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SUMMARY

Ultrasound imaging at high-frame-rates ( >500 Hz) enables novel clinical ultrasound ap-
plications. At the same time, imaging the inherently 3D structures of the body in 3D en-
ables an improved visualization of relevant phenomena compared to a 2D image slice.
However, realizing high-quality high-frame-rate volumetric ultrasound imaging is chal-
lenging. Keeping the cable count and data rate of the transducer device at a realistic
level without sacrificing image quality to an undesirable extend means that dedicated
design with carefully chosen trade-offs is required and powerful processing of the re-
ceived signals is desired. This thesis aims to develop high-frame-rate volumetric ultra-
sound with dedicated transducer design and explores the use of deep learning-based
beamforming to achieve high-image-quality 3D imaging. Specifically, the first part of
this thesis focuses on the design, realization and testing of an high-frame-rate 3D in-
tracardiac echography (3D-ICE) transducer. The second part of the thesis concentrates
on the use of deep learning in the image reconstruction process to improve image qual-
ity of volumetric ultrasound, first specifically for miniature ultrasound probes such as a
catheter-based 3D-ICE probe and then for a sparse ultrasound array.

The background and motivation of this thesis are introduced in Chapter 1, includ-
ing a background on high-frame-rate ultrasound and the existing approaches to realize
3D ultrasound imaging. Chapter 2 proposes an imaging scheme and transducer ele-
ment layout to realize a 3D-ICE probe capable of imaging at a 1000 Hz, using seven
steered fan-shaped beams and 1-D micro-beamforming to reduce the channel count.
The element size is chosen such that sufficient area for integrated circuitry is available.
Simulations are used to motivate trade-offs in the central frequency, micro-beamformer
size and transmit divergence angles. Finally, a design is proposed that is suitable for
electromechanical wave imaging of atrial fibrillation. In Chapter 3 a first proof of con-
cept transducer is presented. A matrix of 8 x 9 PZT elements is fabricated on an ASIC,
which includes high-voltage transmitters, analog front-ends, micro-beamfroming and
in-probe digitization. Acoustic and electronic measurements are performed, demon-
strating among other things, the transmit and receive functionality at a frame rate of
1000 Hz, a sufficient dynamic range for ICE imaging and the ability to perform 3D imag-
ing with a needle phantom. Chapter 4 presents a subsequent prototype 3D-ICE trans-
ducer. The full intended elevational size was realized and transmit control enabled imag-
ing with seven steered diverging transmit beams, signals were micro-beamformed to the
same pre-steering directions. Acoustic measurements showed that the 288 elements in
the prototype had an average measured transmit frequency of 5.5 MHz and a measured
-6 dB single-way bandwidth of 60%. The elements had a uniform sensitivity, with 92%
of the elements having a sensitivity within the same 3 dB range. Finally, imaging exper-
iments demonstrated the prototype’s ability to achieve 3D imaging with a large field of
view and at a 1000 Hz.

Chapter 5 proposes to use Adaptive Beamforming by deep LEarning (ABLE) in com-
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x SUMMARY

bination with training targets generated by a large aperture array, to improve the lat-
eral resolution of volumetric images generated with miniature matrix transducers. Tak-
ing into account the use of micro-beamforming in miniature matrix arrays, ABLE was
modified to extend its receptive field across multiple voxels. The method improved
lateral resolution both quantitatively and qualitatively. It was shown that image qual-
ity is improved compared to that achieved by existing Delay-and-Sum, Coherence Fac-
tor, Filtered-Delay-Multiplication-and-Sum and Eigen-Based Minimum Variance beam-
formers. Furthermore, only in silico data was needed to train the network, making the
method easily implementable in practice.

In Chapter 6 deep learning-based beamforming is used to improve the image qual-
ity of contrast enhanced ultrasound images acquired with a sparse spiral array. Two
types of deep learning-based beamforming are investigated: ABLE and a novel deep
learning-based beamformer termed neural maximum-a-posteriori (neural MAP) beam-
forming. The neural networks are trained on simulated data. Neural MAP and ABLE
qualitatively improved resolution compared to delay-and-sum (DAS) and spatial coher-
ence (SC) beamforming on the simulated and in vivo data. Ultrasound localization mi-
croscopy (ULM) images were created from the images formed by the different beam-
forming methods. When localizing in silico microbubbles neural MAP showed the best
performance followed by ABLE, SC and DAS. Finally, a discussion of the achievements
and limitations of the work in this thesis is presented along with recommendations for
future work in Chapter 7.



SAMENVATTING

Echografische beeldvorming met hoge beeldfrequenties (>500 Hz) maakt nieuwe klini-
sche toepassingen van echografie mogelijk. Tegelijkertijd maakt het in 3D afbeelden
van de inherent 3D-structuren van het lichaam een verbeterde visualisatie van relevante
verschijnselen mogelijk in vergelijking met een 2D-beeldplak. Het realiseren van hoog-
waardige volumetrische echografie beelden met hoge framesnelheid is echter een uit-
daging. Om het aantal kabels en de datatransmissiesnelheid van de echotransducent op
een realistisch niveau te houden zonder de beeldkwaliteit ongewenst ver in te perken
is een toepassingspecifiek ontwerp met zorgvuldig gekozen trade-offs nodig en is een
krachtige verwerking van de ontvangen signalen gewenst. Dit proefschrift heeft tot doel
volumetrische echografie met een hoge framesnelheid en hoge beeldkwaliteit te reali-
seren door toepassingspecifiek transducerontwerp en het gebruik van deep learning in
het beeldreconstructieprocess. Het eerste deel van dit proefschrift richt zich specifiek
op het ontwerp, de realisatie en het testen van een 3D intracardiale echografie (3D-ICE)
transducent met een hoge framesnelheid. Het tweede deel van het proefschrift richt zich
op het gebruik van deep learning in het beeldreconstructieproces om de beeldkwaliteit
van volumetrische echografie te verbeteren, eerst specifiek voor miniatuur echoappara-
ten zoals een 3D-ICE-katheter en vervolgens voor een transducent met een patroon van
schaars verspreide elementen.

De achtergrond en motivatie van dit proefschrift wordt geïntroduceerd in Hoofdstuk
1, met o.a. een beschrijving van het opnemen van echografie beelden met een hoge
beeldsnelheid en de bestaande benaderingen om 3D echografie te realiseren. Hoofd-
stuk 2 presenteert een beeldvormingsstrategie en transducent indeling voor het reali-
seren van een 3D-ICE-katheter welke in staat is om met 1000 Hz beelden te vormen
door het gebruik van zeven gestuurde waaiervormige bundels en 1-D microbundelvor-
ming om het aantal kanalen te verminderen. De grootte van de elementen is zo geko-
zen dat er voldoende ruimte voor geïntegreerde schakelingen beschikbaar is en simu-
laties worden gebruikt om compromissen in de centrale frequentie, de grootte van de
microbundelvormer en de zenddivergentiehoeken te motiveren. Ten slotte wordt een
ontwerp voorgesteld dat geschikt is voor het in beeld brengen van de elektromechani-
sche golven bij atriumfibrillatie. In Hoofdstuk 3 wordt het eerste prototype van de trans-
ducent gepresenteerd. Een matrix van 8 x 9 PZT-elementen wordt gefabriceerd op een
ASIC, welke hoogspanningszendcircuits, analoge front-ends, micro-bundelvorming en
anloog-naar-digitaalomzetting integreert. Er worden akoestische en elektronische me-
tingen uitgevoerd, waarbij onder meer de zend- en ontvangstfunctionaliteit bij een fra-
mesnelheid van 1000 Hz, een voldoende dynamisch bereik voor ICE-beeldvorming en
3D-beeldvorming van een naaldfantoom worden gedomnsteerd. Hoofdstuk 4 presen-
teert een volgend prototype van een 3D-ICE-transducer. De volledige beoogde grootte
in de elevatierichting werd gerealiseerd en controle over de bundelvorming van de uit-
gezonde golf maakt het mogelijk gestuurde divergerende golven te zenden en de ont-
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vangen signalen werden verwerkt met microbundelvorming in dezelfde stuurrichtingen.
Akoestische metingen toonden aan dat de 288 elementen in het prototype een gemid-
deld gemeten zendfrequentie hadden van 5.5 MHz en een -6 dB (eenrichtings) band-
breedte van 60%. De elementen hebben een uniforme gevoeligheid, waarbij 92% van
de elementen een gevoeligheid heeft welke binnen hetzelfde bereik van 3 dB ligt. Ten
slotte toonden experimenten aan dat het prototype in staat is om 3D-beeldvorming te
bereiken met een groot blikveld en bij 1000 Hz.

Hoofdstuk 5 presenteert het gebruik van Adaptive Beamforming by deep LEarning
(ABLE) in combinatie met trainingsdoelen gegenereerd door een transducent met grote
apertuur, om de laterale resolutie van volumetrische beelden gegenereerd met minia-
tuur matrix-transducenten te verbeteren. Rekening houdend met het gebruik van mi-
crobundelvorming in miniatuur matrix-transducenten, werd ABLE aangepast om zijn
receptieve veld over meerdere voxels uit te breiden. De methode verbeterde de laterale
resolutie zowel kwantitatief als kwalitatief. Er werd aangetoond dat de beeldkwaliteit
verbeterd is in vergelijking met die van bestaande Delay-and-Sum, Coherence Factor,
Filtered-Delay-Multiplication-and-Sum en Eigen-Based Minimum Variance bundelvor-
mers. Bovendien was alleen in silico data nodig om het neurale netwerk te trainen, waar-
door de methode eenvoudig in de praktijk kon worden geïmplementeerd.

In Hoofdstuk 6 wordt op deep learning gebaseerde bundelvorming gebruikt om de
beeldkwaliteit te verbeteren van contrastversterkte echo beelden verkregen met een trans-
ducent waarvan de elementen in een spiraal patroon schaars over het apertuur zijn ver-
spreid. Er worden twee soorten op deep learning gebaseerde bundelvorming onder-
zocht: ABLE en een nieuwe op deep learning gebaseerde bundelvormer genaamd neural
maximum-a-posteriori (neural MAP) beamforming. De neurale netwerken worden ge-
traind op gesimuleerde data. Neural MAP en ABLE verbeterden de resolutie kwalitatief
in vergelijking met Delay-and-Sum (DAS) en Spatial Coherence (SC) bundelvorming op
de gesimuleerde en in vivo gegevens. Ultrasone lokalisatiemicroscopie (ULM) beelden
werden gemaakt op basis van de beelden gevormd door de verschillende bundelvorm-
methodes. Neural MAP presteerde het best in het lokaliseren van in silico microbellen
gevolgd door ABLE, SC en DAS. Ten slotte wordt in hoofdstuk 7 een bespreking van de
verworvenheden en beperkingen van het werk in dit proefschrift gepresenteerd en wor-
den aanbevelingen voor toekomstig werk gedaan.
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2 1. INTRODUCTION

1.1. MEDICAL ULTRASOUND IMAGING

1.1.1. ULTRASOUND
Ultrasound is the most widely used medical imaging modality [1] due to its relatively low
cost and portability compared to X-ray, CT and MRI and its lack of ionizing radiation. It
is used both in a wide variety of medical specialties and in many phases of medical treat-
ment, from making initial diagnoses to the planning of procedures, during interventions
and to follow-up on treatment success. In medical ultrasound imaging, high-frequency
acoustic waves are used to visualize structural or physiological properties of tissues and
organs.

Sound waves are send by the ultrasound transducer, which transforms electrical en-
ergy into acoustic energy and vice versa. Typically, this conversion between electri-
cal and acoustical energy is accomplished with piezoelectric material, although capaci-
tive micromachined ultrasound transducers (CMUTs) are becoming more widely used.
The acoustic wave that is transmitted into the tissue is partially reflected when it en-
counters a tissue boundary where there is a difference in acoustic impedance. Acoustic
impedance is a material property that is defined as the product of its density and speed
of sound. The reflected acoustic energy is received by the transducer array, which con-
verts it to electrical signals. The relatively small differences in the acoustic impedance
of soft-tissues mean that the reflection coefficient is small enough to let enough energy
propagate to deeper tissues. How deep the energy can propagate into the tissue depends
on the frequency of the ultrasound pulse. Lower frequencies are attenuated less and can
thus propagate further. In medical ultrasound typically frequencies between 1 and 15
MHz are used.

1.1.2. IMAGING

TRANSMIT BEAMFORMING

Steering and focusing of the ultrasound beam to acoustically illuminate a specific direc-
tion and depth can be realized by using an array of small transducer elements (size in
the order of a wavelength) and exciting the elements with specific electronic delays to
control the interference pattern in the desired way. This way, a steered beam can be gen-
erated using a linearly increasing delay pattern perpendicular to the steering direction,
a concave delay pattern can be used to focus the beam and a convex delay pattern to
defocus/diverge (see Figure 1.1). The shape of the transmitted beampattern can be fur-
ther influenced by applying apodization, meaning that a weighting function is applied
to the aperture by exciting elements with a different amplitude. Apodization is mainly
employed to reduce the negative effect of additional off-axis energy in the beampat-
tern, called sidelobes or secondary lobes, which reduces the image quality. This process
of modifying the shape, direction and/or focus of the transmit beam is called transmit
beamforming.

RECEIVE BEAMFORMING

After a pulse of acoustic energy has been transmitted into the medium and the trans-
ducers have received the reflected acoustic energy from the medium, the received time
domain signals still need to be transformed into the spatial map of acoustic reflectivity
that forms the ultrasound image. This is possible with a similar beamforming process as
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Transmit delay

a) b) c) d)

Plane-wave Steered plane-wave Focused Diverging wave

Figure 1.1: Schematic representation of the transmit delays needed to generate a a) plane-wave, b) steered
plane-wave, c) focused transmit and d) diverging wave transmit.

in transmit. For each position in the image, the time that an acoustic wave travels from
this point to each element of the transducer array can be calculated. Based on this travel
time, delays can be applied to the received signals of all elements, such that the signals
originating from this focal point are aligned in time. In receive it is possible to store the
data and then focus on each point in the image, which is called dynamic focusing. After
focusing the signals to the desired spatial location, the final step in the receive beam-
forming process is to combine the signals. The simplest and conventional method to do
this is to coherently sum the signals after the delays are applied, this is referred to as the
Delay-And-Sum (DAS) method.

Often data-independent apodization weights are applied before summing the sig-
nals to reduce the effect of unwanted energy received from sidelobes. However, this
comes at the cost of resolution, as such the setting of such static apodization weights is
a trade-off. More advanced data-dependent methods for weighting the received signals
have been developed to improve image quality. For example, by exploiting the coher-
ence of the signal or by determining apodization weights based on the received data to
suppress unwanted off-axis signals.

POST-PROCESSING

After a spatial map of acoustic reflectivity is obtained through the beamforming step,
several post-processing steps are taken. These can for example include band-pass filter-
ing to improve the image quality. Finally, the envelope of the image is taken and signals
are compressed into a logarithmic scale for display.

1.2. HIGH-FRAME-RATE ULTRASOUND
From the 1970s when medical ultrasound imaging appeared, images were acquired in
a line-by-line fashion, based on the way echolocation is done [2]. Meaning, a narrow,
focused, transmit pulse is send and backscattered echoes are reconstructed along the
depth of this line. Next, a focused beam is transmitted at a small lateral distance with
respect to the previous transmit. The backscattered echoes for this next transmit are
then acquired, resulting in another reconstructed line in the image (see Figure 1.2 a)).
Historically, this was done by mechanically translating/rotating the transducer and later
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by electronic switching and delaying of transducer array elements [2]. This process is
then repeated until the full image is acquired, for a 2D image typically 64 to 512 times
[3]. This way of imaging means that the rate at which images are acquired (F R) does
not only depend on the imaging depth (z) and the speed of sound (c), but also on the
number of lines (Nlines) that are used to reconstruct the image:

F R = c

2Nlinesz
. (1.1)

For an image depth of 10 cm acquired with 128 lines, this would mean that 60 images
can be acquired every second.

Figure 1.2: a) Conventional focused imaging were the image is insonified line-by-line and b) ultrafast ul-
trasound imaging. Reproduced from Bercoff [3], Published in Ultrafast Ultrasound Imaging, Ultrasound
Imaging - Medical Applications, Prof. Oleg Minin (Ed.), under CC BY-NC-SA 3.0 license. Available from:
http://dx.doi.org/10.5772/19729.

Methods to realize higher frame rate imaging by building up multiple or all image
lines in parallel from a single transmit, have been proposed as early as the 1970s. Build-
ing up a full image at an ultrafast frame rate from a single unfocused transmit that covers
a wide imaging region was already proposed in 1977 [4]. However, ultrafast imaging over
a large field of view in an in vivo clinical setting was only realized around 30 years later
[5, 6]. In the meantime methods to capture and process in parallel not all but just a cou-
ple of neighboring image lines from a single slightly defocused transmission had been
proposed and validated in vivo [7]. Multiline processing of 2-16 lines was implemented
in clinical systems to increase the frame rate. However, these systems were still built on
a serialized architecture and to bring the full parallel processing of a complete image to
commercial machines, there were two technological bottlenecks [3]. First, this huge vol-
ume of raw ultrasound data must be transferred from the transducer to the processing
unit at rates of several GigaBytes/s and then, the data needs to be processed fast enough
for real-time clinical use. The development of fast numerical links and powerful GPUs
made this possible. As a result, the number of lines in the image is no longer limiting the
frame rate, which becomes:

F Rultrafast =
c

2z
(1.2)

Thus the same image of 10 cm depth can be acquired at 7700 Hz instead. Of course,
the lack of transmit focus impacts the image quality, reducing image contrast and resolu-
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tion. However, image quality can be improved by sending multiple tilted plane waves [8]
or diverging waves [9] and coherently summing the acquired images, such that the trans-
mit focusing process is rebuilt virtually. There is thus a trade-off between the maximum
frame rate that is achieved and the image quality, through the number of transmit angles
that is used to acquire the image. Nonetheless, the same image quality as that of line-by-
line acquisition can be achieved at a frame rate that is around 5-10 times higher [8]. This
development from line-by-line to ultrafast ultrasound imaging is considered a paradigm
shift. The higher frame rate that was now achievable made it possible to measure mo-
tion of tissue, blood and contrast agents at kHz framerates and thereby inspired the de-
velopment of completely novel clinical applications for ultrasound imaging [10]. These
clinical applications include, among others, shear wave elastography [11–13], functional
imaging of the brain [14, 15], high-resolution vector flow imaging [16, 17], ultrafast con-
trast imaging [18, 19] and electromechanical wave imaging [20]. With high-frame-rate1

(HFR) ultrasound it is also possible to visualize the fast contraction of skeletal muscles
[21].

1.2.1. APPLICATION OF HFR: MEASURING MUSCLE STRETCH
Effective treatment of movement disorders requires a thorough understanding of human
limb control. Joint dynamics can be assessed using robotic manipulators and system
identification. However, due to tendon compliance, joint angle and muscle length are
not proportional. As a result, the measured joint angle does not directly reflect the mus-
cle stretch. Plane-wave ultrasound imaging can be used to reach the frame rates required
to capture the fast movements of the muscle and can thereby be used to investigate the
dynamic relation between ankle joint angle and muscle fiber stretch. In Appendix A [22],
it is shown that using plane-wave ultrasound, it is feasible to measure muscle stretch
during motor control experiments with transient and small continuous ankle joint mo-
tions. Furthermore, with this measurement, it was possible to draw conclusions on the
proportional behavior of muscle lengthening and ankle angle during different tasks and
perturbation types.

1.3. HIGH-FRAME-RATE VOLUMETRIC ULTRASOUND
When trying to measure very fast muscle stretching with a 2D image, the reliability of
the measurement is reduced by the fact that it is difficult to keep the same muscle region
in the narrow imaging slice of the ultrasound transducer. This is illustrative of the fact
that capturing the movement of a 3D structure with a 2D image has inherent limitations.
Because the global muscle stretch of the contraction of the lower leg muscle has a rela-
tively clear direction and symmetry, it can still be captured quite well with 2D imaging.
However, the use of 2D images becomes an increasing problem when capturing more
complex 3D movements such as the flowing of contrast agents in 3D vessel structures or
induced and natural shear wave propagation in the heart. However, realizing 3D ultra-
sound imaging at kHz frame rates is challenging. Mechanical or freehand scanning of a
volume with a probe that has a 1D array of transducer elements (see Fig.1.3), as is used
for 2D imaging, is not an option, because the process is too slow to realize the desired

1In this thesis, the term ’high-frame-rate’ is used for frame rates ≥500Hz.
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high-frame-rates.

a)

c)

b)

d)

Figure 1.3: a) 1-D linear array probe. b) 2-D matrix array. c) Row-column array. d) 2-D random sparse array.

Instead, 2D transducer arrays are used for fast 3D imaging. Having an array of ele-
ments that extends in two dimensions instead of one, allows focusing and beamforming
along all three spatial directions. Although extending an N x 1 transducer array to an N
x N matrix array is conceptually a straightforward step, the practical challenge to realize
it is complex. Individually controlling each element of an N x N element array requires
N 2 electronic connections. For such a high level of interconnection and processing, the
resulting large volume of data poses a great challenge. Simply reducing the number of
elements by reducing the size of the array is undesirable, because of the resulting loss
in lateral resolution. At the same time, simply increasing the spacing of elements in the
array to above half a wavelength is undesirable, because the resulting grating lobes in
the beampattern can result in artifacts in the image [2]. As a result, different transducer
designs have been proposed and developed that approach the data rate and intercon-
nection challenge of high-frame-rate volumetric ultrasound in different ways.

Sparse arrays are designed to reduce the number of elements that need a direct con-
nection to the mainframe of the ultrasound system, while maintaining a large aperture
size as desired for a good lateral resolution, by sparsely rather than fully covering the
aperture with elements. Various ways of distributing the elements across the aperture
of sparse arrays have been proposed [23–26] to mitigate as much as possible the in-
creased unwanted secondary lobes and reduced transmit uniformity, which form im-
portant downsides of sparse arrays. Sparse arrays can maintain the flexibility to employ
different transmit schemes, such as focused, plane, and diverging wave transmission,
although care should be taken to realize an acceptable level of transmit uniformity [27].
However, the reduced SNR of sparse arrays is a limitation that makes their use less suit-
able for many applications.
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Row-column arrays try to both keep a large aperture size and maintain the element
count of a fully populated array, while reducing the number of required electrical con-
nections from N x N to N x 2, by using a cross-electrode (see Fig 1.3) [28–30]. Compared
to a sparse element distribution this is favorable for maintaining SNR. However, image
quality loss still results from not being able to focus in azimuth and elevation simul-
taneously. Furthermore, the cross-electrode results in a reduced flexibility in transmit
imaging schemes. Imaging can only be done in a rectilinear region in front of the array
[28] and realizing imaging with a footprint wider than that of the array, as is required
for example in cardiac applications, is challenging. Solutions such as curved arrays or
doubly curved acoustic lenses have been proposed, but some of their downsides include
their inflexibility and fabrication difficulties [31].

An alternate approach to have a fully populated array is to manufacture the array on
top of an Application Specific Integrated Circuit (ASIC), which can then reduce the chan-
nel count before sending signals to the back-end system through multiplexing and/or
pre-beamforming of the data from small groups of elements. The ASIC electronics can
also include pulsers for ultrasound transmission and it will take care of amplification of
the received echoes to increase the robustness of the signal transmission to the imaging
system. The specific advantages and disadvantages of the different types of transducer
designs for volumetric ultrasound imaging, make them specifically suited for one range
of ultrasound applications while making them less suited for applications that empha-
size other demands. Thereby making a transducer design that is dedicated to the appli-
cation necessary.

1.3.1. APPLICATION OF 3D HFR: 3D INTRACARDIAC ECHOGRAPHY FOR EWI
Visualization of the heart with ultrasound can be done from three different vantage points,
each requiring a different type of ultrasound transducer. In transthoracic echocardiogra-
phy (TTE), the heart is visualized by placing a transducer on the chest wall, between the
patient’s ribs. The reflections from the ribs and lungs and attenuation from the skin and
fat tissue between the heart and the probe have a negative impact on the image qual-
ity. In transesophageal echocardiography (TEE), the heart is visualized from the patients
esophagus by a miniature ultrasound probe. The closer distance to the heart enables the
use of higher frequency probes, thereby improving the spatial resolution of the cardiac
images. Thirdly, echocardiography can be performed from inside the heart, using an
even smaller intracardiac echocardiography (ICE) device that is mounted at the tip of a
catheter to be passed into the heart chambers, see Fig. 1.4. ICE is widely used in guiding
interventional cardiovascular procedures [32].

The desire for enhanced visualization with 3D images has led to the development
of ICE probes for volumetric imaging. The use of matrix arrays is desired over the use of
rotated linear arrays to realize real-time frame rates. However, since the cabling of an ICE
probe needs to fit in a catheter shaft whose diameter is usually limited to less than 3 mm,
this results in an especially acute element connection challenge. Several 3D-ICE designs
have been proposed that solve this challenge for real-time imaging [33–35]. However
none of these can achieve high-frame-rate volumetric imaging.

A high-frame-rate volumetric 3D-ICE device would enable novel imaging modes,
specifically it could enable electromechanical wave imaging (EWI) [20, 36, 37] for the
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mapping of atrial fibrillation [38]. Atrial fibrillation is the abnormal beating of the atrial
chambers of the heart. It is the most common type of sustained cardiac arrhythmia and
causes a major increase in the risk of stroke [39]. Atrial fibrillation can be treated by
ablating the arrhythmogenic sources. 2D-ICE is currently already used to guide the ab-
lation catheter and monitor the ablation process [40]. With high-frame-rate 3D-ICE, it
would also be possible to use the device for the generation of a 3D map of the elec-
tromechanical activation of the heart by measuring the cardiac deformation [20, 36, 37,
41–43]. This ultrasound technique is called electromechanical wave imaging, after the
tight coupling between the electrical excitation of the cardiac muscle cells and their re-
sulting mechanical contraction and its wave-like spreading over the cardiac wall. The
electromechanical activation map could be used to determine the correct location for
ablation treatment.

Figure 1.4: ICE-catheter positioned in the atrium.

1.3.2. APPLICATION OF 3D HFR: CONTRAST-ENHANCED ULTRASOUND
Contrast-enhanced ultrasound (CEUS) is an ultrasound modality where contrast agents
are administrated into the bloodstream to enhance the sensitivity of the ultrasound im-
age to blood flow. Pioneering work on contrast agents for ultrasound took place between
the 1960-1980s [44]. The development of stable microbubble (MB) contrast agents and
contrast-specific imaging modes resulted in the increased application of CEUS [45]. MBs
consist of a gas core encapsulated in a lipid/protein/synthetic shell material [46]. The
large impedance mismatch between gas inside a MB and the surrounding blood results
in a high backscattering intensity and thereby increased signal-to-noise ratio [47, 48].
CEUS is currently successfully used in the clinic for the visualization of the macro- and
micro-vasculature and the perfusion of tissues. Through the visualization of the vas-
culature structure and tissue perfusion, CEUS can be used for the diagnosis of various
diseases and pathologies, including the characterization of liver and breast lesions [44,



1.4. DEEP LEARNING FOR ULTRASOUND SIGNAL PROCESSING

1

9

48–51], as well as the monitoring of therapy responses and the assessment of interven-
tional procedures such as ablation [52].

Pathological modifications of microvascular structure and heamodynamic patterns
are important indicators to diagnose and assess various diseases and pathologies. How-
ever, the resolution of conventional CEUS images are inherently limited by the wave-
length. While using an increased center frequency improves the resolution, this reduces
the achievable penetration depth. Therefore, even though the increased backscattering
intensity of the microbubbles improves the visualization of microvessels, a detailed map
of the microvasculature cannot be distinguished from a conventional CEUS image when
vessels are separated by distances smaller than the diffraction limit.

SUPER-RESOLUTION ULTRASOUND LOCALIZATION MICROSCOPY

Super-resolution Ultrasound Localization Microscopy (ULM) is an emerging technique
that can realize contrast-based ultrasound imaging at a resolution beyond the diffraction
limit [53, 54]. Inspired by optical super-resolution microscopy, the center of isolated mi-
crobubbles are localized with sub-wavelength precision and the localized bubble posi-
tions are tracked over time to form vascular maps, see Fig.1.5. Typically, a 10 times better
spatial resolution can be achieved with ULM compared to CEUS images [55]. Although
ULM could potentially provide a better alternative to CEUS in clinical areas where the
microvasculature is depicted, there are still several technical and practical barriers to its
clinical application [56].

Volumetric imaging is highly desired for CEUS and ULM to provide a 3D map of the
vasculature and to allow for the correction of out-of-plane motion. At the same time,
high frame rates are desirable for the effective application of post-processing filters and
motion compensation and to reduce acquisition time.

Figure 1.5: Illustration of a general processing pipeline for super-resolution ultrasound imaging. Image from
Chistensen-Jeffries et al. [53]. A) Acquisition and beamforming of the image. B) Detecting micro-bubbles. C)
Removal of microbubbles that cannot be separated due to too much overlap of the signals. D) Localizing the
center of the MBs. E) Tracking the MBs across multiple frames. F) Constructing either a map of microbubble
density or velocity.

1.4. DEEP LEARNING FOR ULTRASOUND SIGNAL PROCESSING
Very successful applications of deep learning in imaging include the fields of image seg-
mentation and classification. In the medical imaging field, the main focus of applica-
tions of deep learning was initially also on segmentation and classification tasks [57].
More recently, attention also turned towards solving inverse problems, i.e. estimating
parameters from (imperfect) observations, such as denoising and improving the process
of reconstructing images [58, 59]. This is also the case for ultrasound imaging, where
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deep learning techniques have been applied along various stages of the signal process-
ing chain [60].

To realize high-frame-rate volumetric ultrasound imaging, compromises that come
at the cost of image quality are often necessary to reach the desired frame rate and realize
a realistic channel count. For miniature ultrasound devices, the constraints can be even
stronger leading to larger trade-offs in image quality. Therefore, realizing a more pow-
erful processing of the received signals through deep learning techniques could play an
important role in realizing high-quality high-frame-rate volumetric ultrasound.

1.5. THESIS OUTLINE
High-frame-rate volumetric ultrasound is desired for many applications. However, when
developing ultrasound devices capable of HFR 3D imaging, reducing the channel count
and data rate to feasible levels without reducing image quality below what is required
for the desired applications is a major challenge. The application of the device must
be kept in mind to make the right trade-offs. Still, compromises which negatively im-
pact image quality are sometimes unavoidable, increasing the interest in the application
of signal processing methods that improve image quality. The goal of this thesis is to
develop high-frame-rate volumetric ultrasound imaging through dedicated transducer
design and explore how deep learning-based beamforming of the transducer signals can
further help achieve this goal. The first part of this thesis focuses on the design, realiza-
tion, and testing of an ultrasound transducer prototype for high-frame-rate 3D intracar-
diac echography with the aim of not just providing 3D guidance during interventional
procedures, but specifically to enable mapping of the electromechanical wave propaga-
tion. The second part of the thesis focuses on using deep learning-based beamforming
to improve image quality in high-frame-rate volumetric imaging for contrast imaging
with sparse array probes and for miniature ultrasound probes such as ICE transducers.
This thesis has the following outline:

Chapter 2 describes the development of a transducer layout and imaging scheme
that enables volumetric imaging with a sufficient frame rate and image quality for in-
tracardiac electromechanical wave imaging, while reducing the data rate to realistic val-
ues. A 1D micro-beamforming approach is used to achieve the channel count and data
reduction, while the shape and size of the transmit beam are optimized to suppress
grating-lobes that would cause image artifacts resulting from the micro-beamforming.
The spacing of transducer elements is chosen with space for dedicated electronics in
mind and the divergence and central frequency of the array are optimized to achieve a
high axial resolution for EWI while suppressing secondary axial pressure waves arising
from diverging wave transmission with a relatively large element spacing. This simulation-
based chapter shows a promising ICE design for EWI, where the catheters channel count
constraint can be satisfied given a further on chip channel count reduction of a fac-
tor 4. Chapter 3 presents the first 3D-ICE prototype consisting of a matrix of a limited
number of piezoelectric transducer elements integrated on a dedicated ASIC that pro-
vides the required electronics including pulsers, analogue-to-digital conversion, micro-
beamforming and a further channel reduction through time-division multiplexing. The
functionality of the prototype transducer was shown with electronic measurements, acous-
tic measurements and an imaging experiment. Chapter 4 shows the design and fabri-
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cation of a follow-up 3D-ICE prototype of the full intended elevational size and with full
transmit control, allowing the realization of steered diverging waves that form an es-
sential part of the imaging strategy for EWI. Acoustical measurements characterize the
transducers transmit and receive behavior and the high-frame-rate 3D imaging capabil-
ity is shown.

Chapter 5 addresses the reduced lateral resolution that miniature ultrasound probes
with small apertures face. The use of Adaptive Beamforming by deep LEarning (ABLE)
in combination with training targets generated by a larger aperture array is proposed.
The receptive field of the beamformer is extended across multiple voxels to deal with
the focussing errors introduced by micro-beamforming methods often employed in ma-
trix arrays. Only simulated training data was required to quantitatively and qualitatively
improve lateral resolution.

Spiral arrays are an attractive option to realize contrast-enhanced volumetric ultra-
sound due to their relatively low cable count, data rate and cost. Although their transmit
efficiency and receive sensitivity is lower compared to fully populated arrays, the high
reflectivity of microbubbles makes this less of a concern in contrast-enhanced imag-
ing. However, other downsides compared to fully populated matrix arrays remain. The
variation of magnitude and pulse shape within the emitted field is higher and the high-
amplitude secondary lobes of a sparse array can cause artifacts and reduce contrast dur-
ing beamforming. At the same time, the unfocused transmit beams needed for high-
frame-rate imaging also negatively impact resolution. In Chapter 6 we examine the
use of deep learning-based beamformers to improve image quality of 3D contrast ul-
trasound images acquired with a sparse spiral array. ABLE beamforming and a novel
deep learning-based beamformer, neural MAP, which allows incorporation of prior in-
formation into the beamforming process, are compared to two existing beamforming
techniques. Localization performance for super-resolution imaging is also examined
for in silico and in vivo data. ULM images acquired with the different beamformers are
presented. Finally, Chapter 7 discusses the findings of this thesis as well as recommen-
dations for future work.
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Atrial fibrillation (AF) is the most common cardiac arrhythmia and is normally treated by
RF ablation. Intracardiac echography (ICE) is widely employed during RF ablation pro-
cedures to guide the electrophysiologist in navigating the ablation catheter, although only
2-D probes are currently clinically used. A 3-D ICE catheter would not only improve visu-
alization of the atrium and ablation catheter, but it might also provide the 3-D mapping of
the electromechanical wave (EW) propagation pattern, which represents the mechanical
response of cardiac tissue to electrical activity. The detection of this EW needs 3-D high-
frame-rate imaging, which is generally only realizable in tradeoff with channel count and
image quality. In this simulation-based study, we propose a high volume rate imaging
scheme for a 3-D ICE probe design that employs 1-D micro-beamforming in the elevation
direction. Such a probe can achieve a high frame rate while reducing the channel count
sufficiently for realization in a 10-Fr catheter. To suppress the grating-lobe (GL) artifacts
associated with micro-beamforming in the elevation direction, a limited number of fan-
shaped beams with a wide azimuthal and narrow elevational opening angle are sequen-
tially steered to insonify slices of the region of interest. An angular weighted averaging
of reconstructed subvolumes further reduces the GL artifacts. We optimize the transmit
beam divergence and central frequency based on the required image quality for EW imag-
ing (EWI). Numerical simulation results show that a set of seven fan-shaped transmission
beams can provide a frame rate of 1000 Hz and a sufficient spatial resolution to visualize
the EW propagation on a large 3-D surface.
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2.1. INTRODUCTION

2.1.1. CLINICAL BACKGROUND

The heart pumps blood with a rhythm determined by a group of pacemaking cells in
the sinoatrial node. These cells generate an action potential that depolarizes cardiomy-
ocytes. This action potential triggers the adjacent cells and propagates along the cardiac
wall to generate global contraction. The conduction properties of cardiomyocytes and
electrical pathways can be changed by normal aging or certain diseases, which leads to
various types of arrhythmias. Atrial fibrillation (AF) is the most common cardiac arrhyth-
mia and is the major cardiac precursor of stroke [1]. AF can be treated by RF ablation.
A high-resolution 3-D anatomical mapping of electrical activity is required for localiz-
ing sources generating AF to plan the ablation procedure [2, 3]. A key feature of AF is
its irregularity in time and space. Because the patterns of atrial activation change on
a beat-to-beat basis, a series of consecutive activation maps is needed to cover the spa-
tiotemporal variation in activation [4]. Intracardiac electroanatomical mapping is widely
exploited to generate a 3-D surface map of atrial electrical activity [5].

