P5 presentation: Making sense of standards

Matthijs Kastelijns

1100210-002

″UDelft

SOS Sensor things API Observations & Measurements SSN SensorML

010011

Contents

- 1. Introduction
- 2. Problem statement
- 3. Research scope
- 4. Research question
- 5. Methodology
- 6. Use case
- 7. Results
- 8. Conclusions
- 9. Limitations
- 10. Future work

2. Problem statement

3. Research scope

4. Research question

- 5. Methodology
- 6. Use case
- 7. Results
- 8. Conclusions
- 9. Limitations

10. Future work

Introduction

- Increasing number of sensors
- Sensor web
- Allows better understanding and management of our environment

2. Problem statement

3. Research scope

4. Research question

5. Methodology

6. Use case

7. Results

8. Conclusions

9. Limitations

10. Future work

Understanding the sensor web

- **Sensor** Device to measure physical quantities and transforms them into electrical signals
- **Observation** Active acquisition of information from a primary source
- **Sensor Web** Group of interoperable web services which all comply with a specific set of sensor behaviours and interfaces specifications
- **Standard** Formulation, publication, and implementation of guidelines, rules, and specifications for common and repeated use, aimed at achieving optimum degree of order or uniformity in a given context, discipline, or field

2. Problem statement

3. Research scope

4. Research question

5. Methodology

6. Use case

7. Results

8. Conclusions

9. Limitations

10. Future work

elft

Sensor data in the built environment

Why important for citizens?

- Use and reuse of sensor data in applications
- Objective observation of phenomena
- Measure life quality

Why important for sensors maintainers?

- Updated technical sensor information
- More time efficient sensor maintenance
- Maintenance and configuration at distance

2. Problem statement

3. Research scope

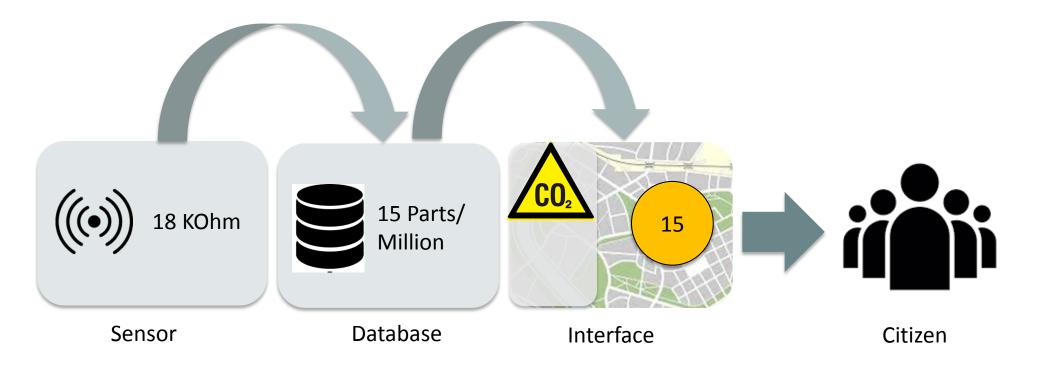
4. Research question

5. Methodology

6. Use case

7. Results

8. Conclusions


9. Limitations

10. Future work

TUDelft

Understanding sensor data

- Sensor data accessed in applications
- Transformation required:

2. Problem statement

3. Research scope

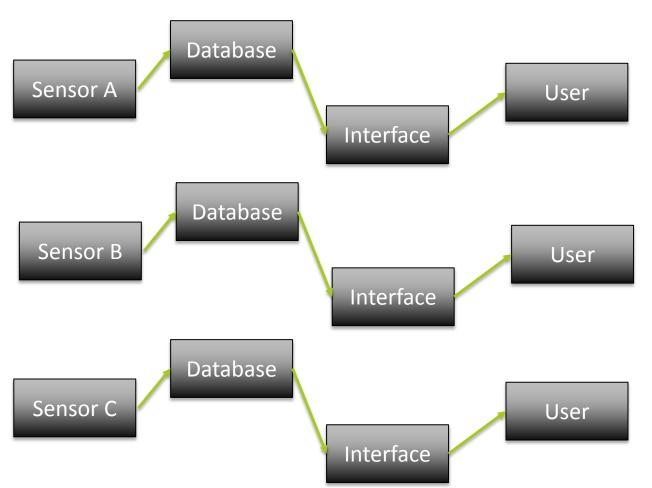
4. Research question

5. Methodology

6. Use case

7. Results

8. Conclusions


9. Limitations

10. Future work

ŤUDelft

Problem statement

Current situation

No Interoperability

2. Problem statement

3. Research scope

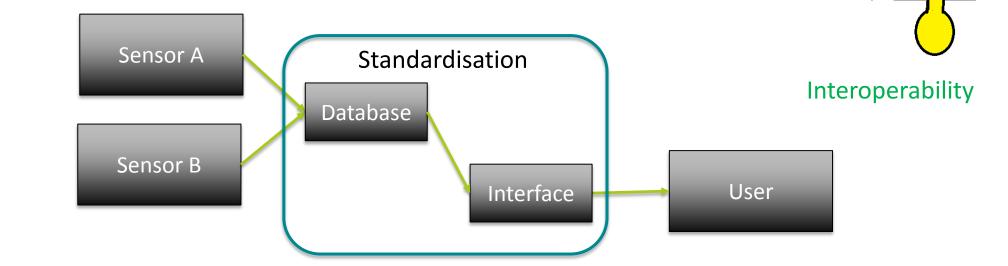
4. Research question

5. Methodology

6. Use case

7. Results

8. Conclusions


9. Limitations

10. Future work

TUDelft

Problem statement

Ideal situation

2. Problem statement

3. Research scope

4. Research question

5. Methodology

6. Use case

7. Results

8. Conclusions

9. Limitations

10. Future work

Delft

Abundance of standards

- Sensor Alert Service
- Observations &
 Measurements

SemSos

Generic Sensor Api

Sensor Observation

Semantic
 Sensor Network

SensorML

- SensorML
 IEEE 1451
 - Pub/Sub

- Sensor Event service
 - SensorThings API

Service

 Sensor Planning Service

2. Problem statement

3. Research scope

4. Research question

5. Methodology

6. Use case

7. Results

8. Conclusions

9. Limitations

10. Future work

Delft

Research scope

- Create insight:
 - Define requirements
 - Research Sensor Web's technical capabilities
 - Create UML model
 - Order standards

Use case supported research

Towards interoperability between standards

2. Problem statement

3. Research scope

4. Research question

5. Methodology

6. Use case

7. Results


8. Conclusions

9. Limitations

10. Future work

TUDelft

Research scope

2. Problem statement

3. Research scope

4. Research question

5. Methodology

6. Use case

7. Results

8. Conclusions

9. Limitations

10. Future work

ŤUDelft

Research question

 To what extent is there an alignment of existing sensor standards for describing observations and sensors, and how can the standards be harmonized further?

