
Computer Engineering
Mekelweg 4,
2628 CD Delft
The Netherlands

http://ce.et.tudelft.nl/

2011

MSc THESIS

Real-Time Object Identi�cation using SURF

Key-Points

Vikram Shivanna

Abstract

Faculty of Electrical Engineering, Mathematics and Computer Science

CE-MS-2011-35

The thesis here addresses the topic of image features and how they
can be used in object identi�cation. Two state of the art algorithms
Scale Invariant Feature Transform (SIFT) and Speeded-Up Robust
Features (SURF) are studied and their qualities are measured and
based on the results of these tests the best algorithm, SURF, is cho-
sen for building a real-time object identi�cation application. The
application is expected to run on an ARM Cortex-A8 based embed-
ded processor platform known as i.MX515EVK. Being a computation
intensive algorithm and due to limited hardware resources several
optimization strategies were applied on the algorithm to bring up
the speed, namely, Algorithmic Optimizations, Implementation Op-
timization and Application Optimization. Special emphasis is given
to the SIMD unit of the Cortex-A8 core known as NEON, in fact the
major contributor in bringing up the speed of the algorithm is due to
extensive usage of NEON. Taking the most e�ective version of SURF
algorithm implementation a real-time Euro currency notes identi�-
cation application is built. Experiments are conducted to show how
it is feasible for the application to be resilient to changing scale, illu-
mination, blur and orientation conditions and still identify currency
notes from image frames at a rate of 3.5 - 4 frames per second.

Real-Time Object Identi�cation using SURF

Key-Points

THESIS

submitted in partial ful�llment of the
requirements for the degree of

MASTER OF SCIENCE

in

COMPUTER ENGINEERING

by

Vikram Shivanna

born in Hindupur, India

Computer Engineering
Department of Electrical Engineering
Faculty of Electrical Engineering, Mathematics and Computer Science
Delft University of Technology

Real-Time Object Identi�cation using SURF

Key-Points

by Vikram Shivanna

Abstract

T
he thesis here addresses the topic of image features and how they can be used in object
identi�cation. Two state of the art algorithms Scale Invariant Feature Transform (SIFT)
and Speeded-Up Robust Features (SURF) are studied and their qualities are measured

and based on the results of these tests the best algorithm, SURF, is chosen for building a real-
time object identi�cation application. The application is expected to run on an ARM Cortex-
A8 based embedded processor platform known as i.MX515EVK. Being a computation intensive
algorithm and due to limited hardware resources several optimization strategies were applied
on the algorithm to bring up the speed, namely, Algorithmic Optimizations, Implementation
Optimization and Application Optimization. Special emphasis is given to the SIMD unit of the
Cortex-A8 core known as NEON, in fact the major contributor in bringing up the speed of the
algorithm is due to extensive usage of NEON. Taking the most e�ective version of SURF algorithm
implementation a real-time Euro currency notes identi�cation application is built. Experiments
are conducted to show how it is feasible for the application to be resilient to changing scale,
illumination, blur and orientation conditions and still identify currency notes from image frames
at a rate of 3.5 - 4 frames per second.

Laboratory : Computer Engineering
Codenumber : CE-MS-2011-35

Committee Members :

Advisor: dr.ir. S.D. Cotofana, CE, TU Delft

Advisor: ir. Joost Mans, Philips Applied Technologies, Eindhoven

Chairperson: dr.ir. S.D. Cotofana, CE, TU Delft

Member: dr.ir. A.J. van Genderen, CE, TU Delft

Member: dr.ir. René van Leuken, CAS, TU Delft

i

ii

I would like to dedicate this work to my parents and friends.

iii

iv

Contents

List of Figures ix

List of Tables xi

Acknowledgements xiii

1 Introduction 1
1.1 Research Goals . 6

1.2 Thesis Contributions . 7

1.3 Thesis Organization . 10

2 Key-Point Feature Extraction Algorithms 13
2.1 Key-Point Feature Extraction Algorithms 13

2.1.1 Edge or Corner Detectors . 13

2.1.2 Scale Invariant Feature Transform or SIFT 14

2.1.3 Speeded-Up Robust Features or SURF 16

2.2 The comparison between SIFT and SURF 19

2.2.1 Parameters . 19

2.2.2 Results of the Repeatability Test 22

2.2.3 Processing Times . 24

2.3 Conclusion . 26

3 The Algorithm Implementation and Optimization 27
3.1 The SURF Algorithm . 27

3.1.1 The Four Steps of SURF Algorithm 27

3.1.2 Processing time . 35

3.1.3 Optimization 1: Algorithm Optimization 36

3.2 Conclusion . 38

4 Hardware Platform: i.MX515 Evaluation Kit 39
4.1 Fresscale's i.MX515 Processor . 40

4.2 ARM Cortex-A8 Processor . 41

4.2.1 Development Tools . 43

4.3 SURF Algorithm for ARM Cortex-A8 Processor 43

4.3.1 Processing Time needed to compute Key-Points using SURF_ARM 44

4.3.2 Optimization 2: Make use of NEON 44

4.3.3 NEON . 44

4.3.4 Methods available to program NEON 45

4.3.5 SURF_ARM pro�ling . 47

4.3.6 Candidates chosen for Vectorization 48

v

4.4 Conclusion . 60

5 A Real-Time Object Identi�cation Application 63
5.1 The Euro Currency Notes Identi�cation Application 63

5.1.1 Step 1: Extracting SURF Key-Points 63
5.1.2 Step 2: Matching the Key-Points and Decision Making 67

5.2 Application Performance . 71
5.2.1 Robustness to Changing Conditions 71
5.2.2 Processing Time . 73

5.3 Optimization 3: Progressive SURF Key-Points Extraction and Matching . 74
5.4 Other Measurements . 76

5.4.1 Memory Requirements . 76
5.4.2 Energy Utilizations . 78

5.5 Conclusion . 79

6 Conclusions and Future Work 81
6.1 Summary and Conclusions . 81
6.2 Recommendations for Future Work . 85

Bibliography 87

7 Appendicies 91
7.1 A: Results of the comparative repeatability tests conducted between SIFT

and SURF algorithms. 91
7.2 B: i.MX515EVK Details . 96
7.3 C: NEON test . 99
7.4 D: gprof Pro�ler Report . 105

vi

List of Figures

1.1 Example images depicting features to naked eye. 1

1.2 Information about Google Goggles application. 2

1.3 SharpStitch Image Stitching Application 3

1.4 Di�erent types of image features . 4

1.5 The top part of this �gure shows a logo with disturbances such as Scaling
and Orientation. The top part of the image and bottom part of the image
were given to the SIFT feature extraction and matching algorithm. The
lines(pink) represent the matches found by the algorithm. 5

2.1 A representation of the Scale-Space obtained by applying the LoG �lter
at di�erent scales of the input image. 14

2.2 A representation of the Scale-Space obtained by applying the DoG �lter
at di�erent scales of the input image. Here only one Octave is considered.
On the LHS, the given image is successively blurred with a Gaussian Filter
of given size. On the RHS, the DoG of consecutive response layers forms
the Scale-Space. 15

2.3 Box �lter approximations of the Gaussian Filters, from [1]. 17

2.4 Integral Image. 18

2.5 The three Box Filter approximations, Dxx, Dyy and Dxy of the second
order derivatives of Gaussian Filter Responses, from [2]. 18

2.6 Integral Image based box �lter response computation. 18

2.7 The Benchmark Image used for comparative study. 20

2.8 The collection of distorted images used for comparative study. 20

2.8 The collection of distorted images used for comparative study. (con't) . . 21

2.9 Results of the comparative repeatability tests conducted between SIFT
and SURF algorithms. 23

2.10 Processing Time needed by SIFT and SURF algorithms to compute fea-
tures for 33 images. 24

2.10 Processing Time needed by SIFT and SURF algorithms to compute fea-
tures for 33 images. (con't) . 25

3.1 SIFT and SURF approaches for building a Scale-Space. 29

3.2 Box �lter approximations of the Gaussian Filters Dxx, Dyy, and Dxy, from
[1]. 30

3.3 Representation of Non-Maximum Suppression. 31

3.4 Pictorial representation of Orientation computation and Dominant Orien-
tation determination. 33

3.5 A pictorial representation, which shows how the description of a interest
point is computed. 33

3.6 SURF Key-Points extracted from two sets of 22 images. 36

3.7 Distribution of SURF Key-Points extracted from two sets of 22 images
across four Octaves. 37

vii

3.8 Comparison showing the time di�erence between SURF with 4 Octaves
and SURF with only �rst 2 Octaves. Optimization 1 has decreased the
processing time between 40 - 90 ms. 37

4.1 A block diagram of Freescale's i.MX515 evaluation kit. 39

4.2 Functional block diagram of i.MX515 Processor, borrowed from the
Freescale's i.MX515 web page. 40

4.3 Comparison between code density and performance achieved using ARM,
Thumb and Thumb2, from [3]. 42

4.4 Functional block diagram of i.MX515 Processor, from the Freescale's
i.MX515 web page. 42

4.5 Processing time needed to compute Key-Points using SURF_ARM .
It also shows a di�erence between SURF_ARM with 4 Octaves and
SURF_ARM with only �rst 2 Octaves. 44

4.6 Pictorial representation of a SIMD processor operating on 2 registers. . . . 45

4.7 Two views of NEON's 32 64-bit registers. 46

4.8 Pictorial representation of computing box(Blue) response, computed using
Integral Image. 49

4.9 A pictorial representation of a 24-bit Color to Grayscale image conversion.
The constants used to multiply R, G and B values are standard values
used in RGB → GRAY SCALE conversion. 50