2.1.2. EW IMAGING

Electrical excitation of cardiomyocytes is followed by a transient contraction after about
20-40 ms [6]. The electrical excitation is passed to neighboring cells and propagates
along the atrial wall as a reaction-diffusion wave with a velocity of 0.5-2 m/s [7]. A high
correlation between electrical and resulting mechanical activations has been reported
in several studies [8–11] and this activation propagates as a wave-like phenomenon over
the atrial wall: the electromechanical wave (EW). EW imaging (EWI) was introduced and
has been developed by the group of Konofagou [7, 12–19] as a noninvasive ultrasound-
based imaging method to map the electromechanical activations in the heart. Recent
studies demonstrated a high correlation between the cardiac electrical activity and its
consequent EW for healthy and arrhythmic cases in a simulation study [16], in the left
ventricular wall [17, 18], atrial wall [15], and also in the walls of all four chambers [20].

EWI is accomplished in a two-stage process on ultrasound data [12–15]. In the first
stage, tissue strain is estimated, commonly by a cross-correlation technique, along the
axial direction on consecutive RF signals that are acquired at a motion-estimation rate
(500-2000 Hz) [19]. In the second stage, EW onset is estimated by measuring the time
at which the axial incremental strain departs from or crosses zero at a given pixel. We
intend to image the propagation of the EW wavefront with a spatiotemporal resolution
suitable for the identification of local electrophysiological phenomena. Since the EW
velocities are in the order of 0.5-2 m/s and the desired spatial resolution is in the order
of millimeters, we aim at a volume rate of 1000 Hz and a lateral resolution of 2-5 mm.

Current EWI can provide single-beat 2-D maps of the electromechanical wavefront
(i.e., a cross-sectional image with activation times) with a lateral resolution of <5 mm.
Since the EWs propagate throughout the entire heart, volumetric imaging is desirable
to fully visualize their patterns. In previous studies, several 2-D images were acquired
and processed separately. Then, a pseudo-3-D map was generated by combining these
2-D maps through ECG gating [20] and spatial interpolation. Recently, Grondin et al.
[21] used a transthoracic matrix transducer to achieve 3-D EWI of the entire heart from
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the apical view. The narrow intercostal space and channel count limitations restricted
their transducer size to 9.6 mm x 9.6 mm. In consequence, the lateral resolution was
limited, to 5.8 at 40 mm. For the atria that are located much deeper (>10 cm), the lateral
resolution will be lower. It would be interesting to see whether a higher resolution can
improve strain mapping and reduce local inaccuracies in the EW patterns, especially in
the atria.

2.1.3. HIGH-FRAME-RATE 3-D ICE
Using an intracardiac echography (ICE) transducer can drastically reduce the required
imaging depth for atrial EWI compared to the transthoracic apical view. Moreover, the
possibility of using a higher central frequency compared to transthoracic transducers al-
lows a higher spatial resolution in the atrial regions. Nowadays, ICE is widely exploited
for RF ablation procedures to guide the electrophysiologists in septal puncture and to
navigate the ablation catheter. However, this is limited to low-frame-rate 2-D-ICE. Sev-
eral 3-D-ICE designs have been proposed [22–24], but these are not capable of imaging at
high frame rates. A high-frame-rate 3-D ICE probe, in addition to delivering at least the
functionality of conventional 2-D ICE, could provide a single-beat 3-D EW map. How-
ever, high-frame-rate 3-D ultrasound imaging introduces several challenges, including
handling a high data rate generated by a large number of elements. Moreover, high vol-
ume rate allows just a few transmissions to illuminate the total volume, so a diverging
wave transmission scheme is required. Possibilities for compounding are limited, and
thus, SNR will be relatively low [25]. Furthermore, an intracardiac catheter imposes addi-
tional constraints on the transducer size, cable count, and power dissipation. Therefore,
data reduction and an educated choice of design tradeoffs are crucial for high-frame-rate
3-D ICE.

2.1.4. DATA RATE REDUCTION BY MICRO-BEAMFORMING

Micro-beamforming is a well-established method to reduce the channel count while
preserving the image quality and SNR for volumetric imaging [26, 27]. In this method,
element signals in a subaperture are mutually delayed and summed to form a single
micro-beamformed signal from a predefined-steered-direction. The entire region of in-
terest can thus be imaged by steering the subapertures to a sequence of different di-
rections in, potentially, both azimuth and elevation, and implementing a parallel beam-
forming technique at the back-end system [28–30]. Since the final beamforming is based
on the received data from subapertures with a relatively large effective pitch, grating
lobes (GLs) can occur. Using relatively narrow transmit beams that are steered to the
presteering directions can reduce the GL artifacts. Hence, a significant number of such
narrow beams should be utilized to preserve the image quality [26]. Thus, increasing
the number of elements per subaperture reduces the channel count but also reduces the
achievable volume rate or field of view.

Wildes et al. [22] developed a 2-D transducer consisting of 60 x 14 elements with
application-specific integrated electronics for volumetric ICE based on a 10-Fr (3.3 mm)
catheter. A 2-D micro-beamforming approach was used to reduce the total receive chan-
nel count to 48 (along with power, transmit, and auxiliary signals leading to a total of 88
connections). Their method provided an imaging sector of 90◦ x 60◦ x 8 cm with a spa-
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Figure 2.1: (a) Schematic representation of the proposed side-looking transducer mounted in an intracardiac
catheter. Azimuth (Az), elevation (El) , and axial (Ax) directions are indicated on the corresponding axes. A set
of three out of seven fan-shaped beams steered to different directions in elevation is shown to illustrate the
transmit scheme. (b) Fan-shaped transmit beam is generated from a virtual source behind the transducer.

tial resolution of 1.7 mm x 4.9 mm (azimuth x elevation) at a depth of 50 mm. They
concluded that the achieved spatial resolution was sufficient for atrial imaging. To sup-
press the GLs formed by micro-beamforming, narrow beams were used in transmission,
which limited the frame rate to 30 vol/s [22].

Implementing a 1-D (i.e., a 1 x N subaperture) rather than a 2-D micro-beamformer
introduces the GLs only in the direction in which the micro-beamforming is implemented.
Therefore, the transmit beams need to be narrow only in the corresponding direction.
Consequently, a 1-D micro-beamforming could provide a relatively high volume rate 3-
D imaging by employing a set of fan-shaped diverging transmit beams that are narrow
in the micro-beamforming direction and wide in the perpendicular direction (see Fig.
2.1). These asymmetric fan-shaped beams can cover a large volume of interest with a
limited number of transmissions. These fan-shaped beams can be generated by a dual
virtual source similar to the method proposed by Chen et al. [31] or a single virtual source
behind a rectangular transducer, as shown in Fig. 2.1(b). Since a dual virtual source ap-
proach generates a curved transmit fan beam, it is less appropriate to be combined with
a micro-beamforming approach. Therefore, we use a single virtual source approach in
this study.

The size of the 1-D micro-beamformer should be chosen such that the needed reduc-
tion in channel count is achieved, while GL levels are kept sufficiently low. In the design
of the high-frame-rate 3-D ICE many tradeoffs need to be made to realize an imaging
scheme that satisfies the requirements for EWI while remaining within the constraints
on transducer size and cable count, resulting from the small catheter size. Furthermore,
the elements will be mounted on a pitch-matched application-specific integrated circuit
(ASIC) containing all the required electronics, including high-voltage pulsers, low-noise
amplifiers, time-gain compensation circuits, ADCs, and micro-beamformers, which are
necessary to realize the proposed method [27, 32, 33].

The minimum pitch of the transducer elements is limited to 160µm x 160µm by the
area required for the designed electronics.

In this study, we did not consider electronic noise and ultrasonic attenuation in the
simulations since we are assuming that they are not limiting factors on the clutter and
PSF image quality parameters we are studying here. They have been considered in the
electronics design procedure [33] to achieve the desired imaging depth. Although these
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electronics design choices put some limits on the transducer layout and the imaging
scheme as mentioned in Sections I and II, fully describing these choices is out of the
scope of this article.

2.1.5. 3-D ICE IMAGING SCHEME DESIGN

In this study, we develop a novel imaging scheme for high-frame-rate 3-D ultrasound
imaging with a matrix intracardiac catheter as sketched in Section I-D and optimize the
transducer design and imaging scheme for intracardiac EWI. The main goal is to enable
volumetric imaging with a sufficient frame rate and image quality for EWI while reduc-
ing the data rate to realistic values. The proposed method consists of implementing a
1-D micro-beamforming in the elevation direction to reduce the data rate. By combin-
ing this with the transmission of fan-shaped beams, a high-frame-rate is enabled, while
GLs in the elevation direction are suppressed. The proposed method achieves further
reduction of the GL artifacts and improved contrast to noise ratio (CNR) by implement-
ing angular-weighted coherent compounding. We will discuss the optimization of the
imaging scheme (transmit frequency, microbeamformer size, and transmit beam diver-
gence) to achieve the desired channel count reduction while providing a sufficient frame
rate and image quality for EWI. Finally, we evaluate the proposed imaging scheme in a
series of simulations. The novelty of this work lies in an imaging scheme optimized for
dedicated integrated circuitry to realize high-frame-rate 3-D ICE suitable for EWI.

2.2. MATERIALS AND METHODS

2.2.1. IMAGING SCHEME DESIGN: PARAMETERS

We strive for a 3-D ICE design with a frame rate of 1000 Hz, an imaging depth of 10 cm,
an opening angle of 70◦ x 70◦ , and a lateral resolution of 5 mm to be able to realize the
3-D EWI of the left atrium from the right atrium.

For a depth of 10 cm, the pulse repetition frequency (PRF) is limited to 7.7 kHz by the
round-trip travel time of the ultrasound waves assuming a speed of sound of 1540 m/s.
Therefore, a maximum number of seven transmissions are available to acquire the entire
region of interest, and we will always use this number of transmissions in our scheme.

We base the design of the matrix transducer on a 10-Fr intracardiac catheter, which
limits the transducer size to 3 mm in the elevation direction [see Fig. 2.1(a)] and the
number of cables to a maximum of 100 [22, 34]. The aperture of the matrix array is rect-
angular, with the shortest axis perpendicular to the ICE probe shaft. We consider square
elements with a pitch of 160 µm , imposed by the area needed for the pitch-matched
application-specific electronics [32]. Choosing such a large pitch (50%-80% of the wave-
length for the assumed frequency range of 5-8 MHz) introduces GLs in image reconstruc-
tion and also secondary waves in diverging wave transmission. To counteract these, we
optimize the central frequency in the given range to suppress the secondary waves. In
addition, an angular weighting function is applied to a conventional delay and sum to
reduce the GLs. Based on the chosen pitch and catheter size constraints, we consider a
matrix array of 18x64 elements.

The imaging scheme consisting of steered fan-shaped diverging transmit beams will
be used with 1-D micro-beamforming in the elevation direction and acquisition of all
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element-level signals in the azimuthal direction. Furthermore, angular weighted coher-
ent compounding will be used to reduce GL levels. Transducer size, pitch, number of
transmissions, and imaging depth are fixed in this study, whereas the other features are
optimized in a simulation study.

2.2.2. STEERABLE FAN-SHAPED TRANSMIT BEAM
A single virtual source was used to generate the desired fan-shaped beam. In this ap-
proach, the beam divergence in azimuth and elevation is not independent. First, we
determined the virtual source location based on the transducer size and desired beam
divergence in the elevational direction, and then, the effective transducer size in azimuth
was determined to achieve the required beam divergence in that direction (see Appendix
I).

2.2.3. ANGULAR WEIGHTED AVERAGING
A voxel-based delay and sum is proposed to reconstruct an intermediate full volumetric
image corresponding to each transmission. Since only a narrow region is insonified in
the elevation direction for each transmission, reconstructing regions far from this trans-
mission direction only adds noise to intermediate images. In addition, the receive beam
profile contains strong GLs at directions corresponding to the large effective pitch as-
sociated with the micro-beamformer size [26]. Hence, the final volumetric image is ob-
tained by applying angular weighting functions to the intermediate images in order to
suppress the noise and GLs in noninsonified regions and also improve the image quality
by coherent compounding of overlapping regions using

I
(
R,Θr ,ϕ

)= 7∑
i=1

W (Θr ,Θi )
NµBF∑
m=1

NAz∑
n=1

Sm,n
(
t −σi −σm,n

)
(1)

where I
(
R,Θr ,ϕ

)
is the reconstructed RF sample in a spherical coordinate system,

W (Θr ,Θi ) is the weighting function (as shown in Fig. 2.2) corresponding to the trans-
mit direction Θi , Sm,n is the micro-beamformed signal of a subgroup at the elevation
position m and azimuthal position n in the transducer array, σi

(
R,Θr ,ϕ

)
is the transmit

delay, σm,n
(
R,Θr ,ϕ

)
is the receive delay, andΘi is the transmit/presteering direction.

Fig. 2.2 shows the angular weights as a function of the reconstruction line direction
for different transmission directions. To avoid abrupt changes in image intensity, the
angular weights have some overlap with their neighboring transmissions [33].

2.2.4. SIMULATION SETUP
The simulation study consists of three steps. First, the azimuthal beam divergence and
central frequency in a range of 20◦-45◦ and 5-8 MHz, respectively, are mutually opti-
mized to provide an acceptable tradeoff among the imaging opening angle, transmit
beam quality, and spatial resolution. Transmit beam quality in diverging wave imag-
ing is known to be susceptible to the occurrence of so-called axial lobes or secondary
pulses [35, 36], related to imperfect signal cancellation of late-arriving element signals
from arrays with pitch larger than half a wavelength. Since the quality of the transmitted
wave is very important for our image quality, we will first investigate and optimize the
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Figure 2.2: Applied weights W
(
Θr ,Θi

)
as a function of the reconstruction elevation direction Θr for different

transmit beams. Blue arrows show all transmission directions and red arrow shows the current transmission
direction with its corresponding angular weighting function. Black arrows show the reconstruction directions
and the bold black arrow shows an example of receive line with its corresponding weights (black cross) when
the transmit direction isΘi .

temporal profile of the transmitted diverging wave in our simulations.
Second, transmit beam divergence in elevation will be determined based on GL arti-

facts and the intensity uniformity between transmissions. Finally, the image quality will
be evaluated for a micro-beamformer size ranging between 1 (no micro-beamforming)
and 4 to achieve an acceptable tradeoff between the desired image quality and data rate
reduction. The imaging parameters are summarized in Table 2.1. All simulations are
performed in Field II [37].

2.2.5. NUMERICAL PHANTOMS

STATIC PHANTOM:
A 3-D numerical phantom, a cube with an edge length of 100 mm containing hypere-
choic and hypoechoic spherical regions with diameters of 2, 4, 6, and 10 mm, highly
reflective points and background point scatterers with an average density of 0.2/λ , has
been used in Field II simulations. The relatively low point scatterer density is chosen to
limit simulation time for this large-size cubic phantom and the high number of trans-
ducer elements. In addition, a single-point scatterer at a depth of 50 mm is simulated to
determine the point spread function (PSF).

BEATING LEFT ATRIUM

To evaluate the proposed high-frame-rate imaging scheme in a dynamic environment, a
spherical shell with an outer diameter of 50 mm and a thickness of 3 mm has been sim-
ulated mimicking a left atrium. The center of the sphere is at an axial distance of 50 mm,
equivalent to imaging the left atrium from the center of right atrium. A circumferentially
propagating wave has been introduced to this phantom by applying a radial thickening
with an amplitude of 10 mm/s (10 µm/frame). The atrial thickening initiates from a sin-
gle point and propagates omnidirectionally along the atrial wall with a velocity of 2 m/s
[7]. A cross section of the beating left atrium numerical phantom is shown in Fig. 2.3.
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Table 2.1: Imaging Parameters

Parameters Value
Transducer size 2.88 mm x 10.24 mm
Pitch 160 µm x 160 µm
Kerf 20 µm
Number of elements 18x64
Micro-beamformer size 1-4 elements*
Imaging depth 10 cm
Frame rate > 1000 Hz
Transmit beam Steerable Fan beam
Number of transmission 7
Transmission beam (azimuth) Direction: 0◦; divergence: 20◦-45◦*
Transmission beam (elevation) Direction: -30◦ to 30◦; step:10◦;
divergence: 10.7◦, 12.5◦-20◦*; step: 2.5◦
Central frequency 5-8 MHz*
Sampling frequency 4xcentral frequency
Transmit apodization 2-D Tukey window with cosine fraction 0.2

* These parameters are evaluated within the given ranges to optimize the imaging scheme.

We use 1-D axial cross correlation (two cycles Tx pulse, 20-sample I/Q) to estimate
the frame-to-frame tissue displacement. Since simulating a 3-D numerical phantom
with a matrix array in Field II is very time consuming, we limit our simulations to only
three pairs of consecutive volumetric datasets acquired at an interval of 1 ms within each
pair (i.e., mimicking a frame rate of 1000 Hz). The consecutive pairs of datasets have
been simulated for three time points, t = 0 , 10, and 20 ms to show the concept of EWI.
The final map of tissue displacement (actually displacement over 1 ms in the direction
of the ultrasound beam, so the axial tissue velocity component) has been generated by
applying an image intensity-based mask to the displacement data to only visualize the
atrial wall. In addition, another mask based on tissue displacement has been applied to
the displacement map to exclude nonmoving tissue.

2.2.6. EVALUATION CRITERIA
The performance of various combinations of transmission and micro-beamforming schemes
has been evaluated, as assessed by the widths of PSF at -6 dB (azimuthal and elevational
resolutions), the sidelobe level, the GL level, and the CNR. The sidelobe level is defined
as the peak level of the highest sidelobe compared to the main lobe in dB, and the GL
level is defined as the peak level at the theoretically expected GL direction. These two
were measured by imaging only one scatterer in the field of view. The CNR is calculated
using [38]

C N R = µs−µc√(
σ2

s +σ2
c
)
/2

(2)

where µs and µc are the mean amplitudes and σs and σc are the standard deviation
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Figure 2.3: Schematic cross sections of the 3-D left atrium numerical phantom (radius 50 mm and thickness
3 mm). Left: wave is introduced as a radial wall thickening (blue arrows). Red arrows show the circumfer-
ential electromechanical wavefront propagation direction. Right: wavefront propagation after 10 ms (thick-
ness/excursions not to scale).

of the gray levels in the speckle and anechoic cyst regions, respectively, of the 3-D nu-
merical phantom.

Imaging with a limited number of diverging beams and micro-beamforming may re-
sult in angle-dependent changes in image characteristics. To evaluate these effects, a
lateral shift-variance plot (LSV-plot) [35] is used. An LSV-plot is constructed for a given
imaging system by imaging a point scatterer shifting laterally. For each lateral position,
a PSF is calculated and stacked to the other PSFs to form a 2-D image. The entire im-
age is normalized to its maximum value and plotted in a decibel scale. If there is little
position dependence, the plot will be invariant along the diagonal; otherwise, deviating
structures will be visible revealing the nature of the position dependence. In this study, a
point scatterer at a distance of 50 mm from the center of the transducer is shifted along
the elevation direction from -45◦ to 45◦ with a step of 1◦ to create the LSV-plot.

2.3. RESULTS

2.3.1. IMAGING SCHEME OPTIMIZATION

TRANSMIT CENTRAL FREQUENCY AND AZIMUTHAL DIVERGENCE ANGLE

When evaluating the transmitted diverging waves, we found significant secondary pulse
levels in the transmitted time signals. In Fig. 2.4(a) where the envelope of the transmit
pulse is shown for all azimuth angles, it can be seen that the secondary pulse is present
over a large range of the opening angle and gets longer for larger angles, following the
primary short pulse after a few microseconds. Fig. 2.4(b) shows the transmit pulse gen-
erated by a transducer with a 45◦ divergence and 7.5-MHz center frequency in a point 50
mm from the transducer, at an angle of 40◦.

We evaluated how the pulse shape depended on the beam divergence and transmit
central frequency. The level of the secondary pulse has been measured at points located
on a spherical surface with a radius of 50 mm ranging from -45◦ to 45◦ in both azimuth
and elevation directions. The maximum of the secondary pulses measured in different
directions is shown in Fig. 2.5(a) as a function of central frequency and beam divergence.
The function has a triangular local minimum region in the frequency band of 5.3-7.5
MHz and the azimuthal beam divergence of 25◦-45◦. Any local minimum close to the
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Figure 2.4: Transmitted pressure profile of a diverging wave as a function of time and azimuth angle at typical
imaging depth of 50 mm, f = 7.5 MHz, and divergence = 45◦. (a) Envelope of the pressure from -45◦ to 45◦ (red
line indicates the position of the point used to acquire the 1-D signal in (b). (b) Time-domain pressure signal
at 40◦ azimuth. The secondary pulse is observed as a longer pulse with lower amplitude compared to the main
pulse.

triangle hypotenuse will achieve low secondary pressure levels for a relatively high cen-
tral frequency and opening angle. To show the effect of these secondary pulses, images
of point scatterers made with transmit beams with different secondary pressure levels
are reconstructed. Fig. 2.5(b) shows that the larger secondary pulse [corresponding to
the black dot in Fig. 2.5(a)] will interact with the scatterers to show prominent secondary
echoes of scatterers (arrows), whereas in Fig. 2.5(c), where the transmit beam has a lower
secondary-pulse pressure level [corresponding to the white dot in Fig. 2.5(a)], the sec-
ondary echoes are almost invisible. We choose a central frequency of 6 MHz and an
azimuthal beam divergence of 35◦ and these values will be used as bases for the rest of
simulations.

ELEVATIONAL BEAM DIVERGENCE AND INTENSITY RIPPLE:
With the proposed transducer size and the chosen azimuthal beam divergence of 35◦,
the single virtual source technique can provide an elevational beam of 10.7◦. The trans-
mit beam profile for this elevational beam divergence is shown in Fig. 2.6, which shows
an intensity ripple over elevational angle of -3.6 dB. To reduce this ripple, we would need
to increase elevational beam divergence. To achieve the wider elevational beam diver-
gences of 12.5◦, 15◦, 17.5◦, and 20◦, the effective number of elements in azimuth was
reduced from 64 to 56, 47, 41, and 36 elements, respectively. This azimuthal apodization
was needed to maintain the 70◦ azimuth opening angle when bringing the virtual focus
closer to the probe for more elevational divergence. The intensity ripples between two
adjacent transmissions are listed in Table 2.2 for different elevational beam divergences
as a measure of nonuniformity. The results show a lower intensity ripple for broader
beam, which indicates more uniform image intensity along the elevation direction.

ELEVATIONAL BEAM DIVERGENCE AND GLS:
In the next step, the effect of elevational beam divergence on the GL level has been eval-
uated. The GL directions for a micro-beamformer size of 2, 3, and 4 are 53◦, 32◦, and 24◦,
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Figure 2.5: (a) Maximum of secondary pressure peaks as a function of central frequency and azimuthal beam
divergence. Reconstructed images based on a fully sampled array for a central frequency and azimuthal beam
divergence of (b). f =7.5 MHz and ϕaz =45◦ [black point in (a)] and (c). f = 6 MHz and ϕaz =35◦ [white point
in (a)]. Red arrows show the secondary reflection and GL caused by poor destructive interference of waves
transmitted from each individual element.

respectively, at the chosen frequency of 6 MHz. The acoustic pressure at GL directions
has been compared for elevational beam divergence of 10.7◦, 12.5◦, 15◦, 17.5◦, and 20◦.
Fig. 2.7 shows that increasing the transmission elevational beam divergence intensifies
the GL levels. An elevational beam divergence of 10.7◦, which is the narrowest possible
divergence, with a beam separation of 10◦, provides the lowest GL level and highest SNR
at the cost of some nonuniformity in image intensity. We chose the elevational beam
divergence of 10.7◦ and used this value in the remainder of the simulations. With this
elevational divergence, the set of steerable fan-shaped beams provides an imaging field
of view of 70◦ (width of insonified region at -3 dB) in the elevation direction.

2.3.2. IMAGING PERFORMANCE EVALUATION
The angular weighted coherent compounding approach is evaluated for a micro-beamformer
of 2-4 elements by reconstructing images of a single-point scatterer. Applying the pro-
posed angular weighting function reduces the GL level to a value that we will refer to as
the GL residual (GLR). Fig. 2.8(a) shows the effect of using angular-weighted coherent
compounding compared to uniform coherent compounding for a micro-beamformer

Table 2.2: Transmit Beam Profile Nonuniformity Measured by the Intensity
Ripple Between Two Consecutive Transmissions

Elevational beam divergence Intensity ripple (dB)
10.7◦ (possible minimum) -3.6
12.5◦ -3.3
15◦ -2.4
17.5◦ -1
20◦ -0.4
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Figure 2.6: Transmit beam profile in the elevation direction for an elevational beam divergence of 10.7◦. The
horizontal dashed line shows an intensity ripple level of -3.6 dB.
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Figure 2.7: Transmit pressure at GL directions, normalized to transmit pressure at main lobe for different beam
divergences.
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Figure 2.8: (a) PSF in the elevational direction, for a single-point scatterer at 50 mm depth which is recon-
structed by uniform coherent compounding and reconstructed by angular-weighted coherent compounding.
GL level and GL residual level are shown for uniform coherent compounding and angular-weighted com-
pounding, respectively. (b) PSF for angular-weighted compounding for different micro-beamformer sizes and
elevational beam divergence of 10.7◦.
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Figure 2.9: Lateral resolution as a function of depth in azimuth and elevation directions for a micro-
beamformer size of three elements. The horizontal dashed line indicates the desired lateral resolution for
EWI.

size of three elements. This angular weighted coherent compounding reduces the GL
levels by 28, 16, and 13 dB for micro-beamformer sizes of 2, 3, and 4, respectively. Ele-
vational PSFs for angular-weighted compounding for different micro-beamformer sizes
are shown in Fig. 2.8(b). The width of PSF at -6 dB is shown in Fig. 2.9 for different
imaging depths in both azimuthal and elevational directions.

The spatial variance of the proposed imaging scheme in the elevation direction is
evaluated by an LSV-plot. Fig. 2.10(a) shows the LSV-plot for micro-beamforming size
3. Although the effect of the seven transmit beams is visible as nonuniform image inten-
sity in this plot, the lateral resolution, sidelobe level, and GL levels are fairly diagonally
uniform. In addition to lateral shift variability, the LSV-plot was used to compare the
proposed angular weighting function with the conventional triangular weighting func-
tion [35]. Since the proposed method compounds a high number of transmissions to
reconstruct a single receive line, the LSV-plot is more diagonally uniform and has a nar-
rower main lobe. However, it produces higher clutter around the main lobe, as shown in
Fig. 2.10.

The numerical tissue-mimicking phantom has been imaged to evaluate the image
quality in terms of CNR for various micro-beamformer sizes. The clutter level is in-
creased in hypoechoic regions by increasing the micro-beamformer size [see Fig. 2.11(a)-
(d)], which reduces the CNR in both elevation and azimuth planes, as shown in Fig.
2.11(e). Narrow transmission beams with a large separation angle cause nonuniform im-
age intensity along the elevation direction, as expected from Fig. 2.6. Fig. 2.11(a) and (b)
shows that the axial resolution (estimated at 0.8 mm) is not affected by the microbeam-
forming, as expected, and seems sufficient with respect to the atrial wall thickness.

HIGH-FRAME-RATE IMAGING OF A BEATING ATRIUM PHANTOM:
A rendered volumetric image of the beating left atrial numerical phantom has been gen-
erated with a micro-beamformer size of three elements and is shown in Fig. 2.12. A
quarter of the top hemisphere has been removed to show the wall thickness in azimuthal,
elevational, and c -plane. We can clearly see the spherical object mimicking left atrium.
The atrial wall appeared thicker in the elevational direction, which is caused by the lower
elevational resolution. A combination of fan-shaped transmit beams and the proposed
weighting function successfully suppressed the GLs and no obvious GL is visible. How-
ever, nonuniform image intensity is rather visible in the elevation direction.
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Figure 2.10: LSV-plot of a single-point scatterer at different positions ranging from -35◦ to 35◦ in the elevation
direction, which is reconstructed by (a) proposed weighting function and (b) triangular weighting function.
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Figure 2.11: Reconstructed images of a tissue-mimicking phantom in (a) elevation direction for a fully sampled
array, (b) elevation direction for a micro-beamformer size of three elements, (c) azimuth direction for a fully
sampled array, and (d) azimuth direction for a micro-beamformer size of three elements. Red circles show
hypoechoic regions where the CNR was calculated. (e) CNR in azimuth and elevation for different micro-
beamformer sizes. (f) Schematic representation of tissue-mimicking phantom, rotated to (a) and (b) elevation
or (c) and (d) azimuth plane.
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Fig. 2.12(a)-(c) shows the tissue displacement maps on three orthogonal planes,
namely, azimuthal, elevational, and c -plane, which were calculated at t =1 , 11, and
21 ms. The EW has initiated from a point shown by the blue arrow in Fig. 12(a) and
propagated omnidirectionally on the atrial surface. Fig. 2.12(b) and (c) shows the prop-
agation of the EW at 11 and 21 ms after the wave generation. The electromechanical
wavefront is clearly visible and the color gradient indicates the radial strains. The EW
map was masked by an intensity-based mask derived from the B -mode images. There is
no unwanted motion detection on other parts of the region of interest. The red arrow in
Fig. 2.12(c) shows a region where the radial motion is purely perpendicular to the ultra-
sound wave axial direction. Therefore, the 1-D axial cross-correlation technique could
not detect this displacement.
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Figure 2.12: Tissue frame-to-frame axial displacement map corresponding to EW propagation at (a) t = 1 ms,
(b) t =11 ms, and (c) t =21 ms plotted on orthogonal planes. The blue arrow on (a) shows the initial point of
EW and the red arrow on (c) shows the location at which the displacement is perpendicular to the ultrasound
axial direction and cannot be estimated. The probe is located left side of the atrium at 50-mm distance. Please
note that the color scale represents axial displacement over 1 ms, so a displacement of 10 µm is equivalent to
an axial velocity component of 10 mm/s.
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2.3.3. DISCUSSION AND CONCLUSION

In this study, we have proposed a novel imaging scheme for high-frame-rate 3-D ultra-
sound imaging with a matrix intracardiac catheter. The main goal is to enable volumetric
imaging with a sufficient frame rate and image quality for EWI while reducing the data
rate to realistic values. The proposed method consists of three main parts: 1) imple-
menting 1-D micro-beamforming in the elevation direction to reduce the data rate; 2)
transmitting fan-shaped beams to suppress GLs in the elevation direction while provid-
ing a high frame rate; and 3) angular-weighted coherent compounding to further reduce
the GL artifacts and improve CNR.

The transducer consists of 64 x 18 elements with a pitch of 160 µm , which is larger
than half of the wavelength at 5-8 MHz, giving rise to spatial aliasing. Generating a di-
verging wave from an array with such pitch can lead to a secondary, trailing, pulse as a
result of poor destructive interference of the signals from the adjacent elements-see Fig.
2.4. This secondary pulse will also interact with scatterers, leading to secondary reflec-
tions in the reconstructed images and thus increased axial clutter levels [36], as shown
in Fig. 2.5(b). Such axial lobes were previously reported by Rodriguez-Molares et al.
[39] for coherent plane wave compounding. They theoretically analyzed the secondary-
pulse formation and proved that late-arriving transmit waves lead to delayed echoes that
render as axial lobes. They showed that in a densely sampled array (pitch <λ/2), late-
arriving signals will cancel each other out, which reduces the axial lobe level. In this
work, we reduce the secondary pulse level by carefully choosing the central frequency
and azimuthal beam divergence for the given array configuration [see Fig. 2.5(a)].

We intend to image the EW wavefront propagation in 3-D with sufficient spatial res-
olution by employing a high volume rate of 1 kHz. This is sufficient for local motion
estimation over the whole volume, but previous research on EWI [19] suggests that while
a local motion detection rate of 0.5-2 kHz is required, a slower rate might be sufficient
for the motion sampling (the generation of the strain maps), leaving room for more le-
nient interleaved spatial interrogation. Provost et al. [19] reported that a mapping rate
of 120 Hz would suffice since the highest frequency content of the EW would be around
50 Hz. However, since we operate at higher spatial resolution and the EW is a complex
reaction-diffusion wave, we are not sure that this bound is valid in our situation. There-
fore, we preferred to pursue the full 1-kHz volume rate. Furthermore, this also opens the
way to other high-frame-rate applications such as shear wave elastography and ultrafast
Doppler.

A high ultrasound frequency was preferred to achieve a sufficient lateral resolution
for EWI. On the other hand, a large opening angle was needed to capture the entire left
atrium. As shown in Fig. 2.5, a central frequency of 6 MHz and an azimuth opening
angle of 35◦ will result in a low secondary-pulse pressure level. Furthermore, at these
values, small variations in the fabrication process and delay quantization frequency will
not have large effects on the secondary pressure level.

The elevational beam divergence is subject to a tradeoff between the image intensity
uniformity, SNR, and GL levels. A wider transmission reduces image intensity nonunifor-
mity but also generates a higher acoustic pressure in the GL direction. Since we use a sin-
gle virtual source method, the effective aperture size in the azimuthal direction must be
reduced to generate divergences larger than the smallest realizable divergence of 10.7◦.
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Consequently, wider elevational divergence reduces SNR.