2. Problem statement

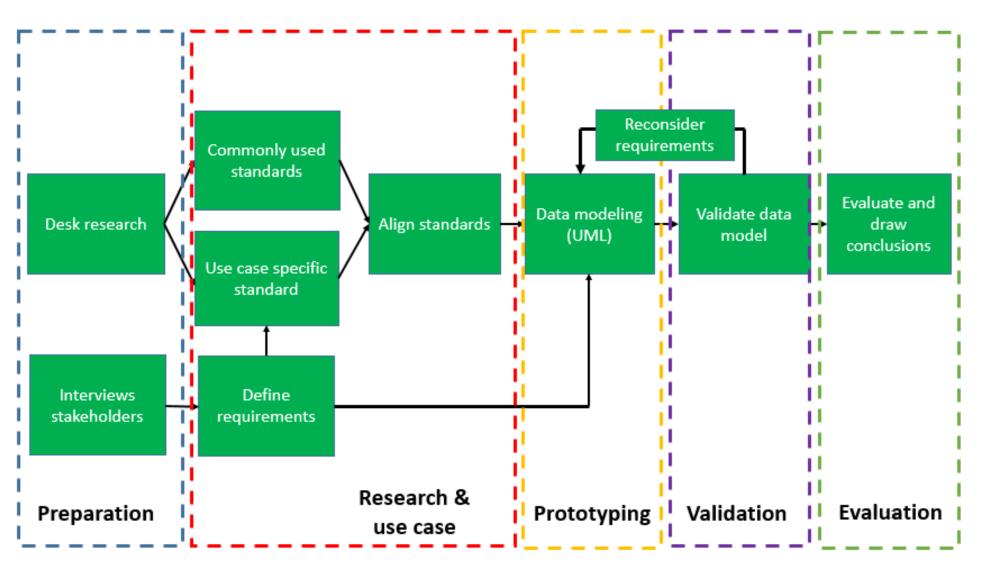
3. Research scope

4. Research question

5. Methodology

6. Use case

7. Results


8. Conclusions

9. Limitations

10. Future work

ŤUDelft

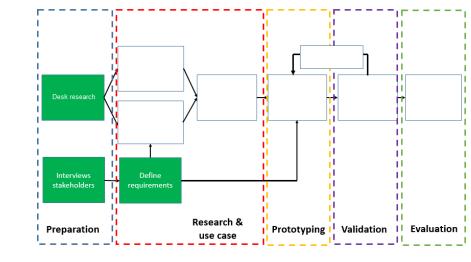
Work flow

2. Problem statement

3. Research scope

4. Research question

- 5. Methodology
- 6. Use case
- 7. Results
- 8. Conclusions


9. Limitations

10. Future work

Delft

Preparation & research

- Desk research
 - Use cases
 - Technical capabilities standards
 - Data structure/ semantics
- Interviews
 - Demand citizens/ maintainers
 - Supply developers
 - Technical requirements

2. Problem statement

3. Research scope

4. Research question

- 5. Methodology
- 6. Use case

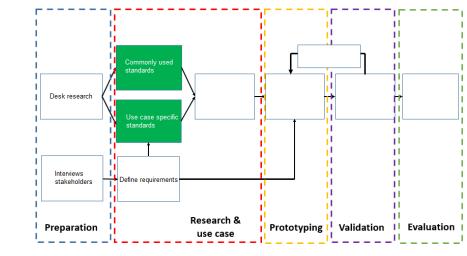
7. Results

8. Conclusions

9. Limitations

10. Future work

JDelft


Commonly- & use case specific standards

Commonly:

- 5 Standards are compared
- Selected on:
 - Relevance for the use case
 - Frequency of hits on google

Use Case Specific:

- Depending on the Project Team

2. Problem statement

3. Research scope

4. Research question

5. Methodology

6. Use case

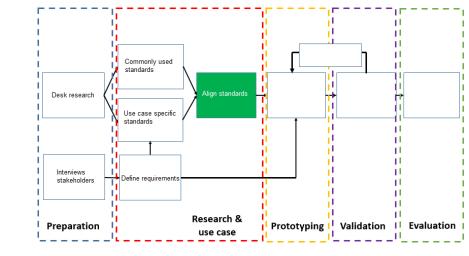
7. Results

8. Conclusions

9. Limitations

10. Future work

TUDelft


Alignment

 Based on technical requirements

Requirements

Sensor data View sensor data download sensor data Last value data Time series data Data requestable interval Data requestable point in time Sensor spatially dispersed in map Clear units of measurements Scales if required for measurement Select sensor by clicking Select sensor by geometry Charts for sensor data

Metadata sensor Battery status Wifi status and network Sensor health Sensor name Last maintenance Frequency of measurement

2. Problem statement

3. Research scope

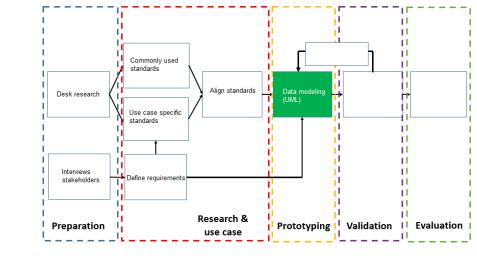
4. Research question

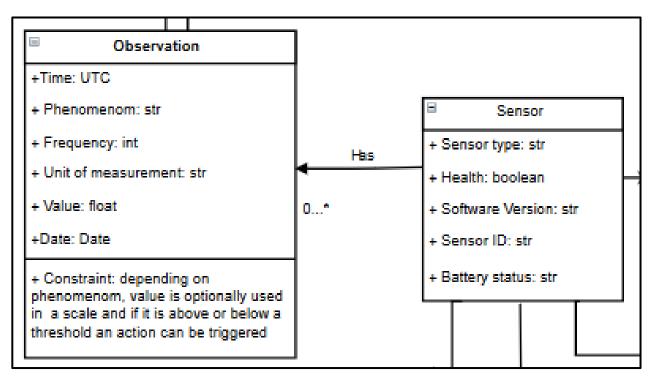
5. Methodology

6. Use case

7. Results

8. Conclusions


9. Limitations


10. Future work

TUDelft

UML model

- Unified Modeling Language
- Structure diagram
- Basis for standards

2. Problem statement

3. Research scope

4. Research question

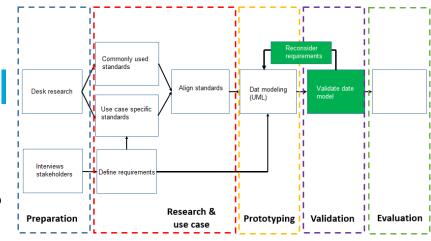
5. Methodology

6. Use case

7. Results

8. Conclusions

9. Limitations


10. Future work

Delft

Validation of the UML model

- Check the technical requirements in all available applications
 - One functioning sensor
 - One time frame
 - One indicator