4.10 Figure depicting how NEON registers and interleaving instructions can be
used to perform RGB → GRAY SCALE conversion of 8 pixels. 51

4.11 Pictorial representation of how box �lters are positioned and moved in
Octave 1 and Octave 2. 52

4.12 Pictorial representation of how 4 box �lter responses are computed si-
multaneously. 54

4.13 Processor-Memory performance gap, borrowed from [4] 59

4.14 A comparison showing the performance gain achieved by
SURF_ARM_NEON over SURF_ARM. 60

5.1 Block diagram of Euro Currency Notes Identi�cation Application. 64

5.2 Fourteen Model Images of 7 Euro currency notes from which Model
Key-Points are extracted on a one-by-one fashion. These Key-Points
are then made as a part of the application which will be used during the
matching phase. 67

5.3 Block diagram describing how matching algorithm is interfaced with Key-
Points extraction algorithm and how the result from matching algorithm
is used in the application. 68

5.4 Distribution of 45 Key-Points and ∼320ms of processing time across 2
Octaves for a 320× 240 image. 74

5.5 Progressive search improves the total time taken to process frames. In
Trial 1 50 frames were considered and Trial 2 100 frames were con-
sidered. 75

5.6 Current drawn by i.MX515EVK. 77

viii

5.7 Average Energy consumed by SURF_ARM and SURF_ARM_NEON.
The trials were conducted for applications with SURF_ARM and
SURF_ARM_NEON to process 100 frames. Around 58% of lesser en-
ergy is consumed by the application when NEON is used. 78

6.1 ARM Cortex-A9 processor, which is 2Ghz capable processor with upto 4
scalable cores. 86

7.1 The Top and bottom views of the i.MX515EVK. 99
7.2 Functional block diagram of i.MX515EVK, borrowed from the

i.MX515EVK data sheet. 107

ix

x

List of Tables

2.1 Comparison of various Scale-Space building techniques (calculations per
�lter response) [5]. 25

4.1 An excerpt of gprof report, when SURF_ARM was given a 640 × 480
sized image as input. 48

4.2 Distribution of BoxFilterCompute() function calls across three steps of
SURF_ARM. 49

4.3 Distribution of BoxFilterCompute() function calls after vectorization us-
ing NEON, across three steps of SURF_ARM. The BoxFilterCompute()
function calls within building Scale-Space is brought down by 4 times. . . 55

5.1 Performance Measurement: Scaling . 72
5.2 Performance Measurement: Blurring . 72
5.3 Performance Measurement: Illumination 72
5.4 Performance Measurement: Viewpoint 73
5.5 Performance Measurement: Orientation 73
5.6 Performance Measurement: Processing Time 74
5.7 Memory Requirements: Application Size 76
5.8 Memory Requirements: Runtime memory 77

xi

xii

Acknowledgements

I express my gratitude to Joost Mans from Philips Applied Technologies and Sorin Coto-
fana from CE group of EEMCS department at TU Delft, for accepting to guide me during
this project work. Their timely and valuable suggestions helped me do better work and
complete the project work and the thesis writing in time.

Next, I thank Pieter-Jan Kuyten at Philips Applied Technologies with whom I used
to have extensive discussions about the project work in particular and in general about
the exciting Computer Vision Systems.

I thank Hong Liu, Ying Zang, Wilco Boeije and Wilco Thissen, my other colleagues
at o�ce, for giving their valuable suggestions whenever I approached them.

Lastly, I thank Philips Applied Technologies for o�ering this internship and �nancially
support me during the work.

Vikram Shivanna
Delft, The Netherlands
February 6, 2011

xiii

xiv

Introduction 1
Extraction of information from data such as text, audio, images, video has been

studied for several decades by now. In the �eld of computer vision, image features play
an important role and they are as crucial as keywords or frequencies in text and audio
data, respectively.

Extensive studies have been conducted over several decades now, to learn how the
human brain gets stimulated by variations in types of objects [6] [7]. From a glance at
Figure 1.1(a), our brain perceives that the image is uniform, while on the other hand
when we look at Figure 1.1(b) our brain becomes sensitive to the variations in color,
such variations in color stimulate the human brain di�erently which makes us recognize
them. So, based on how humans perceive visual features, image features may be seen as
variations in pixel values across an image. In digital imaging a pixel is the smallest unit
of picture.

(a) Image with no variations in pixel information. (b) Image with variations in pixel information.

Figure 1.1: Example images depicting features to naked eye.

Feature extraction from images forms a crucial branch in computer vision research.
Image features are the information content obtained from a large chunk of pixel data.
These days, Digital cameras and other hand-held devices such as mobile phones with
cameras are expected to have several functionalities such as - face recognition, text
recognition, corner detection, gesture recognition, image stitching used in panorama view
generation etc. To achieve such functionalities the image features are used extensively.

To understand how the features from images are utilized, let us consider Google
Goggles software application as an example. Google Goggles [8] is an Android Operating
System(OS) based application dedicated to on Web information searching; it requires a

1

2 CHAPTER 1. INTRODUCTION

(a) Google Goggles used to get information about a
landmark.

(b) Google Goggles used to get information about
an artwork.

Figure 1.2: Information about Google Goggles application.

mobile phone with a camera and an internet connection. Until now, the only options for
web searching is by typing Key-words or to an extent by speaking words, but with Google
Goggles application, one can do a search on the internet using images. Refer to Figure
1.2 for simple demonstrations showing how Google Goggles can be used.

An application which makes use of image features is Image Stitching , which takes
into account the common overlapping views from multiple images and builds a �nal
image with larger dimensions, compared to each of the images that were used to build it.
SharpStitch [9] is such an application, which is used for stitching two images. The Figure
1.3(c) a stitched image, is the output from SharpStitch and it was obtained by stitching
two images 1.3(a) and 1.3(b) having overlapping views. Image stitching is fast becoming
a standard feature in digital cameras [10] [11].

Some other applications which also make use of image features are:

• Motion Detection [12],

• Stereo Vision based 3D modelling [13],

• Video Tracking [14],

• Gesture Recognition [15].

There are several feature extraction algorithms, the most common ones can be clas-
si�ed into the following groups, this classi�cation is made mainly based on the nature of
the features they extract.

• Blobs or Interest Points or Key-Points:

Interest points (see Figure 1.4(a)) are pixels that capture signi�cant local features
of an image, and they are usually located around corners and edges of images[16].
Feature extraction algorithms which are based on this principle are:

� Scale-Invariant Feature Transform (SIFT) [18]

� Speeded Up Robust Features (SURF) [19]

3

(a) The �rst input image to the stitching appli-
cation.

(b) The second input image to the stitching ap-
plication.

(c) The �nal stitched output image obtained from the stitching application.

Figure 1.3: SharpStitch Image Stitching Application

• Edges:

Edges (see �gure 1.4(b)) are image features which are sharp discontinuities in pixel
values. Feature extraction algorithms which are based on this principle are:

� Laplacian of Gaussian (LoG) [20]

� Canny Edge Detector [21]

� Harris Corner detector [22]

• Lines:

While edges and general curves are suitable for describing the contours of natural
objects, the man-made world is full of straight lines as one can observe in 1.4(c).

4 CHAPTER 1. INTRODUCTION

(a) Blobs or Interest points. Here every
circle represents an interest point.

(b) Edge features.

(c) Symmetry Detection using line features, borrowed from [17].

Figure 1.4: Di�erent types of image features

Detecting and matching these lines can be useful in a variety of applications, in-
cluding architectural modelling, pose estimation in urban environments, and the
analysis of printed document layouts [23]. Feature extraction algorithms which are
based on this principle are:

� Image editing in the contour domain [24].

� Sinha et al's - Interactive 3D Architectural Modelling from Unordered Photo
Collections [25].

Choosing a particular feature extraction algorithm depends on the nature of the
problem which needs to be solved. For example, in this project work, a real-time object
identi�cation application needs to be built, which is targeted for an Embedded Platform
with a camera. The problems unique to such a system, which works in real-time, are
the constant changes in scale, blur, orientation, illumination and viewpoint. Such
changes can be called as disturbing conditions and compared to edges or line features,
which are not �exible to such changes. Key-Points are better at handling the changing
conditions because they are expressed by what are known as descriptions, which describe

5

a point and its surroundings. Key-Points generated by algorithms such as SIFT and
SURF, have descriptions which are expressed in 64 �oating point values. The Key-Point
feature extraction algorithms are �exible or invariant to large changes to most of the
disturbing conditions mentioned above, as such, even under changing conditions they
produce stable Key-Points. The changing conditions, stable Key-Points and how they
can be used are well demonstrated in Figure 1.5.

Figure 1.5: The top part of this �gure shows a logo with disturbances such as Scaling
and Orientation. The top part of the image and bottom part of the image were given
to the SIFT feature extraction and matching algorithm. The lines(pink) represent the
matches found by the algorithm.

The Figure 1.5 was a resultant image obtained from a SIFT feature extraction and
matching implementation, where the top part of the image has a logo with several dis-
turbances, such as:

• Scaling - There are 75% and 50% scaled variants of the logo.

• Orientation - There are variants which are at 90°and 180°orientation.

And, the bottom part of the image is the given image in which the logo has to be
searched for.

Both images are given to a SIFT feature extraction and matching algorithm. The
pink lines are the results which represent the matches obtained and out of 23 matches
found 5 are false.