To achieve a high SNR and low GL levels, we selected a divergence of 10.7◦ in the
elevation direction. This leads to a nonuniform image intensity in the elevation di-
rection. This nonuniformity is not expected to influence the performance of the pro-
posed method for EWI since the tissue displacement is measured in the axial direction.
Nonuniformity of the transmitted power in the B -mode can be compensated for by
applying a weighting function to the reconstructed images. However, this corrects the
nonuniform image intensity at the cost of producing a nonuniform SNR.

By using a dual virtual source technique similar to that proposed by Chen et al. [31],
the dependence between the azimuthal and elevational beam divergence can be avoided
such that all aperture sizes can be used. However, we found that using a dual source was
an unsuitable solution for our design since beams appeared to curve in the elevation di-
rection when steering to large angles, which decreases the overlap between the transmit
beam directions and the micro-beamforming presteering direction.

The proposed set of steerable fan-shaped beams can insonify a region of 70◦x70◦ ,
which is sufficient to cover the entire left atrium from the center of the right atrium, as
shown in Fig. 2.12.

Fig. 12 shows a rendered volumetric image of the left atrium. Since the lateral resolu-
tion is lower in elevation, the atrial wall seems to be thicker in this direction in compar-
ison to the azimuthal direction. The image intensity nonuniformity caused by narrow
transmit beams in elevation is visible as darker traces. In addition, there are some ar-
tifacts at lower depths that are caused by high clutter level of the proposed method, as
shown in Fig. 10(a). The high clutter levels are mainly caused by implementing 1-D
micro-beamforming in elevation, as shown in Fig. 8(b). This can reduce the tissue dis-
placement estimation accuracy. Hence, more advanced beamforming techniques, such
as minimum variance and clutter suppression techniques, might be further used to im-
prove the motion estimation and EW tracking.

In this study, we have evaluated the imaging performance of the proposed method in
a series of simulations in which we tried to mimic the in vivo situation. However, there
are more practical challenges, which could not be investigated in these simulations. For
instance, signal-to-noise ratio or detecting EWI onset in the presence of noise, motion,
and anisotropic tissue scattering are important in vivo challenges, which should be eval-
uated extensively in in vitro, ex vivo, and/or in vivo studies.

The tissue motion has been estimated by 1-D cross correlation and shown in Fig.
2.12(a)-(c). The atrial wall thickening has been successfully shown as a radial gradient in
the frame-to-frame displacement map. However, this is only a limited and highly simpli-
fied proof of principle of the EW onset detectability. The EW onset is usually tracked by
finding a zero crossing on strain rate data. Since only three pairs of high-frame-rate vol-
umes have been simulated in this study, a full map of EW is not generated. Nevertheless,
the EW onset is clearly visible on the tissue displacement maps. The EW approximately
propagated one eighth of the sphere circumference at 10 ms, which is equal to a velocity
of 2 m/s. These intermediate results show the general imaging performance of the pro-
posed method and its potential for EWI, although this remains to be confirmed by more
realistic simulations and shown in experiments.

The proposed method provides an azimuthal lateral resolution smaller than 3.7 mm
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on the entire imaging depth (10 cm), which is likely sufficient for EWI [7]. The diameter of
the targeted 10-Fr catheter limits the transducer size to 3 mm in the elevation direction,
leading to a poorer lateral resolution in this direction. Therefore, at depths beyond 40
mm, the resolution in the elevation direction exceeds 5 mm. The results show that the
proposed method outperforms the state of the art on 3-D ICE in terms of frame rate [22].
Moreover, previous works on pseudo-3-D EWI showed that 2-4 planes already provided
additional information for EWI of the atrium [14, 20] to reconstruct a volume by spatial
interpolation. Our proposed method provides a volume consisting of 12 planes in the
elevation direction (natural divergence of transducer at 6 MHz is 6◦), which can thus
provide even more 3-D details. In addition, the proposed method acquires the 3-D EW at
a single heartbeat, which is more suitable than ECG-gated 3-D EWI for mapping cardiac
arrhythmia. With this increase in 3-D detail, the proposed design has the potential to
improve the accuracy of electromechanical activation mapping and to detect smaller
and nonperiodic arrhythmogenic sources.

In this study, we have focused on EWI for mapping AF. However, recent studies showed
that EWI can be useful for mapping other cardiac conduction system abnormalities and
arrhythmia such as atrial flutters [18] or accessory pathways in patients with the Wolf-Parkin-
son-White syndrome [13].

Many aspects are still unclear regarding EWI. The relation between electrical activa-
tion and mechanical contraction is determined by a combination of biochemical and
mechanical interactions of partially unknown properties. Especially in cases of nonuni-
formities or pathology, this relation will be very complex. Whether the mechanical re-
sponse alone can be used for patient-specific diagnosis remains to be shown. Neverthe-
less, measuring the mechanical response with high spatiotemporal resolution is impor-
tant to gain insight here.

A practical probe implementation requires channel-count reduction since the num-
ber of elements far exceeds the number of cables that can be accommodated. A 1-D
micro-beamforming scheme reduces the data rate by a factor equal to the number of
elements per subaperture. We have shown that a data rate reduction by a factor of 2 re-
sults in negligible image quality loss. A micro-beamformer size of 3 or 4 introduces some
imaging artifacts. The PSF analysis has shown that the elevational resolution changes
negligibly by increasing the micro-beamformer size to 3 but increases from 6.1 to 7 mm
by utilizing a micro-beamformer of four elements at 50-mm imaging depth. Fig. 8(b)
shows an increase of 16 and 22 dB in residual GL level for a micro-beamformer of three
and four elements, respectively.

The channel count is reduced from 1152 (the number of elements) by a factor cor-
responding to the micro-beamformer size. Since a 10-Fr intracardiac catheter with a di-
ameter of 3.3 mm limits the number of data transferring channels to around 100 micro-
coaxial cables [34], the total reduction factor should be at least 12 to account for addi-
tional control signals and power supplies. A further on-chip reduction by at least a fac-
tor of 4 is thus required to reduce the channel count sufficiently. This can be achieved by
methods such as analog time-division multiplexing [40], in-probe digitization combined
with digital multiplexing [30, 32], or coding of the digitized signal [41].

In conclusion, the results show a feasible solution for intracardiac 3-D EWI. The 1-D
micro-beamforming approach, in combination with on-chip channel-count reduction,
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can sufficiently reduce the data rate for transfer over a 10-Fr intracardiac catheter, while
the proposed fan-shaped transmit beams and weighted averaging function preserve the
image quality. The proposed method has the potential to offer single-beat 3-D EWI of
the left atrium.

2.4. APPENDIX A FAN-SHAPED TRANSMIT BEAM GENERATION
To calculate a set of delays required for generating the desired beam, first, a virtual source
location was determined based on beam divergence, transducer size, and steering direc-
tion in elevation; then, the transducer effective size in azimuth was determined based on
the virtual source location and azimuthal beam divergence (see Fig. 2.13).

Zvs

Xvs

φ
el

Lel
Θ

Z (Axial)

X (Elevation)

Figure 2.13: Generating a fan-shaped transmitting beam with a divergence of ϕel in elevation and steered to θ
using a virtual source behind the transducer.

The virtual source location was calculated by
X vs=−si g n(θ)

Le ltan|θ|
tan|θ|−tan

(|θ|−ϕe l
) ; Z vs= X vs

tan(θ)
θ ̸=0

X vs=0; Z vs= Le l

tan(θ)
θ=0

(3)

where θ is the steering angle with a counterclockwise direction from the axial direc-
tion,ϕel is the beam divergence in elevation from a center line to a -6 dB contour, and Lel
is half of the transducer size in elevation. The Y -coordinate value of the virtual source
was always 0 because there was no transmit beam steering in the azimuth dimension.
Having the virtual source location, the effective transducer size in azimuth was calcu-
lated by

Laz = Rvstan
(
ϕaz

)
; Rvs =

√
X 2

vs +Z 2
vs (4)
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where L Az is half of the effective aperture size in azimuth and φaz is the beam diver-
gence in azimuth from a center line to a 6-dB contour.

REFERENCES
[1] J. Jalife, O. Berenfeld, and M. Mansour, “Mother rotors and fibrillatory conduction: A mechanism of

atrial fibrillation”, Cardiovascular Research, vol. 54, no. 2, pp. 204–216, 2002. DOI: 10.1016/S0008-
6363(02)00223-7.

[2] M. Haïssaguerre, D. C. Shah, P. Jaïs, M. Hocini, T. Yamane, I. Deisenhofer, S. Garrigue, and J. Clémenty,
“Mapping-guided ablation of pulmonary veins to cure atrial fibrillation”, The American journal of car-
diology, vol. 86, no. 9, K9–K19, 2000. DOI: doi.org/10.1016/S0002-9149(00)01186-3.

[3] A. Yaksh, L. J. van der Does, C. Kik, P. Knops, F. Oei, P. C. van de Woestijne, J. A. Bekkers, A. J. Bogers,
M. A. Allessie, et al., “A novel intra-operative, high-resolution atrial mapping approach”, Journal of
Interventional Cardiac Electrophysiology, vol. 44, no. 3, pp. 221–225, 2015. DOI: doi.org/10.1007/
s10840-015-0061-x.

[4] M. Allessie and N. de Groot, “CrossTalk opposing view: Rotors have not been demonstrated to be the
drivers of atrial fibrillation”, The Journal of physiology, vol. 592, no. Pt 15, p. 3167, 2014. DOI: 10.1113/
jphysiol.2014.271809.

[5] J. Sra and M. Akhtar, “Mapping Techniques for Atrial Fibrillation Ablation”, Current Problems in Cardi-
ology, vol. 32, no. 12, pp. 669–767, 2007. DOI: 10.1016/j.cpcardiol.2007.09.002.

[6] H. Ashikaga, B. A. Coppola, B. Hopenfeld, E. S. Leifer, E. R. McVeigh, and J. H. Omens, “Transmural
dispersion of myofiber mechanics: implications for electrical heterogeneity in vivo”, Journal of the
American College of Cardiology, vol. 49, no. 8, pp. 909–916, 2007. DOI: doi.org/10.1016/j.jacc.
2006.07.074.

[7] E. E. Konofagou and J. Provost, “Electromechanical wave imaging for noninvasive mapping of the 3D
electrical activation sequence in canines and humans in vivo”, Journal of Biomechanics, vol. 45, no. 5,
pp. 856–864, 2012. DOI: doi.org/10.1016/j.jbiomech.2011.11.027.

[8] E. McVeigh, O. Faris, D. Ennis, P. Helm, and F. Evans, “Electromechanical mapping with MRI tagging
and epicardial sock electrodes”, Journal of electrocardiology, vol. 35, no. Suppl, p. 61, 2002. DOI: 10.
1054/jelc.2002.37156.

[9] O. P. Faris, F. J. Evans, D. B. Ennis, P. A. Helm, J. L. Taylor, A. S. Chesnick, M. A. Guttman, C. Ozturk,
and E. R. McVeigh, “Novel technique for cardiac electromechanical mapping with magnetic resonance
imaging tagging and an epicardial electrode sock”, Annals of Biomedical Engineering, vol. 31, no. 4,
pp. 430–440, 2003. DOI: 10.1114/1.1560618.

[10] B. T. Wyman, W. C. Hunter, F. W. Prinzen, and E. R. McVeigh, “Mapping propagation of mechanical
activation in the paced heart with MRI tagging”, American Journal of Physiology - Heart and Circulatory
Physiology, vol. 276, no. 3 45-3, pp. 881–891, 1999. DOI: 10.1152/ajpheart.1999.276.3.h881.

[11] F. R. Badke, P. Boinay, and J. W. Covell, “Effects of ventricular pacing on regional left ventricular per-
formance in the dog”, American Journal of Physiology - Heart and Circulatory Physiology, vol. 7, no. 6,
1980. DOI: 10.1152/ajpheart.1980.238.6.h858.

[12] M. Pernot and E. E. Konofagou, “Electromechanical imaging of the myocardium at normal and patho-
logical states”, in IEEE Ultrasonics Symposium, 2005., IEEE, vol. 2, 2005, pp. 1091–1094. DOI: 10.1109/
ULTSYM.2005.1603040.

[13] L. Melki, C. S. Grubb, R. Weber, P. Nauleau, H. Garan, E. Wan, E. S. Silver, L. Liberman, and E. E.
Konofagou, “Localization of accessory pathways in pediatric patients with Wolff-Parkinson-White syn-
drome using 3D-rendered electromechanical wave imaging”, JACC: Clinical Electrophysiology, vol. 5,
no. 4, pp. 427–437, 2019. DOI: 10.1016/j.jacep.2018.12.001.

[14] P. Nauleau, L. Melki, E. Wan, and E. Konofagou, “A 3-D rendering algorithm for electromechanical wave
imaging of a beating heart”, Medical physics, vol. 44, no. 9, pp. 4766–4772, 2017. DOI: doi.org/10.
1002/mp.12411.

[15] J. Provost, A. Costet, E. Wan, A. Gambhir, W. Whang, H. Garan, and E. E. Konofagou, “Assessing the
atrial electromechanical coupling during atrial focal tachycardia, flutter, and fibrillation using elec-
tromechanical wave imaging in humans”, Computers in biology and medicine, vol. 65, pp. 161–167,
2015. DOI: 10.1016/j.compbiomed.2015.08.005.

https://doi.org/10.1016/S0008-6363(02)00223-7
https://doi.org/10.1016/S0008-6363(02)00223-7
https://doi.org/doi.org/10.1016/S0002-9149(00)01186-3
https://doi.org/doi.org/10.1007/s10840-015-0061-x
https://doi.org/doi.org/10.1007/s10840-015-0061-x
https://doi.org/10.1113/jphysiol.2014.271809
https://doi.org/10.1113/jphysiol.2014.271809
https://doi.org/10.1016/j.cpcardiol.2007.09.002
https://doi.org/doi.org/10.1016/j.jacc.2006.07.074
https://doi.org/doi.org/10.1016/j.jacc.2006.07.074
https://doi.org/doi.org/10.1016/j.jbiomech.2011.11.027
https://doi.org/10.1054/jelc.2002.37156
https://doi.org/10.1054/jelc.2002.37156
https://doi.org/10.1114/1.1560618
https://doi.org/10.1152/ajpheart.1999.276.3.h881
https://doi.org/10.1152/ajpheart.1980.238.6.h858
https://doi.org/10.1109/ULTSYM.2005.1603040
https://doi.org/10.1109/ULTSYM.2005.1603040
https://doi.org/10.1016/j.jacep.2018.12.001
https://doi.org/doi.org/10.1002/mp.12411
https://doi.org/doi.org/10.1002/mp.12411
https://doi.org/10.1016/j.compbiomed.2015.08.005


2

38 2. IMAGING SCHEME FOR 3-D HIGH-FRAME-RATE INTRACARDIAC ECHOGRAPHY

[16] J. Provost, V. Gurev, N. Trayanova, and E. E. Konofagou, “Mapping of cardiac electrical activation with
electromechanical wave imaging: an in silico–in vivo reciprocity study”, Heart Rhythm, vol. 8, no. 5,
pp. 752–759, 2011. DOI: doi.org/10.1016/j.hrthm.2010.12.034.

[17] J. Provost, W.-N. Lee, K. Fujikura, and E. E. Konofagou, “Imaging the electromechanical activity of the
heart in vivo”, Proceedings of the National Academy of Sciences, vol. 108, no. 21, pp. 8565–8570, 2011.
DOI: 10.1073/pnas.1011688108.

[18] J. Provost, V. T.-H. Nguyen, D. Legrand, S. Okrasinski, A. Costet, A. Gambhir, H. Garan, and E. E. Konofagou,
“Electromechanical wave imaging for arrhythmias”, Physics in Medicine & Biology, vol. 56, no. 22, p. L1,
2011. DOI: 10.1088/0031-9155/56/22/F01.

[19] J. Provost, S. Thiébaut, J. Luo, and E. E. Konofagou, “Single-heartbeat electromechanical wave imag-
ing with optimal strain estimation using temporally unequispaced acquisition sequences”, Physics in
Medicine & Biology, vol. 57, no. 4, p. 1095, 2012. DOI: 10.1088/0031-9155/57/4/1095.

[20] A. Costet, E. Wan, E. Bunting, J. Grondin, H. Garan, and E. Konofagou, “Electromechanical wave imag-
ing (EWI) validation in all four cardiac chambers with 3D electroanatomic mapping in canines in vivo”,
Physics in Medicine & Biology, vol. 61, no. 22, p. 8105, 2016. DOI: 10.1088/0031-9155/61/22/8105.

[21] J. Grondin, D. Wang, C. S. Grubb, N. Trayanova, and E. E. Konofagou, “4D cardiac electromechanical
activation imaging”, Computers in biology and medicine, vol. 113, p. 103 382, 2019. DOI: doi.org/10.
1016/j.compbiomed.2019.103382.

[22] D. Wildes, W. Lee, B. Haider, S. Cogan, K. Sundaresan, D. M. Mills, C. Yetter, P. H. Hart, C. R. Haun, et
al., “4-D ICE: A 2-D Array Transducer with Integrated ASIC in a 10-Fr Catheter for Real-Time 3-D In-
tracardiac Echocardiography”, IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control,
vol. 63, no. 12, pp. 2159–2173, 2016. DOI: 10.1109/TUFFC.2016.2615602.

[23] R. Fontes-Carvalho, F. Sampaio, J. Ribeiro, and V. Gama Ribeiro, “Three-dimensional intracardiac echocar-
diography: a new promising imaging modality to potentially guide cardiovascular interventions”, Eu-
ropean Heart Journal–Cardiovascular Imaging, vol. 14, no. 10, pp. 1028–1028, 2013. DOI: doi.org/10.
1093/ehjci/jet047.

[24] M. Alkhouli, T. Simard, A. M. Killu, P. A. Friedman, and R. Padang, “First-in-Human Use of a Novel Live
3D Intracardiac Echo Probe to Guide Left Atrial Appendage Closure”, Cardiovascular Interventions,
vol. 14, no. 21, pp. 2407–2409, 2021. DOI: 10.1016/j.jcin.2021.07.024.

[25] G. Montaldo, M. Tanter, J. Bercoff, N. Benech, and M. Fink, “Coherent plane-wave compounding for
very high frame rate ultrasonography and transient elastography”, IEEE transactions on ultrasonics,
ferroelectrics, and frequency control, vol. 56, no. 3, pp. 489–506, 2009. DOI: 10.1109/TUFFC.2009.
1067.

[26] P. Santos, G. U. Haugen, L. Lovstakken, E. Samset, and J. D’Hooge, “Diverging Wave Volumetric Imag-
ing Using Subaperture Beamforming”, IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency
Control, vol. 63, no. 12, pp. 2114–2124, 2016. DOI: 10.1109/TUFFC.2016.2616172.

[27] C. Chen, Z. Chen, D. Bera, E. Noothout, Z. Y. Chang, M. Tan, H. J. Vos, J. G. Bosch, M. D. Verweij, et
al., “A pitch-matched front-end ASIC with integrated subarray beamforming ADC for miniature 3-
D ultrasound probes”, IEEE Journal of Solid-State Circuits, vol. 53, no. 11, pp. 3050–3064, 2018. DOI:
10.1109/JSSC.2018.2864295.

[28] S. A. Scampini, Microbeamforming transducer architecture, US Patent App. 11/576,401, Oct. 2008.
[29] J. D. Larson III, 2-D phased array ultrasound imaging system with distributed phasing, US Patent 5229933,

Jul. 1993.
[30] D. Bera, F. van den Adel, N. Radeljic-Jakic, B. Lippe, M. Soozande, M. A. Pertijs, M. D. Verweij, P. Kruizinga,

V. Daeichin, et al., “Fast Volumetric Imaging Using a Matrix Transesophageal Echocardiography Probe
with Partitioned Transmit-Receive Array”, Ultrasound in Medicine and Biology, vol. 44, no. 9, pp. 2025–
2042, 2018. DOI: 10.1016/j.ultrasmedbio.2018.05.017.

[31] Y. Chen, L. Tong, A. Ortega, J. Luo, and J. D’hooge, “Feasibility of multiplane-transmit beamforming
for real-time volumetric cardiac imaging: A simulation study”, IEEE transactions on ultrasonics, ferro-
electrics, and frequency control, vol. 64, no. 4, pp. 648–659, 2017. DOI: 10.1109/TUFFC.2017.2651498.

[32] G. Gurun, C. Tekes, J. Zahorian, T. Xu, S. Satir, M. Karaman, J. Hasler, and F. L. Degertekin, “Single-chip
CMUT-on-CMOS front-end system for real-time volumetric IVUS and ICE imaging”, IEEE transactions
on ultrasonics, ferroelectrics, and frequency control, vol. 61, no. 2, pp. 239–250, 2014. DOI: 10.1109/
TUFFC.2014.6722610.

[33] Y. Hopf, B. Ossenkoppele, M. Soozande, E. Noothout, Z.-Y. Chang, C. Chen, H. Vos, H. Bosch, M. Ver-
weij, et al., “A Pitch-Matched ASIC with Integrated 65V TX and Shared Hybrid Beamforming ADC for

https://doi.org/doi.org/10.1016/j.hrthm.2010.12.034
https://doi.org/10.1073/pnas.1011688108
https://doi.org/10.1088/0031-9155/56/22/F01
https://doi.org/10.1088/0031-9155/57/4/1095
https://doi.org/10.1088/0031-9155/61/22/8105
https://doi.org/doi.org/10.1016/j.compbiomed.2019.103382
https://doi.org/doi.org/10.1016/j.compbiomed.2019.103382
https://doi.org/10.1109/TUFFC.2016.2615602
https://doi.org/doi.org/10.1093/ehjci/jet047
https://doi.org/doi.org/10.1093/ehjci/jet047
https://doi.org/10.1016/j.jcin.2021.07.024
https://doi.org/10.1109/TUFFC.2009.1067
https://doi.org/10.1109/TUFFC.2009.1067
https://doi.org/10.1109/TUFFC.2016.2616172
https://doi.org/10.1109/JSSC.2018.2864295
https://doi.org/10.1016/j.ultrasmedbio.2018.05.017
https://doi.org/10.1109/TUFFC.2017.2651498
https://doi.org/10.1109/TUFFC.2014.6722610
https://doi.org/10.1109/TUFFC.2014.6722610


REFERENCES

2

39

Catheter-Based High-Frame-Rate 3D Ultrasound Probes”, in 2022 IEEE International Solid- State Cir-
cuits Conference (ISSCC), vol. 65, 2022, pp. 494–496. DOI: 10.1109/ISSCC42614.2022.9731597.

[34] W. Lee, S. F. Idriss, P. D. Wolf, and S. W. Smith, “A miniaturized catheter 2-D array for real-time, 3-D
intracardiac echocardiography”, IEEE transactions on ultrasonics, ferroelectrics, and frequency control,
vol. 51, no. 10, pp. 1334–1346, 2004. DOI: 10.1109/TUFFC.2004.1350962.

[35] T. Hergum, T. Bjastad, K. Kristoffersen, and H. Torp, “Parallel beamforming using synthetic transmit
beams”, IEEE transactions on ultrasonics, ferroelectrics, and frequency control, vol. 54, no. 2, pp. 271–
280, 2007. DOI: 10.1109/TUFFC.2007.241.

[36] Y. Zhang, Y. Guo, and W.-N. Lee, “Ultrafast ultrasound imaging using combined transmissions with
cross-coherence-based reconstruction”, IEEE Transactions on Medical Imaging, vol. 37, no. 2, pp. 337–
348, 2017. DOI: 10.1109/TMI.2017.2736423.

[37] J. Jensen, “Field: A program for simulating ultrasound systems”, in 10th Nordic-Baltic Conference on
Biomedical Imaging, vol. 34, Supple, 1996, pp. 351–353.

[38] M. Van Wijk and J. Thijssen, “Performance testing of medical ultrasound equipment: fundamental vs.
harmonic mode”, Ultrasonics, vol. 40, no. 1-8, pp. 585–591, 2002. DOI: 10.1016/S0041- 624X(02)
00177-4.

[39] A. Rodriguez-Molares, J. Avdal, H. Torp, and L. Løvstakken, “Axial lobes in coherent plane-wave com-
pounding”, in 2016 IEEE International Ultrasonics Symposium (IUS), IEEE, 2016, pp. 1–4. DOI: 10.
1109/ULTSYM.2016.7728520.

[40] Q. Liu, C. Chen, Z. Chang, C. Prins, and M. A. P. Pertijs, “A mixed-signal multiplexing system for cable-
count reduction in ultrasound probes”, in 2015 IEEE International Ultrasonics Symposium (IUS), IEEE,
2015, pp. 1–4. DOI: 10.1109/ULTSYM.2015.0141.

[41] Z. Chen, M. Soozande, H. J. Vos, J. G. Bosch, M. D. Verweij, N. de Jong, and M. A. P. Pertijs, “Impact
of Bit Errors in Digitized RF Data on Ultrasound Image Quality”, IEEE Transactions on Ultrasonics,
Ferroelectrics, and Frequency Control, vol. 67, no. 1, pp. 13–24, 2019. DOI: 10.1109/TUFFC.2019.
2937462.

https://doi.org/10.1109/ISSCC42614.2022.9731597
https://doi.org/10.1109/TUFFC.2004.1350962
https://doi.org/10.1109/TUFFC.2007.241
https://doi.org/10.1109/TMI.2017.2736423
https://doi.org/10.1016/S0041-624X(02)00177-4
https://doi.org/10.1016/S0041-624X(02)00177-4
https://doi.org/10.1109/ULTSYM.2016.7728520
https://doi.org/10.1109/ULTSYM.2016.7728520
https://doi.org/10.1109/ULTSYM.2015.0141
https://doi.org/10.1109/TUFFC.2019.2937462
https://doi.org/10.1109/TUFFC.2019.2937462




3
AN 8 X 9 PZT MATRIX

TRANSDUCER WITH

PITCH-MATCHED TRANSCEIVER

ASIC FOR HIGH-FRAME-RATE 3D
INTRACARDIAC

ECHOCARDIOGRAPHY

This chapter is based on the publication:
Yannick M. Hopf, Boudewine W. Ossenkoppele, Mehdi Soozande, Emile Noothout, Zu-Yao Chang, Chao
Chen, Hendrik J. Vos, Johan G. Bosch, Martin D. Verweij, Nico de Jong, Michiel A. P. Pertijs, A Pitch-Matched
Transceiver ASIC With Shared Hybrid Beamforming ADC for High-Frame-Rate 3-D Intracardiac Echocardiog-
raphy, IEEE Journal of Solid-State Circuits, vol. 57, no. 11, pp. 3228- 3242, 2022.

41



3

42 3. AN 8 X 9 MATRIX TRANSDUCER WITH TRANSCEIVER ASIC FOR HFR 3D-ICE

In this chapter, a prototype PZT matrix transducer with application-specific integrated
circuit (ASIC) for 3-D, high-frame-rate ultrasound imaging is presented. The design is
the first to combine element-level, high-voltage (HV) transmitters and analog front-ends,
subarray beamforming, and in-probe digitization in a scalable fashion for catheter-based
probes. The integration challenge is met by a hybrid analog-to-digital converter (ADC),
combining an efficient charge-sharing successive approximation register (SAR) first stage
and a compact single-slope (SS) second stage. Application in large ultrasound imaging
arrays is facilitated by directly interfacing the ADC with a charge-domain subarray beam-
former, locally calibrating interstage gain errors and generating the SAR reference using a
power-efficient local reference generator. Additional hardware-sharing between neighbor-
ing channels ultimately leads to the lowest reported area and power consumption across
miniature ultrasound probe ADCs. A pitch-matched design is further enabled by an effi-
cient split between the core circuitry and a periphery block, the latter including a datalink
performing clock data recovery (CDR) and time-division multiplexing (TDM), which leads
to a 12-fold total channel count reduction. A prototype of 8 x 9 elements was fabricated
in a TSMC 0.18- µm HV BCD technology and a 2-D PZT transducer matrix with a pitch
of 160 µm , and a center frequency of 6 MHz was manufactured on the chip. The imaging
device operates at up to 1000 volumes/s, generates 65-V transmit pulses, and has a receive
power consumption of only 1.23 mW/element. The functionality has been demonstrated
electrically as well as in acoustic and imaging experiments.
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3.1. INTRODUCTION
Several cardiovascular conditions can be addressed using minimally invasive interven-
tions, including the treatment of cardiac arrhythmia through electrophysiology and catheter
ablation, trans-catheter valve replacement, closure of atrial septal defects, and occlusion
of the left atrial appendage [1, 2]. Real-time guidance of these interventions is tradition-
ally achieved through fluoroscopy. However, this is associated with a low resolution of
soft tissue and exposure of the patient and the physician to harmful ionizing radiation
[3].

Ultrasound imaging can alleviate these disadvantages. But simply obtaining images
of the heart from outside the body with a hand-held probe, in a so-called transthoracic
echocardiogram (TTE), suffers from a limited acoustic window through the chest and
requires a dedicated operator [4]. It is possible to obtain unobstructed, high-resolution
ultrasound images from within the body by imaging from the esophagus in a trans-
esophageal echocardiography (TEE) procedure or from within the heart in an intracar-
diac echocardiography (ICE) procedure [5]. The latter can often work on the same local
anesthesia as the actual intervention as opposed to the, more risky, general anesthesia
required for working from the esophagus. This has made ICE one of the most commonly
applied ultrasound tools for minimally invasive cardiac interventions [4].

Until recently, a drawback of ICE probes was their limitation to 2-D images. This
was mostly due to the integration and wiring challenge posed by the larger transducer
matrix that is generally required for 3-D imaging [6]. The probes are limited to a diameter
of around 3 mm to enable accessing the heart through the vascular system, as shown in
an example with entry from the inferior vena cava in Fig. 3.1(a). Within this space, the
transducer array has to be accommodated at the tip and all external connections in the
shaft. To enhance the visualization for the physician, 3-D images were initially created
from either manual [7] or motorized [8] rotation of 1-D transducer arrays, sacrificing
real-time imaging capability or resulting in very low frame rates. In [9], a helical 1-D
array was applied instead, enabling 3-D imaging at higher frame rates at the cost of a
limited elevation opening angle of just 22◦. The class of forward-looking, ring-shaped
probes [10], [11] showed a similar issue in being able to provide 3-D images but only for
a small volume ahead of the device and therefore not being applicable for the full range
of procedures. A way to achieve a sufficient field of view and imaging rate is provided
with the advanced integration of 2-D transducer arrays in the catheter tip. However, the
problem is that for individual connection from each transducer element to an imaging
system outside the body, the interconnect becomes limiting to the array size, resulting
in insufficient image quality [12–14].

Subarray beamforming has recently been investigated as an approach to interface
large arrays, such as the approximately 1000 elements of a typical 3-D ICE device [6, 15].
The method shifts part of the receive beamforming, usually applied in the imaging sys-
tem, into the catheter in the form of delay-and-sum operations on the received signals
of a subarray [16]. This effectively reduces the number of connections needed inside
the catheter shaft as only the combined signal is transmitted. However, it does not pro-
vide the raw data of the full array and introduces focusing errors [17]. These result in
increased grating and sidelobe levels as well as broadening of the main beam, all nega-
tively impacting image quality. Narrower transmit beams can be used to mitigate these



3

44 3. AN 8 X 9 MATRIX TRANSDUCER WITH TRANSCEIVER ASIC FOR HFR 3D-ICE

~ 3 mm diameterICE probe 1 - 2 m cable

8 x 9 
array

steered 
beam

Received
Echoes

TX

TX steering

T/R 
switch

HV

delay 1
2

3

Attenuation 
Compensated

Receive-
beamformed

0101
0010
1011
0110

To Digital 
Processing

ADC

attenuation delay

Subarray

TX

TX

TX
 C

on
tro

l

µBF

a) c)

AFE

AFE

AFE

b)

Figure 3.1: (a) Example of an ICE procedure with catheter entry from the inferior vena cava and imaging of the
left ventricle from the right atrium. (b) Transducer matrix array integration overview. (c) Schematic of a 1x3
-element subarray including transmit (TX) and receive circuitry.

effects but require more acquisitions per volume, ultimately leading to a trade-off be-
tween subarray size, with related channel count reduction, and achievable frame rate
[18].

A reduction in frame rate leads to worse motion tracking and can prevent the use
of upcoming imaging modes like high-frame-rate blood flow or electromechanical wave
imaging [19], which offer more diagnostic potential to physicians but require about 1000
volumes/s. A method to manage the impact on frame rate while still offering cable count
reduction is provided by multiplexing multiple channels onto one cable in analog or dig-
ital form. Analog multiplexing has been demonstrated in the time [20, 21] and frequency
[22] domains but is constrained by the limited bandwidth across the commonly applied
micro-coaxial cables and suffers from channel-to-channel crosstalk [23]. Digital time-
domain multiplexing (TDM), on the other hand, has been shown to benefit from better
tolerance to crosstalk, interference, and noise [15]. The availability of digital receive sig-
nals in the catheter moreover opens the possibility for future cointegration with emerg-
ing image processing such as data reduction with machine-learned compression [24, 25]
or adaptive beamforming [26]. A major benefit of multiplexing lies in the compatibility
with subarray beamforming, as has been shown in digital beamforming of element-level
signals [27–29] and analog beamforming with subsequent digitization and TDM [29–31].
While the former requires an analog-to-digital converter (ADC) per element, the subar-
ray area available for the latter makes the scheme more feasible for large arrays.

Both ways, current digital ICE probe designs still suffer from large ADCs. This ex-
presses itself in the reported designs not being able to match the element-level circuitry
to the transducer pitch [28, 31], a requirement for a scalable system, or the associated
silicon area requirement making cointegration with adequate transmit circuitry impos-
sible [15, 32, 33]. These transmitters need to excite the transducer elements with high-
voltage (HV) pulses to obtain sufficient signal-to-noise ratio (SNR) for around 10-cm
imaging depth, requiring the use of HV transistors with large isolation rings [6].

A scalable application-specific integrated circuit (ASIC) with a cointegrated 160µm x
160µm transducer array is presented [34]. While [15] has already shown a large channel
count reduction through the combination of subarray beamforming and digital TDM
with a beamforming ADC, the presented converter was too big to be able to include
transmitters. Moreover, its associated subarray size of 3x3 elements precludes frame



3.2. SYSTEM DESIGN

3

45

rates on the order of 1000 volumes/s. To address these issues, this chapter presents a
novel hybrid beamforming ADC, consisting of an efficient charge-sharing successive ap-
proximation register (SAR) first stage and a compact single-slope (SS) second stage. The
ADC architecture achieves the smallest reported power consumption and area among
miniature ultrasound probe ADCs, enabling a subarray size of only 1x3 elements and
thereby pushing the maximum frame rate to the targeted 1000 volumes/s. Moreover, it
allows for the integration of per-element 65 V transmitters [35] and front-ends, analog
subarray beamformers, and digitization in a pitch-matched fashion. The system has a
12-fold data channel count reduction, resulting in 96 data channels for the envisioned
full system [17]. In a trade-off between the available circuit area and the achievable
image quality, the transducer pitch was chosen just above the half-wavelength margin.
The resulting grating lobe artifacts stay below an acceptable level [17] and can be fur-
ther reduced through coherent compounding of subvolume acquisitions [36] and po-
tentially further mitigated through recently shown machine-learning-based image pro-
cessing techniques [37, 38].

