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Abstract—Spiking Neural Networks (SNNs) are a strong can-
didate to be used in future machine learning applications.
SNNs can obtain the same accuracy of complex deep learning
networks, while only using a fraction of its power. As a result,
an increase in popularity of SNNs is expected in the near
future for cyber physical systems, especially in the Internet
of Things (IoT) segment. However, SNNs work very different
than conventional neural network architectures. Consequently,
applying SNNs in the field might introduce new unexpected se-
curity vulnerabilities. This paper explores and identifies potential
sources of information leakage for the Izhikevich neuron, which
is a popular neuron model used in digital implementations of
SNNs. Simulations and experiments on FPGA implementation of
the spiking neurons show that timing and power can be used to
infer important information of the internal functionality of the
network. Additionally, the paper demonstrates that is feasible
to perform a reverse engineering attack using both power and
timing leakage.

I. INTRODUCTION

Designed to emulate the brain’s dynamics with a higher
degree of biological plausibility, Spiking Neural Networks
(SNNs) are a strong candidate for future machine learning [1].
SNNs can obtain the same accuracy as classic artificial neural
networks (ANNs) for a wide variety of applications, while
only using a fraction of its power [2]–[4]. As a result, the
popularity of SNNs is expected to increase in the near future,
especially for low-power applications like IoT. However, SNNs
will only become a reality for IoT devices when they run in
specialized platforms known as neuromorphic hardware, which
are optimized for performance and power. As a result, such
neuromorphic platforms might introduce new and unexpected
security vulnerabilities to the IoT segment as the underlying
hardware works completely different than conventional Von
Neumann architectures. Therefore, it is extremely important
to investigate the vulnerabilities of SNNs running in neuro-
morphic hardware before they are widely deployed.

The amount of research that investigated security aspects of
SNNs has largely increased in the recent years. A significant
part of the published articles focus on evaluating the robust-
ness of SNNs when exposed to adversarial input noise [5].
However, degrading the SNN’s integrity and performance are
not the only possible forms of attack. The leakage of sensitive
information, such as the neuron’s weights, facilitates reverse
engineering attacks of targeted neural networks, whose proper
training usually requires a considerable amount of effort, time,
and financial resources. These kind of attacks have already
been proven to be effective against traditional ANN [6] and

could also be a severe threat to SNNs. In that context, theoret-
ical threat models are proposed in [7] involving side channel,
fault injection and IC attacks against neuromorphic hardware.
With regard to countermeasures against these kind of attacks,
in [8] the obsolescence effect of memristors is employed
to deceive unauthorized users with physical access to the
hardware, and in [9] deep learning algorithms are used for
intrusion detection. However, the study field is still incipient.
It is important to reinforce that SNNs run in neuromorphic
hardware when applied to cyber-physical systems. Given that
possible attacks could have severe economic consequences, it
is clear that further vulnerability analysis is required in order
to deploy SNNs securely.

This paper explores and studies potential leakage sources
of a widely employed neuron model, i.e., the Izhikevich
neuron [10]. Simulations and experiments based on FPGA
implementation shows the existence of timing and power
leakage. In summary, our contributions are: i) A methodology
to investigate vulnerabilities of a spiking neuron model; ii)
The characterization of timing and power behavior for the
Izhikevich neuron; and iii) A discussion of how timing and
power leakages could be used in reverse engineering attacks
to recover the neuron’s weights of SNN applications running
in neuromorphic hardware.

II. SPIKING NEURAL NETWORKS

For decades, the scientific community has been putting
efforts into developing biologically-inspired devices, aiming to
reproduce the human brain’s impressive processing and energy
efficiency characteristics. With a volume between 1.2 and 1.5
liters, the brain is able to process up to 100 trillions of synapses
with an average power consumption of only 20W [11]. In
that context, the neuromorphic computing field studies brain-
inspired implementations that emulate the biological neural
structure. With the imminent end of Moore’s law and the
necessity of replacing Von Neumann-based architectures, neu-
romorphic computing is being highlighted as a promising
alternative due to its massive parallel processing, real-time
performance, scalability, and low power consumption [1].