6 CHAPTER 1. INTRODUCTION

As shown in the above example, by identifying the nature of the problem which needs
to be solved, one can choose the kind of feature extraction algorithm that best suites the
problem.

And as always, another important feature which has to be kept in mind while choosing
an algorithm for a particular application is its Processing Time.

In the case of Goggle Goggles application, the object identi�cation is carried out
on a remote system which might be very powerful with large computing resources and
uninterrupted energy resources, in which case, a high precision algorithm could be used.
On the other hand, in applications such as real-time object identi�cation, where the user
expects to get instantaneous response from the system, a good frame rate becomes a
necessity and achieving it becomes a formidable challenge especially when it is intended
to run in an environment with fewer resources and limited energy resources.

To corroborate this, from the tests conducted during the study it was found that
to extract around 160 Key-Points, the SURF algorithm implementation running on a
Linux/Pentium platform, i.e, Intel Pentium 4 CPU @ 2.80GHz with 1.49GB RAM, it
would take 500ms, in other words with this processing time, it could handle 2 frames
per second. For the same algorithm, to extract the same number of Key-Points, but
running on a Linux/ARM platform, i.e., ARM Cortex-A8 CPU @ 800Mhz with 512MB
RAM, the platform on which the real-time object identi�cation application is intended
to run, took 1280ms or in other words, with this processing time, it could only handle
0.78 frames per second.

Therefore, in the purview of such complex and time consuming algorithms on one
hand, and low computing resources on the other hand, the two classic Embedded Real-
Time System constraints, achieving a good frame rate indeed becomes a formidable
challenge. Solving this problem by making use of techniques such as Algorithmic Op-
timizations, Algorithm Implementation Optimizations in the context of the hardware
architecture, and Algorithm Usage Optimizations, forms the central research problem of
this project.

1.1 Research Goals

The platform chosen for this project is Freescale's i.MX515EVK, some of the important
features 1 of this platform, which are relevant to this project are listed below:

• CPU: Freescale's i.MX515 at a clock speed of 800 MHz.

• Memory: 512 MB DDR-RAM.

• Ubuntu 9.10 OS

• For the entire list of peripherals refer to Appendix B: i.MX515EVK Details 7.2.

The primary research goal of this project is to determine how, a fast and yet robust
real-time object identi�cation software application can be built on the i.MX515EVK

1For the functional block diagram of the i.MX515EVK refer to Appendix B: i.MX515EVK Details
7.2.

1.2. THESIS CONTRIBUTIONS 7

embedded platform. Three of the most desired characteristics expected from any Em-
bedded Software Application are its high speed of operation, less memory utilization and
less energy consumption. Once the application is operational on the embedded platform,
its speed of operation, its memory and energy utilizations are also measured.

As a �rst step in this direction, a proper type feature extraction algorithm has to be
chosen. To this end the following are required:

• A comparative study is conducted to understand the principle and nature of two
feature extraction algorithms, namely, SIFT and SURF.

• Based on this study, a decision is made on which algorithm is best suited to be
used in building a real-time object identi�cation software application.

After choosing a particular algorithm,

• The Embedded Platform and the available resources on it have to be studied.

• The objective here is to achieve a real time object identi�cation, so based on the
knowledge of the algorithm and the hardware platform, the algorithm can be opti-
mized for speed. To achieve this, the resources of the processor have to be put to
best use.

• Once a most e�ective version of the feature extraction algorithm is ready. The
following steps are carried out:

� A software application is built, which incorporates the optimized feature ex-
traction algorithm and a Key-Points matching algorithm. Which can be used
in identifying objects at real-time.

� Once this application is operational, its speed of operation, its memory and
energy utilizations are measured.

1.2 Thesis Contributions

The main contributions of this thesis can be summarized as follows:

• Comparative Study: As explained in the introduction of this chapter, from a
given image, several kinds of image features can be extracted, but it is Key-Points
which are the best kind of features which enables object identi�cation even under
image distortions. The two popular Key-Points extraction algorithms are SIFT and
SURF, both have their own properties, in order to choose an algorithm, by keeping
the possible image disturbances such as scaling, orientation, blurring, illumination
and viewpoint changes are parameters, both SIFT and SURF are put to test to
�nd out how well they can handle them. The two input images given to both the
algorithms are (a) a benchmark image which is constant and (b) an image applied
with some deformation. The metric chosen for these tests is repeatability. Repeata-
bility is a ratio which indicates how well the Key-Points from two images match.
From these tests it was found that while SIFT can handle Scaling, Orientation and

8 CHAPTER 1. INTRODUCTION

Viewpoint changes better than SURF; SURF on the other hand can handle the
Blurring and Illumination conditions better than SIFT.

Apart from the disturbing conditions as the parameters on which the performance of
both the algorithms are measured, another important characteristic expected from
both algorithms is their processing time, which is a very important characteristic
needed in an algorithm to achieve the goal of this project i.e., a real-time object
identi�cation. In this case SURF is a clear winner. While, the average time needed
by SIFT to compute features from 33 images was 1.4s, the average time needed by
SURF to compute almost same number of Key-Points from same set of images was
only 0.26s.

Based on the results from these tests, the SURF algorithm is chosen over SIFT,
the most in�uential result which favoured this choice was the less processing time.

• Algorithm Optimizations: The algorithmic optimization was the �rst step taken
in reducing the computation time. In this project a statistical study was conducted
and the algorithmic optimization was made based on the results of that study.
During the study it was found out that, out of a given number of Key-Points
computed by SURF algorithm, more than 80% of them are extracted from the �rst
two Octaves alone. Upon studying the algorithm, it was found that, the large �lter
sizes and higher stepping values, accelerate the movement of box �lters towards the
end of the image. Which implies that, fewer computations are made in these higher
Octaves, which in turn result in extracting fewer Key-Points from them. Therefore,
the algorithm was modi�ed to restrict from computing the Key-Points from Higher
Octaves. By cutting down these computations, nearly 80 - 280ms of processing
time was improved for images with 640 × 480 pixels dimension and 20 - 100 ms
of processing time was improved for images with 320× 240 pixels dimension.

• Implementation Optimizations: The second step in optimization for speed was
achieved by making use of the Cortex-A8's SIMD unit known as NEON.

The SURF method of computing Key-Points takes signi�cantly lesser amount of
time when compared to SIFT. The reduction in processing time can be attributed
to the nature of �lters used in building the Scale-Space. In SURF, Box �lters are
used to build the Scale-Space. The majority of the time spent in SURF algorithm
is in computing the Box Filter responses, from the pro�ler report generated it was
found that the total number of box �lters used in SURF Algorithm were 3,383,284
2 which accounts to nearly 70% of SURF algorithm's time. Improvement in pro-
cessing time can be achieved only by somehow reducing the amount of time spent
in box �lter response computations.

Box �lter responses can be computed very e�ciently (with only 3 additions) by
making use of Integral Images. By taking advantage of the integral image and by
making use of the interleaving instructions of NEON innovatively the number of
box �lters needed in Scale-Space building was brought down by 4 times i.e., from

2For 640× 480 size image.

1.2. THESIS CONTRIBUTIONS 9

2,658,304 to only 845,821. This optimization was the most signi�cant contributor
in improving the processing time needed by the algorithm.

In this project the box �lter response computations were carried out innovatively
by making use of NEON. This implementation brought down the number of box-
�lters used in the algorithm by 4 times, which is the most signi�cant contributor
in improving the processing time needed by the algorithm.

The next function which could be vectorized using NEON was Integral Image com-
putation. Unlike box �lter computation which could be completely vectorized,
due to the datatype changes in Integral Image NEON could not be used to com-
pletely vectorize it. As a result of which an intermediate step was used to make
the datatypes homogeneous and then the data was given to NEON. Although this
intermediate step costs more cycles because it is accessing image data serially there
was still a signi�cant speed up was achieved due to NEON, 105.3ms → 81.63ms.
As the image data was being fetched one-by-one serially, block transfer of data was
carried out by using NEON, a concept known as data pre-fetching, this optimization
brought further optimization to Integral Image computation, 81.63ms→ 66.86ms.

Parts of other functions such as descriptor computation and matrix multiplication
were also optimized in the similar way, but no signi�cant improvement in processing
time were observed.

By this step of Vectorization of some of the key time consuming functions, the
computation time needed to extract Key-Points for images of 320×240 dimensions
was brought down to 300 - 350ms, a gain of 41 - 46%, which translates to ∼3fps.

• A Real-Time Object Identi�cation application: Once an optimum version of
SURF is implemented, it was used to build a Real-Time Euro currency notes Iden-
ti�cation application. The objective of this application is to continuously capture
image frames from a camera and identify the 7 Euro currency notes irrespective
of the face in which they are presented in front of the camera. Key-Points from
the 7 × 2 = 14 sides of images are extracted on a one-by-one fashion and they
are stored within the application. When Key-Points from input image frames are
extracted they are given to a matching algorithm which carries out a matching
process between the freshly extracted Key-Points with the Key-Points within the
application.

� Matching Algorithm: The matching algorithm is based on Root of Sum
of Squares (RSS) which gives a cumulative di�erence value between descrip-
tions of two Key-Points, the Key-Points having the least di�erence in their
descriptions are considered as a matching Key-Point pair.

Two of the new functions COLOR → GRAY SCALE conversion and Key-
Points matching algorithms introduced in the application were also vector-
ized using NEON. While implementing the matching algorithm it was found
that, crucial part of that algorithm can be vectorized. The NEON vectorized
matching algorithm takes nearly 56% lesser computation time to complete
matching of 71 Key-Points with a collection of 501 Key-Points.

