020-every-single-stat-you-need-to-know-about-the-internet,
2020. Last accessed: Aug. 21, 2021.

[54] B. Katalin Szabd. Interaction in an immersive virtual reality application.
In 2019 10th IEEE International Conference on Cognitive Infocommunic-
ations (CogInfoCom), pages 35—40, 2019.

[55] Hamed Taherdoost. Decision making using the analytic hierarchy process
(ahp); a step by step approach. International Journal of Economics and
Management Systems, 01 2017.

[56] K. Tan, J. Song, Q. Zhang, and M. Sridharan. A compound tcp approach
for high-speed and long distance networks. In Proceedings IEEE INFOCOM
2006. 25TH IEEE International Conference on Computer Communica-
tions, pages 1-12; 2006.

[57] A.A. Tarraf, LW. Habib, and T.N. Saadawi. Reinforcement learning-based
neural network congestion controller for atm networks. In Proceedings of
MILCOM ’95, volume 2, pages 668-672 vol.2, 1995.

[68] W. Tian, Mingxing Fan, C. Zeng, Yajun Liu, D. He, and Q. Zhang. Telero-
botic spinal surgery based on 5g network: The first 12 cases. Neurospine,
17:114 — 120, 2020.

[59] Belma Turkovic, F. Kuipers, and S. Uhlig. Fifty shades of congestion con-
trol: A performance and interactions evaluation. ArXiv, abs/1903.03852,
2019.

[60] Belma Turkovic and Fernando Kuipers. P4air: Increasing fairness among
competing congestion control algorithms. In 2020 IEEE 28th International
Conference on Network Protocols (ICNP), pages 1-12, 2020.

61

https://thenextweb.com/news/digital-trends-2020-every-single-stat-you-need-to-know-about-the-internet
https://thenextweb.com/news/digital-trends-2020-every-single-stat-you-need-to-know-about-the-internet

[61]

[62]

[63]

Vincent van Beek, Giorgos Oikonomou, and Alexandru Iosup. Portfolio
scheduling for managing operational and disaster-recovery risks in virtual-
ized datacenters hosting business-critical workloads. In 2019 18th Interna-
tional Symposium on Parallel and Distributed Computing (ISPDC), pages
94-102, 2019.

Rakesh Vanzara, Priyanka Sharma, Haresh Bhatt, Sudeep Tanwar, Sud-
hanshu Tyagi, Neeraj Kumar, and Mohammad Obaidat. Adytia: Adaptive
and dynamic tcp interface architecture for heterogeneous networks. Inter-
national Journal of Communication Systems, 32, 11 2018.

Keith Winstein and Hari Balakrishnan. Tcp ex machina: Computer-
generated congestion control. In Proceedings of the ACM SIGCOMM 2013
Conference on SIGCOMM, SIGCOMM ’13, page 123-134, New York, NY,
USA, 2013. Association for Computing Machinery.

Raul Wirz, Manuel Ferre, Raul Marin Prades, Jorge Barrio, José Claver,
and Javier Ortego. Efficient transport protocol for networked haptics ap-
plications. In FuroHaptics, 06 2008.

Seok Ho Won, Markus Mueck, Valerio Frascolla, Junhyeong Kim, Giuseppe
Destino, Aarno Péarssinen, Matti Latva-aho, Aki Korvala, Antonio Clem-
ente, Taeyeon Kim, II-Gyu Kim, Hyun Kyu Chung, and Emilio Calvanese
Strinati. Development of 5g champion testbeds for 5g services at the 2018
winter olympic games. In 2017 IEEE 18th International Workshop on
Signal Processing Advances in Wireless Communications (SPAWC), pages
1-5, 2017.

Kefan Xiao, Shiwen Mao, and Jitendra K. Tugnait. Tcp-drinc: Smart
congestion control based on deep reinforcement learning. IEFEE Access,
7:11892-11904, 2019.

Lisong Xu, K. Harfoush, and Injong Rhee. Binary increase congestion
control (bic) for fast long-distance networks. In IEEE INFOCOM 2004,
volume 4, pages 2514-2524 vol.4, 2004.

62

Appendix A

Fitting Parametric
Distribution Models

In this chapter, to gain a deeper understanding of the variation in the distribu-
tion of RTTs and throughputs of flows deployed with different TCP variants,
we present the results from our experiment conducted with one TCP variant
from each congestion control categories (Section : Cubic, Vegas, Illinois
and BBR respectively. For this experiment, we used a dumbbell network to-
pology with one sender and one receiver emulated in a Mininetﬂ environment.
The RTT and bottleneck bandwidth between the end-hosts were configured to
be 40ms and 10Mbps respectively. Also, the experiments for each TCP variant
were run for 250ms.