If necessary: improve the data model

2. Problem statement

3. Research scope

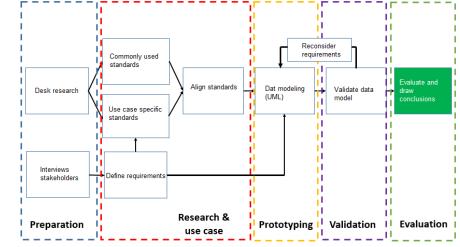
4. Research question

5. Methodology

6. Use case

7. Results

8. Conclusions


9. Limitations

10. Future work

ŤUDelft

Evaluation of the use case

 Feedback for the Sensor Web, based on the use case

2. Problem statement

3. Research scope

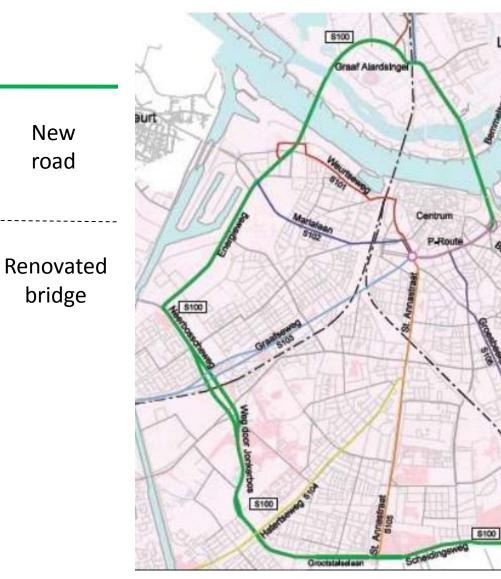
4. Research question

5. Methodology

6. Use case

7. Results

8. Conclusions


9. Limitations

10. Future work

TUDelft

Nijmegen

Use case

Nijmegen

N325 Kleve

Berg en

Lent

2. Problem statement

3. Research scope

4. Research question

5. Methodology

6. Use case

7. Results

8. Conclusions

9. Limitations

10. Future work

Delft

Use case

- Use case
 - Citizen participation
 - Create insight into environmental factors
 - Wish to standardize the data flow

Current situation:

- Three applications
- Towards:
- One application

2. Problem statement

3. Research scope

4. Research question

5. Methodology

6. Use case

7. Results

8. Conclusions

9. Limitations

10. Future work

Use case specifications

Location

Citizen

Question

ion Data

Data acquisition

Visualisation

2. Problem statement

3. Research scope

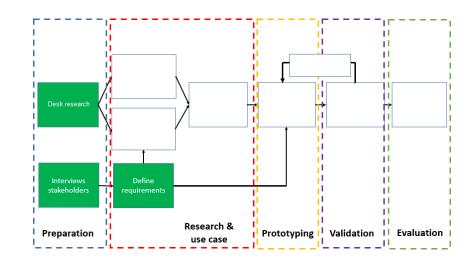
4. Research question

5. Methodology

6. Use case

7. Results

8. Conclusions


9. Limitations

10. Future work

Delft

Interviews

- 3 interviews experts
 - Network Maintainer
 - Calibration expert
 - Data analyst
- 6 meetings citizens
 - 4 project meetings data experts
- 5 project group meetings

2. Problem statement

3. Research scope

4. Research question

5. Methodology

6. Use case

7. Results

8. Conclusions

9. Limitations

10. Future work

TUDelft

Interviews

• Results:

Citizens

- Clear calibrated observation data
- No gaps in sensor data flow
- Real time sensor data
- Historical sensor data
- Maintainers
 - Device information
 - Maintenance history

Source: Smart Emission project

2. Problem statement

3. Research scope

4. Research question

5. Methodology

6. Use case

7. Results

8. Conclusions

9. Limitations

10. Future work

TUDelft

Technical requirements

Citizens

Maintainers of the network

Requirements

Sensor data

View sensor data download sensor data Last value data Time series data Data requestable interval Data requestable point in time Sensor spatially dispersed in map Clear units of measurements Scales if required for measurement Select sensor by clicking Select sensor by geometry Charts for sensor data

Metadata sensor Battery status Wifi status and network Sensor health Sensor name Last maintenance Frequency of measurement

2. Problem statement

3. Research scope

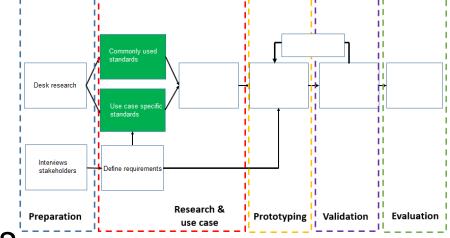
4. Research question

5. Methodology

6. Use case

7. Results

8. Conclusions


9. Limitations

10. Future work

ŤUDelft

Commonly used standards

- SensorML
- Observations and Measurements
- Sensor Observation Service
- Semantic Sensor Network
- SensorThings API