10 CHAPTER 1. INTRODUCTION

� Progressive Matching: An innovative idea which is called as progressive
matching was used for the �rst time in this project. While studying the
SURF algorithm it was learnt that the Key-Points extracted by SURF in
each Octave are unique in nature, the motive behind progressive matching
arises from this study. The idea here is, when the Key-Points extracted from
an Octave are provided to matching algorithm and if it is able to extract
enough number of matching Key-Point pairs to decide that the two input
images match or not, further Key-Point computations are not needed any
longer and processing of next frame can be started instantly. During the
literature study conducted, it was found that no where in any of the existing
object-identi�cation applications is this method being used. The contribution
of this approach was a signi�cant amount of reduction in computation time
when considerable number of image frames were matched by the end of �rst
Octave. In one of the trials it was found that the total time taken for processing
100 frames was reduced by nearly 29% due to progressive matching.

By the end of progressive matching the average frame rate of the real-time object
identi�cation application was around 3.5 - 4 frames per second.

1.3 Thesis Organization

The reminder of this thesis is organised as follows:

Chapter 2 starts with a brief explanation on how SIFT and SURF, two Key-Points
extraction algorithms work. Taking important parameters, such as - scale, blur, orienta-
tion, illumination, viewpoint and processing time into consideration, comparative tests
are subsequently presented to asses how well the two algorithms perform on various in-
puts and conditions. Lastly, based on the outcome of the comparative study, a choice is
made between the two considered algorithms.

Chapter 3 covers the four steps in extracting the Key-Points using the SURF al-
gorithm and it also introduces to how and why the �rst optimization, the algorithmic
optimization was carried out.

Chapter 4 covers brie�y the details and the features of the i.MX515EVK and the
tools used for implementing the chosen algorithm. At the core of the i.MX515 processor
is an implementation of the ARM Cortex-A8. The Cortex-A8 has an SIMD co-processor
known as NEON, special attention is paid on NEON to see how well it can be utilised
for optimizing the algorithm.

Chapter 5 covers the details as to how the chosen Key-Points extraction algorithm is
used in building a Real-Time object identi�cation application. It also addresses a new
algorithm known as matching algorithm, which makes a decision if the two sets of Key-
Points provided to it match or not, if they match, it indicates that the two images from
which they were extracted are same. It then introduces to a new method with which
SURF Key-Points can be used for matching, which is called as Progressive matching in
this project. It also covers the details of Camera and OpenCV - library of programming
functions for real-time computer vision. Lastly, performance measurements, such as -

1.3. THESIS ORGANIZATION 11

how well the application can handle optical deformities, its processing time, its memory
requirements and also its energy requirements.

Chapter 6 covers conclusions of the over all work done in this project work and also
recommendations for future work.

12 CHAPTER 1. INTRODUCTION

Key-Point Feature Extraction

Algorithms 2
This chapter covers the �rst important research goal of the project - a comparative

study between the SIFT and SURF algorithms.

Before going straight into the comparison of these two algorithms, it is important to
know certain details about Key-Point Feature Extraction algorithms in general, Scale
Invariant Feature Transform (SIFT) and Speeded-Up Robust Features(SURF) algo-
rithms in particular, which is covered in the following section.

2.1 Key-Point Feature Extraction Algorithms

In any image, the edges and corners are the most likely locations where Key-Points may
be found. Hence, as a �rst step in Key-Point detection, it is important to identify the
edges and corners in a given image. To achieve this task, the Key-Point feature extraction
algorithms are used as edge or corner detectors.

2.1.1 Edge or Corner Detectors

The Edge or Corner detectors, detect the regions of rapid intensity changes in pixel
information. The Laplacian of Gaussian �lter (LoG or Marr Filter) is one of the very
early and common edge detectors. The LoG �lter works in two steps: (a) the image is
blurred using a Gaussian �lter, which removes the noise contents in the image and (b)
A Laplacian Transformation is then applied to the Gaussian blurred image (a second
order derivative) to highlight the edges and corners. The intermediate blurring step is
very important here because the Laplacian operator is sensitive to noise, so the blurring
action smooths out the noise content in the image.

`Scale invariance' is one of the most important characteristic of Key-Point features.
Scale invariance is a feature of objects or laws that do not change if length scales (or
energy scales) are multiplied by a common factor [26]. In order to get scale invariant
Key-Points, a Scale-Space needs to be built. To understand Scale-Space, refer to Figure
2.1, which is a pictorial representation of how a Scale-Space is built and looks. In the
�gure, for the input image at Scale 1 the LoG �lter is applied at four increasing blurring
values, which forms the �rst Octave (Octave 1). Once again at Scale 2 the LoG is
applied at four new increasing blurring values and this forms the second Octave (Octave
2). Similarly, the third Octave (Octave 3). An important point to note here is that, the
�lter blurring values are not only increasing within an Octave, but they also increase
across the Octaves. The entire collection of such responses is known as Scale-Space.

13

14 CHAPTER 2. KEY-POINT FEATURE EXTRACTION ALGORITHMS

Figure 2.1: A representation of the Scale-Space obtained by applying the LoG �lter at
di�erent scales of the input image.

The series of response-layers as seen in the Scale-Space, consist of highlighted edges
and corners extracted from the input image. In the [27], a thorough study was conducted,
which concludes that, better Key-Points are generated upon using the normalized LoG
�lter than by other methods of edge detection such as - Gradient or Hessian or Harris
Corner function.

However, despite being one of the best methods for edge detection, one major draw-
back in using LoG is that it outweighs its exceptional characteristic of high computation
time.

2.1.2 Scale Invariant Feature Transform or SIFT

David Lowe, from the University of British Columbia, proposed the SIFT algorithm [18].
In his novel approach, he shows that aDi�erence of Gaussian (DoG) approach, instead of
Laplacian of Gaussian can also be used for edge detection. The DoG is an approximation
of LoG, but, as Lowe states - �...the approximation has almost no impact on the stability
of extrema detection...", where extrema are the possible location of Key-Points. The
reason for this approximation is mainly to bring down the computation time for building
the Scale-Space.

Scale-Space built using the DoG is as shown in Figure 2.2. In this example, only one

2.1. KEY-POINT FEATURE EXTRACTION ALGORITHMS 15

Figure 2.2: A representation of the Scale-Space obtained by applying the DoG �lter at
di�erent scales of the input image. Here only one Octave is considered. On the LHS, the
given image is successively blurred with a Gaussian Filter of given size. On the RHS, the
DoG of consecutive response layers forms the Scale-Space.

16 CHAPTER 2. KEY-POINT FEATURE EXTRACTION ALGORITHMS

scale (One Octave) is considered, however, in reality the input image is scaled several
times (Several Octaves), after which the Gaussian Blurring of increasing �lter sizes are
applied across each Octave. The di�erence of two such consecutive response layers (or
DoG), becomes a part of the Scale-Space.

Lowe's SIFT algorithm has four stages:

Stage 1: Scale-Space extrema detection

The �rst stage is computing the potential interest points, across all scales. This is ac-
complished by building the Di�erence-Of-Gaussian (DoG) Scale-Space as shown in Figure
2.2. The points so identi�ed are invariant to scale and rotation.

Stage 2: Key-Point localization

The feature point detector only provides a set of possible feature point. A detailed model
of all the Key-Points are created by localising to the nearest pixel and scale, where the
Key-Points were found. Key-Points which are resistant to image distortions are selected.

Stage 3: Orientation assignment

Based on the local image gradients, SIFT will then compute and assign to each of the
stable Key-Points one or more orientations.

Stage 4: Key-Point Descriptor

Around each Key-Point's locality, image gradients are measured and these measurements
are transformed into a descriptor which has tolerance for shape distortion and illumina-
tion changes.

One important point to be mentioned before closing this section is - the Gaussian
�lter sizes and their contribution to the computation time. As mentioned earlier, in
the SIFT approach the �lter sizes increase with the Octaves. In any Octave, the entire
given image is successively convoluted with a �lter of a given size. When the Octaves
change, the �lter sizes also change. The higher the octave, the larger the �lter size, this
increases the number of computations and hence the computation time of the convolution
operation. In other words, the computation time for the convolution of an entire image
with the Gaussian �lter of size rows1, cols1 is less than that for the same operation with
a Gaussian �lter of size rows2, cols2, where (rows1 < rows2) and (cols1 < cols2).

2.1.3 Speeded-Up Robust Features or SURF

Speeded-Up Robust Features (SURF) uses a di�erent and a far more intensive �lter
approximation when compared with DoG approach in SIFT. Created by Bay et al [19]
to compute the Key-Points in an image, in this method a Box Filter or Mean Filter
responses are used. In the paper [19] it is claimed by the authors that, while building
the LoG Scale-Space �...the importance of the Gaussian seems to have been somewhat
overrated...". So, they use a simpler alternative - the Box Filters computed using In-
tegral Images. It is shown in the results of the paper that - for a given image, the

2.1. KEY-POINT FEATURE EXTRACTION ALGORITHMS 17

number of feature points extracted using both DoG approach in SIFT and simple box
�lter approach in SURF are comparable.

The approximations achieved by box �lters can be viewed in Figure 2.3, where Figure
2.3(a) shows a 9×9 discrete and cropped Gaussian second order partial derivatives
in x, y, and xy-directions with the σ = 1.2 and Figure 2.3(b) shows their equivalent 9× 9
box �lter approximations.

(a) The 9×9 Gaussian second order partial deriva-
tives in x, y and xy directions.