3.2. SYSTEM DESIGN

3.2.1. OVERVIEW
An overview of the conceptual system, showing common techniques in ultrasound imag-
ing applied in this design, is given in Fig. 3.1(c). Each transducer element is used for
the transmission (TX) of pressure waves and the subsequent reception (RX) of echoes,
generated by reflectors in the imaged medium, in a pulse-echo (PE) cycle. The shared el-
ement usage between TX and RX maximizes the achievable aperture in size-constrained
probes, as displayed in Fig. 3.1(b).

During the TX phase, HV pulsers are driving the transducer elements based on the
inputs from a TX controller. The controller applies delays to achieve TX beam steering,
forming diverging waves to scan the whole volume with a small number of transmis-
sions. To protect the low-voltage (LV) RX circuits from HV operation of the transmitter, a
transmit/receive (T/R) switch is placed between the two sections of the design.

Once the transmission is completed, the switch closes and a readout circuit can ac-
cess the transducer. A common issue in ultrasound imaging systems is the large dynamic
range (DR) accumulated by propagation in an exponentially attenuating medium. The
attenuation A , in dB, is proportional to the distance z , the attenuation coefficient α,
and, for heart tissue, approximately the frequency f [39]

A = 2 · z · f ·α (3.1)

The imaging frequency has to be determined based on a trade-off between the axial
resolution and the imaging depth and is in this design set to 6 MHz with a depth of 10 cm
[17]. Combined with an attenuation coefficient of about 0.5 dB/MHz/cm for heart tissue
[39], the attenuation could reach 60 dB. Considering an instantaneous DR of 40 dB, the
total DR can therefore reach 100 dB. As not all that range is of interest throughout an RX
period and the attenuation is time-dependent, the DR to be handled by the RX circuits
can, however, be reduced by a procedure called time gain compensation (TGC). This
is achieved by giving the analog front-end a variable gain that can be adjusted during
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Figure 3.2: Conceptual sketch of the transducer stack.

one PE cycle, giving equally strong reflectors at different distances from the transmitter
a similar output and easing the design requirements for the following circuitry [40].

The received signals from each channel in the device are combined in a beamform-
ing operation to reconstruct the information of each voxel in the imaged volume. An
SNR gain of

p
N for N elements in the beamformer is possible if the system SNR is lim-

ited by uncorrelated noise and can aid in the design for a large DR. To reduce the number
of connections from the probe to a beamforming system, part of the reconstruction can
already be performed in the probe per subarray. This subarray beamforming, also re-
ferred to as micro-beamforming (µBF ), applies delay-and-sum operations to individual
signals of a subarray, effectively steering the RX beam to target the previously insonified
area [16]. The combined signals can then be digitized for further local processing and
sent to an imaging system.

An overview of the cointegration of the ASIC and a bulk piezoelectric PZT transducer
matrix array is given in Fig. 3.1(b). The 160 µm pitch stack is an optimized version of
what has been presented in [41] and gets manufactured directly on the surface of ASIC.
It connects to exposed top metal pads on one side and a shared aluminum ground foil
on the other side, as shown in Fig. 3.2. The 8x9 -element assembly serves as a proto-
type with an architecture and layout design suitable for scaling to a full array of 64x18
elements [17]. While the prototype has a reduced aperture, it is already tailored toward
the intended imaging scheme of acquiring a 70◦x70◦x10 cm volume in front of the trans-
ducer matrix at a frame rate of 1000 volumes/s. Given an imaging depth z of 10 cm
and the speed of sound c of 1540 m/s in tissue, a maximum pulse repetition frequency
(PRF ) = c/(2z) of 7.7 kHz can be reached. This provides seven PE cycles for the forma-
tion of each volumetric image at a rate of 1000 volumes/s. To optimize their usage toward
the best image quality, the beam profile and subarray receive beamformer size are de-
termined in a trade-off with the required channel count reduction and necessary circuit
area. This work applies seven transmit beams of 70◦ divergence in the azimuth direction
and 10.7◦ divergence in the elevation direction in a sweep of the elevation steering angle
to cover the full 70◦x70◦x10 cm volume. In receive, subarrays of three elements along the
elevation direction are applied which presteer the received signal in the same direction
as the transmit beams [17].
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3.2.2. ARCHITECTURE

The implemented system architecture of the prototype is shown in Fig. 3.3. Each trans-
ducer element’s bottom plate is connected to an individual pulser and a variable-gain
analog front-end (AFE), implementing TGC. The TX part is realized as a unipolar, 65-V
design with a pull-up and a pull-down path provided by DMOS transistors. To facilitate
test modes and reduce the complexity, the TX control signals are provided externally per
row, with an area reserved for an integrated TX controller in a future version. A single LV
transistor, protected against voltage breakdown by the HV NMOS of the pulser, enables
T/R switching to the input of a low-noise amplifier (LNA) [42] in the receive phase [35].
LNA is configurable to a voltage gain between -12 and 24 dB at a step size of 18 dB and,
together with the second-stage programmable gain amplifier (PGA) that provides 6-24
dB at a step size of 6 dB, achieves a total variable gain between -6 and 48 dB at a step size
of 6 dB [15]. In each PE cycle, the gain is gradually switched from the lowest to the highest
gain setting to first grant sufficient linearity for the initially received strong echoes and
later enough gain to detect strongly attenuated echoes out of the noise floor. The PGA is
a voltage amplifier with a compact T-type capacitive feedback network [43], configured
for quick settling after switching the gain during active operation. To provide rejection
of common interference in the following signal chain, it converts the single-ended signal
into a differential output.

The outputs of three element-level circuits are merged in a 1x3 -element subarray
beamformer, of which two are combined in a 2x3 -element subgroup. Each subgroup
shares a hybrid SAR/SS ADC structure that separately digitizes the two channels at 24
MS/s with a resolution of 10 bits each. The outputs of two subgroups are received by
a periphery-level block, providing a datalink to process the received data and applying
TDM onto an LV differential signal (LVDS) driver to transfer the data to an OFF-chip field-
programmable gate array (FPGA). Each periphery block serves a 4x3 matrix of elements,
and six of these are arranged to form the prototype of 8x9 elements. A total channel
count reduction of 12 is implemented by the subarray beamformer size of 3 and TDM of
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the digital outputs of four subarrays onto one channel.

3.2.3. HYBRID ADC
To cover the discussed DR of up to 100 dB, a 10-bit resolution is chosen to comple-
ment the 54-dB TGC and

p
N beamforming gain. The sampling frequency should be

at least four times higher than the frequency of the transducer to maintain an accept-
able sidelobe level [44], leading to a 24-MHz sampling rate for the 6-MHz device. For
similar specifications, SAR ADCs have been shown to be an effective solution due to
their high efficiency and Nyquist rate sampling [45]. Similar to [15], SAR conversion
is performed in the charge domain to benefit from direct integration with a subarray
beamformer into a beamforming ADC. However, this design uses a capacitive digital-
to-analog converter (CDAC) with metal-oxide-semiconductor capacitors (MOSCAPs).
While their voltage-dependent capacitance excludes them from use in charge redistribu-
tion ADCs, in charge-sharing topologies MOSCAPs reduce area through high integration
density and improve comparator offset as well as noise tolerance [46].

One drawback of SAR ADCs in general is the exponential increase in CDAC size per
added bit of resolution in the binary search algorithm. This can be alleviated by means
of combination with a slope ADC that digitizes the residual of an SAR first stage in a
hybrid converter [33, 47]. A slope ADC can be compact but suffers in efficiency when
converting with a high resolution and sampling rate. In the following, the architecture
of a hybrid SAR/SS beamforming ADC operating in the charge domain is presented. An
optimal split between the two stages is found in a 6-bit SAR and a 5-bit SS conversion
with one bit of redundancy between them. This considers the required size reduction
in SAR stage and added complexity to the slope stage of the design. To benefit from the
reduction in CDAC size, the gained area must outweigh that of the added SS blocks. As
the unit capacitor of CDAC is still sized for 10-bit linearity, this is mainly achieved by
enabling a CDAC size that is actually linearity-limited, good MOSCAP matching, and the
overhead reduction due to a reduced number of unit capacitors.



3.2. SYSTEM DESIGN

3

49

Ring
Counter

ADCRDYCx

RST
SRDx[5:0]

del

S
R

RST

6

SWR0[5:0]

ANG

Ring
Counter

SWR2[5:0]

del

Ring
Counter

SWR1[5:0]

del

Ring
Counter

SWR0[5:0]
TRG

ANG
____
TRG

RST
ANG

Shared in Subgroup

b)

a)

0

SWR2

SWR1

SWR0

SRDx

RST
ANG

1 2 3 4 5 0 0 1 2 3 4 5 0 1 2 3

0 1 2 3 4 5 0 1 2 3 4

0 1 22 3 4 5

5 5

0 1 2 33 4 5

2 3 4 5 0 1

3 4 5 0

-30° +30°

1

4
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The ADC is interfacing with the subarray beamformer as shown in Fig. 3.4, avoid-
ing the need for an additional high-bandwidth buffer compared with converters with
conventional sampling [33, 47]. The delaying of the received signals is implemented by
means of capacitive sample-and-hold (S/H) cells, similar to [48]. The summation of the
delayed signals can then be achieved passively by switching the right cells together at
the input of the ADC, as in [15]. In contrast to [15], the control logic of the subarray
beamformer, as shown in Fig. 3.5(a), can also provide delay quantization independent
of the sampling frequency. This is enabled by separate read and write pointers, SRDx
and SWRx. The former is advancing based on completed ADC conversion cycles, AD-
CRDYC, while the latter advances based on an adjustable input trigger, in this case a lo-
cally generated 24-MHz signal and its 180◦-phase-shifted version, TRG and T RG . While
each ADC requires its own read pointer, the write pointers can be shared between mul-
tiple channels. The pointers are realized as ring counters, and different steering angles,
determined by ANG, can be realized by delaying the reset signal between the pointers.
An area-efficient implementation of this delay is achieved by reusing the pointer of one
AFE, AFE0, as the reference counter for the delay. Based on ANG, this can be used to
implement the delay with a simple multiplexer and a compact set-reset (SR) latch. The
resulting S/H-cell switching patterns are shown for a maximum positive and negative
steering angle in Fig. 3.5(b). A delay resolution of 20.8 ns is achieved with a range up to
125.0 ns, offering steering capability of the axis of the beam in a ±30◦ window.

Following the subarray beamformer, the combined charge can be quantized through
the positive or negative connection of binary-scaled units of a precharged CDAC and
detection of the polarity with a discrete-time comparator (DTC). After this SAR conver-
sion, the possible residual charge range between nodes VPx and VNx has been reduced
to least significant bits (LSBs) and can thereafter be digitized by applying a differential
slope with compact current sources on the same nodes. To have the redundant range be-
tween the two stages work for positive and negative decision errors in SAR conversion,
part of CDAC is switched after the first phase to implement a level shift, placing the SAR
residual in the middle of the SS conversion range. As long as the residual is not contami-
nated and they are within the redundant range, all the SAR decision errors, such as DTC
noise, CDAC settling errors, and mismatch between the SAR and SS comparator offset,
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can be covered.

High area efficiency is achieved by hardware-sharing between two neighboring sub-
arrays, forming one shared ADC structure. The two phases of the conversion are exe-
cuted in two periods of a 48-MHz clock, twice as high as the ADC sample rate, and while
the first subarray performs SAR conversion, the second applies the slope and vice versa.
In this fashion, the SAR reference precharger and the slope generator can be shared, and
a drawback that is typically introduced in the hybrid architecture can be mitigated: Usu-
ally, the combination of an SAR and an SS stage requires the introduction of an asyn-
chronous DTC for an efficient SAR part and a continuous-time comparator (CTC) to
avoid a high-frequency comparator clock for SS [33, 47]. While this is still the case, they
can be shared between the two subarrays with the addition of a small preamplifier that
provides isolation and serves as part of both comparisons. Another benefit of hardware-
sharing is that SAR CDAC can be switched out and slowly precharged during slope con-
version. Compared to designs with conventional references [33, 47], this allows for the
use of a low-bandwidth reference with a constant current drawn from the supply. More-
over, it does not require an additional CDAC used for ping-pong operation as in [15]. To
further facilitate application in large imager arrays, critical nodes in the circuit, including
SAR reference, slope generator, and DTC offset, are calibrated against mismatch.

As in ultrasound probes, the area underneath the transducer matrix is typically very
limited to achieve a scalable, pitch-matched design but there is more space available at
the periphery [32, 40, 48], and the received signals are brought out of the core as soon
as they are quantized. This applies to return-to-zero (RZ), asynchronous SAR outputs,
SARP and SARN, which are gated versions of the DTC outputs, DP and DN, and the SS
outputs, SSP and SSN. The SAR and SS outputs of both the converted channels are each
carried on one connection to the periphery and correctly merged there to minimize the
interconnect space. As the key enabling block of the system, the implementation of the
shared hybrid ADC structure is further detailed in [49].

3.2.4. DATALINK

An overview of the datalink is shown following Fig. 3.6. The SAR and SS outputs of two
shared ADC structures, serving 12 elements in total, are captured on the periphery by
separate receivers. The SAR receiver recovers the SAR output data, as well as a clock that
can be used to sample the data in the following stage, directly from the asynchronous
RZ SAR output [15]. The SS receiver, on the other hand, converts the differential time-
domain output of the SS into a short pulse. This pulse is used to latch the output of a
delay locked loop (DLL) that divides the 48-MHz clock period into 32 segments, corre-
sponding to a 5-bit word. As the SS comparison in the core is based on the same time
reference, this word is an accurate representation of the second-stage ADC output. The
resulting 32-bit word is then converted from a thermal into a binary code to simplify
further processing and can be sampled with the same pulse as the latch array. The asyn-
chronous SAR and SS data can subsequently be synchronized to the periphery clock by
dual-clock first-in, first-out (FIFO) memories. To reduce the final data bandwidth to the
imaging system, the recombination block merges the 6-bit SAR and 5-bit SS codes into
the actual 10-bit output code of the ADC. This is done by summing both the parts and
removing the redundancy introduced between the two stages in the following manner
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Figure 3.6: Datalink block diagram showing processing of the outputs of four ADCs and the clocking scheme
shared across ASIC.

[47]:

SAR
SS

Combined

1 0 0 1 0 1 −1
+ 1 0 1 0 1

1 0 0 1 0 1 1 1 0 1

The subtraction of the redundancy is implemented with the two’s complement. The
outputs of two recombiners are subsequently merged through TDM, realized by arrang-
ing two 10-bit words at 48 MHz to 8-bit words at 120 MHz. The following structures are
based on [15] and first apply 8b10b-encoding to enable a standard transmission pro-
tocol [50]. The 10-bit output words are then serialized to a 1.2-Gbps output stream to
the conventional LVDS drivers with timing provided by a DLL. Both the DLLs are based
on [51], shared among the whole ASIC and operate on a single 240-MHz system clock
provided from an FPGA. A 120-MHz clock is generated locally at the periphery for the
encoder and TDM, while a 48-MHz clock provides the timing for all core circuitry and
data reconstruction on the periphery. While a balanced clock distribution in the core is
required as a time reference for the generation of the intended RX and TX beams, the
48-MHz clock phase of the core does not need to be precisely matched to that of the
periphery as only the clock period is relevant for clock data recovery (CDR).

3.3. EXPERIMENTAL RESULTS
The reported design has been fabricated in a 0.18-µm HV BCD process with an active
area of about 1.8 mm 2 for the 8x9 -element core and about 0.8 mm 2 for the periphery
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Figure 3.7: (a) Micrograph of the chip including transducer matrix array with magnifications of the core and
subgroup areas. (b) Distribution of receive power and area per subgroup of 3x2 elements.

circuitry. A chip with a prototype transducer array manufactured on its surface is shown
in Fig. 3.7(a).

It measures 5x5 mm2 to ease the prototype transducer manufacturing and includes
two rings of dummy transducers to reduce edge effects of the small array. The array is
designed to have a center frequency of 6 MHz and a fractional bandwidth in the order
of 50%. A magnification shows the pitch-matched floor plan of a 3x2 -element subgroup
consisting of element-level pulsers, two 3x1 -element subarray beamformers, and two
hardware-sharing ADCs. The transmit circuits operate from a 65-V HV supply, a 5-V sup-
ply to drive the pulser transistors, and a 1.8-V supply for logic-level control. All receive
circuitry is powered from a 1.8-V supply with the addition of a 1.2-V supply for DLL de-
lay cells and a 2.3-V supply for SAR reference. An overview of the area and receive power
distribution per subgroup is given in Fig. 3.7(b). Due to area-intense HV isolation, the
pulser circuits (TX) occupy the largest part of the subgroup area with 31%, while the hy-
brid ADCs cover only 13% of the space and consume about as much power as the analog
front-end. As the TX operation has a very small duty cycle, the total power consumption
is dominated by the receiver, with 0.65 mW/element in the core and 1.23 mW/element
including the datalink and LVDS drivers.

Electrical and acoustic experiments have been conducted. The chips are wire-bonded
to separate daughter boards, and samples for electrical characterization have additional
wire bonds to connect transducer pads to PCB while acoustic samples have a cointe-
grated transducer array. All the daughter boards are mounted on a common, custom
mother board that is connected to a commercial FPGA [52]. The measurements are con-
ducted by observing the ADC outputs as provided through the datalink, received by the
FPGA and forwarded to a PC. Characterization of the TX part has previously been shown
in [35] and is not covered in this section.
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3.3.1. ELECTRICAL MEASUREMENTS
The characterization of the receive transfer function shown in Fig. 3.8 is obtained by
providing sinusoidal inputs of varying frequencies to the transducer pads from a wave-
form generator and referring the ADC output to the output of AFE. The circuit shows the
expected mid-band gain range of 54 dB in ten steps from -6 to 48 dB with an 8.1-MHz
cut-off frequency in the highest gain setting. The difference among the gain steps in
low-frequency roll-off is caused by the feedback configuration and does not affect the
imaging as the output is filtered around the center frequency of the transducer.
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Figure 3.8: Receive transfer function measured across frequency for all the gain settings of the analog front-
end.
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Fig. 3.9(b) shows the time-domain recording of an ADC output code with an expo-
nentially decaying 6-MHz sinusoidal signal provided at the input of the analog front-end.
By switching through the ten gain settings of the analog front-end, the output amplitude
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can be kept within the observable range, verifying functional time-gain compensation
within one receive period, with a small settling time after gain switching. Combined
with the ability to operate at the intended PRF of 7.7 kHz, corresponding to a pulse rep-
etition interval (PRI) of 130µs , as demonstrated in Fig. 3.9(a), this verifies that the chip
enables recording of the full imaging depth at the targeted frame rate.

The peak ADC output power spectral density is shown in Fig. 3.10, measured with a
5.95 MHz sinusoidal signal from a waveform generator. As the waveform is provided at
the analog front-end input, the whole receive path is characterized to a peak SNR of 52.3
dB, with a folded -35 dB third harmonic and -62 dB fifth harmonic from the PGA output
stage in an 80% bandwidth around the transducer center frequency.
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A test mode in which the ADC output of one channel can be read without recombina-
tion of the SAR and slope output data is used to follow the ADC calibration procedures.
The global starting potentials for SAR and slope reference can be individually set in a re-
set state and are prior to this test placed away from the final settling points. Fig. 3.11(a)
shows how the SAR and slope local calibration nodes converge to the final values at the
example of the bottom-right and bottom-left output codes of the SAR and slope stage
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(see [35] for detailed explanation of the calibration). The SAR algorithm tries to fully re-
duce a full-scale input, leading to a settled value at an output code of zero. The slope
algorithm, on the other hand, adjusts the slope current to detect the zero-crossing of
a full-scale slope stage input just at the end of the associated time interval and there-
fore settles around the maximum slope output code. An overview of the combined SAR
and slope calibration time until a settled state is reached from the same starting point is
shown per shared ADC structure in Fig. 3.11(b), giving an indication of the channel-to-
channel mismatch.
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Figure 3.12: Interference test showing the power spectral densities of both the outputs of one shared ADC
structure with concurrent 1-MHz and 2.25-MHz inputs.

To investigate how the high integration density and hardware-sharing within each
subgroup and at the periphery affect the crosstalk between channels, an electrical mea-
surement, studying the outputs of the two cointegrated subgroup ADCs, is performed.
Their inputs can be accessed separately and are concurrently driven by two outputs of
a waveform generator, in this example at 1.00 and 2.25 MHz. The corresponding output
spectra of the two ADCs are both plotted in Fig. 3.12 and show no significant tones at
the fundamental or harmonic frequencies of the other channel. This implies that a cir-
cuit crosstalk better than -75 dBc is achieved and that other sources such as mechanical
crosstalk in the transducer array should be dominant.

Table 3.1: Prior Art Comparison in Miniature Ultrasound Probe ADCs
This work JSSC’21 [32] VLSI’19 [33] JSSC’18 [15]

Architecture SAR & SS SAR SAR & SS SAR
Resolution 10 bit 10 bit 10 bit 10 bit

Sample Rate 24 MHz 20 MHz 30 MHz 30 MHz
Low BW Driver ✓ ✗ ✗ ✓

Reference Included ✓ ✗ ✗ ✓

Area ∗ 0.010 mm2 0.026 mm2 0.013 mm2 0.046 mm2

Power ∗ 0.82 mW 1.23 mW 1.14 mW 1.42 mW

∗ Per subarray

Table 3.1 summarizes the performance of the hybrid ADC and gives a comparison to
the state-of-the-art. In contrast to general-purpose converters, this design implements
several application-oriented features such as direct integration with a subarray beam-
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former, allowing for a low-bandwidth ADC driver and including a low-bandwidth SAR
reference. Therefore, Table 3.1 shows comparison of the design with prior ADC designs
targeting miniature ultrasound probes. Set against the most comparable design [15], the
ADC occupies more than 4x less area and consumes more than 1.5x less power. Even in
comparison to the more general designs [32, 33], the efficient architecture enables the
lowest reported area and power consumption.

3.3.2. ACOUSTIS MEASUREMENTS
An overview of the acoustic measurement setup is given in Fig. 3.13(a). All the acous-
tic measurements are obtained with the daughter board and ASIC with the transducer
array directly interfacing with a watertank. Fig. 3.14 shows the input-referred voltage
noise spectral density in the highest gain setting with the transducer elements loaded by
water. Two tones appear in the spectrum at fs /6 and its second harmonic, fs , being
the sampling frequency of the ADC. These are generated by mismatch of the subarray
beamforming cells and can be removed by recording and subtracting the static pattern
as shown. The input-referred voltage noise density is 12.7 nV/

p
Hz at 6 MHz, around

5 nV/
p

Hz higher than what the electronics are designed for, with the difference being
attributed to the thermal noise of the transducer.

Mother
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Figure 3.13: (a) Overview of the acoustic measurement setup. (b) Inset showing watertank with external trans-
ducer. (c) Imaging experiment details.

Fig. 3.15 displays a sweep of the transducer surface peak pressure with measured
ADC output for all gain settings, used to characterize the DR of the receive path. The
pressure waves are generated from an external commercial transducer [53] connected
to a waveform generator that transmits sinusoidal waves at 5.5 MHz as shown in Fig.
3.13(b). The displayed surface pressure is calibrated with a commercial hydrophone [54]
with known sensitivity in the place of ASIC before the measurement. A total DR of 91 dB
is recorded between the 0-dB SNR point of the highest and the 1-dB compression point
of the lowest gain setting.

An overview of the measurement setup used for imaging experiments is given in Fig.
3.13(c). A phantom of three needles with a total spacing of 7 mm is immersed in a wa-
tertank about 13 mm from an acoustic window used to interface with a daughter board
carrying a chip with cointegrated transducers. Cables with a length of 1 m connect the
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Table 3.2: Comparison with the prior art in catheter-based ultrasound imagers
This
work

JSSC’21
[32]

JSSC’20
[40]

VLSI’19
[33]

JSSC’18
[15]

TUFFC’16
[6]

Technology 180nm
BCD

180nm 180nm
BCD

180nm 180nm N/A

Transducer 2D PZT 2D
PMUT

1D
CMUT

2D PZT 2D PZT 2D PZT

Array Size 8 × 9 6 × 6 64 4 × 4 6 × 24 60 × 14
Integrated
Trans-
ducer

✓ ✗∗ ✓ ✓ ✓ ✓

Center
Frequency

6 MHz 5 MHz 7 MHz 5 MHz 5 MHz 5.6 MHz

Pitch-
matched

✓ 7‡ ✓ ✓ ✓ ✓

Element
Pitch

160 µm x
160 µm

250 µm x
250 µm

205 µm x
1800 µm

150 µm x
150 µm

150 µm x
150 µm

110 µm x
180 µm

Integrated
TX

✓ ✓ ✗ ✓ ✓ ✗

Receiver
Architec-
ture

AFE +
µBF +
ADC +
Datalink

AFE +
ADC

AFE AFE +
ADC

AFE +
µBF +
ADC +
Datalink

AFE +
µBF

Channel
Reduction

12-fold N/A N/A N/A 36-fold 15 to 20-
fold

Supported
Frame
Rate

1000
vol/s

N/A N/A N/A 200 vol/s 50 vol/s

Active
Area /
Element

0.032
mm2 §

0.063
mm2

0.464
mm2

0.023
mm2

0.026
mm2§

N/A

RX power /
Element

1.23
mW§

1.14 mW 5.2 mW 1.54 mW 0.91
mW§

< 0.12
mW

Input DR 91 dB N/A 82 dB N/A 85 dB N/A
Peak SNR 52.3 dB 57.8 dB ‡ N/A 49.8 dB 52.8 dB N/A
∗ Transducers on separate board connected with wires.
† Scalability limited by transducer connection outside of pitch.
§Including the Datalink and LVDS drivers.
‡ADC only, excluding AFE.
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PCB assembly to an FPGA board that receives the high-bandwidth LVDS data via a moth-
erboard and forward it to a measurement PC that performs the image reconstruction
based on conventional delay-and-sum operations. In seven transmit/receive cycles, the
ASIC first excites 6-MHz pressure waves with 65-V pulses and then records generated
echoes from the phantom with the seven subarray beamformer settings. Fig. 3.16 shows
the resulting image once in an elevation plane in a) and once as a rendered 3-D image
in b). While the aperture is too small to provide the resolution of a full array, the needle
heads can clearly be distinguished in 3-D space, demonstrating the functionality of the
prototype.

A summary of the system characteristics and comparison to the prior art in catheter-
based ultrasound systems [6, 15, 32, 33, 40] is provided in Table 3.2. This work describes
the first design to integrate element-level HV transmitters and analog front-ends, sub-
array beamforming, and in-probe digitization in a scalable fashion for 3-D imaging. A
dedicated architecture enables the highest reported frame rate with a channel count re-
duction sufficient to enable an array with less than 100 data channels in the catheter
when scaled to full size.

3.4. CONCLUSION
A transceiver ASIC combining HV transmission with subarray beamforming and in-probe
digitization for catheter-based 3-D ultrasound probes has been presented. A pitch-matched
design is facilitated by an area- and power-efficient hybrid beamforming ADC tailored
to the application in large imaging arrays. The novel architecture enables a high frame
rate of 1000 volumes/s while also providing sufficient data channel reduction through
subarray beamforming and time-division multiplexing. A prototype with a cointegrated
transducer matrix has been manufactured and successfully applied in a 3-D imaging ex-
periment. Together with competitive power consumption and large DR, the system is a
promising solution for future miniature ultrasound probes.
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This chapter presents the development of an ultrasound matrix transducer prototype for
high-frame-rate three-dimensional (3D) intracardiac echocardiography (ICE). The ma-
trix array consists of 16×18 lead zirconate titanate (PZT) elements with a pitch of 160 µm
× 160 µm built on top of an application-specific integrated circuit (ASIC) that generates
transmission signals and digitizes the received signals. To reduce the number of cables
in the catheter to a feasible number, we implement subarray beamforming and digitiza-
tion in receive and use a combination of time-division multiplexing and pulse amplitude
modulation data transmission , achieving an 18-fold reduction. The proposed imaging
scheme employs seven fan-shaped diverging transmit beams operating at a pulse repeti-
tion frequency of 7.7 kHz to obtain a high frame rate. The performance of the prototype
is characterized and its functionality is fully verified. The transducer exhibits a transmit
efficiency of 28 Pa/V at 5 cm per element and a bandwidth of 60% in transmission. In re-
ceive, a dynamic range of 80 dB is measured with a minimum detectable pressure of 10
Pa per element. The element yield of the prototype is 98%, indicating the efficacy of the
manufacturing process. The transducer is capable of imaging at a frame rate of up to 1000
volumes/s and is intended to cover a volume of 70◦ × 70◦ × 10 cm. These advanced imaging
capabilities have the potential to support complex interventional procedures and enable
full-volumetric flow, tissue, and electro-mechanical wave tracking in the heart.
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4.1. INTRODUCTION
Arrhythmia is an abnormal rhythm of the heart that results from disruptions or irregu-
larities in the electrical signals that regulate the heart’s beating. These disruptions can
cause the heart to beat too fast, too slow, or in an irregular pattern, which can affect the
heart’s ability to pump blood effectively. The most frequently occurring arrhythmia is
atrial fibrillation, which is the major cardiac cause of stroke [1]. According to estimates,
more than 5.6 million people will experience this condition in the United States by 2050
[2], while in the European Union, the number is expected to reach 17.9 million by 2060
[3]. Atrial fibrillation can initially be treated with drugs, but in some cases, catheter ab-
lation may be necessary [4]. Ablation is a procedure that heat, cold, or radiofrequency
waves to create small scars on the heart tissue, disrupting the abnormal electrical signals
responsible for an irregular heartbeat, and restoring the normal rhythm and activation
patterns of the heart [5].

Since the inception of ablation procedures, X-ray fluoroscopy has been employed to
provide guidance due to its large field of view and ability to clearly visualize catheters
and other devices. However, fluoroscopy also has significant disadvantages. First, the
ionizing radiation exposure gives potentially harmful effects on the practitioner and the
patient, hence imaging time is severly limited. Second, fluoroscopy provides limited vi-
sualization of atrial tissues, which can make it difficult to identify and target specific
areas of interest. To overcome this limitation, the practitioner must rely on the combi-
nation of visual landmarks and subtle catheter sensations [6]. However, this approach
can increase the risk of incomplete ablation or damage to surrounding tissues, leading
to complications or the need for additional procedures [7].

As an alternative to relying solely on fluoroscopy, intracardiac ultrasound imaging
can be used in combination with fluoroscopy to provide complementary imaging guid-
ance, leading to improved accuracy and safety during interventional procedures [6].
In intracardiac echocardiography (ICE), a catheter containing a miniature ultrasound
transducer is inserted into the cardiac cavities during the ablation procedure. This en-
ables the practitioner to navigate the ablation catheter and visualize cardiac structures
from an intracardiac perspective [8, 9]. Integrating ICE into ablation procedures for atrial
fibrillation reduces both fluoroscopy time and the occurrence of major complications
significantly [7, 10]. In addition to serving as a visualization tool of the cardiac struc-
ture, ultrasound can be used for electromechanical wave imaging (EWI), which is a novel
ultrasound-based modality for mapping the electromechanical wave (EW), i.e. the tran-
sient tissue deformations occurring in immediate response to the electrical activation
[11–13]. Several studies have reported a high correlation between cardiac electrical ac-
tivity and the consequent EW for healthy and arrhythmic cases in both simulation [14]
and in vivo data [11–13, 15, 16]. Therefore, by using EW mapping, the origin of the ar-
rhythmia can be detected, and subsequently, ablation can be carried out on the source
to terminate the arrhythmia effectively [16].

At present, EWI is primarily performed using a transthoracic transducer, which is
placed on the surface of the chest. One limitation of that approach is that it is more
prone to generate reflections on high-impedance materials, such as the rib cage or the
pacemaker leads, leading to a poor acoustic window [13, 16]. In addition, the transtho-
racic transducer is limited in its ability to provide high-quality imaging of certain regions
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of the heart that are difficult to access from the surface of the chest. To overcome these
limitations and obtain a more comprehensive and accurate EW mapping, ICE imaging
may be essential. An ICE device can provide both imaging guidance during interven-
tional procedures and a map of the cardiac electromechanical activation. Furthermore,
due to its proximity to the heart, ICE imaging enables the use of higher central frequen-
cies, resulting in better axial resolution compared to transthoracic imaging [8].

Since EWs move with velocities ranging from 0.5 to 2 m/s, a high frame rate is nec-
essary to capture their rapid movement [8]. Additionally, volumetric imaging is nec-
essary for fully visualizing the complex patterns of EW propagation. This is because
the waves propagate throughout the entire heart in three dimensions (3D), and their
precise patterns of activation and conduction can be difficult to interpret from two-
dimensional (2D) images alone [16]. Furthermore, since the activation patterns in atrial
fibrillation are irregular in time and space [17, 18], the EW propagation needs to be vi-
sualized within a heartbeat rather than through the combination of acquisitions across
subsequent heartbeats [16, 19]. Therefore, an ICE device that offers high-frame-rate 3D
imaging capability is critical for effective visualization of EW propagation [8].

ICE technology currently faces challenges in meeting the demands of high-frame-
rate 3D imaging. Designing ICE catheters that can handle these requirements is difficult
because it requires using a 2D matrix array with a sufficiently large aperture and a large
number of elements. However, the diameter of the catheter limits the size of the aperture
and the number of cables that can fit inside the shaft. To address the latter limitation,
application-specific integrated circuits (ASICs) can be used in ICE probes and the cable
reduction can be achieved in various ways, including subarray beamforming, in-probe
digitization, or time-division multiplexing [20–22]. In addition to reducing the number
of channels, an ASIC can also amplify received signals to prevent attenuation caused
by cable loading between the acoustic elements and the imaging system [23, 24]. How-
ever, recent 3D ICE designs are limited in functionality by the integration challenge. This
expresses itself in lacking integration of a transmit beamformer [25], inadequate signal-
to-noise ratio (SNR) due to low-voltage transmit [26], receive-only architectures [6, 21,
27] or low frame rate [6].

We have recently conducted a simulation study in which we proposed a novel imag-
ing scheme for high-frame-rate 3D ICE imaging using a side-looking matrix comprised of
64×18 square elements [8]. The element pitch was 160 µm and the center frequency was
in the range of 5-6 MHz. For channel count reduction, we implemented one-dimensional
(1D) micro-beamforming in the elevation direction. Additionally, to achieve a high frame
rate while covering a volume of 70◦ × 70◦ × 10 cm, we employed a technique of transmit-
ting fan-shaped diverging beams steered across 7 elevation angles, with a 20◦ divergence
in elevation and 70◦ in azimuth. In simulations, the proposed method outperformed the
current state of the art on 3D ICE in terms of frame rate.