2. Problem statement

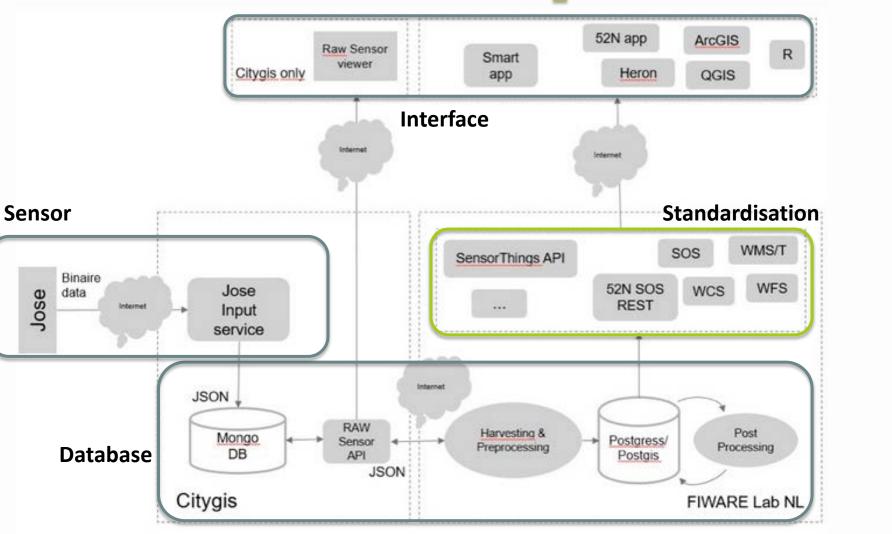
3. Research scope

4. Research question

5. Methodology

6. Use case

7. Results


8. Conclusions

9. Limitations

10. Future work

ŤUDelft

Use case specific standards

User

Source: Smart Emission project

2. Problem statement

3. Research scope

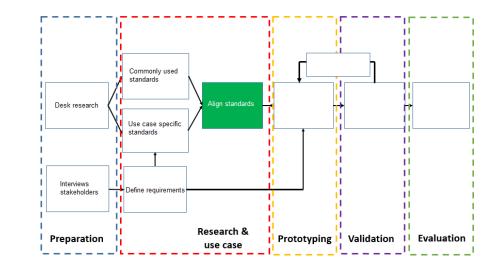
4. Research question

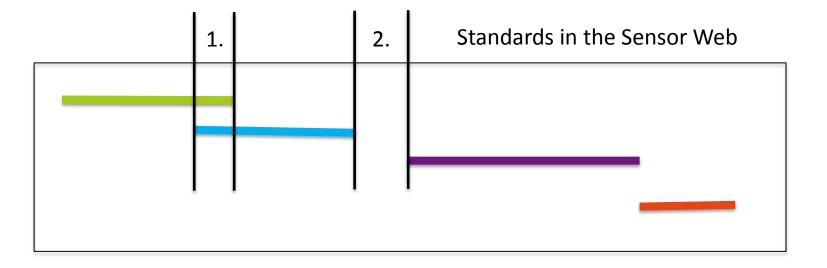
5. Methodology

6. Use case

7. Results

8. Conclusions


9. Limitations


10. Future work

ŤUDelft

Alignment

• Some similarities, standards are created for specific goal

Requirements

2. Problem statement

3. Research scope

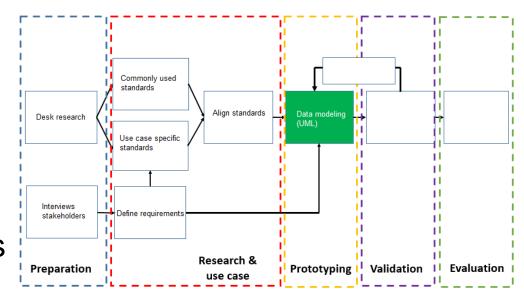
4. Research question

5. Methodology

6. Use case

7. Results

8. Conclusions


9. Limitations

10. Future work

TUDelft

UML model

- UML model based on:
 - Harmonized sensor standards
 - Use case requirements

- To test the requirement on the applications
- To test if the possibilities of the standards are sufficiently used

2. Problem statement

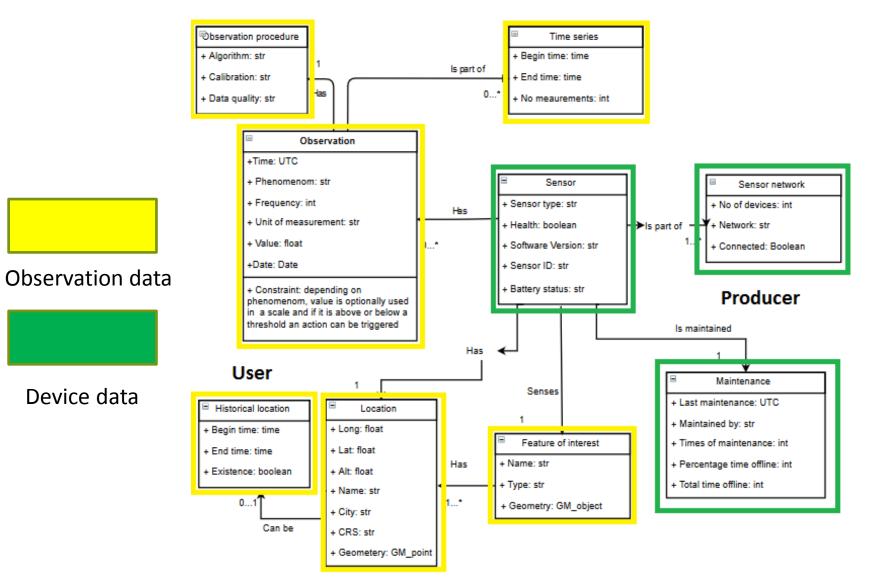
3. Research scope

4. Research question

5. Methodology

6. Use case

7. Results


8. Conclusions

9. Limitations

10. Future work

ŤUDelft

UML model

2. Problem statement

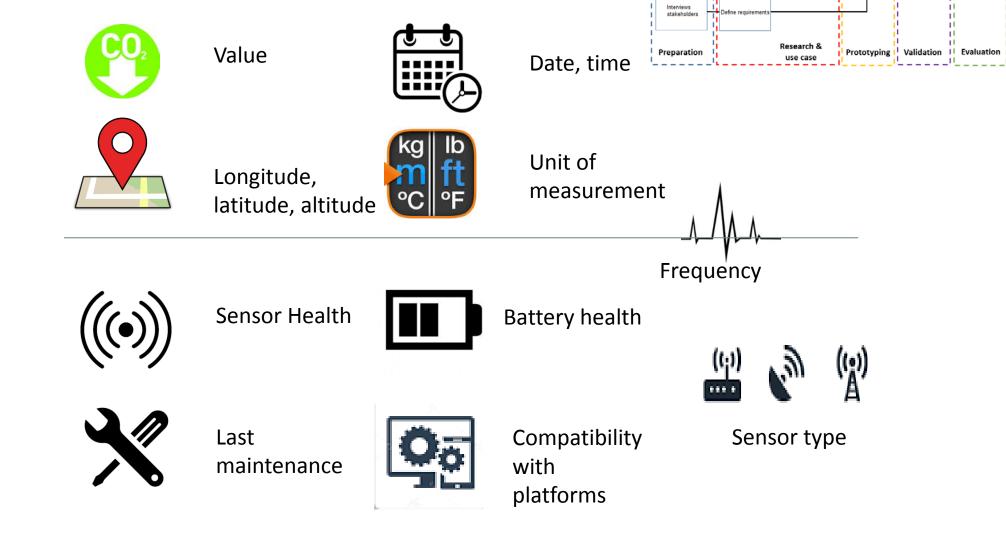
3. Research scope

4. Research question

5. Methodology

6. Use case

7. Results


8. Conclusions

9. Limitations

10. Future work

Validation of the UML model

Commonly used standards

Use case specific standards

Desk research

Align standards

Dat modeling (UML)