(b) The weighted 9 × 9 box �lter approximation of
the 9×9 Gaussian Filters, the 1's, -1's and -2's are
the weights assigned to those regions and the grey
regions are of value 0.

Figure 2.3: Box �lter approximations of the Gaussian Filters, from [1].

2.1.3.1 Integral Images

The Box Filter responses can be computed very quickly by using an Integral Image. An
integral image, which is also known as Summed Area Tables, has the same dimensions
as the given image. In the integral image a value at any position (x, y) is the sum of
all the pixel values above and to its left in the given image. It is computed with the
Equation 2.1.1 and it can be well understood from Figure 2.4.

sum(x, y) =
∑

x′6x,y′6y

i(x′, y′) (2.1.1)

In SURF there are three types of �lters used in the three directions x, y and xy
as depicted in Figure 2.5. They are the approximations of the second order partial
derivatives of Gaussian �lter responses in LoG. In order to understand how to compute
the responses of these box �lter approximations, consider the Dxx �lter in Figure 2.5, in
this, one must compute the area within the region ABCD and then subtract that area with
the area covered by the region A'B'C'D'. These area computations can be easily carried
out using the integral image, as demonstrated in the example Figure 2.6 and irrespective
of the �lter sizes every response can be computed with only three additions.

18 CHAPTER 2. KEY-POINT FEATURE EXTRACTION ALGORITHMS

(a) Given image of Size 10× 10. (b) Integral Image of size 10× 10, formed from the
given image.

Figure 2.4: Integral Image.

Figure 2.5: The three Box Filter approximations, Dxx, Dyy and Dxy of the second order
derivatives of Gaussian Filter Responses, from [2].

(a) To compute the area in the 4× 4 region (blue
region).

(b) The area (blue region) = A - B - C + D =
25 - 511 - 196 + 2248 = 1566.

Figure 2.6: Integral Image based box �lter response computation.

2.2. THE COMPARISON BETWEEN SIFT AND SURF 19

Just like in SIFT, even in SURF also �lters of increasing sizes are used. But unlike
Gaussian Filters used in SIFT, whose computation time depends on their sizes, in SURF,
irrespective of the �lter sizes the responses of the box �lters are calculated in a constant
amount of time. In other words, the computation time for the convolution of an entire
image with the box �lter of size rows1, cols1 is the same as that for the same operation
with a box �lter of size rows2, cols2, where (rows1 < rows2) and (cols1 < cols2). This
is a predominant factor which makes SURF compute its features faster than SIFT.

Just like in SIFT, even SURF feature extraction algorithm has 4 stages - Scale-
Space analysis, Key-Point localization, Orientation assignment, and Key-Point Descriptor
generation. These four stages are explained in detail in the next Chapter 3.

2.2 The comparison between SIFT and SURF

In this section, a comparative study is conducted between the two very popular feature
point extraction algorithms - SIFT and SURF, in order to �nd out which of them is most
appropriate for achieving fast and yet robust Key-Point features which can be used in
a real-time object identi�cation application,

2.2.1 Parameters

As explained in Chapter , a real-time object identi�cation application gives very good
results, if (a) it can handle the disturbing conditions e�ectively and (b) it has very short
Processing Time.

So, the SIFT and SURF algorithms are evaluated by taking into consideration the
following parameters:

1. Scale

2. Blur

3. Orientation

4. Illumination

5. Viewpoint and

6. Processing Time

The comparison is made based on the results from the implementations of SIFT
[28] and SURF [1] algorithms. To do this, �rst, a benchmark image is considered, on
which all the disturbing conditions (Parameters 1 - 5) are applied at di�erent levels.
Then the undisturbed and the disturbed benchmark images are sent as inputs to both
the applications; their performances are measured based on the obtained repeatability
values.

For the detection stage, the repeatability is de�ned as - a ratio of the matching pairs
obtained between the two input images (Benchmark, Disturbed) and the mean of the
number of points extracted from the input images, and can be expressed as in Equation
2.2.1[29].

20 CHAPTER 2. KEY-POINT FEATURE EXTRACTION ALGORITHMS

ratio =
MatchingPairs

Mean(Features1, Features2)
(2.2.1)

Where,

• MatchingPairs - Matching Interest Points between the Interest Points of Image 1
and Image 2.

• Features1 - Number of Interest Points in Image 1 and

• Features2 - Number of Interest Points in Image 2.

In the following �gures, Figure 2.7 is a benchmark image and Figure 2.8 has a collec-
tion of all the images obtained by applying the disturbing parameters at di�erent levels
on the benchmark image. All these images are Gray Scale and are of 640 × 480 pixels
dimension.

Figure 2.7: The Benchmark Image used for comparative study.

(a) The collection of Scaled version images of the Benchmark Image 2.7. Here the �rst image is scaled
up version while the rest are scaled down version of the benchmark image.

Figure 2.8: The collection of distorted images used for comparative study.

2.2. THE COMPARISON BETWEEN SIFT AND SURF 21

(b) The collection of Blurred version images of the Benchmark Image 2.7.

(c) The collection of images with di�erent orientations, here the �rst image is the benchmark image
and the rest of the images are at increasing steps of 30◦angles. All these images are captured directly
from a camera instead of manipulating the benchmark image.

(d) The collection of images with di�erent Illumination of the Benchmark Image 2.7. The lighting
conditions are changes made using an image editing software.

(e) The collection of images which have viewpoint changes. The �rst image has only scaling change,
while the rest of the images have signi�cant changes in the viewpoint.

Figure 2.8: The collection of distorted images used for comparative study. (con't)

22 CHAPTER 2. KEY-POINT FEATURE EXTRACTION ALGORITHMS

2.2.2 Results of the Repeatability Test

A pair of benchmark and disturbed images are given as inputs to both the algorithms
(SIFT and SURF). The results thus obtained from the two algorithms are used to cal-
culate the repeatability for both the algorithms. The repeatability results for all the
benchmark - disturbed image combinations are tabulated1 and plotted.

The graphs having repeatability results for all the 5 disturbing conditions - scaling,
blurring, orientation, illumination, and viewpoint changes are presented in Figure 2.9,
from which one can observe the following:

• Scaling changes - Figure 2.9(a): It is clear from the results that, for the scaling
changes, although the SURF Key-Points show a similar trend as the SIFT Key-
Points, SIFT clearly outperforms SURF. For the �rst image, where the disturbance
is up-scaling, both SIFT and SURF perform poorly. But, when the images are
downscaled - second and third images, both the algorithms perform better. After
a certain point - the fourth image, where the image is severely scaled-down, the
repeatability values for both the algorithms goes down.

• Blurring changes - Figure 2.9(b): From the results, it is clear that, as and how the
blurring intensity increases the detection capability of both the algorithms continue
to decrease. However, the SURF Key-Points show far more resilience to blurring
than the SIFT Key-Points.

• Orientation changes- Figure 2.9(c): The results show that, once again the de-
tection capability of both SIFT and SURF algorithms show a similar trend for
orientation changes, but the SIFT detection capability is better than SURF.

• Illumination changes - Figure 2.9(d): The results show that, when the image
has very low illumination - the left most image, both SIFT and SURF show very
low detection capability. As the illumination goes higher the algorithms perform
better, but SURF performs better than SIFT.

• Viewpoint changes - Figure 2.9(e): The results show that, the SIFT Key-Points
show great resilience to viewpoint changes when compared to SURF.

Bearing in mind that SIFT is far more precise because of the nature of the Gaussian
Filters, it uses to build the Scale-Space, while SURF uses Box-Filter approximations of
the Gaussian Filter responses (refer to 2.1.3). From the above results it is clear that
both SIFT and SURF algorithms have capabilities to handle the disturbing conditions
very well. While SIFT shows better resilience to Scaling, Orientation and Viewpoint
changes than SURF; SURF handles the Blurring and Illumination conditions better. So,
either SIFT or SURF algorithms may be used to build a real-time object identi�cation
application.

The next important quality expected from a Key-Point extraction algorithm is its
required Processing Time, which is addressed in the next section.

1For a list of detailed results refer to Appendix 7.1.

2.2. THE COMPARISON BETWEEN SIFT AND SURF 23

(a) Tests on various Scaled images. (b) Tests on images with increasing Blurred val-
ues.

(c) Tests on images with increasing Orienta-
tions.

(d) Tests on images with di�erent Illumination
conditions.

(e) Tests on images with di�erent Viewpoints.

Figure 2.9: Results of the comparative repeatability tests conducted between SIFT and
SURF algorithms.

24 CHAPTER 2. KEY-POINT FEATURE EXTRACTION ALGORITHMS

2.2.3 Processing Times

In this section the Processing Time needed to compute the SIFT and SURF Key-Points
are measured. A set of 33 sample images are considered, this set is a collection of all the
images from Figure 2.8 and Figure 2.9.

Both the applications run on a Linux/Pentium 4 system 2 and the time durations
between the start and the end of computing Key-Points are measured using gettimeofday()
function.

The results of such measurements conducted while computing the Key-Points for 33
images are as shown in Figure 2.10. Where Figure 2.10(a) shows the number of Key-
Points extracted from each of the images by both the algorithms and Figure 2.10(b)
shows the corresponding Processing Time needed to compute those features.

In the case of SIFT, the minimum time needed is 0.69s and the maximum time
needed is 2.2s. While, in the case of SURF, the minimum time needed is 0.1s and the
maximum time needed is 0.42s. It is clear from these results that SURF needs lesser time
to compute the features when compared to SIFT. Even at such instances where SIFT
and SURF have both computed the same number of features or SURF has computed
more features than SIFT, like with images numbered - 8, 9, 10, 11, 24 and 25, the time
needed by SURF is far less than the one required by SIFT.