This chapter presents the development of a side-looking ICE prototype transducer
that utilizes an array of piezoelectric elements with a pitch of 160 µm × 160 µm inte-
grated with a pitch-matched ASIC. Details on the circuit implementation of the building
blocks of this ASIC have been reported in [25]. The primary objective of this work is to
demonstrate the feasibility of this prototype for high-frame-rate 3D ICE imaging. We
provide a comprehensive analysis of the design, technical details, characterization, and
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performance of the prototype. To our knowledge, this is the first study to report an ICE
probe that is capable of generating high-frame-rate 3D images with a wide field of view
and having digital output.

4.2. MATERIALS AND METHOD

4.2.1. DESIGN CHOICES

The process of designing ICE transducers is very challenging and complex, as the size of
the catheter poses significant physical limitations on both the transducer aperture and
channel count. The prototype transducer herein presented is designed to fit within a
10-French catheter, which has an outer diameter of 3.3 mm. This limits the transducer
aperture to approximately 3 mm in the elevation direction, while the number of cables
that can be accommodated within the catheter shaft is limited to 100 [6, 9]. In our simu-
lations [8], we have opted to use a rectangular aperture of about 10 mm × 3 mm (azimuth
× elevation). The matrix array consisted of square elements with a pitch of 160 µm in
both directions, resulting in a total of 64×18 elements. To achieve a penetration depth of
up to 10 cm, we have selected a center frequency of 6 MHz. A schematic representation
of the proposed side-looking ICE transducer is shown in Fig. 4.1(a).
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Figure 4.1: a) Schematic representation of the proposed ICE transducer. b Transmit scheme using fan-shaped
beams.

To achieve optimal 3D imaging, precise control of transmit and receive time delays as
well as apodization for every element is crucial. This requires addressing each element
of the array individually [28]. Since maintaining an element pitch that is below or close
to half the wavelength is desirable to avoid grating lobes [29], the resulting matrix array
consists of more than a thousand elements, exceeding by far the cable limit imposed by
the catheter shaft. Therefore, it is necessary to reduce the number of channels of the
probe significantly.

Several techniques have been proposed to reduce the complexity of fully populated
matrix arrays, including sparse matrix arrays [30, 31] and row-column addressed ma-



4

68 4. AN ULTRASOUND MATRIX TRANSDUCER FOR HIGH-FRAME-RATE 3D-ICE

trix arrays [32, 33]. However, these techniques have inherent limitations. Sparse matrix
arrays suffer from lower signal-to-noise ratio (SNR) and higher clutter levels [34], while
row-column addressed matrix arrays have more complex read-out sequences and a re-
duced flexibility in transmit beamforming, severely complicating the implementation
of a diverging wave transmission scheme as is required to insonify the full imaging vol-
ume with a small number of transmissions for high-frame rate imaging [35]. One of the
most effective ways to achieve channel reduction is by using the “micro-beamforming”
technique, also known as “subarray/sub-aperture beamforming”, or “pre-steering”. This
technique performs the first step of beamforming at the probe tip by applying micro-
delays to the signal of small groups of adjacent elements and summing them all using
an ASIC into one single channel. This partial beamforming reduces the number of sig-
nals that need to be transmitted through the cables and processed in the ultrasound
system. The remaining beamforming and image reconstruction are performed in the
ultrasound system [21, 28]. In our design, we have opted to use micro-beamforming for
channel reduction. Our approach involves dividing the array into subarrays consisting of
1×3 elements, as this size offered a good balance between channel reduction and image
quality according to earlier simulations [8]. With this, the number of cables was reduced
by a factor of 3. Yet, a further on-chip reduction is still required reduce the cable count
sufficiently.

4.2.2. IMAGING SCHEME

In our earlier work [8], we introduced a novel imaging scheme that enables volumetric
imaging with a sufficiently high frame rate and image quality for EWI, while also reduc-
ing the data rate to a practical level. Our objective was to achieve a frame rate of 1000
volumes/s, with a penetration depth of up to 10 cm and an opening angle of 70◦ × 70◦.
For a depth of 10 cm, the round-trip travel time of ultrasound waves requires approxi-
mately 130 µs, assuming the speed of sound of 1540 m/s. As a result, the pulse repetition
frequency (PRF) is limited to 7.7 kHz to allow enough time for the echoes to return be-
fore sending out another pulse. For this PRF and depth, a maximum of seven ultrasound
pulses can be transmitted per frame to cover the entire region of interest, leading to a
frame rate of 1000 volumes/s. Because we are limited to only seven transmissions to
cover the entire volume, a diverging wave transmission scheme is necessary.

The proposed transmit scheme involves the use of seven fan-shaped diverging beams.
These beams are steered in different directions in elevation, as illustrated in Fig. 4.1(b),
and employ a 20◦ divergence in elevation and 70◦ in azimuth. We utilize a single vir-
tual source to generate the desired fan-shaped diverging beam. In receive, the subarray
beamformers are capable of covering a pre-steering range of ±30◦ in the elevation di-
rection. To reduce grating lobes and improve image quality, we use angular weighted
coherent compounding. This technique accounts for transmit beam contours, such that
the noise and grating lobes from non-insonified regions are suppressed, while overlap-
ping areas from neighboring transmissions are weighted and coherently compounded,
resulting in a more accurate image [36].
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4.2.3. ASIC IMPLEMENTATION
In Fig. 4.2, the architecture overview of the designed ASIC is illustrated. It includes high-
voltage transmitters, analog frontends, hybrid beamforming analog-to-digital convert-
ers (ADCs), and data transmission to the imaging system [25]. The element-level cir-
cuitry is 160 µm × 160 µm in size and is pitch-matched with the matrix array. The trans-
mit (TX) part incorporates an on-chip unipolar pulser [37] (that can generate pulses up
to 30 V. In addition to diverging waves, the implemented TX beamformer can produce
other commonly used delay patterns, such as angled plane waves or focused waves.
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Figure 4.2: Block diagram of the ASIC architecture.

In receive (RX), the signal from each element is connected to a low-noise amplifier
(LNA), followed by a second-stage programmable gain amplifier (PGA) [25]. The LNA
can be switched in discrete steps of 18 dB ranging from -12 dB to 24 dB, while the second
stage can be configured in 6 dB steps ranging from 6 dB to 24 dB. Together, this en-
ables the implementation of time gain compensation (TGC) with a range of 54 dB. This
is achieved through the use of 10 discrete steps of 6 dB, spanning from -6 dB to 48 dB.
The outputs of three individual element-level circuits are merged using a 1×3-element
subarray beamformer. Two of these subarrays are then combined to form a 2×3-element
subgroup. Following this, the merged signals are digitized by an ADC at a rate of 24 MS/s
with a resolution of 10 bits. The outputs are received by a periphery-level block, which
provides a datalink to process the received data. In order to further reduce cable count
in receive, a channel that combines time-division multiplexing (TDM) and 4-level pulse
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amplitude modulation (PAM) data transmission has been implemented. [38]. This ap-
proach, together with the subarray beamforming, results in an 18-fold reduction in cable
count.

4.2.4. TRANSDUCER FABRICATION

In order to simplify the fabrication process of the prototype transducer, we made two
key decisions. Firstly, we chose to mount the transducer onto a custom daughterboard
printed circuit board (PCB) rather than assembling it into a catheter at this stage. Sec-
ondly, instead of building the full size of the proposed ICE transducer (a 64×18 matrix
array), we opted to build one-quarter of the aperture in the azimuth direction, resulting
in a 16×18 matrix array. Building a smaller aperture at this stage of prototype develop-
ment reduces cost and complexity while all of the functionality can still be tested.
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Figure 4.3: a) Acoustic stack with the indication of the thickness of each layer (not drawn to scale). b) Micro-
scopic photo of the manufactured prototype.

Fig. 4.3(a) illustrates the proposed acoustic stack, which includes a matrix array
made of lead zirconate titanate (PZT) piezoelectric material, the ASIC, a buffer layer, a
matching layer, an aluminum ground foil, and a protective top layer. This stack design is
similar to the ones we have presented in our previous works [23, 28, 39]. To fabricate the
acoustic stack, gold balls are first deposited onto the transducer bond pads of the ASIC.
The gaps between the balls are filled with an electrically isolating epoxy material, which
is then ground down until the gold balls are exposed again. A conductive glue match-
ing layer is applied on top of the piezoelectric material (3203HD, CTS Corporation, Lisle,
IL, EUA), followed by gluing the PZT and matching layer stack onto the gold balls. The
acoustical stack is then diced using a 20 µm dicing saw. To create a common ground
electrode, a 7 µm thick aluminum foil is glued on top of the entire matrix array. Finally,
to prevent moisture and damage, a thin layer of encapsulation material (AptFlex F7, Pre-
cision Acoustics Ltd., Dorchester, UK) is placed on top of the stack. Fig. 4.3(b) displays a
photograph of the acoustic stack mounted on top of the ASIC and PCB before the ground
foil is deposited.
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Figure 4.4: Measurement setup. a) Transmit characterization. b) Receive characterization.c) Pulse-echo mea-
surements. d) Imaging.

4.2.5. ACOUSTIC CHARACTERIZATION

For the acoustic characterization and tests, the prototype was placed in a watertight box
with a 25 µm thick polyimide acoustic window and submerged in a water tank filled with
deionized water. A custom motherboard was utilized to interface the prototype with a
computer for data processing through commercial field programmable gate arrays (FP-
GAs), as shown in Fig. 4.4.

To assess the transmit performance (Fig. 4.4(a)), we evaluated the time and fre-
quency responses of individual transducer elements. For this, we applied 30-V pulses
to the element under test and measured the resulting acoustic pressure generated by
it using a calibrated 1-mm needle hydrophone (PVDF, Precision Acoustics Ltd., Dorch-
ester, UK) placed at a distance of 5 cm from the transducer. The hydrophone output
was then amplified by a 60 dB amplifier (AU-1519, Miteq, Inc., Hauppauge, NY, USA)
and digitized by an oscilloscope (DSO-X 4024A, Agilent Technologies, Santa Clara, CA,
USA). Next, we characterized the directivity pattern of specific transducer elements us-
ing hydrophone scans with a calibrated 0.2-mm needle hydrophone (SN3800, Precision
Acoustics Ltd.). We performed rotational scans ranging from -60◦ to 60◦ at a distance of
5 cm from the transducer. Using the same setup, we evaluated the directivity pattern of
the entire transducer when transmitting diverging waves steered at seven different an-
gles in elevation. To provide a comprehensive assessment, we compared the measured
directivity patterns with simulations performed using the ultrasound simulator FOCUS
[40].

To assess the receive performance (Fig. 4.4(b)), we used a pre-calibrated 1 mm cir-
cular single-element transducer (PA865, Precision Acoustics Ltd., Dorchester, UK) as a
transmitter placed at 5 mm away from the prototype. We drove the single-element trans-
ducer with an 8-cycle sine wave generated by an arbitrary waveform generator (AWG;
33250A, Agilent Technologies, Santa Clara, CA, USA) and measured the response at each
individual element of the prototype to evaluate the sensitivity variation and element
yield. With the same setup, we evaluated the dynamic range of the prototype, which
is defined as the difference between the highest and lowest detectable pressures. Hence,
we varied the surface pressure applied to the prototype between 1 Pa and 100 kPa while
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varying the gain setting of the ASIC from -6 to 48 dB. Lastly, we measured the directivity
pattern of one subarray when pre-steering it at seven different angles in the elevation di-
rection. For this, the prototype was rotated from -60◦ to 60◦ in increments of 1◦. At each
angle, the received data was transferred to the computer for processing. For pulse-echo
measurements (Fig. 4.4(c)), we positioned a quartz flat plate 5 cm from the prototype.
A plane wave was transmitted with all elements excited with 3 cycles of 30 V, and the
resulting echoes were received by each individual element.

4.2.6. HIGH-FRAME-RATE 3D IMAGING

To assess the high-frame-rate 3D imaging capability, we utilized a custom phantom con-
sisting of three needles. The phantom was positioned at a distance of about 4 cm from
the prototype transducer (Fig. 4.4(d)). To introduce motion into the system, we attached
the phantom to a mechanical shaker (Type 4810, Brüel & Kjær, Nærum, Denmark) and
applied a low-frequency sine vibration of 20 Hz. To capture the dynamic movement of
the needles in 3D, we acquired 280 pulse-echo cycles at a PRF of 7 kHz. Since seven
pulse-echo cycles are required to generate each 3D volume image, a total of 40 volumet-
ric images were obtained from the 280 pulse-echo cycles at 1kHz volumetric frame rate.
The 3D volume image reconstruction was performed offline. To provide a comparison
to the high-frame-rate 3D imaging results, we used a commercial diagnostic ultrasound
machine (Aplio Artida, Toshiba Medical Systems, Otawara, Japan) with a linear probe
(PLT-704SBT, Toshiba Medical Systems, Otawara, Japan) to measure the displacement of
the needles using M-mode imaging.

4.3. RESULTS

4.3.1. TRANSMIT CHARACTERIZATION

Fig. 4.5(a) shows the time and frequency responses of five transducer elements recorded
with the hydrophone. At 5 cm, the average peak pressure for a single element is about
0.85 kPa. In the frequency domain, the center frequency is about 5.5 MHz and the aver-
age -6 dB bandwidth is about 60%. In Fig. 4.5(b), the directivity pattern of five elements
together with the simulated curve along the elevation direction is shown. The experi-
mental observations reveal a -6 dB beam width of approximately 55◦, while the simu-
lated result is about 112◦. This deviation is due to the dips seen at approximately ± 40◦
in the measured directivity. Similar results were observed along the azimuth direction
since the element has a square geometry.

Fig. 4.6 depicts the locally-normalized directivity pattern of the entire matrix array
transmitting diverging waves steered at seven different angles ranging from -30◦ to 30◦
in the elevation direction. The measured and simulated profiles are in good agreement,
with a -6 dB beam width of approximately 20◦ observed in both cases. This confirms the
effectiveness of the prototype in generating and steering diverging beams. In Fig. 4.7,
the directivity pattern along the azimuth direction is displayed for the current and the
full-size aperture. As seen, there is an excellent agreement between the measured and
simulated profiles up to about -17 dB levels, with the -6 dB beam width of about 20◦ for
the current aperture. For the full-size aperture, we observe a -6 dB beam width of about
70◦, which is according to our design goal.
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Figure 4.5: a) Time and frequency responses of individual elements. b) Measured and simulated directivity
pattern of individual elements.
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Figure 4.6: Directivity pattern of the transducer transmitting steered diverging waves in elevation. a) Measured.
b) Simulated.
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b) Intended aperture.
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4.3.2. RECEIVE CHARACTERIZATION

Fig. 4.8(a) displays the sensitivity variation in receive across all elements of the proto-
type transducer. The results demonstrate a high yield, with 282 out of 288 elements (i.e.,
98%) falling within the 0 dB to -6 dB range. Only one element, indicated in dark blue,
exhibits no signal and is considered defective in receive. Fig. 4.8(b) displays the relation-
ship between the received pressure at the surface of the prototype and the corresponding
normalized ADC output for all gain levels. To reduce measurement time, the measure-
ments were conducted using one-thrid of the array, i.e. 96 elements. The plotted values
represent the average across these 96 elements. The lowest detectable pressure is around
10 Pa, which was measured when the ASIC gain was set to 48 dB. The highest detectable
pressure was about 100 kPa, which was measured for a gain of -6 dB. An overall dynamic
range of about 80 dB is obtained between the 0-dB SNR point of the highest gain and the
1-dB compression point of the lowest gain setting.
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Figure 4.8: a) Sensitivity variation in receive. b) Relation between received pressure and ADC output for all
ASIC gains.

Fig. 4.9 illustrates the measured and simulated directivity pattern of a 1x3 subarray
pre-steering at seven different angles, ranging from -30◦ to 30◦ in the elevation direction.
The measured and simulated profiles exhibit a good agreement, which demonstrates
that the designed ASIC can efficiently generate the necessary delays to steer the subar-
rays toward the intended directions. The -6 dB beam width is approximately 40◦ for all
steering angles, except for -30◦ steering, which has a beam width of about 50◦. Note that
as the steering angle increases, the side lobe levels tend to rise too.

4.3.3. PULSE-ECHO MEASUREMENTS

Fig. 4.10 displays the pulse-echo measurements obtained by transmitting 3 cycles with
all elements (no steering) and receiving the echo with individual elements without ap-
plying micro-beamforming. The measurements were conducted using five arbitrarily
selected elements as receivers. All measured elements exhibit a comparable amplitude
response and a center frequency of about 6.1 MHz. Note that a dip around 6 MHz causes
the -6 dB bandwidth to narrow to roughly 10%.
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Figure 4.9: Measured and simulated directivity pattern of a 1x3 subarray pre-steered at a) 0◦, b) ±10◦, c) ±20◦,
and d) ±30◦ in the elevation direction.
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Figure 4.11: Needle phantom and its reconstructed 3D image acquired with the prototype at a frame rate of
1000 volumes/s.

4.3.4. IMAGING

Fig. 4.11 presents one of the 40 volumetric images of the needle phantom captured by
our prototype transducer at a frame rate of 1000 volumes/s. After the acquisition, the
data was transferred from the motherboard to a computer for offline image processing.
The reconstructed image clearly distinguishes the needles in 3D space, and the positions
of the point scatterers closely match the position of the needles in the photograph of the
phantom. Note, however, that each imaged needle exhibits one main lobe accompanied
by secondary lobes in both the azimuth and elevation directions.
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Figure 4.12: Motion of a single needle extracted from high-frame-rate 3D images acquired with the prototype
transducer. a) Needle displacement. b) Needle velocity.

We utilized the dataset consisting of 40 images to track the axial motion of a single
needle to show the high-frame-rate imaging capability of the ASIC. Fig. 4.12(a) shows
the resulting displacement of one needle, while Fig. 4.12(b) shows its instantaneous ve-
locity derived by pulsed-wave Doppler processing of the high-framerate images at the
position of a needle. The 20 Hz vibration of the needle is clearly visible, and we were
able to capture about 80% of its sinusoidal motion within the 40 ms acquisition time.
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Figure 4.13: Images of the needle phantom acquired with the Toshiba system. a) B-mode image. b) M-mode
image

We observed a peak-to-peak displacement of approximately 1.5 mm, with a maximum
measured velocity of around 5 cm/s.

In Fig. 4.13(a), we present the B-mode image of the needle phantom acquired with
the commercial imaging system, which was used for validation. To track the motion of
one of the needles, we drew a line on it and performed M-mode imaging, as depicted in
Fig. 4.13(b). The 20 Hz vibration of the needle is also evident and we measured the same
peak-to-peak displacement of about 1.5 mm. This agreement highlights our capability
to achieve high frame 3D imaging.

4.4. DISCUSSION
We presented the development of a high-frame-rate 3D imaging prototype ICE trans-
ducer. This involved constructing a PZT matrix array with 16×18 elements interfaced
with a pitch-matched ASIC. To address the challenge of cable count reduction, we im-
plemented subarray beamforming in receive, on-chip digitization, and utilized a com-
bination of TDM and PAM data transmission. This allowed us to reduce the total cable
count by 18-fold lower than the acoustic element number, resulting in a feasible num-
ber of cables for practical implementation. Due to complexity and cost constraints, we
built a prototype that corresponds to a quarter of the full aperture design (64×18), with a
single channel providing a platform to evaluate PAM data transmission, as well as con-
ventional LVDS drivers. The transducer was mounted on a PCB for convenience. Despite
these modifications, we were able to conduct comprehensive tests to examine the pro-
totype’s performance and verify its functionality.

As depicted in Fig. 4.5(a), the responses of the five individual elements exhibit similar
behavior in transmit. At a distance of 5 cm, each element has a transmit efficiency of
around 28 Pa/V, which is consistent with previous designs [28, 39]. On average, the center
frequency of the elements is 5.5 MHz, and the -6 dB bandwidth is 60% in transmit. Note
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that the frequency spectrum displays a dip at approximately the center frequency, which
decreases the overall bandwidth. This dip is also observed in the pulse-echo response,
shown in Fig. 4.10, and is likely the result of reflections and standing waves from the
ASIC [39, 41]. To mitigate this effect, an interposer layer between the PZT and the ASIC
could be utilized [6, 39, 42]. We may explore this option in future designs.

The directivity pattern of the single elements, as shown in Fig. 4.5(b), generally fol-
lows the trend of the simulated directivity. However, we observed dips at ±40◦, which is
likely caused by acoustic crosstalk [43, 44], as we have previously reported [39, 41]. The
directivity pattern of the entire transducer, as shown in Fig. 4.6 and Fig. 4.7, aligns very
well with simulations and demonstrates that the prototype is capable of steering from
-30◦ to 30◦ in the elevation direction. Considering that the azimuth aperture is extended
as originally designed (i.e., with 64 elements), our prototype is expected to provide a cov-
erage of 70◦ × 70◦. In receive, the directivity pattern of the 1x3 subarrays (Fig. 4.9) also
exhibits the expected behavior, albeit with an increase in degradation and artifacts at
higher steering angles [45]. Overall, the directivity pattern measurements confirm that
the ASIC is effective in generating the desired delay patterns, as specified in our design.

The sensitivity map depicted in Fig. 4.8(a) reveals that 282 out of 288 elements of the
prototype are within the -6 dB range. This element yield of 98% demonstrates the effi-
cacy of our fabrication process and encourages us to consider scaling up the aperture
size to 64×18 elements in future developments. In Fig. 4.8(b), we observed that the low-
est detectable pressure of 10 Pa is limited by the ASIC’s noise floor for a gain setting of 48
dB, whereas the highest detectable pressure of 100 kPa is limited by the ASIC’s saturation
level for a gain of -6 dB. This results in a total dynamic range of 80 dB, which is suitable for
ICE. Note that there seems to be an overlap in the gain step between 12 and 18 dB, which
is not consistent with the expected 6 dB difference. This is likely due to a mismatch in
the amplifier circuitry, which can be easily corrected for in a future re-adjustment of the
design.

In the imaging experiment with the vibrating needle phantom, we successfully ac-
quired 40 volumes within a 40 ms interval, achieving the intended frame rate of 1000
volumes/s. The reconstructed 3D image of the needles depicted in Fig. 11 confirms
the prototype’s 3D imaging capabilities, even though some side lobes are present in the
image. Nonetheless, it’s worth noting that for the full-size array, the side lobes will be
reduced and the overall imaging quality will be improved. By analyzing the 40 acquired
volumetric images, we were able to extract the motion pattern of the needle and accu-
rately estimate its velocity with retrospective pulsed-wave Doppler analysis, as shown
in Fig. 4.12. The clean Doppler spectrogram indicates proper internal timing and dig-
itization of the signals. These results are very promising, as we were able to precisely
validate them with a clinical ultrasound system as a reference(Fig. 4.3). Since the ICE
prototype transducer is currently mounted on a large PCB for testing purposes, it is not
yet ready for (pre)clinical use. In future work, we plan to assemble a complete prototype
and integrate it into a catheter for EWI validation.

4.5. CONCLUSIONS
In this study, we have presented the design, fabrication, and characterization of a proto-
type transducer with an integrated ASIC for high-frame-rate 3D intracardiac echocar-
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diography. By applying subarray beamforming alongside on-chip digitization, time-
division multiplexing and pulse amplitude modulation data transmission, we were able
to significantly reduce the cable count to a realistic number that can fit within a catheter
shaft. The acoustic performance of the prototype met the design requirements, allowing
us to achieve 3D imaging with a large field of view and a frame rate of 1000 volumes/s.
This high frame rate outperforms current state-of-the-art ICE probes and paves the way
towards implementation of electromechanical wave imaging on future ICE catheters.
Future work should focus on realizing a full aperture transducer inside a catheter to en-
able in vivo testing.
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There is an increased desire for miniature ultrasound probes with small apertures to pro-
vide volumetric images at high frame rates for in-body applications. Satisfying these in-
creased requirements makes simultaneously achieving a good lateral resolution a chal-
lenge. Since micro-beamforming is often employed to reduce data rate and cable count
to acceptable levels, receive processing methods that try to improve spatial resolution will
have to compensate the introduced reduction in focusing. Existing beamformers do not
realize sufficient improvement and/or have a computational cost that prohibits their use.
Here we propose to use Adaptive Beamforming by deep LEarning (ABLE) in combination
with training targets generated by a large aperture array, which inherently has better lat-
eral resolution. In addition, we modify ABLE to extend its receptive field across multi-
ple voxels. We show that this method improves lateral resolution both quantitatively and
qualitatively, such that image quality is improved compared to that achieved by existing
Delay-and-Sum, Coherence Factor, Filtered-Delay-Multiplication-and-Sum and Eigen-
Based Minimum Variance beamformers. We found that only in silico data is required
to train the network, making the method easily implementable in practice.
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5.1. INTRODUCTION
Fast volumetric ultrasound imaging has become possible through the application of
2D ultrasound arrays. Having ultrasound elements in two dimensions enables receive
focusing in the azimuth and elevational direction as well as applying wide unfocused
transmit fields, such that few transmissions are needed to insonify a large field of view
[1, 2]. However, the use of unfocused transmit beams comes at the expense of image
contrast and reduces spatial resolution. This can be mitigated by coherent compound-
ing of multiple angled unfocused transmissions or by using multiple narrower diverging
waves. However, both come at the expense of the desired high frame rate.

Another concern in fast volumetric ultrasound imaging is that access to all trans-
ducer elements is usually not possible in matrix transducers, due to the very large num-
bers of elements they need to consist of to allow full spatial sampling both in azimuth
and elevation. Transporting the data from all these elements to the back-end system be-
comes infeasible due to limitations in the number and bandwidth of cable connections.
Sparse arrays, where only a limited number of elements in a 2D array are connected,
have been proposed as a solution. However, reducing the number of active elements re-
duces image resolution, contrast and SNR with respect to fully populated matrix arrays.
The cable connection and data rate problem of matrix transducers can be solved by em-
ploying micro-beamforming on in-probe ASICs at the cost of image quality [3–6]. This
method reduces the number of channels by applying a set of pre-determined analogue
delays to a sub-array of neighboring elements and subsequently summing the steered
sub-array data into a single output. Data rate and channel reduction become an espe-
cially important concern for small aperture devices that can be used from within the
body.

In-body ultrasound transducers allow visualizing parts of the body where ultrasound
imaging would otherwise be hampered by attenuation, aberration and possible shad-
owing of the overlying tissues. For instance, transesophageal echocardiography (TEE)
probes are mounted at the tip of a gastric tube such that images can be made from the
esophagus where the probe is located within millimeters of the heart [7]. For patient
safety and comfort, smaller TEE probes are desired [8, 9], which constrains the size of
the ultrasound array. For intracardiac echography (ICE) [10, 11], where a catheter-based
device is positioned inside the heart during interventional cardiology, the need for com-
pact ultrasound arrays is especially apparent. Reducing the size of the imaging aperture,
however worsens the lateral resolution and consequently image quality.

Satisfying the requirement of a small aperture, large field of view, volumetric image
and high frame rate simultaneously, results in trade-offs in the imaging transmit-receive
scheme that sacrifice spatial resolution. As a result the burden to achieve sufficient spa-
tial resolution for in-body high frame rate 3D ultrasound devices, falls on the receive
processing branch of the imaging chain.

The core step of the ultrasound image formation is beamforming, which transforms
the received time-domain signals into an estimation of the acoustic reflectivity in the
spatial domain. To improve image quality beyond the traditional low-complexity Delay-
And-Sum (DAS) beamformer, various adaptive beamformers have been developed. The
Coherence Factor (CF) based beamformer [12] reduces image clutter by reducing clutter
from phase aberrations and has low computational complexity. Unfortunately it suf-
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fers from artifacts in low SNR imaging scenarios [13], and a degraded speckle pattern.
The Filtered-Delay-Multiply-And-Sum (F-DMAS) beamformer [14] involves a combina-
torial coupling and multiplying of the received signals before summation. Prieur et al.
[15] showed that the increased sensitivity to coherence of the F-DMAS beamformer con-
tributes to improvements in contrast ratio and the depiction of coherent structures, but
also comes with the drawbacks of grainier appearance and dark regions that can appear
around coherent structures.

The minimum variance (MV) beamformer improves resolution by using a data-adaptive
apodization of the aperture that minimizes the output energy of the signal while con-
straining the response to have unit gain at the focal point of the receive beam [16]. Fur-
ther improving contrast without compromising the achieved resolution is possible with
the Eigen-Based Minimum Variance beamformer (EBMV) [17]. However, there are a
number of drawbacks to the application of MV beamforming. Firstly, the high compu-
tational burden resulting from the need to perform matrix inversion, and in the case of
the EBMV beamformer also eigendecomposition, for every image pixel. This computa-
tional burden already limits practical application of EBMV-based methods for fast 2D
imaging. For fast 3D imaging, where many more pixels need to be reconstructed to form
a single frame, this becomes an even larger burden. Secondly, empirical tuning of pa-
rameters, such as diagonal loading and sub-aperture averaging is needed to achieve a
good result across different imaging scenarios [18]. Thirdly, images reconstructed with
EBMV can suffer from dark region artifacts next to hyperechoic structures [19]. Finally,
the performance of (EB)MV beamforming has not been examined yet in combination
with micro-beamforming.

Recently, deep learning techniques have also been employed to improve ultrasound
image quality [20, 21]. Some have applied a neural network to transform an already
beamformed gray-scale ultrasound image of low-quality to a high-quality image [22–
27]. The downside of using images as input data to the neural network is that a lot of the
acquired information present in the RF data has been discarded in the image formation
process. As a result it is not available to the neural network. Therefore, others have
avoided this by implementing deep neural networks not after image formation, but to
replace the beamformer partially [28–32] or as a whole [33] . Replacing the complete
beamforming process with a neural network [33, 34] means that the network also has
to learn the geometric time-of-flight (TOF) correction. Therefore, many have instead
implemented a neural network that replaces part of the beamforming process after the
time-to-space migration [28–32, 35–37].

In 2D imaging deep learning solutions that replace part of the beamforming pro-
cess after TOF correction achieved an improved resolution, while being data efficient
in training and computationally efficient in reconstructing unseen ultrasound data [29,
32, 38]. The adaptive beamforming by deep learning (ABLE) method [32] and the Delay-
And-Neural-Network (DANN) method [29] both employ a neural network on the channel
data after time-of-flight correction, but replace slightly different parts of the beamform-
ing process. The ABLE method explicitly calculates pixel-wise data-adaptive apodization
weights from the channel data of that pixel. The DANN method instead uses convolu-
tional layers to directly transforms the time-of-flight corrected RF-data into an axial line
of pixel values, thereby replacing the beamsumming step. The method developed by
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Luchies and Byram [30] also replaces the beamsumming step, but operates on the fre-
quency domain instead. A frequency specific deep neural network is trained for each dis-
crete Fourier transform bin. Subsequently, data is transformed back to the time domain
and the filtered signals are summed along the aperture channels to form a beamformed
image. Zhou et al. [38] sought to maintain the advantage of image-based methods that
are able to capture global features, as well as the advantages of access to full RF-data.
They combined a neural network that learns apodization weights with a neural network
that works on an image-to-image basis in a hybrid approach. Their method is compu-
tationally efficient through reducing the needed pre- and post-processing steps such as
envelope detection, but it loses some of the interpretability of ABLE were a generated
pixel value can be directly linked to the the angular response (beampattern) formed by
the generated apodization weights.

Other approaches have implemented a neural network after combination of the chan-
nel data, but before the final image formation steps of envelope detection and log com-
pression. This includes methods that combine data from multiple transmissions, thereby
replacing the compounding process [22, 39]. Applying deep learning in the beamform-
ing process inherently requires access to the RF data, but gives the neural network access
to a rich set of information that is not available when working on beamformed images.
Methods that replace only part of beamforming process, after time-to-space migration,
require smaller amounts of training data and less trainable parameters.

Training a deep-learning-based beamformer in a supervised fashion, requires target
data. In some scenarios in vivo data can be used as part of the training set. For example,
when deep learning is used to get the same high image quality as an existing beamformer
at improved inference speeds or when the goal is to achieve the image quality of a full ac-
quisition with an acquisition set-up that is compressed or under-sampled in some way.
EBMV beamforming has been used as a method to obtain high-quality target images in
2D imaging [32, 38]. In other scenarios the training data consisted purely of simulations.
One example includes training data where the target is directly based on the properties
of the simulated medium [34, 40]. Other examples include a training target created by
an ultrasound transducer with more desirable properties, such as a larger aperture [29],
or higher frequency without increased attenuation [39]. A more complete overview of
deep learning methods for ultrasound image reconstruction than described here can be
found in Sloun et al. [21]

The ability of deep-learning-based beamformers to improve resolution has not been
shown for 3D ultrasound imaging with matrix transducers in general or in combina-
tion with micro-beamforming in particular. This is not a trivial extension, since micro-
beamforming prevents direct access to signals from all transducer elements by the back-
end system. As a result the beamformer must work with the lower spatial sampling and
focusing errors contained in the micro-beamformed signals. Inspired by the improved
image quality in 2D imaging we hypothesize in this paper that the lateral resolution
of volumetric ultrasound images, acquired by on-chip micro-beamforming, can be im-
proved by using a deep-learning-based beamformer trained on target images formed by
a larger aperture. Since little research has applied (EB)MV beamforming in 3D imag-
ing with matrix transducers in general [41] and for micro-beamformed data in particu-
lar, we choose to use training targets generated by a larger aperture and thereby avoid
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the limitations of existing adaptive beamformers. The ABLE beamformer is used as a
starting point since it offers an data-efficient deep-learning-based solution to beam-
forming. ABLE operates on a per-pixel basis. However, we hypothesize that the pixel-
based approach might be sub-optimal for handling the focusing errors present in micro-
beamformed data and evaluate the effect of increasing the receptive field of the neural
network to include the channel data of neighboring voxels. We moreover show the re-
sults achieved by using only simulation data to train the neural network and compare
this with the results achieved when the training set also includes in vitro and in vivo
data.

5.2. MATERIALS AND METHODS

5.2.1. NETWORK ARCHITECTURE
The deep-learning-based adaptive beamformer (ABLE) developed by Luijten et al. [32]
is used as a basis for the neural network architecture used in this work. Thus, a neu-
ral network fθ with a small number of layers is used to calculate apodization weights
for each voxel from the time-of-flight corrected channel data. We maintain the per-
pixel operation, where a beamformed pixel value VABLEk,l ,m is obtained by per-pixel
multiplication of the apodization weights with the input data. However, we extend the
receptive field of the network spatially, from the time-of-flight corrected RF data of a
single voxel (Y ∈ R1×C ) to a tensor that contains the RF data of a small group of voxels
(Y ∈RAz×El×Ax×C ):

VABLEk,l ,m =
C∑

c=1
[ fθ(Yk:k+Az−1,l :l+El−1,m:m+Ax−1)Yk,l ,m,c ]

VABLEk,l ,m =
C∑

c=1
[ fθ(Y)k,l ,m,cYk,l ,m,c ].