For parametric distribution model fitting, we used scipy’s Statistical func-
tions moduld’} and evaluated fits for 86 different distribution models from the
module’s library over the probability density functions (PDF) of the RTT and
throughput parameters of the considered TCP variants. The following figures
sum up our observations and showcases the top 4 model fits for each TCP variant
according to a sum-squared error (SSE) performance metric.

IMininet Github Repository: https://github.com/mininet/mininet
2Scipy’s Statistical Functions module: https://docs.scipy.org/doc/scipy/reference/
stats.html

63

https://github.com/mininet/mininet
https://docs.scipy.org/doc/scipy/reference/stats.html
https://docs.scipy.org/doc/scipy/reference/stats.html

TCP Cubic

DISTRIBUTIONS & SSE

—— foldcauchy: 0.5940

— cauchy: 0.7130
t0.9460

—— tukeylambda: 1.0511

Throughput (Mbps)

(a) Parameter under observation: Throughput (Mbps)

TCP Cubic

DISTRIBUTIONS & SSE
—— dgamma: 0.0005
0030 dweibull: 0.0005
—— laplace: 0.0007

—— loglaplace: 0.0007

0.025

0.020

POF

0.015

0.010

0.005

0.000

(b) Parameter under observation: RTT (ms)

Figure A.1: The probability density distributions of the Throughput
and RTT obtained on implementing TCP Cubic as the governing
transport protocol. The top 4 best parametric distribution model
fits are plotted over the original distribution plots.

64

TCP Vegas

DISTRIBUTIONS & SSE

— burr: 0.6817

16 —— mielke: 0.6941

—— genlogistic: 0.6945
johnsonsu: 0.7468

0.6

0.4

02

0.0

8.0 8.5 9.0 9.5 10.0 10.5 11.0 115
Throughput (Mbps)

(a) Parameter under observation: Throughput (Mbps)

TCP Vegas

DISTRIBUTIONS & SSE

—— gennorm: 6.3018
johnsonsu: 8.0622

—— cauchy: 10.079
loglaplace: 10.970

RTT (ms)

(b) Parameter under observation: RTT (ms)

Figure A.2: The probability density distributions of the Throughput
and RTT obtained on implementing TCP Vegas as the governing
transport protocol. The top 4 best parametric distribution model
fits are plotted over the original distribution plots.

65

TCP lllinois

DISTRIBUTIONS & SSE
—— pearson3: 0.0239
—— fisk: 0.0752

—— hypsecant: 0.0778
— dgamma: 0.1349

8
Throughput (Mbps)

(a) Parameter under observation: Throughput (Mbps)

TCP lllinois

DISTRIBUTIONS & SSE

—— vonmises: 0.0001
logistic: 0.0001
hypsecant: 0.0001

—— powernorm: 0.0001

0.008

0.006 ||| |

0.004

POF

0.002

0.000
500
RTT (ms)

(b) Parameter under observation: RTT (ms)

Figure A.3: The probability density distributions of the Throughput
and RTT obtained on implementing TCP Illinois as the governing
transport protocol. The top 4 best parametric distribution model
fits are plotted over the original distribution plots.

66

TCP BBR

DISTRIBUTIONS & SSE
—— cauchy: 0.5134

—— foldcauchy: 0.5140
—— johnsonsu: 0.5547
10 tukeylambda: 0.6030

g 06
04
0.2
00 ol
o 2 4 6
Throughput (Mbps)
(a) Parameter under observation: Throughput (Mbps)
TCP BBR
DISTRIBUTIONS & SSE
— foldcauchy: 0.0424
—— cauchy: 0.0583
175 gennorm: 0.1042
tukeylambda: 0.1160
150
125
& 100

0.25 k
|| .

RTT (ms)

(b) Parameter under observation: RTT (ms)

Figure A.4: The probability density distributions of the Throughput
and RTT obtained on implementing TCP BBR as the governing
transport protocol. The top 4 best parametric distribution model
fits are plotted over the original distribution plots.

67

	Preface
	Introduction
	Motivation
	Problem Definition
	Contributions
	Thesis Outline

	Background
	Transmission Control Protocol (TCP)
	TCP Operation

	TCP Congestion Control
	Categorizing TCP Congestion Control Algorithms

	Portfolio Scheduling

	Related Work
	Framework
	Framework Requirements
	Standardizing Dynamic Protocol Selection Framework Design
	Modifying the selection stage design principles

	Framework Components
	Framework Database
	Protocol Selection
	Switching
	Monitoring and Knowledge Update

	Framework Operational Flow
	Online Learning Strategy
	Fairness Framework

	Evaluation
	Experiment Setup
	Protocol Switching Performance
	Switching Experiment
	Switching Observation
	Switching Analysis

	Online Learning Analysis
	Learning Experiment
	Learning Observation and Analysis
	Application of p as a tuning tool

	Fairness Framework Performance
	Fairness Experiment
	Fairness Observation
	Fairness Analysis

	Conclusion
	Conclusion
	Future Work

	Fitting Parametric Distribution Models