.
(a) The number of SIFT and SURF features extracted.

Figure 2.10: Processing Time needed by SIFT and SURF algorithms to compute features
for 33 images.

2Intel Pentium 4 CPU 2.80GHz, 1.49GB RAM.

2.2. THE COMPARISON BETWEEN SIFT AND SURF 25

(b) Processing Time needed to compute the SIFT and SURF Key-Points.

Figure 2.10: Processing Time needed by SIFT and SURF algorithms to compute features
for 33 images. (con't)

Algorithm
Filter
Technique

Additions Multiplications

SURF
Integral
Image with
Box Filter

2 + 3 1

SIFT
2D Gauss N2 N2 − 1
Two pass 1-
D Gauss

2 ? N − 2 N + 2

Recursive
Gauss

6 14

Table 2.1: Comparison of various Scale-Space building techniques (calculations per �lter
response) [5].

The performance di�erences in Processing Times can be attributed to how the Scale-
Space is built in these two algorithms.

In SURF, the number of computations needed to compute a box �lter response are -
4 memory accesses, 5 additions 3 and 1 multiplication, these numbers are constant

3Two Additions used in computing the integral image value for one position and 3 additions to compute
the box �lter response.

26 CHAPTER 2. KEY-POINT FEATURE EXTRACTION ALGORITHMS

irrespective of the size of the �lter.
In SIFT, the number of computations needed to compute a Gaussian �lter response

depends on the method used to compute it. There are several methods used to compute
a �lter response, as shown in the Table 2.1 which is derived from the study conducted
by Jan-Mark et al [30] and Grabner et al [5]. Out of the three methods to compute the
�lter responses, the �rst two depend on the �lter sizes -

1. 2D-Gauss: The complexity in 2-D convolution method is O(N2), where N rep-
resents the �lter size, this makes the 2-D convolution method the slowest.

2. Two pass 1-D Gauss: This method is better than the previous because it leads
to linear costs in the �lter size.

3. Recursive Gauss: This takes a constant number of computations - 6 additions
and 14 multiplications.

As mentioned earlier in this chapter, the �lter sizes in SIFT increases with the number
of Octaves, the larger the �lter sizes, the higher the number of computations needed to
compute their responses.

From these methods, it is clear that no matter which approach is used to build the
Scale-Space in SIFT, the number of computations needed to compute �lter responses
are far higher when compared to SURF. In terms of processing time, it is this aspect of
SURF which makes it faster and more attractive than SIFT.

So, from the Processing Time measured for both SIFT and SURF algorithms, it is
clear that SURF is the algorithm best suited for building a real-time object identi�cation
application.

2.3 Conclusion

From the experiments conducted in Section 2.2, it is evident that both SIFT and SURF
Key-Points are invariant to several kinds of constantly changing conditions. Both out-
perform each other in handling certain disturbances. Even under conditions where one
performs poorer than the other, they still show similar trends as the other. Taking into
account the nature of approximation carried out in SURF it is expected from SURF to
show lesser accuracy than SIFT. And for the same reason, when it comes to Processing
Times, which is expected to be as low as possible, SURF clearly outperforms SIFT by
great margins. Even on instances where SURF is computing equal or greater number of
Key-Points as SIFT, SURF still needs lower processing times.

In order to achieve SIFT like accurate Key-Points, computed at a far lesser processing
time, SURF is a viable alternative; especially in situations where speed is a critical factor.
On the basis of the above results, SURF algorithm is chosen to be used in building the
real-time object identi�cation application. In the next chapter a step-by-step account of
the SURF algorithm, optimizations and the processor platform details are covered.

The Algorithm Implementation

and Optimization 3
In the previous chapter two algorithms SIFT and, SURF were studied and on the

basis of the study the SURF algorithm was chosen to be used in building the real time
object identi�cation. This chapter covers the next research goal, a study of -

• The Algorithm Implementation and

• The Algorithmic Optimization

3.1 The SURF Algorithm

In this project, SURF algorithm was implemented by following the papers written by Bay
et al [19], Chris Evans [1] and Nan Zhang [2]. The following section covers the details of
the four steps in SURF algorithm and the subsequent section introduces the algorithm
optimization details.

3.1.1 The Four Steps of SURF Algorithm

The SURF Key-Points extraction is carried out in four steps -

3.1.1.1 Step 1: Scale-Space Analysis

In this step a Scale-Space is built and analysed for possible extrema locations across
all scales.

In the case of SIFT's Scale-Space, each Octave is built by successively applying �lters
of di�erent sizes on a previous layer starting from the input image. The �lter sizes and
the scaling down sizes increase with every Octave, as indicated in Figure 3.1(a).

Where as, in SURF, building a Scale-Space is little di�erent, every layer is computed
by applying a Box Filter of di�erent size on input image. Filter sizes increase both within
and across Octaves. However, the only value which remains constant within an Octave
is Scale, scaling-down value changes only across Octaves, as shown in Figure 3.1(b). Box
�lters referred here are approximations of second order Gaussian derivatives in x, y, and
xy directions, represented as Dxx, Dyy, and Dxy are as shown in Figure 3.2. In Figure
3.1(b), the starting �lter size is 9 × 9 which is applied at lowest scale of the image and
with every next interval, �lter sizes increase until the last Interval in fourth Octave where
its size will be 195 × 195. The convolution of these box �lters with input image can be
e�ciently computed using Integral Images (Refer to Section 2.1.3.1 for details.).

Building an Integral Image is an essential step in SURF algorithm, an Integral Image
constructed once at the beginning of Scale-Space construction is used to compute ap-
proximated Gaussian responses - Dxx, Dyy, and Dxy at all Intervals of Scale-Space very

27

28 CHAPTER 3. THE ALGORITHM IMPLEMENTATION AND OPTIMIZATION

e�ciently. The steps involved in constructing an Integral Image are given in Algorithm
1

Algorithm 1 Algorithm used in computing the Integral Image of a given Input Gray-
Scale Image.

1: Position = 0
2: PartialIntegralImage[ImageHeight][ImageWidth]
3: function IntegralImageCompute(IntegralImageArray, InputImage)
4: for i = 1 to ImageHeight do
5: for j = 1 to ImageWidth do
6: Position = i× ImageHeight+ j
7: PartialIntegralImage[i][j] = PartialIntegralImage[i][j − 1] +
InputImage[Position− 1]

8: end for
9: end for
10: for i = 1 to ImageHeight do
11: for j = 1 to ImageWidth do
12: if i > 0 then
13: IntegralImageArray[i][j] = IntegralImageArray[i − 1][j] +

PartialIntegralImage[i][j]
14: else
15: IntegralImageArray[i][j] = PartialIntegralImage[i][j]
16: end if
17: end for
18: end for
19: end function

The responses Dxx, Dyy, and Dxy computed using Integral Image and Box �lters
are then used to compute, what are known as approximated normalized determinant of
Hessians, as proposed by Bay et al [19] and given by Equation (3.1.1).

det(Happrox) = Dxx ×Dyy − (0.9×Dxy)
2 (3.1.1)

The determinant of Hessians or interest points, are computed for all the positions
of the input image, for all the scales and �lter sizes. In the algorithm implementation,
they are stored in the ResponsePyramid array. If there are four Octaves and each Octave
has four intervals then the ResponsePyramid will have sixteen layers of determinant of
Hessains.

3.1.1.2 Step 2: Key-Point Localization

Not all interest points computed in Scale-Space analysis are scale and rotation invariant.
Weak interest points contribute nothing signi�cant in the matching process, in-fact they
become an overhead in that process. Key-Point localization is a two step process, in the
�rst step, only such interest points are chosen which are scale and rotation invariant or in

3.1. THE SURF ALGORITHM 29

(a) The Scale-Space built in SIFT. Here, every layer in an Octave here is built by applying a Gaussian
blurring on the previous layer starting with the input image.

(b) The Scale-Space built in SURF. Here, every layer in an Octave is built by applying a box �lter of
unique size ONLY on the input image.

Figure 3.1: SIFT and SURF approaches for building a Scale-Space.

30 CHAPTER 3. THE ALGORITHM IMPLEMENTATION AND OPTIMIZATION

Algorithm 2 Algorithm used in building a Scale-Space.

1: function BuildScaleSpace(ResponsePyramid, LaplasianPyramid)
2: for i = 0 to OCTAVES do
3: for j = 0 to INTERVALS do
4: //Get layer details : Rows,Columns, LobeSize, F ilterSize,BorderSize,
5: //StepSize,NormFactor
6: for row = 0 to ImageHeight do
7: for col = 0 to ImageWidth do
8: //Compute the Dxx, Dyy, Dxy

9: //Normalize the Dxx, Dyy, Dxy

10: nDxx = Dxx ∗NormFactor
11: nDyy = Dyy ∗NormFactor
12: nDxy = Dxy ∗NormFactor
13: // Compute the Normalized Determinant Hessian responses
14: ResponsePyramid[row][col] = nDxx ∗ nDyy − 0.81 ∗ (nDxy ∗ nDxy)
15: // Compute the Sign of Laplacian
16: LaplasianPyramid[row][col] = (nDxx + nDyy >= 0 ? 1 : 0)
17: end for
18: end for
19: end for
20: end for
21: end function

Figure 3.2: Box �lter approximations of the Gaussian Filters Dxx, Dyy, and Dxy, from
[1].

other words strong interest points and in the second step, the chosen interest points
are localised across scales.