2. Problem statement

3. Research scope

4. Research question

5. Methodology

6. Use case

7. Results

8. Conclusions

9. Limitations

10. Future work

TUDelft

Validation of the UML model

Requirements	Fulfilled	Standard used
Sensor data		
View sensor data	\checkmark	SOS, O&M
download sensor data	\checkmark	SOS, WMS, WFS
Last value data	\checkmark	SOS, O&M
Time series data	\checkmark	WMS-Time
Data requestable interval	\checkmark	WMS-Time
Data requestable point in time	×	x
Sensor spatially dispersed in map	\checkmark	SOS
Clear units of measurements	\checkmark	none
Scales if required for measurement	\checkmark	none
Select sensor by clicking	\checkmark	none
Select sensor by geometry	\checkmark	none
Charts for sensor data	\checkmark	SOS
Metadata sensor		
Battery status	×	x
Wifi status and network	×	x
Sensor health	×	x
Sensor name	\checkmark	SOS
Last maintenance	×	x
Frequency of measurement	×	x

2. Problem statement

3. Research scope

4. Research question

5. Methodology

6. Use case

7. Results

8. Conclusions

9. Limitations

10. Future work

ŤUDelft

Validation of the UML model

- Requirements maintainer not fulfilled
- Half of the requirements met without standardization
- Sensor Observation Service mostly used for standardisation

2. Problem statement

3. Research scope

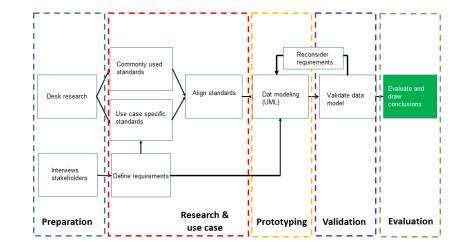
4. Research question

5. Methodology

6. Use case

7. Results

8. Conclusions


9. Limitations

10. Future work

elft

Evaluation of the use case

 Geo & sensor standards used: WMS, WFS, SOS

- Another standard planned: SensorThingsAPI
- Observation standards, no device standards
- Adding more semantics required
- Most of the requirements met
- Finding fitting standards is time consuming
- Several applications required
- Ordering of standards is required

2. Problem statement

3. Research scope

4. Research question

5. Methodology

6. Use case

7. Results

8. Conclusions

9. Limitations

10. Future work

Delft

Bringing order

• Why ordering:

- Inventory and ordering of standards
- Developer can easier pick a standard
- Standards can be better fine-tuned and adapted
- Adapting the Open System Interconnection (OSI) model

2. Problem statement
3. Research scope
4. Research question

5. Methodology

6. Use case

7. Results

8. Conclusions

9. Limitations

10. Future work

FUDelft

OSI model

Data	Application layer	Data
	Transport layer	
	Network layer	
	Data link layer	
	Physical layer	
Data	' — Medium —>	Data

- What does it contribute?
 - Used as a model for the Internet and Internet of Things standards

2. Problem statement

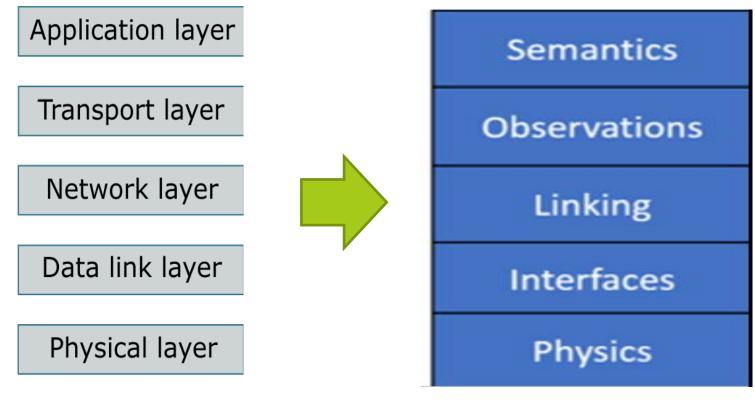
3. Research scope

4. Research question

5. Methodology

6. Use case

7. Results


8. Conclusions

9. Limitations

10. Future work

TUDelft

Adaption

Original OSImodel

Adapted OSImodel

2. Problem statement

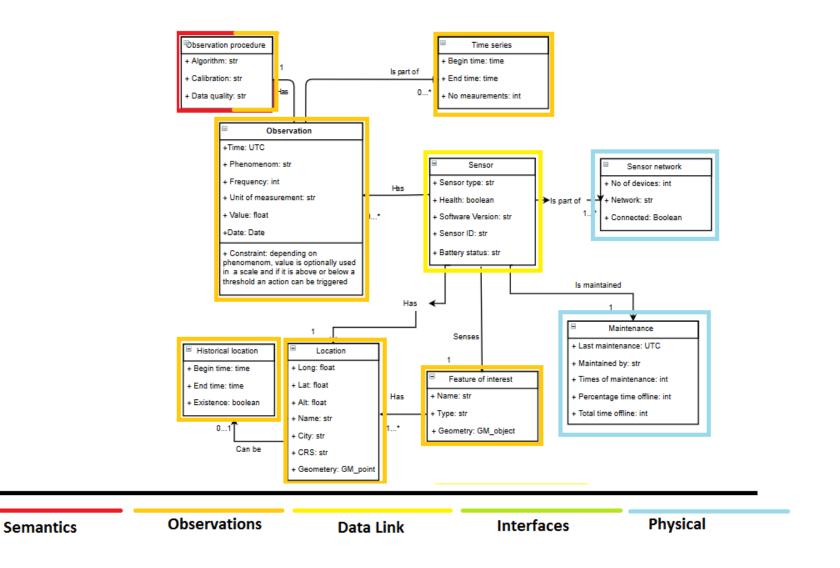
3. Research scope

4. Research question

5. Methodology

6. Use case

7. Results


8. Conclusions

9. Limitations

10. Future work

TUDelft

Layers in the data model

2. Problem statement

3. Research scope

4. Research question

5. Methodology

6. Use case

7. Results

8. Conclusions

9. Limitations

10. Future work

ŤUDelft

Adapted OSI model

		Modeling	Ontologies	Encodings	API
Data 🕇	Semantics		SSN	SenML Aereas SensorML	
	Observations	O and M	SSN	SAS SPS Pub/ sub	Sensor Things SOS API
	Linking	TransducerML	SSN		Sensor Things SOS API
	Interfaces				Sensor Things SOS API
Device	Physics			IEEE series	Generic Sensor API