(5.1)

Here Az, El and Ax are the receptive field of the neural network in azimuth, eleva-
tional and axial direction respectively, denoting the size of the group of neighboring vox-
els whose TOF corrected RF data influences the computed apodization weights for a sin-
gle voxel. We increase the receptive field, since micro-beamformed data is sub-optimally
focused. Even when the micro- and postbeamforming delays are applied perfectly, er-
rors occur in TOF correction, since focusing has a range dependent component, which
can no longer be implemented accurately for each individual element after applying the
static micro-beamforming delays and the summing operation. For some transducer el-
ements a slightly later or earlier sampling of the raw RF data is more accurate. The TOF
corrected data of neighboring pixels consists of raw RF data that has been sampled with
slightly larger or smaller delays due to the slightly different distances between these vox-
els and the transducer elements. Therefore, we consider that the network might make
use of the increased information that is available from the TOF data of a broader region
of voxels to generate a better estimation of apodization weights.

The receptive field is extended by using convolutional layers. Each layer contains
a number of 3-D convolutional kernels, as shown in Figure 5.1, which work along the
spatial dimensions. The network remains fully connected along the channel dimension,
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across which the encoder-decoder structure is preserved. Zero-padding is used to avoid
compression in the spatial dimensions.
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Figure 5.1: a) The layout of the 3D TEE probe with split transmit receive design. The large receive aperture of
2048 elements is combined into 128 data channels through micro-beamforming with 4x4 sub-arrays. b) The
modified ABLE network consists of 3D convolutional layers and antirectifier activation functions. The number
of channels C = 32. The kernel size K is indicated in the convolutional layers.c) RF data of in silico, in vitro
and/or in vivo data is acquired. All 128 channels are used to DAS beamform target images. Time-of-flight
corrected RF data from the 32 centre channels is used as input to the ABLE neural network. The network is
trained by backpropagation based on the loss value between VABLE and the target VDASLarge.
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We evaluated the effect of receptive field size using four networks with different re-
ceptive field size, but the same number of layers. ABLE1 has a single voxel receptive field,
similar to the original ABLE network. For the other three networks we chose an axial re-
ceptive field size that extends 14 voxels (about 1.75 wavelengths). To see the impact of
increasing the receptive field in lateral direction we set the azimuthal and elevational re-
ceptive field of ABLE2, ABLE3 and ABLE4 to 2, 3 and 6 voxels respectively (were one voxel
has a width of 0.5◦). The architecture of ABLE2 is shown in Figure 5.1 and all architec-
tures are shown in the Appendix.

Identical to the original ABLE [32], the antirectifier is chosen as the activation func-
tion:

g (z) =
 max

(
0, z−µz

∥z−µz∥2

)
max

(
0,− z−µz

∥z−µz∥2

) , (5.2)

since it avoids losing the negative signal components, by concatenating the positive and
negative components of the signal after l2-normalization and and then returning their
absolute value. At the same time it maintains the favorable properties of computational
efficiency and resistance against vanishing gradients that ReLus have and since the ac-
tivation function is not bounded it helps preserve the dynamic range of the input. In-
spired by the lack of summation terms in the calculation of apodization weights by the
minimum variance beamformer we have not used bias terms in our network.

5.2.2. TRAINING SET-UP
We used supervised learning, with high-resolution training targets that were generated
by DAS beamforming with a larger aperture array VDASLarge. The loss function Ltotal

consists of a weighted combination of an image loss LSMSLE based on the pixel values
and a loss based on the apodization weights Lunity:

Ltotal =
1

I

I∑
i=1

λLSMSLE(V (i )
ABLE,V (i )

DASLarge)+ (1−λ)Lunity(V (i )
ABLE,V (i )

DASLarge) (5.3)

Here V (i )
ABLE and V (i )

DASLarge refer to respectively the network outputs and targets for a voxel

i . To take into account the large dynamic range and both positive and negative compo-
nents of the ultrasound signal, the image loss is computed as the signed-mean-squared-
logarithmic error (SMSLE) between a target voxel (VDASLarge) and the voxel calculated by
ABLE (VABLE):

L (i )
SMSLE = 1

2
|| log10(V (i )

ABLE)+− log10(V (i )
DASLarge)+||22 +

1

2
|| log10(V (i )

ABLE)−− log10(V (i )
DASLarge)−||22,

(5.4)

where (·)+ and (·)− denote the magnitude of a positive and negative value respectively.
At the same time we promote a distortionless response with the Lunity loss term:

L (i )
unity = |1T w(i )

ABLE −1|2 (5.5)
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Stochastic optimization of (5.3) was done using the Adam optimizer with a learning
rate of α = 10−3. The exponential decay rate for the first and second moment, β1 = 0.9
and β2 = 0.999, were set according to the values suggested by [42] and the constant for
numerical stability was ϵ̂= 10−7. All networks were trained for 400 epochs and evaluated
based on the snapshot ensemble of the last 5 epochs. The network was implemented
using Keras API with a Tensorflow (Google, CA, USA) backend.

5.2.3. TRAINING DATA ACQUISITION

Data was acquired with a miniature TEE prototype transducer, described in detail in
Bera et al. [43]. The full array consists of 2176 PZT elements, with a pitch of 181 µm
and a 30 µm kerf, which was cut at a 45◦ angle with respect to the probes center line.
The aperture is split in a narrow transmit array of 128 elements, which are directly wired
out to the external ultrasound system and a larger receive array of 2048 elements (see
Figure 5.1). The signals of the receive array are micro-beamformed by the front-end
ASIC in sub-arrays of 4 x 4 elements. The full receive aperture, consisting of 128 micro-
beamformed data channels, was used to acquire the large aperture target data, while the
center 32-micro-beamformed data channels (see Figure 5.1), were used to acquire the
small aperture input data from the same transmit firing made by the narrow transmit
array.

Each 60◦ x 60◦ volume was acquired with 85 steered transmit-receive events. A wide
transmit beam, produced from a virtual source located at 100 mm behind the transducer,
was steered to a combination of one of the 17 equally spaced azimuth angles between
-24◦ and 24◦ degrees and one of the 5 equally spaced elevation directions between -20◦
and 20◦. Micro-beamformed datasets were acquired by pre-steering the sub-arrays of
the receive aperture to the transmission direction.

In vivo AND in vitro

Micro-beamformed datasets were acquired with the TEE probe and a Verasonics ultra-
sound acquisition system, which sampled the data at 20 MHz. A commercial tissue
phantom (multi-purpose multi-tissue ultrasound phantom 040-GSE, CIRS, Norfolk, VA,
USA) was used to acquire images of wire targets, hyper- and hypoechoic cysts. In vivo im-
ages of the heart of an anesthetized adult pig were acquired through a hole in the chest
wall and the diaphragm by an experienced cardiologist, as described in more detail in
[43] (This experiment was approved by the Erasmus MC Animal Experiments Commit-
tee Protocol 109-14-12).

In silico

Simulated RF-data was acquired by implementing the transducer geometry and imag-
ing scheme in Field II [44, 45]. Two types of simulation phantoms were used. In the first,
point scatterers were randomly distributed, with either 500 or 1000 scatterers in a vol-
ume. In the second type, cubes and spheres with fully developed speckle (10 scatterers
per resolution cell) and a varying average amplitude (0-60 dB) and size (2-6 mm) were
distributed against an hypoechoic background.
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5.2.4. TRAINING DATA PREPARATION
All in silico, in vitro and in vivo data was split into training, validation and test data. Of
the recorded porcine heart data, volumes acquired at different stages of the cardiac cycle
were used in the training, validation and test data. Of the in vitro data the volumes used
in the training, validation and test data were acquired at different non-overlapping po-
sitions on the CIRS phantom. Of the in silico data, the validation volumes contained dif-
ferent random scatterer locations compared to the training volumes. The volume used
in the test set was constructed to have a more structured pattern of scatterers than that
in the training and validation data, to facilitate the evaluation of ultrasound imaging
related metrics. A single acquired volume of (TOF corrected) RF data provides a large
amount of training data for the network, since the loss is calculated per individual pixel
and the receptive field of the used neural networks are small. As a result, only a small
number of volumetric acquisitions was needed to realize a sufficient amount of training
data for the network. The training set consisted of five training volumes with a 60◦ x 60◦
opening angle and a depth varying between 4.6 and 8.0 cm. Three in silico training vol-
umes were used in the first training set. In a second training set an in vitro volume was
added and in a third training set an in vivo volume was added as well. When training on
a combination of in silico, in vitro and/or in vivo data it was made sure that there was
an equal probability of sampling training data patches from each of these data types.
For each training set validation data was of the same types (in silico, in vitro, in vivo)
as the training data. Each batch consisted of 16 randomly selected patches of training
data. A patch consisted of an imaging region of 10x10x600 target pixels created by DAS
beamforming with the large array and the corresponding input TOF corrected RF data
recorded with the small array (input size single patch: 10x10x600x32). All values were
pre-normalized with respect to the maximum of the volumetric image that they are part
of, such that all values are between -1 and +1.

5.2.5. COMPARISON TO OTHER BEAMFORMERS
We compared the ABLE beamformers to the DAS beamformer as well as three adap-
tive beamformers: EBMV, CF and F-DMAS. For all methods the same pre- and post-
processings steps where used. Before beamforming, a bandpass filter with a 5 MHz cen-
ter frequency and 100% bandwidth was applied to the acquired signals. After beamform-
ing and envelope detection of the data from the 85 transmit-receive events, the final vol-
ume was obtained as an angle-weighted combination of overlapping sub-volumes [43].
Finally the data was log-compressed to gray scale images with a dynamic range of 60 dB.

The first step of the beamforming process, the TOF correction was also the same
for all beamformers. Based on the geometric relation between the voxel location and
transducer channel locations, the delay needed to focus the signal received by a channel
c, to an image point r , is given by:

τ[x, y, z] = ∥ rT X − r ∥2 +∥ rc − r ∥2

v
. (5.6)

Here v is the estimated speed of sound in the medium, rc is the location of the receive
channel and r is the voxel location. rT X is the location of the transmit firing, which for
our diverging wave transmissions is specified by the coordinates of the virtual source
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that it emanates from. For any focus point [x, y, z] and channel c, the delayed response,
yc , is then given by

yc [x, y, z] = xc (τ[x, y, z]), (5.7)

where xc is the received channel data.

DELAY-AND-SUM

Image voxels VDAS(x, y, z) are generated by summing across the channel dimension ac-
cording to

VDAS[x, y, z] = wT
DAS[x, y, z]y[x, y, z], (5.8)

where y is the delayed response for all channels. Here the weight vector wDAS consists
of predetermined data-independent weights, which can vary spatially. Here we used a
boxcar window to emphasize resolution.

MINIMUM VARIANCE BASED ADAPTIVE BEAMFORMING

The minimum variance distortionless response beamformer applies time-of-flight cor-
rection in the same way as the DAS beamformer, but aims to improve image resolution
and contrast by replacing the static apodization weights, used in DAS, with a set of data-
adaptive apodization weights. These apodizations weights wMV are chosen to minimize
the variance of the beamformed signal, such that interfering signals and noises are re-
jected, while maintaining a unity gain with respect to the signal from the beamformers
focusing point. The optimal apodization weights are found by minimizing

min
wMV

wH
MVRwMV s.t . wH

MVd = 1, (5.9)

which has an analytical solution [46] given by:

wMV = R−1d

dH R−1d
. (5.10)

Here d is the so-called steering vector, which defines the signal that should be passed
distortionless. For narrow-band applications this steering vector can be expressed as
a complex exponential applying the required phase shifts, however for broadband ap-
plications this is not possible and we work with signals that are already time-of-flight
corrected, as such the steering vector simply becomes d = 1C [16]. R is the spatial covari-
ance matrix:

R = E[yH y] (5.11)

In practice the spatial covariance matrix R[x, y, z] must be estimated from a single or
a small number of temporal samples, since the received signals change rapidly in time.
To increase the robustness of the estimation of the sample covariance matrix, we applied
spatial smoothing [47] and diagonal loading as described in Synnevåg et al. [48]. We used
a diagonal loading of 0.001 and sub-array length of 16.

Eigen-Based Minimum Variance beamformer (EBMV) applies an additional update
step on the apodization weights to further improve contrast and resolution [17]. The
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weights of the EBMV beamformer are calculated by taking the eigendecomposition of R
and projecting the signal subspace Esignal on the weights determined by (5.10):

wEBMV[x, y, z] = Esignal[x, y, z]EH
signal[x, y, z]wMV[x, y, z]. (5.12)

COHERENCE FACTOR

The Coherence Factor weighting method also applies data-adaptive weights per-pixel.
However, in contrast to the EBMV the calculated pixel-based weights are identical across
channels. As such CF can also be viewed as a post-filter that is applied after a DAS (or
another) beamformer. The CF weights are determined as the ratio between the coherent
and incoherent energy received by the array [12]:

wCF[x, y, z] = |∑c=C
c=1 y[x, y, z,c]|2∑c=C

c=1 |y[x, y, z,c]2| . (5.13)

Here C is the total number of channels in the aperture. The final voxel value is given by

VCF[x, y, z] = wCF[x, y, z]VDAS[x, y, z]. (5.14)

F-DMAS
The F-DMAS beamformer applies a pairwise multiplication of the signals. The signed
square root is first applied to the signal pairs to ensure a correct scaling of the final pixel
value VF-DMAS:

VF-DMAS =
C−1∑
i=1

C∑
j=i+1

si g n(yi y j )
√
|yi y j | (5.15)

The resulting signal now has additional frequency components at zero and twice the
center frequency, therefore the signal is bandpass filtered around the second harmonic
to remove the DC component [14].

5.2.6. ALGORITHMIC COMPLEXITY
We exclude in the computational complexity calculation the part that is similar to all
adaptive beamformers that were used: time-of-flight-correction, multiplication of the
apodization weights and subsequent summation along the channels, envelope detec-
tion and log compression. We calculate the number of floating point operations (FLOPs)
required for a single voxel, for the ABLE and EBMV beamformer. The version of the ABLE
network that we used consisted of convolutional layers and antirectifiers. The amount
of FLOPs required for an antirectifier layer is 4 times the number of nodes in that layer.
The computational complexity (F ) of a convolutional layer depends on the number of
nodes N in the layer and the number of elements in the convolutional kernel K . The
total computational cost of the convolutional version of the ABLE network with L layers
becomes:

FABLEconv =
L−1∑
l=1

[2Ninl Noutl Kl +4Noutl ]+2NinL NoutL KL (5.16)
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The number of nodes is linearly related to the number of channels C . Thus, the compu-
tational complexity is order O (C 2).

The DAS and CF beamformer have a computational complexity of order O (C ). Al-
though the computational complexity of the F-DMAS beamformer as stated in Equation
14 is of order O (C 2) it can be reformulated such that it also reduces to order O (C ) [49].
The components dominating the computational complexity of the EBMV beamformer
are the inversion and eigendecomposition of the covariance matrix R, which both use
approximately C 3 FLOPS [18], making the computational complexity order O (C 3). The
computational complexity of the EBMV beamfomer is calculated as described in Luijten
et al. [32].

5.2.7. EVALUATION CRITERIA

The Full-Width-at-Half Maximum (FWHM) of simulated point scatterers and in vitro
wire targets (locations are shown in Figure 5.2) is used to evaluate resolution in eleva-
tion and azimuth. Contrast is evaluated with the Contrast-Ratio (CR) and Contrast-to-
Noise Ratio (CNR) as well as the generalized Contrast-to-Noise ration (GCNR). A high-
and low-intensity region (see Figure 5.2) are selected in the in silico and in vitro images
for evaluation. The CR and CNR are calculated by

CR = |µL −µH |
(µL +µH )/2

(5.17)

CNR = |µL −µH |√
σ2

L +σ2
H

, (5.18)

where µL and µH are the mean voxel value of the low and high intensity region (VL ,VH )
respectively and σL and σH are the variances of the regions.

It is possible to change CR and CNR values with trivial dynamic range alterations,
without image quality improvements that improve clinical value [50]. As such, we also
include the GCNR metric which is shown to be resistant to such effects [51]. The GCNR
determines the success rate that can be expected from an ideal observer at the task of
separating the pixels from two different regions and values are always between 0 and 1.
The GCNR is calculated according to

GCNR = 1−
N∑

n=1
min [hn(VL),hn(VH )], (5.19)

where hL and hH represent the histogram of the voxel values of the low and high intensity
region respectively and N is the number of bins in the histogram. Hyun et al. [52] showed
that it is important to choose a bin size that is not too fine or to coarse to get a valid
estimate of the GCNR. We have chosen the number of bins as the square root of the
number of pixels in the low (or high) intensity region and examined the histograms to
check that the sampling was appropriate.
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Figure 5.2: a) The nine scatterer locations used to evaluate the in silico resolution. b) The six scatterer locations
used to evaluate in vivo resolution. c) The high and low intensity regions used to evaluate contrast metrics.

5.3. RESULTS
Elevation and azimuth slices of the 3D images that were obtained for the small array
by beamforming with DAS, F-DMAS, CF, EBMV and the ABLE method trained on in sil-
ico data are shown in Figure 5.3, next to DAS beamformed images of the larger array
(DASLarge). Additional image views from a single in vivo volume can be seen in Fig-
ure 5.4. The average FWHM of the scatterers in the in silico and in vitro data are sum-
marized in Table 5.1. When averaging the FWHM across in silico and in vitro data and
across both lateral directions, we see that the average FWHM of ABLE is only 62% of
the average FWHM of DAS, 79% of that of F-DMAS and 81% of that of CF. The resolu-
tion improvement of ABLE is also clear from Figure 5.5, which shows C-planes of wire
targets and simulated scatterers. The average FWHM of EBMV for the pointscatterers
considered is 3.7◦, which is smaller than the 6.3◦ achieved by ABLE when trained on in
silico data and the 6.6◦ of DASLarge. However, if we look closer at Figure 5.3 then we see
that the points lose consistency in their shape. Furthermore, the normalized beampro-
files along in vitro and in silico scatterers (see Figure 5.6), show that the use of the EBMV
beamformer results in an erratic beamprofile. On the other hand the beamprofile recon-
structed by ABLE shows smooth behavior, similar to the DAS beamformers. While ABLE
also qualitatively improves resolution in the in vivo image (see Figure 5.3 and 5.4), this
is not the case for the EBMV beamformed image. Table 5.1shows that in vitro the GCNR
of ABLE when trained on in silico data is 0.56, which is marginally lower than the GCNR
of 0.59 for DAS, while in silico the GCNR of ABLE is 0.87, which is marginally higher than
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the 0.85 of DAS. The GCNR of F-DMAS and CF is close to that of DAS and ABLE in silico.
However on in vitro data, eventhough the CR is improved for F-DMAS and CF compared
to DAS and ABLE, the CNR and GCNR are not. Specifically, the GCNR of F-DMAS is only
0.45 and that of CF is only 0.34 which is lower than the GCNR of ABLE which is 0.56.
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Figure 5.3: Azimuth and elevation slices of an in silico and in vitro phantom as well as in vivo porcine heart data
are shown for the DAS, CF, F-DMAS,EBMV and the proposed beamformer. In the in silico volume simulated
point scatterers are visible both in an anechoic region and surround by other scatterers forming an hypoechoic
region. The target DAS image formed by the larger array is shown on the last line. The images are shown for a
dynamic range from -60 to 0 dB.

If we look closer at the speckle statistics in Figure 5.7, then we can see that after
subtraction of the mean, the probability density function of the log-compressed pixel
values, is very similar for DAS and DASLarge. The speckle distribution of CF is clearly
skewed with a heavy tail, while that of F-DMAS is broader than that of DAS. Both the
EBMV and ABLE image only have a slightly skewed distribution with respect to DAS. Fig-
ure 5.8 shows the apodization pattern calculated by ABLE for an image line where only
background scattering is present and for an image line where a highly scattering wire
target is present. For the voxels aligned with the wire target ABLE clearly selects differ-
ent apodization weights than for the voxels aligned with background scattering. This
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Figure 5.4: Azimuth and elevation slices of an in vivo procine heart are shown for the DAS, CF, F-DMAS, EBMV
and the proposed beamformer. The images are shown for a dynamic range from -60 to 0 dB.
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Table 5.1: Image quality metrics.
ABLE ABLE

ABLE (in silico (in silico+
DAS F-DMAS CF EBMV DASLarge (in silico) + vitro) vitro+vivo)

FWHM El [◦] 8.1+/-0.6 7.7+/-0.8 6.7+/-0.4 4.7+/-1.8 5.6+/-0.2 5.1±0.3 5±0.4 5.7±0.6

in silico

FWHM Az [◦] 10.4+/-0.7 4+/-2.3 7.7+/-0.6 2.3+/-1 6.4+/-0.5 6.6±0.4 5.8±0.8 6.7±0.5

in silico

GCNR [-] 0.85 0.89 0.83 0.69 0.92 0.87 0.9 0.87

in silico

CNR [-] 1.67 1.38 1.27 1.04 1.5 1.58 1.64 1.62

in silico

CR [-] 1.44 1.69 1.8 1.25 1.51 1.55 1.52 1.47

in silico

FWHM El [◦] 9.7±1.3 9±1.3 7.8±0.8 4.3±1.7 7.6±1.2 6.1±0.7 6.6±0.5 7.4±0.7

in vitro

FWHM Az [◦] 12.4+/-1.1 11.1+/-0.8 9+/-0.3 3.3+/-1.5 6.9+/-0.5 7.3±0.5 8.1±0.5 8.4±0.4

in vitro

GCNR [-] 0.59 0.45 0.34 0.38 0.61 0.56 0.54 0.53

in vitro

CNR [-] 1.11 0.75 0.57 0.68 1.1 0.96 1 0.95

in vitro

CR [-] 0.75 0.83 0.91 0.56 0.79 0.81 0.77 0.74

in vitro

scatterer 1

vol.1 - wire 2 vol.1 - wire 1 vol.2 - wire 2

scatterer 9 scatterer 5

Figure 5.6: Beamprofiles around in vitro wire targets and in silico scatterers when beamformed with DAS, CF,
F-DMAS, EBMV, the proposed ABLE method for the small array as well as the large array DAS target. (The
probe was not rotated to produce the different imaging planes).

confirms that ABLE after training on large aperture targets, does not simply apply an ad-
vantageous manipulation of the dynamic range, but modifies the apodization weights
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Figure 5.7: The probability density function of the log-compressed pixel values after subtraction of the mean
for the DAS, CF, F-DMAS EBMV, proposed ABLE and larger array DAS target beamformers.

Figure 5.8: Apodization weights that ABLE assigns to the data channels for different image locations of the
CIRS phantom, containing either a wire target or background scattering.

and thereby the beampattern based on the received data.

5.3.1. PERFORMANCE COMPARISON MODIFIED ABLE - TRAINING DATA

Figure 5.9 and the last three columns of Table 5.1 show the performance of ABLE when
the neural network is trained only on in silico data and when in vitro and in vivo data
are added to the training set. The average FWHM of ABLE is 6.3◦ when only in silico
training data is used, which is marginally better than the 6.4◦ that is achieved when in
vitro data is added to the training set, while further adding in vivo data to the training set
worsens the average FWHM more significantly to 7.1◦. When ABLE is trained on in silico
data the average FWHM is 95% of the FWHM of the DASLarge target and the FWHM of
ABLE remains marginally better than the target at 96% of the FWHM of DASLarge when
in vitro data is added to the training set of ABLE. A very slight improvement of in silico
GCNR from 0.87 to 0.9 is visible when adding in vitro data to the training set, but adding
in vivo data as well decreases the GCNR again to 0.87. Meanwhile a very slight decrease
of in vitro GCNR from 0.56 to 0.54 is visible when adding in vitro data to the training set
and adding in vivo data decreases it slightly further to 0.53.
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Figure 5.9: Azimuth and Elevation slices of an in silico and in vitro phantom as well as in vivo porcine heart
data are shown for the ABLE beamformer when trained on either in silico data, in silico + in vitro data, or in
silico + in vitro + in vivo data. In the bottom row the DAS beamformer is shown for comparison. The images
are shown for a dynamic range from -60 to 0 dB.
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Figure 5.10: Mean and max difference in training and validation loss when training ABLE2 five times on differ-
ent training data sets.

5.3.2. PERFORMANCE COMPARISON ABLE - RECEPTIVE FIELD SIZE
Figure 5.10 shows the variability in the training and validation loss of ABLE2 trained on
in silico for five training runs with a different set of training and validation data. The
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scatterer wire target

scatterer wire target

Figure 5.11: The achieved in vitro FWHM per scatterer and GCNR and CNR as achieved by ABLE beamformers
with different receptive field sizes. (Full network architectures are given in Figure 5.13. Error bars indicate
the standard deviation for five networks trained on five sets of training data. The mean GCNR and CNR are
determined over a single hypoechoic region.

effect of the variability of five different training runs on the estimated FWHM can be
seen in Figure 5.11, where the FWHM, GCNR and CNR are shown for ABLE1-4. Figure
5.11 shows that increasing the receptive field of the neural network from a single voxel
(ABLE1) to a larger field of view (ABLE2-4) improves performance in terms of in vitro and
in silico lateral FWHM. The average FWHM in vitro is 6.7◦ for ABLE2 while it is 7.9◦ for
ABLE1. Increasing the lateral receptive field from two to three or six voxels has no clear
benefit on the achieved lateral resolution.

The effect of receptive field size on contrast is overall less clear (see Figure 5.11). CNR
and GCNR decrease slightly on in vitro data when increasing the receptive field from a
single voxel, while increasing slightly on in silico data. Figure 5.12 shows that the in-
creased performance of ABLE2 w.r.t. ABLE1 comes at the cost of greater algorithmic
complexity. For the case of a 128 channel probe the computational cost of ABLE2 would
still be below that of EBMV. However for 32 channels the algorithmic cost of ABLE2 is
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about equal to that of EBMV.
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Figure 5.12: The number of FLOPS needed to calculate apodization weights for a single voxel with ABLE1,
ABLE2 and EBMV.

5.4. DISCUSSION
In this study we used a modified ABLE beamformer and training data that consisted of
RF signals as input and targets formed by a larger aperture matrix array. With the pro-
posed method we were able to improve the lateral resolution of volumetric ultrasound
images acquired by on-chip micro-beamforming, with respect to the traditional DAS
beamformer. The average FWHM of ABLE reduced to 62% of the average FWHM of DAS.
ABLE also improved lateral resolution, as measured by the FWHM with respect to the
CF beamformer and F-DMAS beamformer whose average FWHM was respectively 124%
and 127% of that of ABLE. The EBMV beamformer had on average a FWHM that was
only 59% of that of ABLE, but unlike ABLE, this came at the cost of erratic behavior of
the beamprofile around point scatterers and a severe reduction in contrast. We suspect
that the undesirable performance of the EBMV beamformer is due to focusing inaccura-
cies resulting from the micro-beamforming step [53], needed to enable high-frame-rate
read-out of the matrix array. Such inaccuracies may lead to incorrect estimation of sig-
nal statistics and as a result sub-optimal prediction of apodization weights. In contrast,
ABLE is trained over a wide range of input signals, which allows for a more robust mod-
eling of the underlying system parameters.

ABLE slightly decreased in vitro contrast compared to DAS as measured by the GCNR,
from 0.59 to 0.56 and slightly improved in silico contrast with respect to DAS from 0.85 to
0.87. Thus, ABLE improves the achieved resolution without impacting contrast. Since,
the resolution improvement of ABLE can be achieved by purely training with in silico
data, this makes the method easily implementable in practice. To achieve good con-
trast and avoid increased amplitude variation in background speckle it was needed to
add densely scattering regions (10 scatterers per resolution cell) to the in silico training
data instead of using only volumes with sparse scattering. Furthermore, the fact that
the in silico data does not need to be designed to closely match the organ that is im-
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aged, but consists of basic geometric shapes and point scatterers gives some confidence
that this approach is not just sufficient for this imaging scenario, but could generalize
to other scenarios as well. Increasing the receptive field of the original ABLE method by
replacing the fully connected layers of the neural network with convolutional layers led
to an improvement in resolution, measured by a decrease in average FWHM from 71% of
that of DAS to 63% of the average FWHM of DAS. We presume that this small amount of
spatial context is beneficial especially for volumetric imaging with micro-beamforming,
since time-of-flight corrected RF data of a single voxel will contain small receive focusing
errors. Increasing the lateral receptive field size to a larger value than that of ABLE2 did
not result in a clear performance improvement. The computational cost is increased by
adding convolutional layers. The computational cost of ABLE1 with a single voxel recep-
tive field is always below that of EBMV beamforming. For ABLE2 the computational cost
is higher, but stays below that of EBMV beamforming for transducers with more than
∼32 channels. We did not add dropout layers, since the ABLE network in combination
with the large array training target, showed no signs of overfitting on the training data
for all discussed network sizes.

The method surpassed the image quality of the DAS, F-DMAS, CF and EBMV beam-
formers quantitatively and qualitatively. In silico and in vitro resolution measures reach
at least he same level as the target images. When training only on in silico data or on the
combination of in silico and in vitro data, the FWHM was on average lower than that in
the target images. A reason for this could be that the networks bottleneck forces a com-
pact representation of the channel data such that certain elements that are present in
the target data, such as noise cannot be accurately represented, thereby having a bene-
ficial effect on the estimation of the apodization weights. However, further experiments
would be needed to clarify this. The speckle size of ABLE is more similar to that achieved
by the other beamformers, than to that achieved by a larger aperture DAS beamformer.
Vignon et al. [29] already described that learning speckle signals from elements further
away from the original aperture is highly challenging if not infeasible. Unlike the spatial
covariance of specular reflectors, the spatial covariance of the incoherent signal arising
from the sub-resolution tissue scatterers decreases with increasing distance between ob-
servation points. As a result, when distance between elements increases there is no rela-
tion between the speckle signals from the original array and that of a remote element in
the target array, making the signal infeasible to estimate.

Previous work has shown that ABLE in combination with an EBMV based training
target performs well across different 2D ultrasound imaging modalities [32]. Here we
show not only that extension to 3D is possible, but we also demonstrate that the ABLE
method is effective in a situation where a high quality target from existing beamformers
is not available, by using a larger aperture target. A different approach to improving
3D ultrasound image quality with deep learning applied after beamforming is taken by
Huh et al. [54]. They also used artificially generated targets to improve 3D ultrasound
image quality, but instead used an unsupervised deep learning approach. A switchable
CycleGan was used to learn a style-transfer from an unpaired training set of low-quality
3D ultrasound images and high-quality 2D reference images. Unlike the matrix array
used here they used a 3D mechanical scanning probe. Image quality improvements were
assessed through evaluation by a clinician, making the methods difficult to compare.
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Here we specifically focused on 3D imaging with a matrix array that applies micro-
beamforming, since this is a common strategy to solve the data rate and channel connec-
tion problem. However, we expect the ABLE method to also improve lateral resolution
compared to DAS for fully populated arrays without micro-beamforming. For this case it
would be interesting to evaluate whether a training target generated by a larger array or
by EBMV beamforming as was used for 2D imaging [32] would be a more suitable choice.
For such an array with a very large number of channels the advantages of computational
cost when beamforming with ABLE1 or ABLE2 compared to EBMV would become espe-
cially apparent. Whether a receptive field larger than a single voxel would be beneficial
here remains to be evaluated. The use of deep-learning-based beamforming with an ar-
tificial array target could also be investigated for row-column and fixed pattern sparse
arrays. Furthermore jointly learning a sparse sub-sampling pattern and beamforming
algorithm could be explored for fully populated matrix arrays, as shown for 1D arrays in
[55]. Finally, in this work we used real apodization weights. Giving the network more
freedom by letting it learn complex apodization weights and working with IQ data, can
potentially further increase performance.

5.5. CONCLUSIONS
In this work we have shown that deep-learning-based adaptive beamforming can be
used to improve lateral resolution of volumetric ultrasound images acquired by on-chip
micro-beamforming. By using only in silico training data consisting of simulated RF
data and a target created by a larger aperture, we trained a deep-learning-based adap-
tive beamformer. This beamformer improved lateral resolution, such that image quality
is improved beyond that achieved by DAS, F-DMAS, CF and EBMV.

5.6. APPENDIX: NETWORK ARCHITECTURES
Full network architectures are given in Figure 5.13.
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Figure 5.13: Modified ABLE networks, with different receptive field size. K indicates the kernel size in the 3 spa-
tial directions (azimuth, elevation, axial). The number above each convolutional layer indicates the number of
kernels in the layer. C is the number of receive channels of the transducer, which here was 32.
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3-D contrast-enhanced ultrasound enables better visualization of inherently 3-D vascular
geometries compared to an intersecting plane. Additionally, it allows the application of
motion correction techniques for all directions. Both contrast detection and motion cor-
rection work better on high-frame-rate data. However high-frame-rate 3-D ultrasound
imaging with dense matrix arrays is challenging to realize. Sparse arrays alleviate some of
the limitations in cable count and data rate that fully populated arrays encounter, how-
ever, their increased level of secondary lobes negatively impacts image contrast. Mean-
while, the use of unfocused transmit beams needed to achieve high frame rates negatively
impacts resolution. Here we propose to use deep learning-based beamforming to improve
the image quality of contrast-enhanced ultrasound images acquired with a sparse spi-
ral array. Two types of deep learning-based beamforming are used: adaptive beamform-
ing by deep learning (ABLE) and a novel deep learning-based beamformer called neu-
ral maximum-a-posteriori (neural MAP) beamforming. The neural MAP beamformer ef-
ficiently incorporates deep learning in the maximum-a-posteriori (MAP) beamforming
framework, such that prior information about the distribution of the acoustic reflectiv-
ity can be incorporated into the beamforming process. The neural networks are trained
on simulated data. Neural MAP and ABLE improve resolution compared to delay-and-
sum (DAS) and spatial coherence (SC) beamforming on the simulated and in vivo data.
The qualitative improvements persist after histogram matching, indicating that the im-
age quality improvement was not purely due to dynamic range stretching. The impact of
the different beamformers on ultrasound localization microscopy (ULM) was considered
as well. Neural MAP showed the best performance on localizing in silico microbubbles fol-
lowed by ABLE, SC and DAS. Finally, super-resolved images of an in vivo chicken embryo
recording are shown.
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6.1. INTRODUCTION
Contrast-enhanced ultrasound imaging (CEUS) has enabled the visualization of the mi-
crovasculature, which used to be difficult to distinguish from tissue due to the slow blood
velocity and the weak scattering of red blood cells [1]. Microbubbles (MBs) are used in
clinical practice to generate CEUS images of the vasculature, which serve as a diagnos-
tic tool for various pathologies [2–6]. In CEUS imaging the maximum transducer center
frequency is determined by the required imaging depth and the achievable spatial res-
olution is limited by the diffraction limit. When the microvessels are separated by dis-
tances smaller than half the wavelength a detailed map of the microvasculature cannot
be distinguished. However, the achievable resolution at which maps of the (micro-) vas-
culature can be recorded has been significantly increased through the development of
ultrasound localization microscopy (ULM) [7, 8]. ULM breaks the diffraction limit of ul-
trasound images by localizing the center of isolated microbubbles with subwavelength
precision, in some cases reaching micrometer precision [9–14]. By tracking the trajecto-
ries of the contrastagents, super-resolution heamodynamic maps of the microvascula-
ture can be realized. Many studies have contributed to improving localization precision,
tracking accuracy and reducing acquisition time to further develop the emerging ULM
technology, an overview of these can be found in two recent review papers [13, 14].