Excluding or �ltering out weak interest points is carried out at two levels. In the �rst
level, all interest points within a layer are passed through a threshold test. In this test,
interest points which are above a threshold value are accepted and the rest are discarded.
Choosing a threshold value is left as a decision to the algorithm designer, the higher the
threshold value chosen, the fewer but stronger interest points are accepted for further
processing.

The second level of �ltering is called Non-Maximum Suppression. It is carried out
across three layers with di�erent scales. Here, interest points from three di�erent scales
are considered, as shown in Figure 3.3. Taking the middle value (Red) in the middle
layer into consideration, a search for maximum value within that layer, which constitutes

3.1. THE SURF ALGORITHM 31

Figure 3.3: Representation of Non-Maximum Suppression.

a comparison with 8 neighbouring values and then across two layers - above and below,
which constitutes a comparison with 18 values, is conducted. Interest Points which pass
this test are then passed on for localization.

The last step in the Key-Point localization is to interpolate the nearby data to deter-
mine the position and the scale of the interest points to a sub-pixel accuracy, denoted by
p̂.

For an interest point at a location p = (x, y, s) (s is the scale), a sub-pixel distance
value p̂ is calculated, such that, when it is added to the location p the resultant location
will give an accurate estimate of the interpolated position of the interest point p. The
theory behind this method is explained by Brown et al [31], in practice the elements
of p̂, given by the equation 3.1.2, can be represented by matrices as given below. So,
the sub-pixel accuracy p̂ can be computed by three matrix operations - (a) Inverse, (b)
Multiply, and (c) Negate.

p̂ = −δ
2H−1

δx2
δH

δx
(3.1.2)

δ2H−1

δx2
=

pxx pyx psx

pxy pyy psy

pxs pys pss


δH

δx
=

pxpy
ps


Where, px = δp

δx , py = δp
δy , py = δp

δs , pxx = δ2p
δxδx , pyy = δ2p

δyδy , pss = δ2p
δsδs , pyx = δ2p

δxδy ,

psx = δ2p
δsδx , psy =

δ2p
δsδy , pxy = pyx, pxs = psx and psy = pys.

Algorithm 3 gives the details of Key-Point localization step. In Step 3, localized
interest points are assigned with reproducible orientation information.

In Step 3, an orientation the localized interest points are assigned with a reproducible
orientation information.

32 CHAPTER 3. THE ALGORITHM IMPLEMENTATION AND OPTIMIZATION

Algorithm 3 Algorithm used in Key-Point localization.

1: function NonMaximumSupression(ResponsePyramid)
2: for i = 0 to OCTAVES do
3: for j = 0 to INTERVALS do
4: //Get Toplayer details : TopLayerHeight, TopLayerWidth
5: //Get Centerlayer details : CenterLayerHeight, CenterLayerWidth
6: //Get Bottomlayer details : BottomLayerWidth,BottomLayerWidth
7: for row = 0 to TopLayerHeight do
8: for col = 0 to TopLayerWidth do
9: //Get the CenterLayer′s − CenterV alue
10: if CenterV alue > THRESHOLD then
11: //
12: //Do a Non-Maximum Supression with
13: //8 values within the center layer and
14: //18 values from the top and bottom layers.
15: //
16: //Do an Interpolation.
17: //Carry out the Matrix −
18: //(a) Inverse of δ2H−1

δx2
(b)Multiplication with δH

δx and
19: //(c)Negate the results.
20: //Results of the interpolation − x̂, ŷ and ŝ
21: //Generate the InterestPoint.
22: InterestPoint.x = x+ x̂
23: InterestPoint.y = y + ŷ
24: InterestPoint.s = s+ ŝ
25: //Assign the Orientation
26: AssignOrientation(InterestPoint);
27: //Generate the Descriptor or SURF Key-Point
28: GenerateDescriptor(InterestPoint);
29: end if
30: end for
31: end for
32: end for
33: end for
34: end function

3.1.1.3 Step 3: Orientation Assignment

In the previous step, the interest points were localized to a sub pixel accuracy in terms
of (x, y, scale). In this step, every interest point which has passed the previous tests
are assigned with a reproducible orientation information to achieve invariance to image
rotation. The value orientation is very important in computing the �nal interest point
description, which is expressed in sixty four �oating point values.

Assigning an orientation detail to every interest point is carried out in two steps. In
the �rst step, a circular region of radius 6× scale around each interest point is considered

3.1. THE SURF ALGORITHM 33

Figure 3.4: Pictorial representation of Orientation computation and Dominant Orien-
tation determination.

Figure 3.5: A pictorial representation, which shows how the description of a interest
point is computed.

and within this region the Haar wavelet responses of size 4×scale in x and in y directions
are computed. Responses so obtained are weighted with a Gaussian centred around an
interest point and plotted as vector points along x and y coordinates. In step two, a

window of size
π

3
is rotated around an interest point and the points which are covered

within the window are summed-up. The most dominant result of such summing actions
is considered as dominant orientation of the interest point, which is used in calculating
the description of the interest point. These two steps are pictorially represented in Figure
3.4 and the algorithm to compute Orientation is given in Algorithm 4.

3.1.1.4 Step 4: Key-Point Descriptor Generation

The last step in Key-Point generation is to give a description to all localised Key-Points
with orientation information. The Key-Point description is expressed in 64 values.

34 CHAPTER 3. THE ALGORITHM IMPLEMENTATION AND OPTIMIZATION

Algorithm 4 Algorithm used in Key-Point localization.

1: function CalculateOrientation(InterestPoint)
2: //Get the x and y coordinates of the InterestPoint.
3: //Step 1: Haar wavelet responses in x and y directions.
4: RESPONSES responses[]
5: �oat Orientation
6: for i = −6 to 6 do
7: for j = −6 to 6 do
8: //Check if the point is within the circular region considered.
9: if i ∗ i+ j ∗ j < 36 then
10: Get the Haar-x and Haar-y directions
11: responses[count]:x = x * gauss
12: responses[count]:y = x * gauss
13: Count++
14: end if
15: end for
16: end for
17:

18: Step 2: Calculate the Dominant Orientation.
19:

20: for i = 0 to 2 ∗ π do
21: for n = 0 to Count do
22: sumX + = responses[n].x
23: sumY + = responses[n].y
24: Orientation = getangle(sumX; sumY)
25: end for
26: end for
27: InterestPoint.orientation = Orientation
28: end function

In this step, a square region which is divided into sixteen sub-squares is considered
around the center of every interest point. This square is aligned along the orientation
computed in previous step. Every sub-square is sampled at twenty �ve (5× 5) regularly
spaced points. Like in the previous step, Haar-x and Haar-y wavelet responses are com-
puted at every 25 points within a sub-square. These responses are then applied with
Gaussian weights. From every sub-square region, four vectors - two in x (dx, |dx|) and
two in y (dy, |dy|) co-ordinates are computed. The summation of all the four values
from all the 25 samples gives rise to four vectors (v = (

∑
dx,

∑
|dx|,

∑
dy,

∑
|dy|)) from

one sub-square. So, from the entire square region, which has 16 sub-squares there are
16× 4 = 64 values which forms the description of an interest point. This is as shown in
Figure 3.5 and Algorithm 5.

3.1. THE SURF ALGORITHM 35

Algorithm 5 Algorithm used to compute the Key-Point Description.

1: function CalculateDescription(InterestPoints)
2: The Outer While Loop selects one of the 16 sub-squares
3: while i < 16 do
4: while j < 16 do
5: The Inner For Loops are used to get 25 samples within a sub-square
6: for k = 0 to 25 do
7: for l = 0 to 25 do
8: //GettheCo− ordinatesofrotatedsquare
9: //Co− ordinatex;Co− ordinatey
10: //GettheHaarxandHaaryresponses
11: dx = Haarx ∗ gauss
12: dy = Haary ∗ gauss
13: adx = abs(Haarx) ∗ gauss
14: ady = abs(Haary) ∗ gauss
15: end for
16: end for
17: InterestPoints.descriptor[count + +] = dx
18: InterestPoints.descriptor[count + +] = dy
19: InterestPoints.descriptor[count + +] = adx
20: InterestPoints.descriptor[count + +] = ady
21:

22: i++
23: j++
24: end while
25: end while
26: end function

3.1.2 Processing time

The SURF feature extraction algorithm implemented according to the description in the
previous section is tested to �nd out processing time needed to compute features from
two sets of images. The images of the �rst set are of 640× 480 pixels dimension and the
images from second set are 320× 240 pixels variants of the same images in the �rst set.
These images are borrowed from Section 2.8. The system considered for these tests is
once again, a Linux/Pentium 4 system1. Figure 3.6(a) shows the number of Key-Points
extracted from both sets of images and Figure 3.6(b) shows the processing time needed
by the algorithm to compute those features.

The trend shown by the algorithm in extracting Key-Points and also the processing
time needed from both variants of image sets is similar. Higher the number of Key-Points
extracted, greater the time consumed.

The previous section ended with results from SURF implementation. The processing
time measured are on a desktop system, which is far more superior in terms of resources,

1Intel Pentium 4 CPU 2.80GHz, 1.49GB RAM.

36 CHAPTER 3. THE ALGORITHM IMPLEMENTATION AND OPTIMIZATION

(a) Number of SURF features extracted. (b) Processing time needed by SURF to extract
features.

Figure 3.6: SURF Key-Points extracted from two sets of 22 images.

when compared to the embedded platform - i.MX515EVK on which the algorithm will
�nally run. The �rst attempt to optimize the algorithm is carried out in this section.