2. Problem statement

3. Research scope

4. Research question

5. Methodology

6. Use case

7. Results

8. Conclusions

9. Limitations

10. Future work

Future of the Adapted OSI model

e www.sensorstandards.info	⊤ 🗦 🤉 Zoeken	☆ 🖻 🛡 🖡 🏟 🧕 💆 🗮
Best Practices	Technical documentation Contact	Search
 Sensor Observation Service SensorML SenML Observations and measurements IEEE SensorThingsAPI Sensor Planning Service Sensor Event Service Sensor Alert Service Pub/sub Aereas 	Project Smart Emission Link: smartemission.nl Standards: SOS, WFS, WMS- Time, SensorThingsAPI Product delivery: 2016 Responsible: Geonovum, Municipality Nijmegen, RIVM, Intemo	
Review:	Semant Emission - Data Platform The next tensors of Data Platform, Case sevent heaping for the data with the mean tensors The formation of the Platform, Case sevent heaping for the data with the mean tensors The formation of the Platform, Case sevent heaping for the data with the mean tensors The formation of the Platform, Case sevent heaping for the data with the mean tensors Platform of the Platform, Case sevent heaping for the data with the mean tensors Platform of the Platform, Case sevent heaping for the data with the mean tensors Platform of the Platform, Case sevent heaping for the data with the mean tensors Platform of the Platform, Case sevent heaping for the data with the mean tensors Platform of the Platform, Case sevent heaping for the data with the mean tensors Platform of the Platform, Case sevent heaping for the data with the mean tensors Platform of the Platform, Case sevent heaping for the data with the mean tensors Platform of the Platform, and the Data Platform, Charts, Charenshard Header, Case sevent heaping for the data with the d	te adgemente (Emait Emaisson initialite vind pr op zona smithambalajon ré am methonologieunte initializationen in de allad igo een fijnmaarg asihaatinoeaus, atoor xxx) exatue in various aage. Agant from the SciSchröddShift"S Alfra above data can be 42

2. Problem statement

3. Research scope

4. Research question

5. Methodology

6. Use case

7. Results

8. Conclusions

9. Limitations

10. Future work

ŤUDelft

Future of the Adapted OSI model

- Maintenance required
- Cooperation stakeholders and standard organizations required
- One organization needs to be responsible

2. Problem statement

3. Research scope

4. Research question

5. Methodology

6. Use case

7. Results

8. Conclusions

9. Limitations

10. Future work

Delft

Conclusions

To what extent align existing **sensor standards** for describing both **observations** and **sensors?**

- Situation sensor web: rapid developments, a lot of standards, no overview.
- Standards not sufficiently harmonized
- Sensor standards focus on a small section in the sensor web.
- Sensors and observations should have both equal importance in UML models
- Having one universal standard for the sensor web currently limits the flexibility of the sensor web

2. Problem statement

3. Research scope

4. Research question

5. Methodology

6. Use case

7. Results

8. Conclusions

9. Limitations

10. Future work

Delft

Conclusions

What steps can be taken to **harmonize** standards in the **sensor web**?

- Collect the available standards
- Make an alignment
- Make a UML model based on the use case
- Remove duplications, fill gaps in the data model
- Validate the data model using use case requirements
- Order the standards in an ordering model
- Maintain the ordering model

2. Problem statement

3. Research scope

4. Research question

5. Methodology

6. Use case

7. Results

8. Conclusions

9. Limitations

10. Future work

ŤUDelft

Limitations

- One use case: air quality
- Standards can cover more than one layer
- The layer definitions are broadly defined
- Vague boundary geo-standard and sensor standard
- Process not automated yet

2. Problem statement

3. Research scope

4. Research question

- 5. Methodology
- 6. Use case
- 7. Results
- 8. Conclusions
- 9. Limitations

10. Future work

Delft

Future work

- Check if specifications are in other standards.
- Make an overview of possible implementations and best practices discoverable online
- Keep the model up-to-date
- More use cases need to be tested
- Involve sensor standard creators
- More use of Semantic sensor standards

Thank you for your attention!

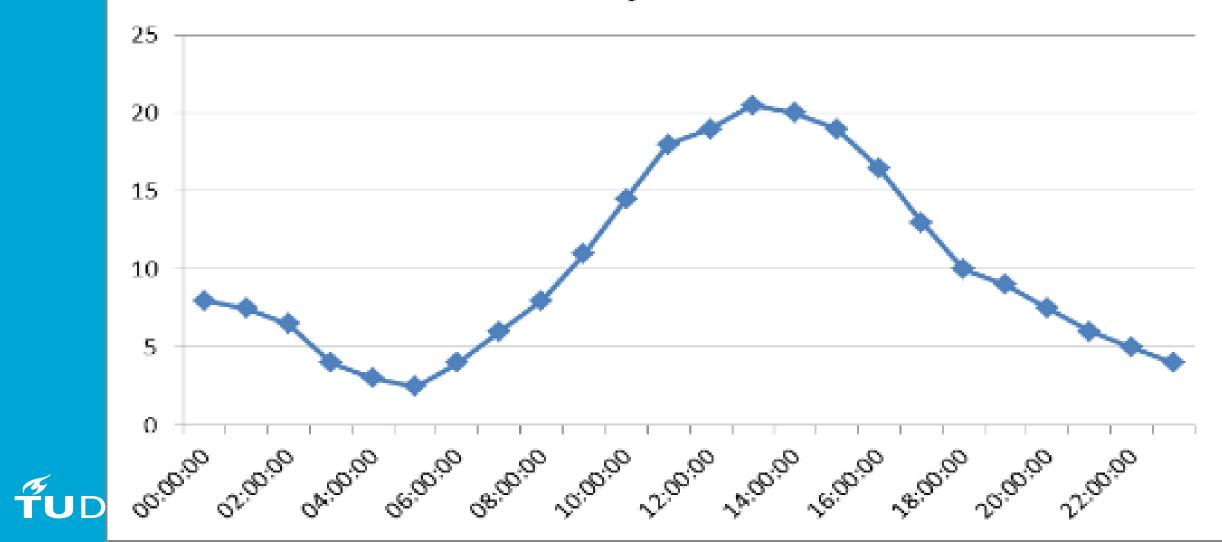
Special thanks to

- Michel Grothe for help at geonovum,
- Wilko Quak and Bastiaan van Loenen at TU Delft

