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Abstract. Predicting and classifying faults in electricity networks is
crucial for uninterrupted provision and keeping maintenance costs at
a minimum. Thanks to the advancements in the field provided by the
smart grid, several data-driven approaches have been proposed in the
literature to tackle fault prediction tasks. Implementing these systems
brought several improvements, such as optimal energy consumption and
quick restoration. Thus, they have become an essential component of
the smart grid. However, the robustness and security of these systems
against adversarial attacks have not yet been extensively investigated.
These attacks can impair the whole grid and cause additional damage
to the infrastructure, deceiving fault detection systems and disrupting
restoration.

In this paper, we present FaultGuard, the first framework for fault
type and zone classification resilient to adversarial attacks. To ensure
the security of our system, we employ an Anomaly Detection System
(ADS) leveraging a novel Generative Adversarial Network training layer
to identify attacks. Furthermore, we propose a low-complexity fault pre-
diction model and an online adversarial training technique to enhance
robustness. We comprehensively evaluate the framework’s performance
against various adversarial attacks using the IEEE13-AdvAttack dataset,
which constitutes the state-of-the-art for resilient fault prediction bench-
marking. Our model outclasses the state-of-the-art even without con-
sidering adversaries, with an accuracy of up to 0.958. Furthermore, our
ADS shows attack detection capabilities with an accuracy of up to 1.000.
Finally, we demonstrate how our novel training layers drastically increase
performances across the whole framework, with a mean increase of 154%
in ADS accuracy and 118% in model accuracy.
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1 Introduction

Smart grids represent a transformative paradigm in the realm of energy distri-
bution [7,32]. Through advanced technologies, they aim to enhance electrical
grids’ efficiency, reliability, and sustainability. Unlike traditional power distri-
bution systems, smart grids leverage real-time data, communication networks,
and intelligence control mechanisms to optimize electricity generation, distribu-
tion, and consumption. As such, they enable a bidirectional flow of information
between utilities and customers, forming a responsive energy ecosystem [32].
The significance of smart grids lies in their ability to address the challenges
posed by the evolving energy landscape. Indeed, they facilitate the integration
of renewable resources such as solar and wind, mitigating the impact of their
variability and contributing to the overall sustainability of the energy sector.
Given their importance in the current energy landscape, ensuring the security
of smart grids is imperative. Indeed, their interconnection and dependence on
digital communication expose them to potential cyber threats and vulnerabil-
ities [33]. As smart grids increasingly rely on data-driven technologies, robust
security measures are indispensable to safeguard confidentiality, integrity, and
availability across the energy infrastructure. Despite the many papers in the lit-
erature proposing new models and methodologies for various aspects of smart
grids [3,11,14,22,29,31,35,41,49], a notable gap exists in addressing their secu-
rity considerations. As the proposed models increasingly rely on Artificial Intelli-
gence (AI) and Machine Learning (ML), it is imperative to address the inherent
vulnerabilities that these methodologies suffer from, such as adversarial attacks.

Contribution. To reduce this gap in the literature, we propose FaultGuard,
a framework for fault type and fault zone prediction in smart grids resilient
to adversarial attacks. Unlike many studies focusing on enhancing predictive
capabilities, we emphasize resiliency and incorporate robust security layers. In
particular, compared to the state-of-the-art [5], we (i) add an Anomaly Detec-
tion System (ADS) and (ii) employ adversarial training in different parts of
the system. The ADS detects adversarial attacks toward the fault prediction
system, showing an accuracy of up to 1.000 when paired with an adversar-
ial learning training technique. Our new learning technique shows an average
improvement of the ADS of 154% compared to its counterpart that has not been
trained with adversarial learning. We then develop a low-complexity fault pre-
diction system outperforming the state-of-the-art [5]. To increase the resilience of
our fault prediction system against adversarial attacks, we propose and employ
online adversarial training during its training phase. This procedure shows a
mean increase in the model’s accuracy of up to 118% when the system is under
attack. We evaluate our model on the IEEE13-AdvAttacks dataset [5], a simu-
lated dataset based on the IEEE-13 test node feeder. Our results show that our
model outclasses the state-of-the-art, reaching an accuracy of up to 0.958. Our
contributions can be summarized as follows.

– We propose FaultGuard, a resilient framework for predicting fault types and
zones in smart grids capable of withstanding adversarial attacks.
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– We propose a single-layer Gated Recurrent Unit (GRU) architecture that
outclasses the state-of-the-art in fault type and fault zone prediction.

– We propose an ADS capable of detecting complex adversarial attacks gener-
ated with different amounts of adversarial noise.

– We propose an online adversarial training technique, showing how including
a subset of adversarial samples in the training process drastically increases
the accuracy of the models under attack.

– We evaluate our models, attacks, and defenses on a publicly available dataset,
showing the efficacy of the attacks in unrestricted scenarios and the capabil-
ities of our defenses.

– We make the code of our systems, attacks, and the dataset available at:
https://github.com/emadef1/FaultGuard/.