Neuromorphic devices are especially appropriate to exe-
cute machine learning applications. Spiking Neural Networks
(SNNs), referred to as the third generation of artificial neural
networks, fit ideally in this scenario. SNNs are event-driven
networks in which the neurons’ communication occurs through
discrete events, i.e., spikes. Information is encoded through
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Fig. 1. Izhikevich Spike

spiking rates and spiking moments. The basic processing units
are called neurons, which are modeled by equations that aim to
reproduce the behavior of biological cells. In the last decade,
several articles have been exploring the applicability and
performance of such networks. Despite training challenges due
to the non-differentiable nature of spikes, significant progress
has been made. Some noteworthy achievements include the use
of SNNs in classic supervised learning applications like object
recognition and biological signal classification [2], and the
implementation of reinforcement and unsupervised learning
applications using the Spike Timing Dependent Plasticity
training method [4].

Due to memory and communication bottlenecks, the high
processing speed and energy efficiency of SNNs are not fully
explored in traditional computing architectures. Therefore,
neuromorphic hardware specifically designed for SNNs are
being increasingly studied. Essentially, these architectures con-
sist of neurosynaptic cores that operate in parallel. The cores
represent the neural networks’ nodes and are usually composed
of processor, data bus, and memory, analogous to the cell body,
axon, and synapse of the biological neuron. The number of
published papers on hardware for neural networks has grown
almost exponentially in the last decade [1]. Despite current
technical challenges, efforts from academia and industry in-
dicate that SNN hardware will be employed in an increasing
number of applications, thereby playing a fundamental role in
the technological development of the coming years.

Izhikevich Neuron

It is of critical importance to define a suitable neuron model
as a basic building block of an SNN. Several models of spiking
neurons try to reproduce the behavior of a biological cell.
A popular neuron model that provides an acceptable com-
promise between computational efficiency and biologically
realistic behavior is the one proposed by Izhikevich [10]. The
model is widespread in the neuromorphic literature because
it presents a biological plausibility similar to the Hodgkin-
Huxley neuron [12] while being computation-wise as efficient
as an Integrate-and-Fire model [13]. It is also capable of
simulating large-scale spiking neurons in real-time [1].

The Izhikevich neuron model is represented by Equations 1,
2 and 3. In the equations, v(t) denotes the membrane potential
over time, u(t) the recovery factor, I the synaptic input, C the
capacitance and R the leaky resistance. The other parameters
such as k, a, b, and c are predefined constants controlling the
spike shapes. The relations between the variables and constants
are provided in Figure 1.
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Fig. 2. Timing Vulnerability Methodology

C
dv(t)

dt
= k(v(t)− Vrest)(v(t)− Vth)− u(t) + I (1)

du(t)

dt
= a[b(v(t)− Vrest)− u(t)] (2)

if v(t) ≥ Vpeak : v(t) = c, u(t) = u(t) + d (3)

III. METHODOLOGY

A. Sources of Leakage

Before devising an attack against a specific system, it is
necessary to investigate and characterize its vulnerabilities.
The target device in this paper is a neuromorphic hardware
platform running SNN applications with the Izhikevich neuron
model. Leakage based on timing is an interesting candidate as
the neurons are modeled with equations that have different
timing responses depending on the applied input. As a direct
result, the power consumption is also a potential candidate.
The system’s operation logic indicates that the consumed
power varies depending on the spiking activity, which is not
constant throughout the network. In addition to the above
arguments, time and power are some of the main exploitable
features in side channel attacks. Based on the former premises,
a methodology is formalized and employed in order to verify
whether time and power are leakage sources.