Three-dimensional images are highly desired for contrast-enhanced ultrasound and
ULM, because they enable better visualization of the vasculature compared to 2-D im-
ages and allow for motion correction in all directions. High frame rates are not just desir-
able in scenarios with a high bloodflow velocity, but also allow more effective application
of post-processing filters [15], better motion compensation and lower acquisition times.
Sparse arrays are an attractive option to realize high-frame-rate volumetric imaging due
to their relatively low cable count, data rate and cost. Although their transmit efficiency
and receive sensitivity are lower compared to fully populated arrays, the high reflectiv-
ity of microbubbles makes this less of a concern in contrast-enhanced imaging than in
imaging without contrast. Harput et al. [16] showed the suitability of a 2-D sparse ar-
ray for high-frame-rate super-resolution imaging in vitro. Wei et al. [17] demonstrated
contrast-enhanced vasculature mapping of a live chicken embryo chorioallantoic mem-
brane with a sparse spiral array. However, the variation of magnitude and pulse shape
within the emitted field of a sparse array is higher than with dense matrix arrays and
the high-amplitude secondary lobes can cause artifacts when beamforming with Delay-
and-Sum (DAS) and reduce contrast. Meanwhile, the unfocused transmit beams needed
for high-frame-rate imaging negatively impact resolution. Spatial coherence (SC) beam-
forming has been used to improve image quality in contrast-enhanced ultrasound im-
ages acquired by a sparse array [17]. Through exploiting the coherence of signals, the
level of microbubble clutter was reduced and a better separation of contrast w.r.t. the
background was achieved.

The increased clutter level of sparse arrays and increased mainlobe width from high-
frame-rate imaging with unfocused transmit beams also negatively impacts the appli-
cation of ULM techniques on contrast-enhanced images. The larger PSF size results in
more overlapping microbubbles and a greater variation in PSF shape can also hamper
the application of ULM techniques. Although low concentrations of microbubbles have
often been used to increase the localization precision of ULM by decreasing the num-
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ber of overlapping microbubble PSFs, there has recently been increased attention on
developing methods that increase the detection sensitivity and precision at higher mi-
crobubble concentrations. This is driven by the desire to use higher concentrations of
contrast agents, which would be needed to reduce acquisition time, while still filling all
desired arterioles. Reduced acquisition times are important to reduce the impact of mo-
tion artifacts and essential in applications that want to reveal physiological information
from fast changes in blood flow [18–21]. The ULM algorithms focused on coping with
overlapping PSFs have been based on deconvolution [22, 23], sparse recovery [24–27]
and deep learning [28–33].

These methods all work on images that have been formed with DAS beamform-
ing. Others have proposed to reduce the PSF overlap of nearby microbubbles by us-
ing minimum-variance beamforming (MV) [34] instead of DAS. However, minimum-
variance beamforming is computationally expensive and not well-established for vol-
umetric imaging with sparse arrays. Adaptive beamforming by deep learning (ABLE)
[35] has a lower computational cost than minimum variance beamforming and has been
applied to improve ultrasound image quality in non-contrast-enhanced images for ar-
rays with regularly spaced elements and has been used jointly with deep learning-based
localization [28] to improve the localization of microbubbles in contrast-enhanced ul-
trasound. Inspired by this, in [36] we trained an adapted version of the original ABLE
network on in silico data and compared beamformed CEUS images of an in vivo chicken
embryo to DAS and SC beamforming, showing an increased resolution.

Neither, DAS, SC, MV, ABLE or in general, the majority of ultrasound beamformers,
exploits prior information about the distribution of the acoustic reflectivity in the im-
age. Recently, we proposed a novel approach, neural maximum-a-posteriori (neural
MAP) beamforming, which efficiently incorporates deep learning in the maximum-a-
posteriori (MAP) beamforming framework [37]. For many prior distributions, MAP esti-
mation has no closed-form solution and instead needs to be estimated through iterative
methods such as proximal gradient descent. Neural MAP unfolds [38] the iterations of
proximal gradient descent into a neural network consisting of a fixed number of itera-
tions of data-consistency and prior steps. The neural MAP framework allows replacing
both the data-consistency and prior steps with neural networks. However, for detecting
sparsely distributed microbubbles the soft-thresholding operator has been shown to be
an appropriate prior [39].

In this chapter, we hypothesize that both the ABLE and neural MAP beamformer with
a sparse prior, increase the resolution of CEUS images acquired with a sparse spiral ar-
ray compared to DAS and SC. Secondly, we hypothesize that ABLE and neural MAP to
a larger degree, improve the sensitivity and precision of microbubble localization com-
pared to DAS and SC beamformed images by increasing contrast and resolution through
a reduced impact of secondary lobes and narrowing of the mainlobe.

We evaluate the contrast-enhanced ultrasound images made by each beamformer
both on in silico data for which a ground truth is available and on in vitro and in vivo
data. Using ULM techniques from the ultrasound super-resolution localization-and-
tracking toolbox [40], we compare the localization performance on in silico data for each
beamformer and show the super-resolved images of an in vivo chicken embryo record-
ing.
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6.2. METHODS

6.2.1. SPARSE SPIRAL ARRAY
We used a 5 MHz prototype sparse array with a 1.6 cm diameter aperture, consisting of
256 piezoelectric elements with an element size of 200 µm x 200 µm. The elements are
arranged in a tapered spiral pattern, specifically designed to minimize sidelobe levels by
decreasing the element density towards the edge of the array according to a Blackman
window [41, 42], see Fig. 6.1.
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Figure 6.1: Layout of the 256 elements of the sparse spiral array. Only the center 120 elements indicated in red
are used in transmit. All elements are used in receive.

6.2.2. IMAGING SCHEME
Diverging waves with a 30◦ opening angle were used to insonify a large region of inter-
est. The final volumetric images were formed by angular compounding of five steered
diverging waves (angles: [0◦, 5◦], [5◦, 0◦], [0◦, -5◦], [-5◦, 0◦], [0◦, 0◦]) to reach a volumet-
ric frame rate of 1000 Hz. To increase the uniformity of the transmit field in both lateral
and axial direction, only the center 120 elements were used in transmission (see Fig. 1).
Further details on the probe and the design of the transmit and receive strategy can be
found in [17].

6.2.3. SIMULATION DATA FOR TRAINING AND EVALUATION
Field II [43] was used to simulate the data acquisition of the sparse array during contrast-
enhanced ultrasound imaging. Point scatterers with an amplitude between 0.5 and 1
were randomly distributed in a region spanning from -40◦ to 40◦ in azimuth and eleva-
tion direction. Hundred image volumes were simulated for training, of which 10% was
used as validation data. The simulated concentration of microbubbles ranged from 50-
600/cm3 with an average concentration of 200/cm3. The RF data was used as input to the
neural networks, while the true location and amplitude of the point scatterers were used
to form a target image. Test data to evaluate the performance of the ABLE, neural MAP,
SC and DAS beamformers was generated for 15 concentrations between 4 and 208/cm3,
with white Gaussian noise added to the RF data. Five different volumes with different
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distributions of the simulated micro-bubbles were simulated for each concentration to
allow averaging of performance metrics.

6.2.4. IN vitro DATA ACQUISITION
A helical-shaped cellulose tube with a 200 µm outer diameter was used as an in vitro
phantom for 3D flow in a microvessel. The tube had an inner diameter between 150
and 180 µm. It was embedded in tissue-mimicking PVA material. The custom-made
microbubble solution (C4F10 gas core, phospholipid coating, F type, mean diameter 1.1
µm [44]) was pumped through the helical tube with a syringe pump at a flow rate of 25
µL/min (mean velocity = 16.5 - 23.6 mm/s)[17].

6.2.5. IN vivo DATA ACQUISITION
An ex ovo chicken embryo and chorioallantoic membrane (CAM) were used as the in
vivo model to investigate the effect of the different beamformers on contrast-enhanced
ultrasound imaging. The five-day-old chicken embryo and CAM were removed from the
eggshell and further prepared according to the protocol of Meijlink et al. [45], after which
four µL of custom-made F-type microbubble was injected into the vasculature of the
chicken embryo. The chicken embryo was placed in a PBS solution and the ultrasound
array was positioned on top of the chicken embryo at a 3 cm distance. More details of the
procedure can be found in [17, 45]. The ultrasound recording lasted 3.9 s. Before off-line
beamforming of the data, it was pre-processed with an SVD filter along the full frame
length of 3900 frames to remove the quasi-stationary tissue and background signal. The
RF data of each transmit angle was filtered separately and the twenty lowest ranks were
removed.

6.2.6. BEAMFORMING WITH ADAPTIVE BEAMFORMING BY DEEP LEARNING
The ABLE method uses a neural network to calculate pixel-wise apodization weights that
are adapted to the time-of-flight (TOF) corrected RF data received for that pixel. The
voxel intensity of each pixel is obtained by per-pixel multiplication of the apodization
weights with the TOF-corrected RF data [35]. By replacing only the apodization weight
calculation rather than the full beamforming process including TOF correction, it is pos-
sible to use a compact network with a small number of layers. Here, convolutional layers
with a small filter size are used to extend the receptive field of the network from just the
TOF-corrected RF data for the pixel considered, to the TOF-corrected RF data of a few
neighboring pixels, similar to [46]. The neural network architecture is shown in Fig. 6.2.
Apodization weights were calculated for the RF data received from each of the five trans-
mit angles in five separate branches, each with the same architecture. A branch con-
sisted of four convolutional layers. Identical to the original ABLE implementation, each
layer except for the last layer was followed with a dropout layer, which randomly discon-
nected nodes with a probability of 0.2, to prevent over-fitting and an anti-rectifier acti-
vation function. The anti-rectifier concatenates the positive and negative signal com-
ponents before applying ReLU activations, thereby preventing loss of the negative signal
components. At the same time, the anti-rectifier retains the properties of the ReLU ac-
tivation function: being unbounded, preserving the dynamic range of the input, com-
putational efficiency and a high resistance against vanishing gradients. After pixel-wise
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multiplication of the apodization weights with the TOF correct RF data and subsequently
summing across the channel dimension, the resulting voxel values from each of the five
acquisition directions were compounded. Unlike the original ABLE beamformer, the
voxels were then envelope detected to better match the output to the target and finally
processed by a 1-D convolutional layer extending in the axial direction.

6.2.7. BEAMFORMING WITH NEURAL MAP
GENERAL FRAMEWORK

Most conventional beamforming methods such as DAS and MV beamforming don’t uti-
lize prior information about the tissue reflectivity of the imaged medium. Such beam-
forming methods can be derived from a general linear model of the measurement pro-
cess

y = ax +n, (6.1)

where y ∈ RL is the observed signal for L transducer channels, x is the signal of interest,
the tissue reflectivity and n is the noise vector. The steering vector a simplifies to a = 1 by
applying TOF correction first to form y. When no prior information about x is taken into
account, the most likely value of tissue reflectivity x̂ (for each individual pixel) given the
measurements y can then be found from the Maximum-likelihood (ML) estimate. The
probability of p(y|x), can be maximized by minimizing the negative log-likelihood:

x̂ = argmax
x

log p(x|y) = argmin
x

||y−ax||22 = argmin
x

(y−1x)T C−1(y−1x), (6.2)

here C is the noise covariance matrix. When the noise distribution is assumed Gaussian,
the closed-form solution gives the Delay-and-Sum beamformer and for colored noise
the MV beamformer. When prior information p(x) is available, the posterior probability
p(x|y) can be found using

p(x|y) ∼ p(y|x)p(x). (6.3)

A solution for x can be then be found using the maximum-a-posteriori (MAP) estimate
by adding the prior knowledge of x to (6.2) with a regularization term:

x̂ = argmax
x

log p(x|y) = argmin
x

||y−ax||22−log p(x) = (y−1x)T C−1(y−1x)−log p(x). (6.4)

Since a closed-form solution to the MAP estimator does not exist for many prior dis-
tributions, iterative methods, such as proximal gradient descent are used to solve for x̂.
One iteration of proximal gradient descent consists of taking a step towards satisfying the
maximum likelihood equation, the data-consistency (DC) step and subsequently taking
a step to satisfying the prior, the proximal step. For 6.4 this can be written as:

x̃k+1 = xk +2µ1T C−1(y−1xk ) (6.5)

x̂k+1 = Prox(x̃k+1) (6.6)

where µ denotes the size of the gradient step and Prox(·) denotes the proximal operator.
This iterative procedure requires that the inverse covariance matrix is estimated for each
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image voxel, an often slow and unstable process. The neural MAP method [37] proposes
to use neural networks to replace part of the DC step and part of the proximal step as well
when it is desired to model more complex prior distributions. The iteration procedure
is unfolded [38] into a forward neural network with a fixed number of iterations (also
called folds) K . The general case can be written as:

x̃k+1 = xk + fθ,k (xk ,y) (6.7)

x̂k+1 = gθ,k (xk ,y) (6.8)

here θ are the trainable weights and k is the iteration number.

SPECIFIC IMPLEMENTATION

For ultrasound images acquired with a contrast agent, the acoustic reflectivity of the im-
aged region can be assumed to be sparse and thus modeled by a Laplace prior. The
resulting proximal step has a closed-form solution, the soft-thresholding operator. It
was shown that such a prior is appropriate for the detection of sparsely distributed mi-
crobubbles in ULM [30]. Here we choose a smoothed sigmoid-based soft-threshold as
the proximal step in the unfolded beamformer, which is a smoothed version of the soft-
threshold operator:

Tλ(x̃k+1) = x

1+e−τ(|x|−λ)
, (6.9)

where τ is set equal to 1 and λ is a trainable parameter. Similar to [37] we used the ABLE
model, to calculate content adaptive apodization weights based on y. The calculated
apodization weights are then multiplied by the residual, resulting in the following spe-
cific implementation of 1 fold of neural MAP:

x̃k+1 = x̂k +hθ,k (y)(y−1xk ), (6.10)

x̂k+1 =Tλ(x̃k+1,y) (6.11)

For hθ,k the same block of four convolutional layers, dropout and antirectifier acti-
vation functions was used as for the ABLE beamformer, see Figure 6.2. Three folds were
used, each containing independent weights. To keep the number of trainable parame-
ters low, no separate branches were used for each transmit angle, instead the RF data
was compounded beforehand and a single branch of the ABLE network block was used
for the neural MAP implementation.

6.2.8. BEAMFORMERS FOR COMPARISON: DAS AND SC
Since the tapering of element density towards the edge of the aperture was specifically
designed to reduce sidelobe levels, no further receive apodization was applied when
beamforming with DAS. For SC beamforming the average spatial coherence value was
calculated on the TOF corrected RF data of each voxel independently for each transmis-
sion angle and using all transducer channel pairs according to:

VSC =
∑C−1

c=1
∑C−c

l=1 y(c)y∗(c + l )∑N
c=1 |y(c)|2 (6.12)
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Here y(c) is the TOF corrected signal of element c, C is the total number of elements
in the array, l is the lag in number of elements and ∗ indicates the complex conjugate.

6.2.9. TRAINING PROCEDURE
During training, simulated image patches of 11 ×11×100 voxels were randomly selected
from a volume at 0.15 to 0.45 cm distance from the transducer extending -20◦ to 20◦ in
azimuth and elevation. White Gaussian noise was added to the RF data during train-
ing before TOF correction to promote robustness under the influence of noise. Both the
ABLE and neural MAP network were trained with the Adam[47] optimizer to minimize
the mean-squared-logarithmic-error between the network output images and a Gaus-
sian filtering of images containing the true point locations and amplitude:

LMSLE(y, x) = 1

I

I∑
i=1

(
1

2
|| log10(V (i )

NN)− log10(V (i )
Target)||22 (6.13)

Here V (i )
NN) refers to the network output for voxel i and V (i )

Target to the target voxel.

The standard deviation of the gaussian filtering of the target voxels was annealed dur-
ing training. The learning rate was α = 10−3, the exponential decay rate for the first
and second moment were set according to the values suggested by [47] at β1 = 0.9 and
β2 = 0.999. The constant for numerical stability was ϵ̂= 10−7. The ABLE and neural MAP
network were implemented using a Tensorflow (Google, CA, USA) backend.

6.2.10. CEUS AND ULM PROCESSING PIPELINE
Figure 6.3 summarizes the data processing pipeline. For CEUS imaging of the in vitro
and in vivo data, the images were averaged in time after beamforming. For DAS imaging
the averaging was performed on the envelope-detected frames, while no envelope de-
tection was applied for the other beamforming methods. For the SC beamforming, after
averaging the frames over time only the real part of the signal was kept and negative sig-
nal values were set to zero, since positive correlation values with zero phase are expected
[17]. Finally, scan conversion and log compression are applied to display the CEUS im-
ages. Localization of the MBs in the simulated data and localization with tracking of the
in vivo data was performed on the beamformed DAS, SC, ABLE and neural MAP images
using the ultrasound super-resolution localization-and-tracking toolbox from Heiles et
al. [40]. Small modifications were made to the framework to extend localization and
tracking to three dimensions. The toolbox makes seven different algorithms available
to perform the localization step. The weighted average (WA) algorithm was chosen for
localization on all beamformed images since [40] showed that its overall performance
together with radial symmetry-based algorithms was the highest. Although the maxi-
mum attainable resolution would be lower than RS and Gauss-fit-based algorithms it
has a lower processing time.

The first step of the localization algorithm is finding the regional maxima in the im-
age. Only the regional maxima with the highest amplitudes are kept. For the simulated
data, the number of maxima that is kept Nrmax is set to the known true number of par-
ticles present in the image. For each of the remaining local maxima the WA localization
kernel is applied to a cropped image centered on the local maxima. The size of this
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Figure 6.3: Diagram of the data processing pipeline for CEUS (steps a,b,c,d,e,f)and ULM (steps a,b,c,g,h). SVD
filtering in step a) was only applied for the in vivo data. While envelope detection was only applied for the DAS
beamformer and not for the other beamformers. The ultrasound super-resolution localization-and-tracking
toolbox from Heiles et al. [40] was used for localization (g) of the simulated data and for localization and
tracking (g,h) of the in vivo data.

cropped image Scrop was set based on the FWHM of the bubble after beamforming with
the respective beamforming methods, see Table 6.1. It was confirmed that choosing the
Scrop value of DAS equal to that of each of the other beamformers did not improve its lo-
calization results. Finally, local maxima were rejected if too many local maxima (Nlmax)
were present in the cropped region around a local maximum, as well as when the final
detected position was more than half the FWHM away in either direction from the ini-
tially found local maximum. All localization parameters are summarized in Table 6.1.
For each beamformer, we present the results using the Nlmax parameter that gives the
best localization results.

Table 6.1: Parameters for localization

Parameter Value
Nrmax [-] in silico: true # MBs, in vitro: 5, in silico: 40
Scrop [# pixels] DAS: [9,9,7], SC/ABLE/neural MAP: [5,5,3].
Nlmax [-] DAS: 9, SC/ABLE/neuralMAP: 3

Localization was performed on the beamformed image grid with spacing [0.3◦,0.3◦,λ/4].
After localization, the positions were converted to Cartesian coordinates. For the in vivo
data the toolbox[40] was then used to pair successive localizations together into tracks
using Kuhn-Munkres assignment [48]. Tracks that consisted of a smaller number of lo-
calizations than the minimum track length Ltrackmin were removed. The tracking param-
eters are summarized in Table 6.2.

The tracks were interpolated and then projected on a rendering grid with size Rgrid

where tracks were accumulated by incrementing the pixel intensity with 1 if a trajectory
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Table 6.2: Parameters for tracking and
display

Parameter Value
Ltrackmin [# of localizations] 10
Lmaxlink[mm] 0.2
Lframeskip [# frames] 2
Rgrid(x,y,z) [µm] [10,10,10]
interpolation factor 10

Lmaxlink is the maximum distance between a MB
in subsequent frames to reject pairing
Lframeskip is the maximum allowed gap in mi-
crobubble pairings

passes through that pixel. Finally, a power compression factor of 1/3 was applied to the
density for display of the image.

6.2.11. EVALUATION PROCESS AND METRICS

HISTOGRAM MATCHING

To make a fair visual and quantitative comparison between the performance of different
beamformers the effect of dynamic range compression and displayed dynamic range
must be separated from the information content in the image. Bottenus et al. [49] have
proposed to separate the structural changes from the images’ respective embeddings by
placing the images all under the same embedding through histogram matching. The
Matlab implementation made available by [49] was used to implement full histogram
matching of both DAS and SC images towards the reference ABLE method. Full his-
togram matching was used since this resulted in a better match of overall appearance
than partial histogram matching. The number of bins was set to 256.

SEPARATION OF NEIGHBORING SIMULATED MBS

The full-width at half-maximum (FWHM) is often used to describe the resolution of an
imaging system. However, when using nonlinear beamformers the FWHM can easily be
fooled, taking on a better value as it would through a simple dynamic range transfor-
mation, without having improved the information present in the image [50]. Sparrow’s
criterion [51], is a measure for resolution that uses the spacing between two points and
is unaffected by dynamic range transformations. It expresses the resolution limit as the
spacing between two points where the dip in intensity between them just disappears to
form a flat plateau. Here, two pointscatterers have been simulated with Field II at in-
creasing lateral distance to visualize when independent peaks start to appear.

LOCALIZATION OF SIMULATED MICROBUBBLES

For the simulated data the ground truth is available, therefore more quantitative criteria
can be used to evaluate the result than for in vivo data. The following metrics are used
to evaluate the performance of the localization algorithm on images generated by the
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different beamformers: precision, recall, Jaccard index (JAC), detected density and lo-
calization error. The Precision is calculated as the fraction of correctly localized bubbles
from the total amount of detected bubbles:

Precision = TP

TP+FP
. (6.14)

Here TP is the number of True Positive localizations and FP is the number of False Pos-
itive localizations. A localization is termed a correct localization when it is within a λ/2
distance w.r.t. the true position. Recall gives an indication of missed positive predictions
and is calculated as the fraction of correctly localized bubbles from the total set of true
micro-bubbles:

Recall = TP

TP+FN
. (6.15)

Here FN is the number of False Negative localizations. The Jaccard index is used as a
measure of localization accuracy:

JAC = TP

TP+FN+FP
(6.16)

For the correct localizations (TPs), the localization error is calculated as the aver-
age root-mean-square-error between the localized bubble positions (xi , yi , zi ) and their
ground truth locations (xGT

i , yGT
i , zGT

i ):

RMSEloc =
1

T P

T P∑
i=1

√
(xi −xGT

i )2 + (yi − yGT
i )2 + (zi − zGT

i )2. (6.17)

The detected microbubble density ρdetected is calculated from the true microbubble
density ρGT and the Recall:

ρdetected = ρGT Recall (6.18)

6.3. RESULTS

6.3.1. SIMULATION: SEPARATION OF MICROBUBBLES
Fig. 6.4 shows beamformed C-plane images of a single point scatterer and two simulated
points scatterers at increasing distances w.r.t. each other. Complimentary to this Fig. 6.5
shows the lateral intensity profile. For the single scatterer, the DAS beamformed image
has the largest PSF, while that of the SC beamformer is smaller and the PSF of ABLE
and neural MAP is smaller than SC by an approximately equal amount. After histogram
matching the DAS and SC beamformed images to those of the ABLE beamformer, the
PSF of the DAS beamformed image is reduced to approximately that of the original SC
image and the PSF of the SC image is smaller than the PSF in the ABLE and neural MAP
image. When the scatterers are placed at a distance of 1.4 mm the top-view is elongated
w.r.t that of a single scatterer. However, the lateral intensity profile in Fig. 6.5 doesn’t
show a separation of the two peaks for the DAS and SC beamformed images and neither
do their histogram-matched counterparts. For the ABLE and neural MAP image, two
separate peaks are present, although their height is unequal. At 1.6 mm distance, it is
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possible to observe the separation of the two scatters in the lateral beamprofile for the
ABLE and neural MAP beamformer as well as for the SC beamformed image. However,
the dip for the SC beamformed image is barely -1 dB while that of ABLE and neural MAP
and the SC image after histogram matching is between -15 and -18 dB. At a distance of
3.2 mm, there is a clear separation of the scatterers, where all beamformers show a dip
in the beamprofile between the two peaks that is below -6 dB.
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Figure 6.4: Simulated point scatterers at a number of distances, beamformed with DAS, SC, ABLE and neural
MAP. The DAS and SC beamformer responses are also shown after histogram matching to ABLE. The images
are shown for a dynamic range from -60 to 0 dB. From the top row to the bottom row the distance between
point scatterers is decreased.

6.3.2. SIMULATION: IMAGE OF MICROBUBBLE CLOUDS
Figure 6.6 shows an example image from the test set. The concentration is 55 microbub-
bles / cm3. As reference the true locations are shown with a guassian filtering. It is visible
that both ABLE and neural MAP display two closeby scatterers more clearly as individ-
ual microbubbles than the DAS and SC image. After histogram matching the resolution
of the DAS and SC images is improved, however some of the microbubbles with lower
intensity are no longer visible in the DAS and SC images.

6.3.3. SIMULATION: LOCALIZATION
Fig. 6.7 shows the results of microbubble localization on volumetric images with a mi-
crobubble concentration between 4 and 181 microbubbles/cm3 for all four beamform-
ers. The lowest recall and precision and thereby also the lowest JAC index is achieved by
localization on the DAS images. The JAC index for localization on the SC beamformed
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Figure 6.6: Left Top) The ground truth positions and amplitude of the simulated microbubbles are visualized in
a lateral plane by a Gaussian filtering of the point scatterers. Left row 2-5) Beamformed images with DAS, SC,
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ABLE.Right row 4-5) DAS and SC beamformed image after histogram matching to neural MAP. The pink arrow
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histogram matching. The green arrow shows two microbubbles that are more clearly separated by neural MAP
than the other beamformers.
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images is higher for every concentration. For all but the highest two concentrations,
where their scores become equal, the ABLE beamformer has a higher JAC index than the
SC beamformer. Neural MAP has a further improved JAC index for all concentrations. On
average the JAC index of SC is 0.19 higher than that of DAS, that of ABLE is 0.26 higher
than DAS and neural MAP is 0.31 higher than DAS. The localization error is highest for
DAS, lowest for the SC beamformer and the neural MAP and ABLE beamformer have a
localization error in between these two. The highest microbubble density is detected
with the neural MAP beamformer for all concentrations.
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Figure 6.7: Comparison of localization metrics after localization on DAS, SC, ABLE and neural MAP images of
clouds of randomly placed point scatterers with varying density.

6.3.4. IN vitro EXPERIMENT: HELICAL TUBE

Fig. 6.8 shows time-averaged images of the helical tube after beamforming with DAS, SC,
ABLE and neural MAP. Using the same dynamic range to display all images would either
not allow visualizing the tube with DAS due to the high amplitude of the background, or
would remove a large part of the signal from the bubbles in the tube for the other beam-
formers. Therefore, images are displayed in a dynamic range where the background in-
tensity falls just outside of the dynamic range displayed (up to the nearest 5 dB), The
DAS and SC images are smoother, whereas in the ABLE and neural MAP images more
individual bubbles are visible in the time-averaged image.
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Figure 6.8: Volume render of microbubbles flowing through a helical tube. 390 frames at 100 Hz are beam-
formed with either, DAS, SC, ABLE or neural MAP and then averaged. For each beamformer a dynamic range
is used where the background signal falls just below the lower bound of the dynamic range.



6

128 6. NEURAL MAP AND ABLE FOR 3-D CONTRAST ULTRASOUND WITH A SPARSE ARRAY

D
A

S
Y

 [m
m

]

S
C

Y
 [m

m
]

A
B

L
E

Y
 [m

m
]

-10 -5 0 5 10

10

X [mm]

n
eu

ra
l M

A
P

Y
 [m

m
]

D
A

S
 h

is
t.

m
at

ch
.

A
B

L
E

S
C

 h
is

t.
m

at
ch

.
A

B
L

E
D

A
S

 h
is

t.
m

at
ch

.
n

eu
ra

l M
A

P

X [mm]

S
C

 h
is

t.
m

at
ch

.
n

eu
ra

l M
A

P
-20

-10

0

-45

-35

-25

-15

-5

-25

-15

-5

-45

-35

-25

-15

-5

-25

-15

-5

0

-25

-15

-5

-45

-35

-25

-15

-5

-45

-35

-25

-15

-5

Photograph

-10

-5

0

5

10

-10

-5

0

5

10

-10

-5

0

5

10

-10

-5

0

5

-10 -5 0 5 10
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matching to neural MAP.



6.3. RESULTS

6

129

-10

40

-5

Z [mm]

35

X [mm]
0

30

5

10

-10

-5

X [mm]
0

5

10

10
5

Y [mm]
0

-5
-10

40

Z [mm]

35

30

10
5

Y [mm] 0
-5

-10

40

Z [mm]

35

30

-10

-5

X [mm]
0

5

10
10

5

Y [mm]
0

-5
-10

40

Z [mm]

35

30

-10

-5

X [mm]
0

5

10

DAS

ABLE neural MAP 

SC

10
5

Y [mm]
0

-5
-10
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at 1kHz. The renderings shown are based on localization and tracking of DAS, SC, ABLE and neural MAP
beamformed images.



6

130 6. NEURAL MAP AND ABLE FOR 3-D CONTRAST ULTRASOUND WITH A SPARSE ARRAY

6.3.5. IN vivo EXPERIMENT: CHICKEN EMBRYO
Fig. 6.9 shows the maximum intensity projection (MIP) of 3900 subsequent frames. Af-
ter SVD filtering the RF data it was beamformed with DAS, SC, ABLE and neural MAP
respectively and subsequently each set was averaged over time. After matching the his-
tograms of the DAS and SC images to that of the ABLE or neural MAP image and dis-
playing them in the same dynamic range, visually the contrast between the vessels and
the background is similar. However, not all details that are present in the neural MAP
or ABLE image are visible in the DAS and SC images. Furthermore, the resolution is
higher in the ABLE and neural MAP images, such that there is an increased separation
of the vessels and the heart is better separated from surrounding vessels. The neural
MAP and ABLE images display approximately the same level of detail, however, the neu-
ral MAP beamformer simultaneously achieves an improved suppression of unwanted
background signal.

Fig. 6.10 shows a super-resolved 3D render of the interpolated microbubble density
of the chicken embryo and CAM. The super-resolved image based on the DAS beam-
formed images has the highest level of disorganization, showing the least clear tracks
and least sharp delineation of the heart. SC, ABLE and neural MAP show a more nar-
row vessel diameter Both SC and neural MAP depict some more distal parts of vessel
branches more clearly than DAS and ABLE.

6.4. DISCUSSION AND CONCLUSION
High-frame-rate volumetric CEUS and ULM recordings of the vasculature are highly de-
sired to enable a full visualization of the underlying 3D structure, out-of-plane motion
correction, the effective application of post-processing filters as well as shorter acqui-
sition times. With sparse arrays, high-frame-rate volumetric imaging can be realized at
a reduced channel count and electronic complexity compared to fully populated arrays
integrated with application-specific integrated circuits (ASICs). Unlike row-column ar-
rays, sparse array retain the flexibility to transmit diverging waves thereby allowing a
wide field of view to be realized from a small acoustic window. However, the high level
of secondary lobes associated with sparse arrays compared to fully populated arrays can
cause image artifacts, while the unfocused transmit beams needed to realize high-frame-
rate imaging negatively impact resolution. The reduced image quality has a negative
effect on the visualization of the microvasculature. Therefore improving the image qual-
ity with better beamforming methods is desirable. In this chapter, we have applied the
deep learning-based ABLE and neural MAP beamformer to reconstruct volumetric con-
trast images acquired with a sparse spiral array. CEUS images of in silico, in vitro and
in vivo data were compared for the DAS, SC, ABLE and neural MAP beamformers, while
localization performance was quantitatively evaluated on in in silico data and ULM per-
formance was shown on in vivo data.

For a single in silico scatterer, the FWHM of ABLE and neural MAP are similar and
reduced compared to that of DAS, even after histogram matching to separate effects from
dynamic range stretching. However, after histogram matching, the FWHM of the SC
beamformer has transformed from larger than that of ABLE and neural MAP to smaller.
The DAS beamformer did not show a separation of two simulated microbubbles at 1.6
mm distance, even after histogram matching, while the separation was visible by a clear
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dip (<-6 dB) in the lateral beamprofile for the ABLE and neural MAP beamformer. For the
SC beamformer the separation was initially less than 1 dB, however, histogram matching
transformed the dip in the beamprofile to a similar level of that of ABLE and neural MAP.
This suggests that there is an increased ability of SC, ABLE and neural MAP compared
to DAS to separate closeby microbubbles, although an evaluation of closeby scatterers
at a greater variation of positions and possibly noise levels would be required for a more
definitive evaluation of the in silico potential to separate closeby scatterers.

In the simulation of bubble clouds SC, ABLE and neural MAP showed better sup-
pression of noise and clutter compared to DAS beamforming. ABLE and especially neu-
ral MAP showed a better separation of bubbles compared to DAS and SC beamforming.
This translated to an increased precision and recall in the localization of microbubbles
in the simulated bubble clouds when beamforming with SC compared to DAS, a further
increased precision and recall by ABLE and the highest precision and recall was achieved
by neural MAP beamforming. This meant that the average JAC index, which can be con-
sidered as a weighted combination of precision and recall, when averaged over the con-
centrations considered, increased from 0.36 for DAS to 0.54 for SC, 0.61 for ABLE and 0.66
for neural MAP. The time-averaged in vivo image of a chicken embryo and chorioallan-
toic membrane showed that after histogram matching to ABLE or neural MAP, a similar
level of contrast between the vessels and background can be achieved for all beamform-
ers. However, the increased in vivo resolution of the ABLE and especially the neural MAP
beamformed images is visible from an increased separation between vessels that cannot
be simply recreated with an adjustment of the dynamic range.

Although, a clear qualitative improvement in the in silico and in vivo images is vis-
ible for the ABLE and even more so neural MAP beamformer and this translates to a
quantitative improvement in localization performance of the in silico data, the effect of
the different beamformers on the in vivo ULM images is less clear. The ULM render-
ing based on DAS beamformed images has the least sharp vessels, while vessels look
visually sharper for ABLE, neural MAP and SC. Where SC vessels have the thinnest diam-
eter. Neural MAP seems to show slightly more filling of the vessels most distal from the
heart. Although these results seem to indicate that using SC or neural MAP is beneficial
for ULM imaging and that ABLE only has a moderately positive effect on ULM imaging
compared to DAS, it is difficult to draw definitive conclusions based on these images for
a number of reasons. First of all, a good filling of the vessels in the image is not achieved.
This is probably the result of the relatively low number of frames in the recording for
ULM. Unwanted removal of some slow-moving bubbles by the SVD filter could also play
a role. The chicken embryo and CAM vessels are an interesting in vivo model to investi-
gate different ultrasound methods for CEUS and ULM, because it is an easily accessible
and relatively low-cost method, which allows comparison to optical images [45]. In vivo
models with more extensive branching patterns are interesting to use, however, in vivo
ULM images remain hard to evaluate in general and are often evaluated subjectively due
to the lack of a ground truth or gold standard to evaluate the images by.