Organization. The paper is organized as follows. In Sect. 2, we mention the
challenges and limitations of the related works in the literature. Our system
and threat models are proposed in Sect. 3. The methodology for our attacks is
discussed in Sect. 4, while the details of our model implementation are discussed
in Sect. 5. In Sect. 6, we evaluate our model, attacks, and defenses. We report
the takeaways of this study in Sect. 7, and Sect. 8 concludes this work.

2 Related Works

While the literature has extensively discussed and implemented fault prediction
models on smart grids, their security and robustness have not been thoroughly
studied. Indeed, these models have been shown to be vulnerable to adversarial
attacks. For instance, Ardito et al. [5] investigated the robustness of fault type
and zone classification systems against adversarial attacks. They conducted eval-
uations through dataset releases, benchmarking, and assessments of smart grid
failure prediction systems under adversarial assaults.

Numerous papers have delved into fault detection and classification method-
ologies within Smart Grids [3,11,14,22,29,31,35,41,49]. As outlined by Saha
et al. [36], the categorization of fault location methodologies in power systems
includes traditional, observant, and intelligent approaches. This paper specifi-
cally focuses on intelligent approaches for fault detection, utilizing smart sen-
sors or expert systems. These intelligent methods involve various techniques,
such as expert systems, ML, and Deep Learning (DL), all aimed at identi-
fying faults within the system. Indeed, Artificial Neural Networkss (ANNs)
have been extensively explored in the literature for identifying and predict-
ing faults [1,6,13,15,17,24,40,45]. Shadi et al. [38] leveraged Recurrent Neural
Network (RNN) and Long Short-Term Memory (LSTM) models within a real-
time hierarchical architecture to accurately pinpoint and localize faults. Bhat-
tacharya et al. [8] developed a framework for intelligent fault analysis, lever-
aging Support Vector Machines (SVMs) and LSTMs. Zhang et al. [48] intro-
duced a method leveraging the attention mechanism, Bidirectional GRU, and a
dual structure network to analyze data from diverse perspectives. Thukaram et

https://github.com/emadef1/FaultGuard/
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al. [43] proposed a hybrid approach combining SVM and ANN architectures. In
their method, the SVM streamlines the relationship between measurements and
fault distance. Tree-based methods like Random Forests (RFs) have emerged
as highly favored techniques for fault location due to their versatility and low
variance [16,34]. Also, Sapountzoglou et al. [37] proposed a gradient-boosting
tree model to detect, identify, and localize faults within low-voltage smart dis-
tribution grids. Wilches-Bernal et al. [47] introduced an innovative fault location
and classification algorithm, leveraging mathematical morphology in conjunction
with RFs. Majidi et al. [30] introduced a fuzzy-c clustering approach to identify
potential fault points. Ghaemi et al. [18] introduced an ensemble approach to
enhance the precision of fault node localization. Their method is designed to
leverage the strengths of SVMs, k-Nearest Neighborss (kNNs), and RFs.

3 System and Threat Model

We now delve into the system and threat model of our study. In the former, we
disclose the standard functionality of the system in adversary-free environments.
In the latter, we discuss the possible attacker’s capabilities and the assumption
of their system knowledge.

System Model. In an unthreatened scenario (i.e., without attackers aiming to
disrupt the system), the model inputs the data from the smart grid infrastruc-
ture. We assume having two fault prediction models, one for each task: fault
type prediction and fault zone prediction. In the former, the model objective is
to determine the type of voltage sags faults, which can be asymmetric phase-to-
phase (LL), single-phase-to-ground (LG), two-phase-to-ground (LLG), or sym-
metric three-phase-to-ground (LLLG or LLL). In the latter, the model objective
is determining the geographical zone where the fault occurred. We assume the
models have been trained on an uncorrupted dataset and are finally deployed
into the system.

Threat Model. As we aim to provide efficient defenses against adversaries target-
ing ML models in the smart grid, we delineate our threat model encompassing
the most favorable scenarios for the attacker. Thus, while aiming to compromise
the fault prediction model, we assume the adversary can successfully infiltrate
the system and inject data into the grid. There are various ways in which an
attacker can achieve this, as exploiting known or new vulnerabilities was demon-
strated to be an effective way to gain remote access [12,42]. Once an adversary
has gained access to the infrastructure, they aim to compromise fault type or
fault zone prediction using adversarial examples. In the former scenario, the
attacker intends to cause the misclassification of potential faults, potentially
prompting inappropriate recovery actions by grid operators, leading to catas-
trophic consequences. In the latter scenario, the adversary manipulates fault
prediction models, targeting fault zone prediction in smart grids. This results in
recovery teams being dispatched erroneously to the wrong zone, amplifying the
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impact on operational efficiency and necessitating robust security measures to
safeguard smart grid applications.

We can define two scenarios based on the attacker’s knowledge of the
exchanged data and the smart grid models.

– White-box Scenario: the attacker has access to the data used for testing the
model and the model’s architecture and parameters. This is the most favorable
scenario for the attacker, who can leverage this intelligence to craft powerful
adversarial samples. Furthermore, having access to the model weights allows
the adversary to tune the attack parameters offline.