B. Timing Vulnerability Analysis

The methodology to exploit timing leakage is divided into
two phases: profiling and validation. The goal of the profiling
phase is to collect measurements from a single neuron and
build a model that captures the neuron’s input rate, weight,
and output timing characteristics. Thereafter, the validation
phase evaluates if the model can infer correctly sensitive
information about a neuron, such as its weight. Figure 2 shows
the performed steps during the profiling and validation phases.

Profiling - First, a set of input stimuli with constant
spiking rates are defined. Next, these inputs are applied to a
single neuron in a controlled simulation environment. For the
simulation, it is possible to use a neuron modeled at a high
abstraction level like C or Python, or at a hardware abstraction
level like Verilog or VHDL. Any abstraction level suffices,
as long as the simulation appropriately derives the timing
behavior at the output. Next, each defined stimulus is applied
to neurons for all the possible weight values. For each case,
the output spiking rate is recorded and stored. The profiling
phase results in a table that matches input spiking rates and
weight values to the expected output spiking rate.
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Fig. 3. Power Vulnerability Methodology

Validation - The first step in this phase is to create many
different scenarios; each scenario contains a fixed input rate
and an unknown weight which are both randomly defined.
Thereafter, each scenario is simulated and the output spiking
rate is further analyzed. The analysis uses the applied input and
the output timing information to infer the weight of the neuron.
To accomplish this task, the table created in the profiling phase
is used. An important remark here is that some cases might
lead to no spikes in the output, due to a low input rate or
low weight value. In these cases, the process is repeated by
changing the input stimuli. Additionally, if the random input
data rate does not appear in the profiling table, the closest value
is assigned. To avoid misinterpretations, the entire validation
process can be repeated using various iterations and majority
voting. A successful validation phase would demonstrate that
it is possible to correctly model the timing leakage of the
neuron to reveal its weight. However, using only timing as a
side channel to recover the weights of an entire SNN is not
practical as the attacker requires observability at the output
of all neurons. For example, the output of the hidden layers
is not accessible to the attacker since the network works as
a blackbox. Therefore, in order to successfully exploit timing
leakage, auxiliary techniques are required to be able to observe
the output of all spiking neurons.

C. Power Vulnerability Analysis

Similarly to timing analysis, the power analysis also occurs
in two stages: profiling and validation. Figure 3 shows these
phases and the steps they consist of. They are described below.

Profiling - In the profiling phase, the power measurements
of one or more neurons running on a hardware platform
are acquired. Each measurement uses fixed inputs that are
randomly selected. First, the power is characterized for a single
neuron. The power trace is subsequently cut into fixed-size
windows to ensure that only the power samples containing
spikes are saved. Next, the same power trace collection is
performed with more neurons running in parallel. All parallel
neurons use the same input stimuli and weights. The concept
here is to verify whether it is possible to identify multiple
spikes occurring at the same time from the power trace.
Thereafter, the collected power traces are organized according
to the number of simultaneous spikes and stored in a database.
As power traces contain noise, it is impossible to visually
identify the spikes and figure out how many neurons spiked
simultaneously. Therefore, to improve the accuracy of the
analysis, a Convolutional Neural Network (CNN) is trained
to learn the power behavior of single and multiple spiking
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Fig. 4. Hardware Schematic of the Izhikevich Neuron Model.

neurons. The database generated in this profiling phase and
power traces from neurons with different weight values are
used to train this CNN.

Validation - In the validation phase, multiple neurons
are executed on the target hardware each having the same
fixed input spiking rate. Considering applications where the
attacker has physical access to the hardware (e.g. IoT devices),
measuring the device’s power consumption is feasible using
extra equipment. The collected power traces are applied to
the trained CNN, which provides the amount of spikes that
are being simultaneously fired at the given time instance. A
successful power analysis reveals a spike train containing all
the spikes in the system, including the ones happening in the
SNN’s internal layers.