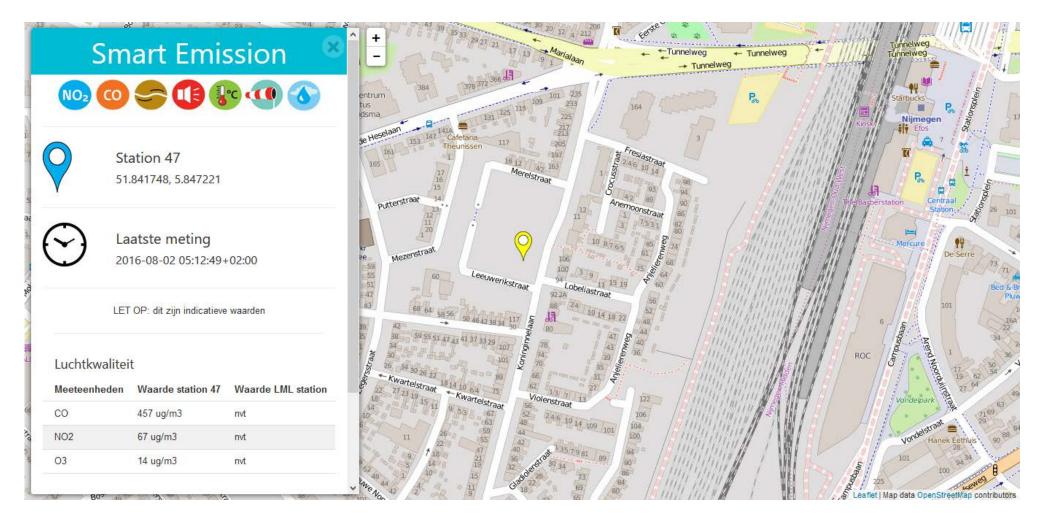
Link

http://data.smartemission.nl/

Sensor



Source: Intemo


Temporal data

Source: Smart Emission project

Temperature

Real time data

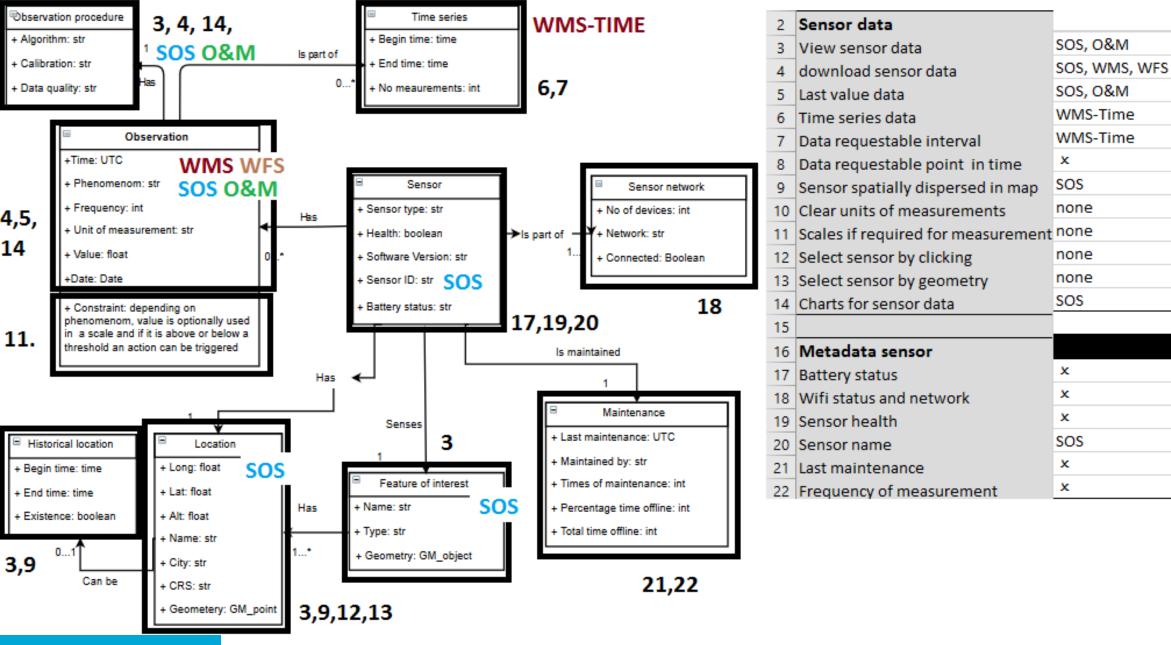
Source: Smart Emission project

11/13/2015 11:09:45,S.RtcTime,788771 11/13/2015 11:09:45, P. SessionUptime, 331596 11/13/2015 11:09:45, P.BaseTimer, 4 11/13/2015 11:09:45, P.ErrorStatus, 0 11/13/2015 11:09:45, P. Powerstate, 3919 11/13/2015 11:09:45, P. UnitSerialnumber, 7 11/13/2015 11:09:45, S.Longitude, 5914091 11/13/2015 11:09:45, S.Latitude, 53949942 11/13/2015 11:09:45,S.SatInfo,86795 11/13/2015 11:09:45, S. AudioPlus9, 2960945 11/13/2015 11:09:45, S. AudioPlus8, 2960687 11/13/2015 11:09:45, S. AudioPlus7, 3092269 11/13/2015 11:09:45, S. AudioPlus6, 3092274 11/13/2015 11:09:45, S. AudioPlus5, 3354415 11/13/2015 11:09:45, S. AudioPlus4, 3354671 11/13/2015 11:09:45, S. AudioPlus 3, 3159595 11/13/2015 11:09:45, S. AudioPlus2, 3222314 11/13/2015 11:09:45, S. AudioPlus1, 2828583 11/13/2015 11:09:46, S. Audio0, 2686976 11/13/2015 11:09:46,P.18,184550243 11/13/2015 11:09:46, P.17, 184550243 11/13/2015 11:09:46, P.16, 184550242 11/13/2015 11:09:46,5.36,0 11/13/2015 11:09:46,5.C02,1116000