– Gray-box Scenario: the attacker has access to the data used for testing the
model, but not the model’s architecture or parameters. This scenario is more
challenging for an adversary aiming to use adversarial samples, as it would
require them to be transferable among different model architectures. However,
several studies have demonstrated the difficulties of this task and showed the
inefficiency of using surrogate models for generating adversarial noise to test
samples [2,4].

It is worth noting that while the white-box scenario is the most favorable from
the attacker’s perspective, the gray-box scenario is more achievable in real-world
implementations. Indeed, an adversary can obtain the model architecture from
either (i) the known implementation disclosed by the manufacturer, or (ii) hav-
ing direct access to the system input/output and use model extraction tech-
niques [19,23]. As such, model parameters can be protected by (i) not publicly
disclosing the model architecture and training dataset used and (ii) using model
obfuscation techniques. Instead, gaining data is a more accessible technique for
the attacker, as many entry points are present across the infrastructure. Indeed,
many IoT devices and networks compose the smart grid. With the integration
of data coming from sustainable energy producers, adversaries can collect data
in various parts of the system.

4 Attacks

We now discuss the attacks that we employ against fault type and zone prediction
systems in smart grids. Our attacks are different depending on the assumptions
of the attacker’s knowledge, namely, white-box scenario (Sect. 4.1) and gray-box
scenario (Sect. 4.2).

4.1 White-Box Scenario

In our white-box threat model, the adversary possesses full knowledge of the
data and the trained model. Thus, we analyze prominent adversarial attacks to
reveal vulnerabilities in ML models. We focus on specific attacks highlighted in
the literature for their significance and capacity to uncover weaknesses.
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– Fast Gradient Sign Method (FGSM): swiftly crafts adversarial examples by
leveraging the sign of the gradient of the loss function. Recognized for com-
putational efficiency, it is a foundational benchmark for evaluating model
robustness [20].

– Basic Iterative Method (BIM): extends FGSM through an iterative applica-
tion, introducing small perturbations at each step to enhance attack potency.
Provides insights into cumulative perturbation effects for nuanced robustness
evaluation [27].

– Carlini & Wagner (CW): a sophisticated attack that formulates adversar-
ial example crafting as an optimization problem, seeking minimal perturba-
tions for misclassification with minimal perceptibility. Challenges models with
minimal perturbations, assessing resistance against imperceptible adversarial
examples [9].

– Randomized Fast Gradient Sign Method (RFGSM): introduces randomness
into FGSM iterations by incorporating random noise, enhancing attack diver-
sity. Explores the impact of variability in adversarial perturbations, providing
insights into model robustness against unpredictable attacks [44].

– Projected Gradient Descent (PGD): employing an iterative optimization app-
roach akin to BIM, PGD includes a projection step to confine perturbations
within a defined constraint set. It stands out for crafting potent adversarial
examples, allowing rigorous examination of model robustness under stringent
conditions [28].

4.2 Gray-Box Scenario

In the gray-box scenario, the adversary has gained access solely to the data
and cannot get access to the prediction models. Exploiting this limited access,
the adversary employs a Generative Adversarial Network (GAN) to synthesize
malicious data that closely mirrors authentic instances. GANs are a class of
artificial intelligence algorithms that consist of two neural networks, a generator
and a discriminator, trained simultaneously to generate realistic data. In this
way, the attacker can lead the fault prediction model towards the detection
of a specific fault type or zone. This evasion strategy involves training a GAN
model on real data, enabling synthetic data generation that resembles legitimate
smart grid data. By successfully training the GAN, the adversary acquires a
powerful tool (i.e., the trained generator), which can then be employed to inject
the generated data into the smart grid system. Introducing maliciously generated
data designed to mimic real data poses a nuanced challenge, showcasing the
adversarial capabilities of GANs in evading detection.

5 FaultGuard

In this section, we present our proposed FaultGuard framework, which is graph-
ically shown in Fig. 1. We consider two primary data sources for prediction: the
legitimate sensor data gathered in the smart grid and the malicious data injected
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by possible adversaries. We employ an ADS for detecting adversarial samples in
the input data. If samples are detected as malicious, they are discarded. Instead,
if the data appears legitimate, they are fed as input to the fault prediction
model. Furthermore, we employ online adversarial training to boost our system
resilience towards possible attacks. Finally, our model generates a prediction for
each task it is trained on: fault type and zone prediction.

Smart Grid

Adversary Reject

Accept

Anomaly Detection

System

Discard

Fault Prediction

Model

Adversarial
Training

Fault Type

Fault Zone

Input

Fig. 1. FaultGuard framework.

We present our GAN-based ADS in Sect. 5.1, and the fault prediction system
in Sect. 5.2. While we list the components of our pipeline in order or appearance,
it is worth noting that, in real-world scenarios, the first step would be training
the fault prediction system. Indeed, our ADS uses the trained prediction model
in its implementation. After training both the model and the ADS, components
can be organized as detailed in Fig. 1.

5.1 Anomaly Detection System

As shown in Fig. 1, we employ an ADS before feeding the input to our fault
prediction system. The aim of the ADS is to detect and reject adversarial attacks
while allowing legitimate samples. We use a GAN to achieve this. Our GAN
model is characterized by neural networks featuring linear input and output
layers. In particular, we leverage the discriminator for anomaly detection after
training.