IV. EXPERIMENTS AND RESULTS

A. Setup

Two neuron implementations were used in the experiments.
First, an Izhikevich model was written in Python language and
compared to the one provided in [10]. Next, a compatible hard-
ware Izhikevich model was designed using Verilog, according
to the schematic presented in Figure 4. The hardware solution
uses a fixed-point implementation and two’s-complement to
encode the variables in the differential equations presented
in Section II. The spiking neural parameters are the same
as in [14]. The hardware module was simulated using Mod-
elsim from Mentor Systems [15] and emulated in a Xilinx
Artix-7 FPGA. Important neuromorphic implementations as
TrueNorth [16] and Loihi [17] are fully digital, and use
neurons that constantly update their state; when the neuron
state exceeds a programmable threshold, the neuron fires a
spike. Our neuron implementation exhibits similar behaviour
as the ones used in state-of-the-art neuromorphic architectures
like TrueNorth and Loihi and hence, the analysis performed in
this work could be reproduced on different implementations.

Figure 5 shows the setup and equipment used to perform the
power-based experiments. The Izhikevich neuron was synthe-
sized for the CW305 Chipwhisperer board [18] which contains
a Xilinx FPGA. Next, we connected a current probe in the
access ports to the power supply of the Chipwhisperer board.



Fig. 5. Experimental Setup for the Power Measurements.

Fig. 6. Weight and Output Spiking Rate Profile

The measured current is transformed to a voltage that reflects
the power behavior. The power samples were collected by the
PicoScope 6000 oscilloscope using a sampling frequency of
1 Gsps. Finally, all data was sent to a desktop computer for
further analysis, such as applying the traces to the CNN.

B. Timing Experiments

For the profiling phase in the timing analysis, we de-
fined five different input spiking rates: 100% (25MHz),
50% (12, 5MHz), 33% (8, 33MHz), 20% (5MHz) and 10%
(2, 5MHz). Next, we simulated the neuron under these stimuli
for all possible weight values resulting in 131072 collected
traces. Each simulation ran for 100µs, and the output spikes
were recorded. The hardware is based on a 17-bit fixed-point
implementation, where 9 bits are used for the integer part and
8 for the fractional part. The output spiking rate was calculated
by analyzing the time between spikes during a time window
of 100µs. Then, the spiking rates were stored in the form of
a table, whose graphical representation is shown in Figure 6.
As expected, the results show that high input spiking rates can
trigger neurons with a wider weight range. Additionally, the
higher input spiking rates clearly reveal the relation between
input, output, and weights. Another interesting remark is that
weights below 50 are useless in the analyzed model since they
can not generate an output spike even with the maximum input
stimulus.

For the validation phase, a data set of 500 random inputs
was generated. Each input was applied to a neuron with a
fixed weight during 100 µs while the output spikes were
recorded. The experiments were reproduced for 3 different
weight values (a small weight of 80, medium weight of 300,
and a large weight of 512) using the same 500 inputs. For
each experiment, where the input stimulus is provided and the
output spiking rate is observed, it was possible to recover the
corresponded neuron weight using the information collected
during the profiling phase. The three targeted weights were
inferred with a 100% of accuracy.

TABLE I
CNN FOR SPIKE DETECTION TRAINING AND VALIDATION RESULTS.

Number of neurons Training Accuracy Validation Accuracy
1 100% 100%
2 100% 100%
3 100% 100%
4 100% 100%
5 100% 100%
15 98.90% 95.05%
30 96.79% 74.90%
45 99.49% 85.05%
60 98.75% 79.65%

All traces 96.20% 88.77%

C. Power Experiments

Using the setup presented in Section IV-A, power traces
were recorded for different neurons connected in parallel with
the same weight. A fixed-rate input was set using the maxi-
mum input spiking rate (i.e., 25MHz). Figure 7 presents some
examples of the collected power traces in the profiling phase.
The blue graph indicates the power, while the red indicates
the real output spikes. The amplitude of the red spikes was
artificially increased in order to improve visualization. The
different traces show the power consumption for a different
number of simultaneously spiking neurons. Only from visual
analysis it is possible to conclude that the power measurements
present prominent positive and negative peaks that coincide
with the time that a spike is fired. In addition, it can be easily
observed that the negative peaks have a higher amplitude than
the positive peaks, suggesting that they may represent the
most useful information when identifying the spiking activity.
Furthermore, the amplitude increases proportionally with the
number of firing neurons. This behavior indicates that not only
the spiking times can be identified from power measurements,
but also that the traces carry information about the number
of active neurons in the network. Therefore, to extract such
information with a high level of accuracy, our methodology
employs the aforementioned CNN.