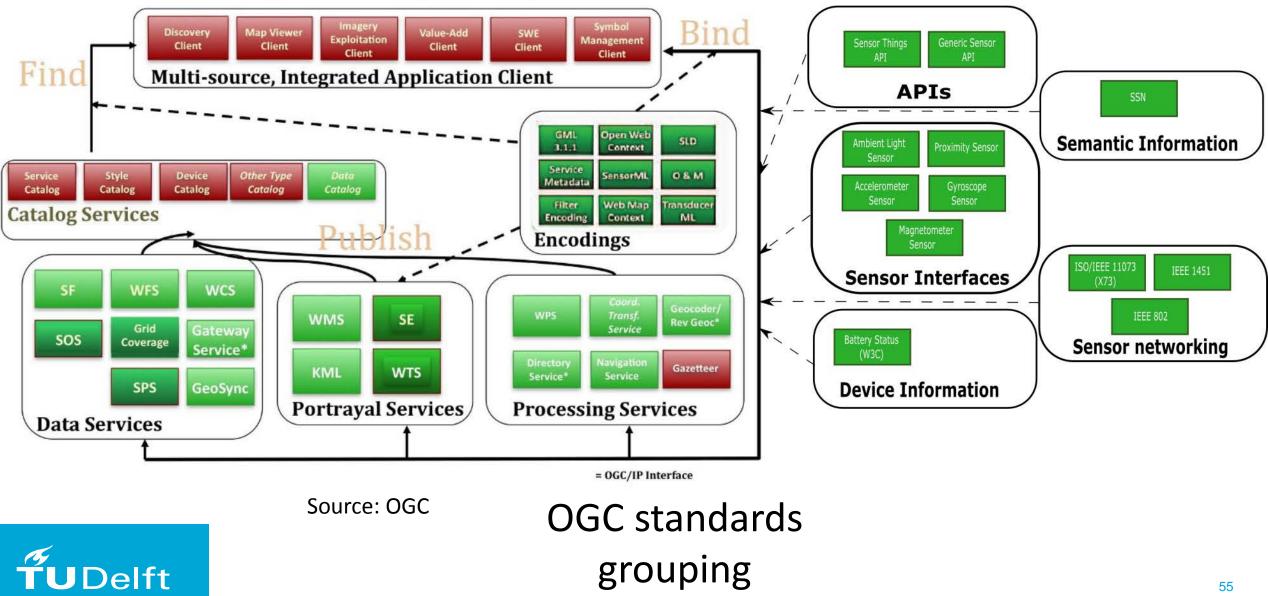
Raw Sensor Data

ŤUDelft

Standard	Observations & Measurements	SensorML	Sensor things API	Semantic sensor network	Sensor Observation service
Author	OGC	OGC	OGC	W3C	OGC
Architecture style	Resource Oriented Architecture	Service Orientated Architecture	Resource Oriented Architecture	Semantic Service Oriented Architecture	Service Oriented Architecture
encoding schema	XML, Json, OWL and Schematron for validation	Xml	REST, JSON, OASIS OData and URL	OWL	SensorML
Focus	XML implementation of schemas for observations, and for features	Restriction of sensor description, and sensor discovery	interconnects IoT devices, data, and applications over the Web	describes sensors, observations, and related concepts	Web service interface to query observations, sensor metadata, and representations of observed features.
Binding	SOAP	Sensor Markup Language	REST	OWL	SOAP, REST via extension
Insert new sensors and observations	Not Supported	Not Supported	HTTP POST	Not Supported	SOS specific interface: RegisterSensor() and InsertObservation()
Delete sensors	Not Supported	Not Supported	HTTP DELETE	Not Supported	SOS specific interface: DeleteSensor()
Updating Properties of Existing Sensors	Not Supported	Not Supported	HTTP PATCH and JSON PATCH	Not Supported	Not Supported
Deleting Existing Observations	Not Supported	Not Supported	HTTP DELETE	Not Supported	Not Supported
	Not Supported	Not Supported	MQTT and SensorThings MQTT Extension	Not Supported	Not Supported
Pagination	Not Supported	Not Supported	\$top/\$skip/\$nextLink	Not Supported	Not Supported
Linked Data Suppor	Not Supported	Not Supported	JSON-LD	Not Supported	Not Supported
Usage	Core for other standards vb. Observation Data Model 2.0	IOOS⊗ Sensor Observation Service,	resource-constrained device on top of the OpenIoT middleware	SPITFIRE FP7 project, 52North, emsorGrid4Env, xalted project	52north, PySOS, Deegree, MapServer
Geolocation	GML: point	Supported by CRS and Long lat alt	Every "thing" has a location	Does not describe location module Platform gives location	GML:Point
Meta data sensor	Earth Observation metadata	Uses Common Data Models	Metadata from sensor systems	Semantic meta data	Sensor meta data can be queried
		Doesn't support describing workflows yet	Relatively new	Does not describe domain concepts time, locations, etc. Not easy to apply	Limitations are depending on the server Ex. 52North SOS does not scale very well
Strong point	Great observation model for other standards	Complementary role for CityGML and IndoorGML Everything is modelled as a process	easy to use interface to sensor values. simple resource based interface	powerful description framework of almost any kind of sensor observation	Implementation works for different servers


Detailed comparison standards

Standard	Observations & Measurements	SensorML	Sensor things API	Semantic sensor network	Sensor Observation service
Sensor data					
View sensor data	x	x	\checkmark	x	\checkmark
download sensor data	x	×	×	x	\checkmark
Last value data	\checkmark	✓	✓	x	\checkmark
Time series data	\checkmark	\checkmark	\checkmark	x	\checkmark
Data requestable interval	x	\checkmark	\checkmark	x	x
Data requestable point in time	x	\checkmark	\checkmark	x	\checkmark
Sensor spatially dispersed in map	×	x	×	x	\checkmark
Clear units of measurements	x	\checkmark	\checkmark	x	\checkmark
Scales if required for measurement	x	×	x	x	x
Select sensor by clicking	×	×	×	x	\checkmark
Select sensor by geometry	x	×	×	x	\checkmark
Charts for sensor data	x	x	\checkmark	x	\checkmark
Metadata sensor					
Battery status	x	\checkmark	x	\checkmark	x
Wifi status and network	×	x	x	x	x
Sensor health	×	x	x	\checkmark	x
Sensor name	<	\checkmark	\checkmark	\checkmark	\checkmark
Last maintenance	×	x	x	x	x
Frequency of measurement	×	x	x	\checkmark	x
	Used in combination	Used in combination			
Comments	with other standards	with other standards	Still in development	Adds a semantic layer	


Assessment standards

TUDelft

The OGC[®] OGC[®] Sensor Model Language (SensorML) Encoding Standard provides provides an information model and encoding for discovery & tasking of sensors

Semantics

- Semantics: spatial, temporal, and thematic semantic metadata
- Knoesis –Semantic sensor network
- Observation is an "act of measuring or otherwise determining the value of a property" and a measurement is a "set of operations having the object of determining the value of a quantity."

)ata	Semantics	Capabilities discoverable, more interoperability	Find all the sensors in a area, find their possible output
	Observations	Observations data and metadata	Values, data quality, indicators
	Linking	Linking device and observations	Frequency of measurements, link in database between sensor and observation
	Interfaces	Looks of the interface, functionalities within application	Formats that can be handled, how the systems communicate
Device	Physics	Sensor specifications, raw sensor data	Sensor health, sensor type

Contents layers Adapted OSI model

Sub questions

- What are the commonly used sensor standards?
- To what extent do commonly used sensor standards align?
- Which sensor standard or standards are used in the Smart Emission use case?
- What steps can be distinguished to align the use case standard to the commonly used sensor standards?