Architecture. The generator model creates synthetic data that mimic legitimate
data patterns. It achieves this through four fully connected layers, with neurons
varying from 51 (i.e., the number of features) to 128. The discriminator model
serves a dual purpose as an ADS and an authenticity evaluator. It is tasked
with evaluating the genuineness of incoming data by discerning whether it is
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authentic grid data (real) or artificially generated by the generator model (fake).
Comprising five fully connected layers, the discriminator’s neuron count ranges
from 51 to 512. More details on our implementation and hyper-parameters are
publicly available in our GitHub repository.

Training. Recognizing the imperative to fortify the discriminator’s capabilities,
we introduce a novel layer of training in the traditional GAN training process.
An overview of this process is shown in Fig. 2. The first training steps adhere
to the standard procedure and, as such, start with training the discriminator on
real data (step 1 ). Once the discriminator’s loss is backpropagated, we generate
fake data with the generator. We do this by starting with a random tensor of
latent inputs, which the generator model consequently processes to create the
fake inputs (step 2 ). We evaluate these samples with the discriminator and sub-
sequently backpropagate the loss (step 3 ). Before proceeding with the training of
the generator, we first add our novel layer of training. To increase the adversarial
detection capabilities of our discriminator, we feed adversarial samples with the
FGSM and BIM attack (step 4 ). These samples are derived from the real data
the discriminator was previously trained on and generated through the fault
prediction model. In this way, the discriminator can increase its capabilities in
detecting FGSM and BIM samples (step 5 ); however, the transferability prop-
erty of these attacks allows the ADS also to detect other types of attacks [2]. We
call this layer of training adversarial learning, whose contributions are evaluated
in Sect. 6.4. Finally, we train the generator by generating another batch of fake

GAN

Data

Randomness

Adversarial Samples

Fault Prediction
Model

GeneratorDiscriminator

Fig. 2. Schema of our GAN-based ADS training process for each epoch.
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data (step 6 ), computing the loss on the discriminator, and backpropagating it
to the generator model (step 7 ). This process is repeated for 100 epochs, with
a learning rate of 2 × 10−4 for each model.

5.2 Fault Prediction System

In this section, we comprehensively explore the novel model we introduced for
fault type and zone prediction tasks. The fault prediction system constitutes the
ultimate stage in our framework, working with data that has undergone thor-
ough legitimacy verification by the ADS. While the preceding work, delineated
in the dataset introduction paper, included a benchmarking model utilizing a
Multi-Layer Perceptron (MLP), its performance was not the primary focus of
the study [5]. Indeed, it is worth noting that the causality between consecutive
data samples is lost by using a MLP. The oversight in considering the temporal
relationships among data points could contribute to the sub-optimal performance
observed in benchmarking the model.

Architecture. Recognizing the importance of enhanced performance in real-world
scenarios, we propose a novel model tailored for superior efficacy in fault type
and fault zone classification. Focusing on practicality and efficiency, we design
our fault prediction model to maintain simplicity. The core architecture of our
model centers on a one-layer bidirectional GRU comprising 220 neurons. This
design enables the model to adeptly capture dependencies in both forward and
backward directions within the temporal sequence. Following the GRU layer, we
introduced a dropout layer with a rate of 0.5. This layer mitigates overfitting and
enhances the model’s resilience to the subtle changes that characterize adversar-
ial samples. Post-dropout, the output of the GRU layer transforms a linear layer
housing 440 neurons. Subsequently, an element-wise sigmoid activation function
is applied, yielding an output vector with dimensions equal to the number of
considered classes.

Training. We use cross-entropy as a loss function for our model training.
Our optimization process employs the Adam optimizer with a learning rate of
1 × 10−3, a value empirically selected for efficient convergence. In our case, the
training regimen spans a fixed number of epochs set to 80. While employing the
ADS contributes a significant layer of security, we have developed an additional
strategy to fortify our system. In fortifying the resilience of our fault prediction
model, we have devised a strategy involving adversarial training, specifically
incorporating both BIM and FGSM attacks. Traditionally, adversarial training
involves generating attacks on a pre-trained model using diverse algorithms and
subsequently augmenting the training dataset. In contrast, our approach inte-
grates the attack generators directly into the model training process. We call this
approach online adversarial training. In this scenario of online adversarial train-
ing, the adversary adapts over time, becoming more sophisticated as the model
improves. This adaptive training strategy challenges the model with increasingly
difficult adversarial examples, forcing it to improve its robustness continually.
Our adversarial training methodology entails a single, comprehensive training
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loop. The model is sequentially trained within this loop on real and adversarial
data generated by FGSM and BIM attacks. We dynamically create adversarial
inputs for each batch of inputs and corresponding labels using FGSM and BIM
attacks with a specific epsilon value of 0.2. This value controls the amount of
noise added to the samples and, in our case, is large enough to cause misclassifi-
cation but small enough to maintain some level of perceptibility in the perturbed
examples. The model’s robustness is tested against realistic perturbations within
a reasonable range of what an attacker might apply in real-world scenarios by
choosing a moderate epsilon value (i.e., from 0.05 to 0.5). Subsequently, the
model undergoes forward passes using these adversarial inputs, and losses for
both attacks are computed against the original labels. The backward pass is
executed following the forward passes, and the model’s gradients are updated
using the optimizer. We aggregate the total training loss for the epoch by sum-
ming the adversarial losses obtained from FGSM and BIM attacks, scaling the
cumulative loss based on the batch size processed during each iteration. This
step ensures an appropriate scaling of the total loss relative to the batch size.
The accumulated loss is the foundation for computing the average training loss
after each epoch. By integrating this new layer of training into the model, we can
enhance its performance on real-world data, akin to a form of data augmentation.