The proposed CNN has 198 input neurons, one for each
sample of a power trace window, 12 hidden layers and 6 output
neurons. The output neurons are used to identify from 0 up
to 5 simultaneously spiking neurons. To train and validate the
CNN, We created a dataset that contains traces where 1, 2,
3, 4, and 5 neurons are simultaneously activated (i.e., they
receive the same input and have the same weight) and traces
that contain 15, 30, 45, and 60 neurons where only up to
5 neurons can spike simultaneously. The other neurons have
random weights and are added to generate noise. 70% of the
dataset was used for training , and the remaining 30% for
validation. For comparison purposes, the CNN was trained and
validated using the traces from 1 to 60 individually and using
all of them together; the results are presented in Table I. When
traces that do not contain noise are used (i.e., the cases with up
to 5 neurons), both a training and validation accuracy of 100%
can be achieved. Even when noise is present, the accuracy rate
remains high. When all traces are used, a training accuracy of
96, 20% and validation accuracy of 88, 77% can be realized.
The obtained results prove that power is a critical leakage
source of SNN hardware, as it can be used to understand the
spiking activity of the target network.



Fig. 7. Power traces collected for different number of neurons simultaneously spiking.

V. DISCUSSION

Correctly inferring the neuron’s weight by analyzing the
timing of spikes is feasible. However, the attacker needs to be
able to observe the neurons’ input and output spikes. If the
system provides some debug or test mechanism that allows
users to gain such observability for each neuron, an entire
SNN could be reverse-engineered. However, this degree of
observability is not realistic for most devices, making time
alone not enough to perform an attack, despite clearly being
a leakage source. On the other hand, power leakage has
shown to be very useful to identify the spikes in the system.
Considering hardware employed on the field like IoT devices,
it is feasible for an attacker to collect power traces. The 100%
weight accuracy verified in different measurements allows the
attacker to use this methodology to extract a map containing
the system’s spiking activity. Such a map could be used to
visualize the spikes of all the network layers and enable the
aforementioned observability needed for timing analysis.
Reverse Engineer of the first SNN layer: From the obtained
results, a reverse engineer attack for the first hidden layer
can be elaborated. Consider the SNN topology presented in
Figure 5, where the target neurons are identified as Output
Neurons. The attacker can apply a certain input and perform
power analysis to retrieve the SNN spike activity. Since the
input neuron does not consume substantial power, the obtained
spikes correspond only to the output neurons. If the input
is fixed, the spiking behavior should be periodic. Thus, it is
possible to decompose the spike train into different output
spiking rates through mathematical analysis. From timing
analysis, all weights could be retrieved by combining the
obtained rates with the input information. Note to obtain good
results, the accuracy of the CNN that detects the number of
spikes must be high.
Reverse Engineer of an entire SNN: Our results have shown
that the combination of timing and power leakages can be
used to perform reverse engineering attacks. However, more
research is still required since attacking deep hidden layers
is not trivial. The system’s complexity increases since the
attacker cannot infer the internal connections (i.e., synapses)
and cannot control the input of internal layers. Hence, a more
sophisticated methodology to attack an entire SNN would be
required. This is part of future work.

VI. CONCLUSION

This paper investigated the vulnerabilities of a spiking
neuron commonly implemented in neuromorphic hardware.
Our results revealed that the neuron leaks information through

timing and power, and we discussed how potential practical
attacks on SNN can be created. At the same time that the
results show that it is not trivial to exploit these leakages,
they reinforce the need for security measures when applying
such architectures widely in the field.
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