Even though, the ABLE and even more so the neural MAP beamformer, qualitatively
improve the CEUS image, the improvement of the ULM image could be limited for a
number of reasons. It is possible that a beamformer has a positive effect on in vivo
localization, but that the overall impact is low, because the improvement is limited to
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removing localizations that would have been removed by tracking anyway. It is also
possible, that the improvement in in silico localization does not extend to an improve-
ment in in vivo localization. This is difficult to evaluate due to a lack of ground truth
availability in an in vivo situation. However, ways to improve in vivo localization of the
deep learning-based beamformers include making the training data closer to the in vivo
imaging scenario. For example, by including information on the element sensitivity of
the transducer used in the acquisition, or by including more realistic background clutter
from real recordings in the training RF data. Next, it should be considered that a train-
ing target consisting of the true point scatterer location smoothed by a small gaussian
filtering is not necessarily the ideal input for optimal performance of the localization
algorithm. To realize a beamformer that performs in a way that is specifically tailored
to localization performance a method as described in [28], where a neural network for
beamforming and a neural network for localization are trained jointly, should be con-
sidered. Furthermore, since the final ULM image is made after performing tracking, a
method that also includes tracking in the deep learning pipeline as shown in [52], could
be considered.

Finally, the improvement of the ABLE and neural MAP beamformer should be con-
sidered against the increased computational cost compared to DAS and SC beamform-
ing. For 2D imaging an inference time of 30-35 ms per frame was achieved for neural
MAP [37], which would be increased for volumetric imaging. However, since off-line
processing of the in vivo RF data was still required to achieve sufficient performance of
the SVD filter and 3D ULM is not yet implemented in real-time, the beamformer would
not be the limiting factor, but one of the factors that still require off-line processing.
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7
DISCUSSION AND

RECOMMENDATIONS

This chapter discusses the contributions made in the thesis, puts their applications and
limitations in context and notes recommendations for future work.

7.1. A HIGH-FRAME-RATE 3D-ICE TRANSDUCER FOR EWI
The first three chapters of this thesis focused on the development of a transducer for
high-frame-rate 3D-ICE. Chapter 2 described the design of an imaging scheme and trans-
ducer layout aiming to enable high-frame-rate volumetric acquisitions suitable for elec-
tromechanical wave imaging. Chapters 3 and 4 described the development and test-
ing of two consecutively realized prototypes of the high-frame-rate 3D-ICE transducer.
Successful high-frame-rate volumetric imaging with the 3D-ICE prototype was realized.
However, further steps need to be taken to realize diagnostically relevant imaging. Some
of the needed steps include further research and developments in the electromechani-
cal wave imaging technique in general, while others relate more specifically to the high-
frame-rate 3D-ICE transducer.

7.1.1. ELECTROMECHANICAL WAVE IMAGING
In Chapter 2 it was proposed that electromechanical wave imaging with a high-frame-
rate 3D-ICE transducer could provide an atrial map that can be used for localization of
the arrhythmogenic sites. Such a map is useful in planning the ablation procedure and
in assessing the ablation treatment. Currently, electroanatomical mapping during atrial
ablation procedures is realized by introducing another catheter or set of catheters specif-
ically for electroanatomical mapping. However, the various existing electroanatomi-
cal methods have disadvantages, including long procedure times due to the need for
point-by-point mapping, the need for ionizing radiation to guide the electroanatomi-
cal mapping and only providing a superficial mapping of the endocardial surface. The
electromechanical activation that EWI provides could be used in a similar manner as
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an electroanatomical map. With EWI the electrical activation is not directly measured,
but an anatomical map is made of the onset of the muscle contraction, which is a direct
result of the electrical activation. There exists an electromechanical delay between the
electrical activation and the onset of muscle contraction, which is not constant through-
out the heart [1]. However, several studies have already shown that electromechanical
activation maps recorded with EWI, have a strong correlation with recorded electrical
activation and thus strongly reflect the electrical behavior of the myocardium [2–5].

While most studies of EWI so far were based on 2D images or 3D renders acquired
by the interpolation of multiple 2D views [6], some 3D recordings have been made in
Langendorff perfused heart set-ups [7], in open-chest canines and transthoracically in
humans [8]. In these studies, the importance of using high-frame-rate 3D imaging to
capture the dynamic 3D contraction movement was noted as well. 2D EWI has been
performed transthoracically in humans for the atrium during atrial arrhytmias [9, 10].
For the atrium specifically, 3D EWI has been demonstrated transthoracically in humans
during sinusrythm [8] and 3D rendered transthoracic EWI has been demonstrated for the
localization of two types of regular arrhythmias [11]. However, in general more research
is needed to evaluate whether the use of EWI can lead to specific diagnoses for individual
patients. Specifically in the context of a 3D-ICE probe, it needs to be determined whether
3D EWI can improve treatment planning for atrial fibrillation and how it could enhance
or replace parts of the current clinical routine.

So far EWI has been studied with non-invasive transthoracic imaging. However,
when EW images are acquired by ICE the imaging depth and thus also the attenuation is
greatly reduced. As such, a higher central frequency can be used, thereby realizing EW
images with better spatial resolution in the atrium. Furthermore, compared to transtho-
racic ultrasound, unwanted reflections from the patient’s ribs and lungs can be avoided.
The advantages and challenges of EWI with HFR ICE need to be evaluated further. EWI
of a Langendorff-perfused heart with high-frame-rate ICE probes is a next step that is of
great interest. While initial evaluations with HFR 2D-ICE probes could provide some ver-
ification of the technique, the availability of within-heartbeat HFR 3D-ICE will be needed
to gain further insight into the possibilities to generate EWI maps for localizing arrhyth-
mias.

The development of EWI is not only interesting from the perspective of providing a
clinical tool to improve the localization and treatment of cardiac arrhythmias. EWI also
has the potential to fill the gap that currently exists in available methods for mapping
mechanical aspects of cardiac disease. By evaluating electrical function with an electri-
cal mapping system and using high-frame-rate 3D ultrasound to evaluate the mechan-
ical contraction, the link between electrical and mechanical factors in cardiac disease
can be studied further [8].

7.1.2. HIGH-FRAME-RATE 3D-ICE CATHETER

Realizing a high-frame-rate 3D-ICE transducer requires a careful evaluation of trade-
offs to come up with a design that tackles the data rate challenge and realizes suffi-
cient image quality with a very limited number of acquisitions per volume, while staying
within the additional constraints of transducer size and power dissipation. In Chapter 2 a
transducer and imaging scheme were proposed for a high-frame-rate 3D-ICE probe that
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would fulfill the requirements for EWI of atrial fibrillation. The proposed solution con-
sisted of 1D micro-beamforming in the elevation direction to reduce channel count and
data rate, while using transmit beams that have a narrow divergence along the direction
of micro-beamforming to suppress grating lobes. Their divergence along the azimuth
direction is wide enough to span the intended field of view. By transmitting the fan-
shaped beams in only 7 elevational directions, the desired 1 kHz frame rate is achieved.
The combination of the data received from the 7 angles was designed to further sup-
press grating lobes. The divergence angle and frame rate were optimized to achieve
a high spatial resolution with a low level of so-called axial lobes or secondary pulses.
Chapter 4 showed that the prototype transducer can achieve the desired transmit beam-
forming flexibility, the needed micro-beamforming and that 3D imaging at the desired
1kHz frame rate is possible, while cable count can be reduced to a realistic number for
a catheter-based probe. However, there are some limitations in the current probe that
should be addressed in subsequent iterations of a HFR 3D-ICE device.

First of all, the realized 16 x 18 element array constitutes a full prototype in the eleva-
tional direction, but is only a quarter of the final intended size in the azimuth direction.
The main bottleneck to realize a full design was the development of the data connection
to the mainframe. The time and cost needed to develop a dedicated data connection
solution for the full-sized prototype did not fit within the constraints of the project. The
smaller size results in a lower SNR and smaller azimuthal resolution than for a full pro-
totype. From the successful functionality demonstrated with the smaller prototype, it is
recommended to develop a full-sized prototype. Placing this subsequent prototype in-
cluding the cable connections in a protective housing would make it more suitable for
use in a range of experimental settings.

A slightly less obvious result of having a smaller than full-sized transducer is the fact
that the intended diverging wave cannot be generated with exactly the same transmit
delay strategy. However, the 7 steered transmit beams can be generated in a somewhat
less ideal way, with a dual virtual source strategy. Alternatively, the same single virtual
source strategy can be used and either the azimuthal or elevational width of the beam
can be slightly adjusted. Furthermore, the center frequency and desired divergence an-
gle were chosen based on the values that minimized the effect of axial lobes while having
a relatively high center frequency. With a different sized transducer and slightly differ-
ent center frequency from the actual prototype the intended azimuthal divergence angle
might not be optimal for suppressing unwanted axial lobes. Although this might seem
like a small technical detail and practically this just means that some more settings can
be evaluated for the best imaging setting in further experiments, it also illustrates that
once a transducer layout and imaging scheme is carefully optimized, small changes will
impact the optimization efforts.

The imaging requirements for EWI with a 3D-ICE probe were based on properties
of the electromechanical wave and experience from previous research on EWI. The pro-
posed HFR 3D-ICE transducer design would achieve an azimuthal lateral resolution that
is likely sufficient for EWI along the full imaging depth. In the elevational direction the
lateral resolution would be worse than the 5 mm value that was the initial aim of the de-
sign, for depths greater than approximately half the desired imaging depth. This should
however be considered in light of the fact that only a few studies have been done with
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3D-EWI, and the studies that were performed by spatially interpolating a few 2D planes
rather than using a single 2D plane already provided valuable extra information on the
electromechanical wave [3, 6]. The desired frame rate of 1 kHz was achieved, thereby
resulting in a probe that outperforms current 3D-ICE designs in terms of frame rate.
However, this desired value is not a requirement that is set in stone. Some research on
EWI suggests that this rate is only needed for local motion detection and that interleav-
ing techniques can be used to reduce the needed frame rate, however it is still unknown
whether that would be the case for atrial arrhythmia mapping. Clearly, further experi-
mental research on EWI is required to get a more definitive insight into the lateral res-
olution and frame rate that are needed to provide valuable clinical information. In the
meantime, devices still need to be developed based on the best known information of
the requirements, to have the tools to do further research with.

Besides its capability for EWI, the 3D-ICE probe is designed such that it can also op-
erate in different imaging modes. Transmit delay patterns can be generated to transmit
diverging or plane waves over a larger number of angles, such that higher image quality
at a lower frame rate can be realized through coherent compounding. Focused transmits
are also possible. In this way, the probe can be used to produce higher-quality images
for image guidance during cardiac interventional procedures as well. Furthermore, the
1kHz frame rate does not just enable EWI, but also other ultrafast ultrasound imaging
applications that benefit from 3D imaging.

Integrating an array of matrix elements on an ASIC has the advantage of an im-
proved SNR compared to a sparse array, more flexibility in the transmit scheme than a
row-column array and fewer imaging artifacts than either a sparse or row-column array.
However, integrating transducer elements directly on an ASIC has the disadvantage that
silicon is far from an ideal backing material for the transducer elements. The thin layer
interfacing the PZT elements of the prototype with the ASIC provides little damping and
the ASIC itself also has a low acoustic attenuation. Direct reflections cause ringing in the
transmit profile and a reduced bandwidth of the transducer. Furthermore, acoustic en-
ergy propagates through the ASIC as Lamb waves [12] that excite neighboring elements.
This unwanted crosstalk also negatively impacts the directivity pattern of the array [13,
14]. To prevent the ASIC from having a negative impact on image quality, several solu-
tions have been proposed, including the use of a high impedance backing to force the
PZT elements to vibrate in quarter-wavelength mode [15, 16], a very thick interposer
layer with highly attenuating conductive material [17], or a differently designed inter-
poser layer with lower thickness [14]. There is no agreement yet on the optimal solu-
tion and further development is needed to determine the best way to minimize negative
acoustic effects from integrating PZT elements on an ASIC.

7.2. DEEP LEARNING-BASED BEAMFORMING FOR 3D US
Chapter 5 showed that the lateral resolution of volumetric ultrasound images can be im-
proved by using deep learning in the beamforming process. This was shown specifically
for a matrix array that applies on-chip micro-beamforming, as is employed for channel
count reduction in the 3D-ICE prototype. The training targets were formed by volumet-
ric images acquired with a larger aperture array, which inherently has a better lateral
resolution. Only a small amount of training data was required and the training data can
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consist entirely of simple simulations. It was possible to use only a modest amount of
training data, because the ABLE method replaces only a critical part of the image re-
construction process rather than replacing it completely with a neural network [18, 19].
In general, the need for massive amounts of data and computational resources to train
highly parameterized deep neural networks can be avoided by not blindly replacing a
complete process with a generic neural network. When a model-based deep learning ap-
proach is used, the benefit of learning from data can be obtained while using a limited
amount of data by also using knowledge of the specific application, realizing a hybrid
model-based deep learning solution [18, 20–22].

In light of the desire to realize high-quality imaging with the small aperture 3D-ICE
array, it is promising that the result from Chapter 5 shows that adaptive beamforming
by deep learning (ABLE) can be used to improve the lateral resolution of miniature ar-
rays that employ micro-beamforming. However, it remains to be investigated how the
improved lateral resolution in the acquired images will translate to EWI specifically. It is
recommended that further research is done in the development of deep learning-based
processing methods specifically aimed at EWI, where a correlation-based displacement
estimation is extracted from the RF data.

Another aspect in the development of matrix arrays where the application of deep
learning seems opportune is for the suppression of grating and axial lobes arising from
insufficient spatial sampling. Deep learning methods for suppressing grating lobes have
been investigated in the context of periodic sparse arrays aimed at reducing the channel
count in receive, however in vivo results indicate that further improvement of existing
techniques is required [23].

In Chapters 5 and 6, deep learning-based beamformers were used to improve the
image quality of volumetric ultrasound images, and their performance was compared
against the linear DAS beamformer and other common adaptive beamforming meth-
ods. Recently, an important concern was raised regarding the comparison of adaptive
beamformers. Image quality metrics that have been commonly used to evaluate image
contrast, such as CR and CNR, cannot directly be used to compare adaptive beamform-
ers [24, 25]. These metrics can be changed by a simple dynamic range transformation,
an operation that can change the apparent contrast of the image without altering the
image in such a way that it provides new information or improves the ability of detecting
lesions. For an adaptive beamformer, part of an apparent improvement in these met-
rics can be due to a trivial dynamic range transformation. The GCNR metric, which was
recently proposed to circumvent this problem [25], was used for the quantitative evalua-
tion of contrast in Chapter 5. In Chapter 6 histogram matching [26] was used to achieve
a fair qualitative comparison of the resolution of in vivo images reconstructed with dif-
ferent beamforming methods. These new tools provide improved ways to qualitatively
and quantitatively compare ultrasound image reconstruction methods. Still these newer
approaches for fair image comparison require careful application and avenues remain
open for the metrics to be fooled. Thus, further development of robust metrics to quanti-
tatively evaluate images are required. This is especially the case for resolution. Although
criteria exist that define resolution in a way that is resistant to dynamic range stretching,
these are not practically suited for the evaluation of in vivo images.

A concern that has been raised towards the application of deep learning-based beam-
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formers in commercial systems is dealing with user-based preferences. A clinician may
often have a set of preferred post-processing settings that are selected on the ultrasound
system. After building years of experience evaluating images with a certain level of for
example speckle, images with a different characteristic may not be directly preferred by
the user. Several strategies can be considered to circumvent this problem, such as al-
lowing the user to select only regional enhancements. Other methods that have been
proposed are the use of switchable CycleGAN architecture to allow the user to tune the
level of enhancement [27].

A general concern in the application of deep learning is unwanted bias. The risk of
introducing unwanted bias in machine/deep learning algorithms has received signifi-
cant attention with their increased use across many application domains. In the wider
media, reports on bias of deep learning have particularly focused on cases where bias
leads to prejudice and unfair and unethical treatment of groups of people. In the field of
medical imaging, effort is undertaken to identify and address systematic mathematical
bias, which leads to differences between the expected performance and the observed
performance of deep learning in the clinic [28, 29]. Minimizing unwanted bias is es-
sential for the wider adoption of deep learning in the medical field. However, there is
not one single place or phase where bias is introduced or can be mitigated. Instead, bias
can result from different steps in the development process, including the data collection,
data handling, model development and selection or use of performance metrics [28, 30,
31].

In Chapters 5 and 6 the performance of ABLE and neural MAP was evaluated on in
silico, in vitro and in vivo data. However, the limited availability of in vivo data meant
that in Chapter 5 in vivo performance was only evaluated on cardiac images of a porcine
heart and in Chapter 6 only on a chicken embryo with CAM. Having a wider set of im-
ages available that closely resembles the distribution of images in the target application
is the ideal situation, but can be challenging to realize in some situations, e.g. when con-
sidering in vivo data collection with a novel prototype device. Although the in vivo pop-
ulation was small, the risk of introducing bias by overfitting to a small population was
mitigated by the use of in silico data in the training set. Furthermore, the small recep-
tive field of the neural network in the ABLE implementation (only a few voxels) prevents
the algorithm from forming a reliance on recognizing large structures in the image data.
This means that the risk of overfitting to the specific structures present in the training
data is mitigated. Bias can also be introduced by the objective function. As an example,
for ultrasound images, which have a large dynamic range, the (signed)-mean-squared-
logarithmic error is more suitable than the mean-square-error. The choice of evaluation
metrics can also result in bias in deep learning models when an incomplete set of met-
rics is used or when the metrics don’t reflect practical improvement well. Future research
in improving performance metrics for ultrasound imaging will help prevent bias in the
selection of deep learning models and image processing techniques in general.
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Improved treatment of posture and movement disorders requires a better understanding
of human neuromuscular control. Joint dynamics can be assessed using robotic manipu-
lators and system identification. Due to tendon compliance, joint angle and muscle fiber
stretch are not proportional. This study uses plane-wave ultrasound imaging to investi-
gate the dynamic relation between ankle joint angle and muscle length. The first goal is to
determine the feasibility of using ultrasound imaging with system identification; the sec-
ond goal is to assess the relation between ankle and muscle stretch, and reflex size. Tran-
sient and continuous ankle joint motions were applied, while soleus and gastrocnemius
muscle stretches were assessed with ultrasound imaging and an image tracking algorithm.
For small (1◦ SD) continuous motions, ankle angle and muscle length are proportional
during a relax task. However, during an active position task muscle length measurements
were too noisy to make this assessment. For transient perturbations with a high velocity
(> 90◦/s) the muscle length showed oscillations that were not present in the ankle angle,
demonstrating a non-proportional relationship and muscle-tendon interaction. The gas-
trocnemius velocity predicted the size of the short-latency reflex better than the ankle joint
velocity. Concluding, plane-wave ultrasound muscle imaging is feasible for system iden-
tification experiments and shows that muscle length and ankle angle are proportional
during a relax task with small continuous perturbations.

A.1. INTRODUCTION
Many daily activities, such as standing or driving on a bumpy road, require posture
maintenance. Mechanisms to resist perturbations are co-activation of antagonistic mus-
cles and proprioceptive reflexes, originating from muscle spindles and Golgi tendon or-
gans. Posture control experiments use both transient [1] and continuous perturbations
[2]. Transients offer a straightforward assessment by isolating the instantaneous (me-
chanics) from the delayed (reflex) response. Continuous perturbations allow to study
adaptation of reflexive and visco-elastic properties to different circumstances.

With system identification the joint dynamics can be expressed in a Frequency Re-
sponse Function (FRF) from the applied torque to the measured joint angle, i.e. ad-
mittance. Motor control experiments, system identification and modelling are used to
improve the understanding of the relevant structures and their interaction in posture
maintenance.

The first goal of this study is to determine the feasibility of measuring muscle length
changes using plane-wave ultrasound imaging during continuous and transient pertur-
bations. The second goal is to assess the relation between ankle rotation and muscle
stretch, and their relation with the reflex response.

JOINT ANGLE AND MUSCLE STRETCH

Some models represent muscle length as ankle angle filtered by an elastic tendon, oth-
ers assume an infinite tendon stiffness. Muscle spindles are sensitive to muscle stretch
and stretch velocity. As muscle spindle stretch is derived from the joint angle, modelling
muscle-tendon interaction affects the estimated muscle spindle contribution. There-
fore, this study aims to verify if muscle stretch can be assumed to be proportional to
ankle angle during system identification experiments.

Following transient perturbations, EMG signals show a short latency stretch reflex



A.2. METHOD

A

147

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
Time [s]

-5

0

5

To
rq

ue
 [N

m
] Continuous torque disturbance

0 5 10 15 20 25 30 35 40
Time [s]

0

5

10

An
gl

e 
[° ]

Transient angle disturbance

a

verasonics
    + pc

tracking 
algorithm

θpedal

EMG

NIDAQ

+ PC

Tc

Ankle robot Human

synchronization
measurement

TMSi

ultrasound 

image

Tc

θpedal Tc
interaction 
human and robot

xSOL

xgm

push toes to 
keep red 
column on 
green line...

1

2

3

4

5

e

dcb

Figure A.1: a) Experimental setup. Human and manipulator interact through contact torque Tc. Onscreen
feedback for Experiment 1: ’Pacman’ shows the low-pass filtered joint angle and red dots the required angle.
b) Top: 5s segment of the 30s continuous torque disturbance of Experiment 1. Bottom: Example of a transient
position disturbance applied in Experiment 2. c) Attachment of ultrasound probe (A), EMG electrodes on GM
(B), SOL (C) and ground electrode on knee cap (D). The foot is strapped on the pedal (E). d) ROIs and tracking
lines in an ultrasound image. Proximal aponeurosis GM (1), ROI GM (2), distal aponeurosis GM and distal
aponeurosis SOL(3), ROI SOL (4), proximal aponeurosis SOL(5). e) Onscreen feedback of Experiment 2. A blue
bar indicates the required torque, with ±5% margin in green. The red column indicates the low-pass filtered
torque.

response (M1) and a long latency response (M2). With transient perturbations, joint ve-
locity correlates with M1 amplitude [3]. Since muscle stretch is a more direct measure of
muscle spindle input, it is hypothesized that muscle stretch velocity correlates stronger
with M1 magnitude than ankle joint velocity.

A.2. METHOD
Eight healthy participants (5 women) aged 24-27 volunteered: four received small ampli-
tude continuous perturbations (Experiment 1) and four received transient perturbations
(Experiment 2). All participants gave informed consent and the study was approved by
the human research ethics committee of the Delft University of Technology.

ACHILLES

A single-axis ankle manipulator (Moog, Nieuw-Vennep, The Netherlands) applied the
perturbations and recorded torque and angle at 1024Hz. Participants were seated with
their left foot straight (0◦) and 45◦ knee flexion.

ELECTROMYOGRAPHY

A TMSi amplifier (Porti-7) recorded EMG signals at 1024Hz. Surface electrodes were po-
sitioned according to the SENIAM guidelines on the tibialis anterior (TA), gastrocnemius
medialis (GM), gastrocnemius lateralis (GL) and soleus (SOL) muscles.
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ULTRASOUND

Images were recorded with a Verasonics Vantage 256 ultrasound system and a Philips
L12-5 50mm probe operating at a centre frequency of 7.8MHz and an imaging depth of
50mm. Ultrafast ultrasound imaging uses unfocused plane-waves instead of conven-
tional line-by-line acquisition, enabling a high temporal resolution (>kHz) [4]. In Exper-
iment 1, ultrasound images were recorded at 130Hz for 23s and in Experiment 2 at 100Hz
for 30s. The probe was fastened to the leg with an encasing of clay, Velcro straps and a
self-adhesive bandage (Fig. A.1c).

DATA RECORDING

The manipulator sent a TTL signal to the TMSi and NIDAQ 6211 USB device, which sent a
square wave with a pulse frequency equal to the desired ultrasound frame rate to trigger
the ultrasound, see Fig. A.1a.

A.2.1. EXPERIMENT 1: CONTINUOUS

SIGNAL

The signal had equal power at 40 logarithmically spaced frequencies between 0.2Hz and
40Hz and a random phase. From 10,000 realizations, one 5s segment was chosen that
had no outliers while having a distribution closest to a normal distribution, see Fig. A.1b.
Six repetitions formed a 30s disturbance signal.

PROCEDURE

To ensure approximately linear dynamics during the position task, the disturbance am-
plitude was scaled for every participant to achieve small ankle movements (1◦ SD). To
attain similar movements during the relax task, the virtual stiffness of the manipulator
was increased. Participants performed 4 repetitions of the position task followed by 4
repetitions of the relax task, with 10-minute breaks between repetitions. During position
tasks a 3Nm bias torque was applied to ensure constant contraction of the plantarflexor
muscles. To allow sufficient time to achieve the initial position, disturbances started af-
ter 13s.

TASK

Participants were instructed not to intervene with disturbances during the relax task.
For the position task, they were instructed to keep their foot in a constant angle, while
performance feedback was given onscreen (Fig. A.1a).

A.2.2. EXPERIMENT 2: TRANSIENT

SIGNAL

The transient disturbance consisted of nine Ramp-and-Hold (RaH) signals, see Fig. A.1b.
The first two RaHs were used to familiarize the participant with the task. Of the subse-
quent seven ramps, one had a velocity of 8◦/s and two ramps each had velocities of 90,
150 and 200◦/s. The order was randomized and the time interval between RAHs varied
(2.5±0.29s). The return velocity was 20◦/s.
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PROCEDURE

Participants first performed 4 repetitions of the relax task with no torque requirement,
then practiced the active task until they consistently maintained the required torque
level of 4Nm, and finally, performed 4 repetitions of the active task. Breaks between
repetitions were 10 minutes.

TASK

Participants were instructed not to intervene with the disturbances during the relax task.
For the active task they were instructed to contract their muscles such that the onscreen
torque level was reached (Fig. A.1e), but not to intervene with the disturbance.

A.2.3. DATA PROCESSING

IMAGE PROCESSING

Images were processed with the automatic tracking algorithm Ultratrack [5]. The algo-
rithm is based on a Lucas-Kanade optical flow algorithm with affine optic flow exten-
sion. It tracks the complete muscle region, making it suitable for tracking larger and
faster movements in which complex muscle deformations occur that can cause small
regions to move out of the imaging plane. Regions of interest (ROI) for the GM and SOL
were marked on the first frame, see Fig. A.1d. In each ROI, a muscle fascicle was marked
as well as eight points on each aponeurosis, which form vertical lines in the image. The
relative movement between the eight markers on the upper and lower aponeuroses were
averaged and used to determine the relative muscle stretch along the aponeurosis.

EXPERIMENT 1: CONTINUOUS

The first and last 5s segments were eliminated to remove onset and termination effects,
leaving 16 segments per participant. Recordings were transformed to the frequency do-
main after which the cross-spectral densities ŜθD ( f ), ŜT D ( f ), ŜxGM D ( f ) and ŜxSOL D ( f )
were determined. Here D( f ) is the applied torque disturbance, Tc ( f ) the torque on
the pedal and xGM ( f ) and xSOL( f ) are the contractile element lengths of the GM and
SOL muscles. Spectral densities were averaged per participant over the different tri-
als. A closed-loop identification method was used to estimate the admittances ĤθT ( f ),
ĤxGM T ( f ), ĤxSOL T ( f ), ĤxGMθ( f ) and ĤxSOLθ( f ) by division of the spectral densities [2].
The coherence γ̂2

θD ( f ) between D and θ, γ̂2
xGM D ( f ) between D and xGM and γ̂2

xSOL D ( f )
between D and xSOL were determined to check linearity. A coherence value of 1 indicates
a linear noise-free relation. FRFs and coherences were only evaluated at the frequencies
where the torque disturbance had power.

EXPERIMENT 2: TRANSIENT

Ultrasound images were analyzed with the tracking algorithm per individual ramp. For
the EMG recordings 50Hz power line interference was removed, the signal was high-pass
filtered (1Hz cut-off, third-order Butterworth), rectified and smoothed with a low-pass
filter (80Hz cut-off, third-order Butterworth [1]). RaH segments were removed from the
analysis if the torque was not within 10% of the required torque in the 100ms before ramp
onset. Trials were also excluded if the EMG peak after the ramp was not larger than the
mean plus 3 times the standard deviation of the baseline EMG which was determined -
500 to -100ms before the ramp onset or if a large EMG peak (within 2 standard deviations



A

150 A. SYSTEM IDENTIFICATION OF JOINT DYNAMICS WITH PLANE-WAVE ULTRASOUND

of the reflex peak) was present in the 100ms before the ramp onset. The M1 and M2
response were then quantified by the area under the EMG signal at a window of 40-65ms
and 70-110ms respectively and normalized with respect to the baseline EMG.

STATISTICS

The Pearson correlation coefficient was used to examine relationships between muscle
velocity, disturbance velocity and reflex size. Significance level: p<0.05.

A.3. RESULTS

A.3.1. EXPERIMENT 1: CONTINUOUS

FEASIBILITY
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Figure A.2: Experiment 1: a) Typical average ankle angle and GM contractile length during a position and relax
task. b) Typical results for frequency response functions during the position task showing similar shapes.

Fig. A.2 shows the ankle angle and contractile length of the GM averaged over all
16 data segments for a typical subject. During the relax task the contractile length of the
GM oscillates in a similar pattern as the ankle angle and the trajectory is only slightly less
smooth than the ankle angle. During the position task the xGM has small high-frequent
oscillations that are not present in the ankle angle. The same was observed for the xSOL

recording (not shown).

PROPORTIONALITY

Fig. A.2 shows that ankle angle is not proportional to muscle length during the position
task.

Frequency domain identification: Fig. A.2 shows typical results for frequency re-
sponse functions ĤθT , ĤxGM T , ĤxSOL T and coherences γ̂2

θD , γ̂2
xGM D and γ̂2

xSOL D for the
position task. Before calculating the FRFs xSOL and xGM recordings were detrended to
correct for drift and 16 out of 64 segments of the position task were removed as they
showed ’jumps’. Fig. A.3 shows that overall ĤxGMθ and ĤxSOLθ are not constant across
all frequencies, indicating that muscle length is not proportional to ankle angle. Yet, at
frequencies where γ̂2

xGM D and γ̂xSOLθ are relatively high, ĤxGMθ and ĤxSOLθ are relatively
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straight especially for the relax task. The coherence of the muscle length is much lower
than that of the ankle angle, which, averaged over all frequencies and participants, is
0.98 during the relax task and 0.89 during the position task. γ̂2

xGM D and γ̂xSOL D are higher
during the relax task than the position task especially from 1-4Hz.
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A.3.2. EXPERIMENT 2: TRANSIENT

FEASIBILITY

Fig. A.4 a) shows a large dissimilarity between ankle angle and contractile element length
trajectories.
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Figure A.4: a) Experiment 2: Response of a typical subject to RaH perturbations of different velocities during an
active task, averaged over the included trials. GM contractile length shows oscillations not present in the ankle
angle recording. Larger perturbation velocity corresponds with a larger GM stretch velocity and with higher
peaks in the EMG trajectories. b) Experiment 2: Average GM stretch velocity and perturbation velocity at 0.014s
after perturbation onset plotted against the average M1 and M2 responses during the active task. Every symbol
represents a participant. For a perfect correlation the symbols would lie on a straight line.

PROPORTIONALITY

Fig. A.4 a) shows that muscle length is not proportional to ankle angle during an ac-
tive task, as oscillations in the GM length are missing in the ankle angle. The same was
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Table A.1: Correlations and (p - value)

GM Active SOL Active GM Passive SOL Passive
Stretch Vel. - M1 0.664 (0.018) 0.441 (0.151) 0.323 (0.306) 0.492 (0.104)

Stretch Vel. - M2 0.893 (0.000) 0.540 (0.070) 0.746 (0.005) 0.444 (0.148)

Pert. Vel.- M1 0.402 (0.195) 0.430 (0.163) 0.556 (0.061) 0.585 (0.046)

Pert. Vel.- M2 0.760 (0.004) 0.903 (0.000) 0.697 (0.012) 0.277 (0.383)

observed for the relax task and the soleus muscle (not shown).

REFLEXES

Fig. A.4 a) shows the averaged ramp responses for a typical subject. Higher ramp veloc-
ity corresponds with a larger muscle velocity directly after ramp onset (0.014s after the
disturbance) and a larger EMG peak. Fig. A.4 b) shows the relationship of M1 and M2
with muscle stretch and perturbation velocity for all participants during the active task.
M1 has a strong and significant correlation with GM muscle stretch velocity whereas no
significant correlation is found with perturbation velocity (Table A.1). For the active con-
dition, M2 has a strong and significant correlation with stretch and perturbation velocity.
For the soleus only a strong correlation is found between perturbation velocity and M2.
For the relax task, a weak correlation is found between perturbation velocity and the M1
response of the soleus. Stronger correlations are found between perturbation velocity
and M2 of the GM and between GM stretch velocity and M2.

A.4. DISCUSSION

FEASIBILITY

Plane-wave ultrasound has been used before to image skeletal muscle [4]. In contrast
to this study, local instead of global muscle displacement was recorded and electrical
stimulation was used instead of mechanical perturbations. The high coherence between
disturbance torque and pedal angle indicates that these measurements have a low noise
level. The lower coherence of muscle length, especially during the position task, may be
caused by non-linear behaviour or noise in the muscle imaging. Drift was observed in
some muscle length recordings. This can be due to error accumulation of the tracking
algorithm, or be the behaviour of the muscle. If a subject slowly increases the level of
co-activation, this will reduce muscle length.

REFLEX PREDICTION

The M1 response originates from the monosynaptic Ia afferent reflex pathway, where the
Ia afferent provides feedback on muscle stretch velocity. This study found a strong cor-
relation between muscle stretch velocity of the GM and the size of M1. However, Cronin
et al. [6] previously found a weak correlation between muscle stretch velocity and the
size of M1. Reasons that could explain this discrepancy are differences in measurement
intervals after perturbation onset, disturbance parameters and use of change along the
aponeurosis instead of fascicle velocity. The origin of the M2 response is still unclear.
Nevertheless, the findings of this study align with Thilmann et al. [3] who found an in-
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crease in the size of the M2 response of the triceps surae with increased disturbance
velocity.

EXPERIMENTAL CONSIDERATIONS

A 0.14s lag of the data in Experiment 2, was corrected by realignment. The use of ul-
trafast ultrasound imaging with frame rates in the order of kHz was not explored, since
RAM storage enabled recording <3000 frames consecutively. However, plane-wave ul-
trasound imaging allows imaging at >kHz without affecting image quality. Thus, it is
possible to investigate the muscle response even shorter after the disturbance onset.

In conclusion, plane-wave ultrasound muscle length measurements in motor con-
trol experiments are feasible. With continuous perturbations, system identification on
muscle length showed that muscle length and ankle angle are proportional during a relax
task. For transient perturbations muscle length and ankle angle were not proportional;
a stronger correlation was found between reflex response and gastrocnemius muscle
stretch velocity than with ramp velocity.
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