6 Evaluation

We now delve into the evaluation of the attacks and FaultGuard system. Our
evaluation comprehends all scenarios detailed in the previous sections. We first
give details on the dataset used for our evaluation in Sect. 6.1. To provide a
baseline evaluation to discuss the success of our attacks and defenses, we eval-
uate our models on different tasks in Sect. 6.2. We then evaluate our attacks in
Sect. 6.3, and finally study the capabilities of FaultGuard in Sect. 6.4.

6.1 Dataset

In the electrical industry, a variety of simulation programs are being used
to address fault prediction challenges, including PSCAD [10,25], MATLAB
Simulink [46], RSCAD [39], and MATPOWER [21]. Despite the extensive use of
these simulation tools in smart grid failure prediction systems, there is a lack of
publicly available datasets generated from these tools. So we turn to the dataset
introduced by Ardito et al. [5], the only publicly available dataset including
substantial simulated fault data rooted in the IEEE-13 test node feeder. The
IEEE-13 node test feeder includes a 4.16 kV voltage generator, 13 buses for
fault simulation, and three-phase signal measurement. The distribution system
is divided into four zones, which are used to identify the location of a fault
that has occurred. This dataset comprises 51 features and two target classes:
fault label and fault zone, incorporating both traditional and renewable energy
sources. It has been carefully curated to serve as a benchmark for assessing
the effectiveness of adversarial attacks against fault prediction systems in smart
electrical grids. Moreover, we introduce a robust windowing technique to handle
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our data effectively. This involves partitioning the dataset into segments, each of
a predefined size. These windows are created by iteratively traversing the data
with a step size equal to half of the window size. Specifically, we choose a win-
dow size of 16 s for our dataset. To enhance the dataset’s quality and optimize it
for our prediction models, we conduct essential preprocessing steps, chief among
them being normalization. This critical process ensures consistent data quality
and mitigates potential biases that may arise from variations in feature magni-
tudes. We divide our dataset into three subsets: training (85% of the dataset),
validation (5% of the dataset), and test (10% of the dataset).

6.2 Baseline Evaluation

In this phase, we look at the evaluation of our fault prediction system. Ini-
tially, we gauge the baseline performance of our system without incorporating
countermeasures or exposure to adversarial attacks. The training phase involves
utilizing the training data, and subsequently, we evaluate the effectiveness of
our GRU-based fault prediction system on the test set. The results are notable,
with our model achieving a mean accuracy of 0.604 ± 0.01 for fault type pre-
diction and an accuracy of 0.958 ± 0.01 for fault zone prediction. This perfor-
mance marks a substantial improvement (a mean 33.11% increase) compared
to the state-of-the-art [5]. When replicating this model from the literature, we
implemented our preprocessing methods and adjusted the seed and computing
environment to match those of our proposed model. These modifications may
have influenced the discrepancies observed between the reported results in the
paper and our findings. Also, we have chosen to integrate classical ML algo-
rithms such as XGBoost, Random Forest, and Decision Tree into our analysis
for two primary reasons. Firstly, they serve as a baseline for comparison against
our proposed models, enabling us to gauge the performance and efficacy of our
approaches. Secondly, their inclusion underscores the significance of considering
causality between data points in this task, highlighting the importance of lever-
aging advanced techniques to capture temporal dependencies within the data.
The detailed results are presented comprehensively in Table 1.

Table 1. Comparison of the model’s accuracy.

Model Accuracy

Fault Type Fault Zone

MLP reproduced from [5] 0.407 0.800

MLP claimed by [5] 0.460 0.710

Decision Tree 0.522 0.818

Random Forest 0.543 0.831

XGBoost 0.560 0.841

GRU 0.604 0.958
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Combinatorial Accuracy. While our fault prediction system demonstrates supe-
rior evaluation accuracy compared to existing literature, the practical imple-
mentation necessitates a nuanced approach to address misclassification events.
Issuing notifications to grid operators for each detected fault could potentially
result in multiple false alarms, leading to operational challenges. To address this
concern, we adopt a strategy where we wait for the identification of multiple
consecutive fault data batches before triggering a notification. This approach
introduces the concept of combinatorial accuracy, which considers the number
of consecutive faulty batches required to initiate an alert. This concept is cru-
cial for balancing the trade-off between efficient fault detection and minimizing
false alarms, ensuring system robustness in real-world scenarios. The formula
for combinatorial accuracy reflects a geometric distribution and is expressed as
follows:

combinatorial accuracy =
(
1 − (1 − accuracy)batches

)
. (1)

This formulation ensures that a higher accuracy value is associated with each
notification, providing a more reliable indication of actual fault occurrences. The
relationship between this accuracy value and the number of consecutive faulty
batches is thoroughly analyzed and illustrated in Fig. 3, offering valuable insights
into the system’s performance under this combinatorial accuracy framework. As
evident, the simple strategy of awaiting confirmation from another faulty batch
of data significantly enhances the model’s accuracy for fault type prediction,
improving from 0.604 to a score of 0.843. Likewise, for fault zone classification,
accuracy rises from 0.958 to 0.998. This approach drastically reduces the prob-
ability of issuing a false alarm notification to grid operators. Specifically, the
probability is minimized to 13.7% for fault type prediction and 0.2% for fault
zone prediction. This underscores our methodology’s effectiveness in elevating
accuracy and mitigating the risk of generating false alarms, contributing to a
more reliable fault prediction system. Therefore, we opt for a notification delay
parameter of two batches of unauthorized data, as it strikes a balanced trade-off
between minimizing the false alarm rate and the timely data collection.

6.3 Attacks Evaluation

We now evaluate our attacks against the fault prediction models. We divide
the evaluation into the scenarios discussed in the threat model in Sect. 3, i.e.,
white-box attacks and gray-box attacks.

White-box Evaluation. In this evaluation, we comprehensively assess the efficacy
of the white-box attacks, as discussed in Sect. 4. To implement these attacks, we
leverage the TorchAttacks library [26], probing the baseline system to evaluate
the susceptibility of our model without incorporating any countermeasures or
defenses. The attacks are executed with varying epsilon values, signifying the
strength of each attack and the degree of perturbation introduced. Specifically,
we explore epsilon values ranging from 0.05 to 0.50. The outcomes of these
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(a) Fault type prediction. (b) Fault zone prediction.

Fig. 3. Combinatorial accuracy of fault prediction tasks when delaying notification by
the number of consecutive faulty batches.

attacks across different tasks are visually presented in Fig. 4. Notably, even with
a minimal epsilon of 0.05, a significant decline in the performance of all models
is evident. In this case, the accuracy of the prediction model drops to (an aver-
age of) 0.155 for fault type and 0.467 for fault zone. For the reproduced MLP
model from [5], the accuracy drops to (an average of) 0.070 for fault type and
0.178 for fault zone under the FGSM attack. This evaluation underscores the
baseline system’s vulnerability to white-box attacks, shedding light on the need
for robust defenses and countermeasures to fortify our fault prediction model
against adversarial threats.

(a) Fault type prediction accuracy. (b) Fault zone prediction accuracy.

Fig. 4. Model’s accuracy at varying epsilon values on the white-box attacks.

Gray-box Evaluation. In this section, we thoroughly examine the effectiveness of
our gray-box attack, as detailed in Sect. 4.2. This attack is executed using the
generator component within our GAN model, originally designed for anomaly
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detection. The key aspect of our approach is the use of binary cross-entropy
loss, a fundamental element in the GAN framework. The successful training
of our GAN relies on specific hyper-parameters, including 150 training epochs
and a learning rate of 2 × 10−4, which governs the optimization process. After
completing the training of our GAN, we generate a considerable volume of syn-
thetic malicious data, totaling around 1500 batches. These synthetic data sam-
ples, crafted from random noise by our trained generator, are fed into our fully
trained fault prediction system for classification. The results show that the gen-
erator produces data that can be classified as belonging to 9 out of 11 classes in
the fault type prediction task and 3 out of 4 classes in the fault zone prediction
task. Effectively, this translates to an Attack Success Rate (ASR) of 0.818 for
fault type prediction and 0.750 for fault zone prediction. This underscores that
even without prior knowledge of the fault prediction models, an adversary with
access to data can create deceptive, malicious data that can elude classic ADS
employed in the smart grid.

6.4 FaultGuard Evaluation

In this section, we evaluate the performance of FaultGuard under the attacks
described in the previous section. First, we evaluate the effectiveness of the ADS
module against white-box attacks. Then, we evaluate our ADS against white-box
and gray-box attacks.

ADS Evaluation. In this section, we conduct an experimental evaluation of our
ADS, a critical component of our defense strategy against GAN-based attacks
and various white-box attacks, as detailed in Sect. 5. We initiate the process by
utilizing the training dataset to train our GAN model. We retain the trained
discriminator, a crucial element for our subsequent evaluation. The evalua-
tion involves merging generated malicious data with authentic test data from
our dataset, simulating malicious attempts alongside real data. These merged
datasets are then subjected to the discriminator for analysis, utilizing a pre-
defined threshold (0.5) for discerning determinations between legitimate and
anomalous data. The results underscore the discriminator’s effectiveness, achiev-
ing a mean accuracy rate of 0.991 ± 0.005 standard deviation when classifying
real data from malicious data generated by our GAN in the fault type predic-
tion task and a mean accuracy rate of 0.972 ± 0.005 standard deviation in the
fault zone prediction task. We subject our model to different white-box adver-
sarial attacks in the subsequent phase. We generate adversarial attacks target-
ing the fault type and fault zone prediction models, individually applying these
attacks to the models. The results are detailed in Table 2, highlighting the ADS’s
resilience and the contributions of our adversarial learning training layer. The
ADS achieves a mean accuracy rate of 0.979 ± 0.050 standard deviation when
classifying real data from malicious data generated by our white-box attacks in
the fault type prediction task and a mean accuracy rate of 0.821±0.050 standard
deviation in the fault zone prediction task.
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Table 2. ADS accuracy for each attack and considering the Adversarial Learning (AL)
layer. Results are averaged for each ε value.

Task AL Accuracy

FGSM BIM CW RFGSM PGD

Fault Type ✗ 0.674± 0.032 0.261± 0.067 0.386± 0.006 0.703± 0.009 0.700± 0.007

✓ 1.000± 0.000 1.000± 0.000 0.897± 0.000 1.000± 0.000 1.000± 0.000

Fault Zone ✗ 0.274± 0.032 0.241± 0.011 0.232± 0.000 0.300± 0.004 0.293± 0.008

✓ 1.000± 0.000 0.999± 0.001 0.108± 0.002 1.000± 0.000 1.000± 0.000

Despite the ADS’s robust performance against various white-box adversarial
attacks, it exhibits vulnerability to the CW attack, a sophisticated adversarial
technique known for its intricacy. While the ADS may occasionally miss some
batches of adversarial attacks, particularly those crafted using the intricate CW
technique, the subsequent layer of defense comes into play. The adversarial learn-
ing layer ensures the fault prediction models’ resilience against these advanced
attacks. In only one case (i.e., fault zone + AL against CW attacks), we notice
a drop in performance with the inclusion of our novel layer. This standalone
case is caused by the missing inclusion of the CW attack in the layer, and more
details are given in Sect. 7. As elucidated in upcoming sections, our fault predic-
tion models showcase remarkable resilience even when confronted with the CW
attack, successfully averting a significant decline in system performance. The
multi-layered defense strategy underscores a comprehensive approach aimed at
enhancing the overall robustness and effectiveness of the fault prediction system
in smart electrical grids.

Fault Prediction Model Evaluation. This section comprehensively evaluates our
fault prediction systems, augmented with online adversarial training as a defense
mechanism. As observed in Sect. 6.3, our model, while surpassing the state-of-
the-art, remains vulnerable to white-box adversarial attacks. We introduce a
novel training layer to fortify our models against such attacks, extensively dis-
cussed in Sect. 5.2. After integrating this new training layer, we assess our mod-
els’ performance in fault type and zone prediction critical tasks. The outcomes
of this evaluation are presented in Fig. 5. Notably, the resilience of our models
against adversarial attacks, particularly in comparison to models without the
defense mechanism, exhibits a substantial improvement. This enhancement is
particularly pronounced when facing sophisticated attacks like CW, which have
demonstrated the ability to bypass our ADS system. The results underscore the
efficacy of the introduced adversarial training layer in bolstering the model’s
robustness, significantly mitigating the impact of adversarial attacks on fault
prediction performance. This defense mechanism is a crucial safeguard, ensur-
ing our fault prediction systems’ continued reliability and effectiveness, even
in the face of sophisticated and intricate adversarial challenges. A summary of
the results of our models and their improvement when paired with the defense
mechanism is shown in Table 3.
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(a) Fault type prediction accuracy. (b) Fault zone prediction accuracy.

Fig. 5. Model’s accuracy at varying epsilon values on the white-box attacks when
equipped with the defense mechanism.

Table 3. Comparison of model performance under adversarial attacks (ε = 0.05) before
and after employing our Online Adversarial Training (OAT).

Task OAT Accuracy

Baseline FGSM BIM CW RFGSM PGD

Fault Type ✗ 0.604 0.180 0.208 0.138 0.125 0.125

✓ 0.618 0.500 0.479 0.458 0.451 0.444

Fault Zone ✗ 0.958 0.451 0.701 0.423 0.381 0.381

✓ 0.965 0.944 0.951 0.951 0.930 0.930

Computational Cost. All experiments in this paper have been conducted on Kag-
gle as a cloud resource with the following configurations: Intel Xeon (2.20 GHz),
NVIDIA Tesla P100 (3584 Cuda cores, 16 GB), 30 GB of RAM, Linux Debian
with Python 3.10.121. The defense strategies have shown commendable perfor-
mance through lightweight models and two white-box adversarial attacks. How-
ever, a notable trade-off is the introduction of additional computational load.
The ADS and fault prediction systems have been augmented with two adversar-
ial data generators and incorporated two new loss calculations for the prediction
models to enhance robustness. As a result, there is a significant increase in com-
putational demands, leading to longer training times for the models. The changes
significantly affect training times, as depicted in Table 4, comparing standard
models to those fortified with defense mechanisms. Despite the increased com-
putational cost, it is crucial to consider the enhanced robustness and resilience
brought by these defenses. Furthermore, this training procedure is needed only
when initially deploying the model in the system and does not require mainte-
nance. This computational trade-off underscores the ongoing challenge of bal-

1 Additional details on packages’ versions are available at: https://github.com/
emadef1/FaultGuard/blob/main/requirements.txt.

https://github.com/emadef1/FaultGuard/blob/main/requirements.txt
https://github.com/emadef1/FaultGuard/blob/main/requirements.txt
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Table 4. Model training times with and without Online Adversarial Training (OAT).

Task OAT Training Time

Fault Type ✗ 1.18min

✓ 78.90min

Fault Zone ✗ 1.29min

✓ 95.00min

ancing model efficiency with the imperative to defend against adversarial threats
in the smart grid domain.

7 Takeaways

Fault prediction systems are a well-researched topic in the literature. However,
researchers often neglect the security aspect of these systems, making their imple-
mentation problematic due to the high chances of errors when dealing with adver-
saries. Therefore, we present a summary of the key takeaway messages, making
it easier for practical implementation in real-world scenarios. By doing so, we
assist practitioners in effectively applying these systems and offer researchers
recommended best practices for their studies.

Takeaway 1 – Fault prediction systems are vulnerable to adversarial attacks,
regardless of the scenario’s assumptions on the attacker’s knowledge.

As discussed in Sect. 6.3, adversarial attacks are particularly effective against
the models tested in this study. Indeed, model accuracy dropped by up to 74.34%
with an epsilon value of just 0.05. While these values are valid only for white-
box scenarios, it is worth noting that even in gray-box scenarios (i.e., having
access to the data), the attacker has great leverage on the system, reaching
ASRs up to 0.818. As such, adversarial attacks require particular consideration
when designing a ML-based fault prediction system.

Takeaway 2 – Complex attacks, such as CW, are more difficult to be detected
by the ADS.

As shown in Table 2, our ADS can detect most attacks with perfect accuracy,
except for the CW attack. While in the fault type prediction task we obtained
an accuracy of 0.897 with the addition of the adversarial learning layer, in the
fault zone task, including this layer effectively worsened its performance (from
0.232 to 0.108). It is noteworthy that adversarial learning is performed only with
the FGSM and BIM attacks. However, even when including CW in the training
process, there were no improvements w.r.t. the standard ADS model against
the same attack. For these reasons, complex attacks require special attention, as
improperly implementing the ADS might not be enough to detect them.
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Takeaway 3 – Complex attacks, such as CW, are more effective against
good-performing models.

Another correlation regarding the CW attack that can be extracted from
our evaluation is that attacks are more effective against good-performing mod-
els. Indeed, the fault type prediction model (baseline accuracy of 0.604) was less
affected by the attacks w.r.t. the fault zone prediction model (baseline accu-
racy of 0.958). As such, while researchers and practitioners strive to reach the
highest possible accuracy score, the threat of adversarial attacks becomes more
pronounced. This highlights the paradoxical relationship between model perfor-
mance and susceptibility to attacks. Consequently, the pursuit of high accuracy
should be accompanied by a heightened awareness of potential vulnerabilities
and the implementation of robust defense mechanisms.

Takeaway 4 – Different forms of adversarial training greatly improve the
models’ resistance against adversaries.

One of the significant contributions of this paper is the proposal of novel
adversarial training techniques. Indeed, including the adversarial learning layer
on the ADS significantly improved its performance, and the online adversarial
training performed on the fault prediction model made it more resilient against
attacks. These findings underscore the effectiveness and versatility of diverse
adversarial training methodologies in improving model robustness and defense
capabilities, contributing valuable insights to advancing secure and resilient
machine learning models.

8 Conclusions

In the smart grid, fault prediction systems are promising tools that can ensure
energy delivery and reliability. However, despite the growing interest in the liter-
ature, the security aspect of these systems is often neglected. This oversight can
lead to safety issues and delays, making the implementation of those systems
counterproductive.

Contribution. In this paper, we introduced FaultGuard, a resilient framework
designed for fault type and zone classification tasks. To ensure the security
of our system, we incorporated an ADS with a unique GAN training layer to
detect attacks. Additionally, our approach involved a low-complexity fault pre-
diction model and employed an online adversarial training technique to bolster
robustness. We thoroughly evaluated the framework’s performance, assessing its
resilience against diverse adversarial attacks using the publicly available IEEE13-
AdvAttack dataset, a simulated dataset derived from the IEEE-13 test node
feeder. FaultGuard outclassed the state-of-the-art, reaching accuracy values up
to 0.958 and being natively resilient against adversarial attacks. Furthermore,
our ADS detected attack attempts with accuracies up to 1.000.
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Future Work. While still outclassing the state-of-the-art and other ML models
in the same task, improving the accuracy for fault type prediction is needed to
further strengthen its contribution. Indeed, the accuracy value achieved in this
study is highly dependent on the dataset employed. As such, creating a richer
dataset is the most significant way to improve these results. Also, since this paper
focused on evasion attacks towards fault prediction systems, studying poisoning
attacks might provide powerful insights into the resilience of these systems. By
delineating a new system and threat model accounting for this threat, it might
be possible to study the vulnerabilities of the models and thus improve their
security. Finally, by combining these results with those obtained in this paper,
we would be able to provide a complete overview of the resilience of ML-based
fault prediction models, aiding practitioners in safely deploying these systems.
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