3.1.3 Optimization 1: Algorithm Optimization

The study on Scale-Space in the earlier sections showed that a Scale-Space is divided into
several Octaves and each Octave in turn is a collection of several intervals. Two important
factors start to increase across the intervals and Octaves -(a) Filter sizes - As and how
the number of intervals increase, the �lter sizes also increases and (b) Sampling-Step - To
achieve a step-pyramid like shape of Scale-Space, the Sampling-Step value is increased by
a factor of 2 for every Octave. From Bay et al [19], the authors of SURF, it seems that,
in their implementation they have used 4 Octaves and 4 intervals i.e., 4×4 = 16 intervals
and Sampling-Step starts from 2 and ends at 16, i.e., Sampling − Step = [2; 4; 8; 16],
which means that in the �rst Octave where Sampling-Step is 2, the box �lters are moved
to every alternate pixel (From left to right), in the second Octave where Sampling-Step
is 4, the box �lters are moved to every 4th pixel and so on for the rest of the Octaves.
It was observed during the study conducted in this project that, fewer number of Key-
Points are extracted from higher Octaves. This phenomenon of decreasing number of
Key-Points towards the higher Octaves can be attributed to increasing �lter sizes and
increasing Sampling-Step values. Both of these factors accelerate the movement of the
�lters to the end of the image. Which implies that, fewer computations are carried out
in higher Octaves, this is precisely the reason why the number of Key-Points extracted
from higher Octaves decrease sharply. This is demonstrated in Figure 3.7(a) which shows
how the Key-Points extracted from previous steps are distributed across 4 Octaves; out
of 2878 Key-Points extracted from the �rst set of images, 80% of the points, i.e., 2301
points are extracted from �rst and second Octaves. Similarly, Figure 3.7(b) shows that,
out of 937 points extracted from the second set of images, 82% of the points, i.e., 766
points are extracted from �rst and second Octaves. On the basis of these results, in this

3.1. THE SURF ALGORITHM 37

SURF implementation, instead of going in a conventional way of computing four Octaves,
only �rst two Octaves are considered for computation. The impact on processing time
due to this optimization is the reduction of the processing time between 40 - 90 ms as
shown in Figure 3.8.

(a) Key-Points extracted from �rst set of images.
Eighty percent of the points were extracted from
�rst two Octaves.

(b) Key-Points extracted from second set of im-
ages. Eighty two percent of the points were
extracted from �rst two Octaves.

Figure 3.7: Distribution of SURF Key-Points extracted from two sets of 22 images
across four Octaves.

Figure 3.8: Comparison showing the time di�erence between SURF with 4 Octaves and
SURF with only �rst 2 Octaves. Optimization 1 has decreased the processing time
between 40 - 90 ms.

Once again it is worth repeating an important point, the improvement in process-
ing time of SURF achieved by optimization, can prove to be a lot more signi�cant on
the i.MX515EVK platform. In the following section, where the Hardware platform -

38 CHAPTER 3. THE ALGORITHM IMPLEMENTATION AND OPTIMIZATION

i.MX515EVK is introduced, the contribution of this optimisation to the processing time
is once again measured.

3.2 Conclusion

The focus of this chapter was on the implementation and optimization of the SURF
algorithm. The optimization carried out in this chapter was based on the study conducted
in this project. Observing the results of that study it was realized that, out of a given
number of Key-Points extracted from an image, it was found that the �rst two Octaves
are responsible for extracting more than 80% of the Key-Points. The reason for this
sudden reduction in the number of Key-Points was also found out. The SURF algorithm
is designed have larger �lters and higher stepping values in higher Octaves, the reduction
in the number of Key-Points can be attributed to such large �lter sizes and stepping
values, both of which are responsible for accelerating the movement of the �lters to the
end of the image, which implies that fewer computations are carried out in the higher
Octaves. Therefore, a decision was made in this project to modify the algorithm to not
compute Key-points in the higher Octaves.

An obvious outcome in cutting down on the number of computations carried out is
an improvement in processing time (40 - 90ms)2, however, a hidden bene�t from this
approach is an improvement in both static and runtime memory requirements, and also
lowering the power utilization of the application.

The speed up achieved here can be seen as quite signi�cant when the algorithm is run-
ning on the i.MX515EVK. The details of the implementation of SURF for i.MX515EVK
is explained in the next chapter. Where once again measurements are conducted to �nd
out the impact of Optimization 1 in that environment.

2On an system with Intel Pentium 4 CPU 2.80GHz, 1.49GB RAM.

Hardware Platform: i.MX515

Evaluation Kit 4
In the previous chapter SURF was implemented and the �rst optimization was carried

out on the algorithm. This chapter covers the details of i.MX515EVK embedded platform
and how the processor's resources, especially the SIMD unit is e�ciently used to improve
the processing time of SURF_ARM_NEON.

The Embedded Platform - Freescale's i.MX515 Evaluation Kit (i.MX515EVK)
is the platform on which the �nal real-time object identi�cation application is intended
to run on. The block diagram of the evaluation kit is as shown in Figure 3.1. This EVK
runs on Linux OS (Ubuntu distribution) with supporting Linux Board Support Packages
(BSP) developed and provided by Freescale.

Some of the important features 1 of this platform, which are relevant to this project
are listed below:

• CPU: Freescale's i.MX515 at a clock speed of 800 MHz.

• Memory: 512 MB DDR-RAM.

• For the entire list of peripherals refer to Appendix B: i.MX515EVK Details 7.2.

Figure 4.1: A block diagram of Freescale's i.MX515 evaluation kit.

1For the functional block diagram of the i.MX515EVK refer to Appendix B: i.MX515EVK Details.

39

40 CHAPTER 4. HARDWARE PLATFORM: I.MX515 EVALUATION KIT

Figure 4.2: Functional block diagram of i.MX515 Processor, borrowed from the
Freescale's i.MX515 web page.

4.1 Fresscale's i.MX515 Processor

The i.MX515 is a Multimedia Processor which is one of Freescale's latest additions
to their growing multimedia-focused products; o�ering a High Processing Performance,
at a very low power consumption which can be attributed to the core of this processor,
the ARM Cortex-A8.

The functional block diagram of the i.MX515 processor, which shows the implemen-
tation details of the ARM Cortex-A8 processor and other co-processors are as shown in
Figure 3.2.

The processor is suitable for applications such as:

• Netbooks

• Handheld devices such as

� Portable Media Devices

� Smart Phones

� Navigation Devices

• Gaming consoles

4.2. ARM CORTEX-A8 PROCESSOR 41

4.2 ARM Cortex-A8 Processor

The ARM architecture was originally developed by Acorn Computers in 1985. The
ARM Core is built on a RISC architecture philosophy, which is aimed at delivering
simple and yet powerful instructions that complete execution within a single clock cycle.
The ARM processor has been speci�cally designed to be small in order to reduce power
consumption and extend battery operation, this is one of the main reasons which makes
it a favourite amongst handheld device manufacturers. As of 2007, more than 90% of all
mobile handsets shipped contained ARM Processors. Many of the top semiconductors
manufacturing companies around the world produce products based on ARM processors,
which are used in various applications, such as Mobile Phones, Net Books, Digital TVs,
Set-Top boxes, Automotive entertainment[32] [33].

The ARM Cortex-A8 core is a 32-bit, dual-issue, in-order type processor, with dy-
namic branch predictor.

Some of the key features of this processor are listed below.

• It operates at a Clock Speed of 800Mz.

• 32 KB Instruction and Data Caches.

• A uni�ed 256 KB L2 Cache

• A Vector Floating Point Unit (VFP)

• A SIMD unit called NEON

• Instruction Set Architecture (ISA) support

� ARM - For Cortex-A8 processor, ARM instruction set provides the de�nitive
and complete 32-bit instructions, using this instruction set gives best results
in terms of performance.

� Thumb - The Thumb instruction set is an extension to the 32-bit ARM ar-
chitecture and it is used to obtain a high code density. It is a subset of the
most commonly used 32-bit ARM instructions which have been compressed
into 16-bit wide operation codes. These 16-bit instructions when decoded
eventually enable the same functions as their 32-bit ARM instruction equiv-
alents. This instruction set was primarily introduced to cater such situations
where program memory is a constraint. Compared to full ARM up to 30 per-
cent code size reduction is achieved, however what is achieved in low system
memory use, is lost in performance [34].

� Thumb2 - The Thumb2 is a superset of Thumb instruction set. Several, new
16-bit instructions were introduced into Thumb2, but the speciality of Thumb2
lies in the new 32-bit instructions introduced, which were once again derived
from ARM instructions. Although the performance is not completely at the
level of pure ARM instructions, it is de�nitely better than Thumb instructions
[3]. A comparison of code density and performance achieved by using all three
instruction sets is presented in Figure 4.3.

42 CHAPTER 4. HARDWARE PLATFORM: I.MX515 EVALUATION KIT

Figure 4.3: Comparison between code density and performance achieved using ARM,
Thumb and Thumb2, from [3].

� VFPv3 Floating Point - These instructions are used to program the Vector
Floating Point Unit (vfpv3). In simple words vfpv3 is a �oating point hard-
ware accelerator. The purpose of VFP is to speed up half, single and double
precision �oating point operations. The name Vector here is a misnomer, the
VFP actually has no parallel architecture. It performs one operation on one
set of inputs and returns one output.

� NEON - These instructions are used to program NEON - the SIMD unit of
the Cortex-A8 processor. This is a true vector processor. Programs targeted
to NEON can be written directly in Assembly or by making use of NEON
Intrinsics, which are a C wrapper around assembly instructions. Some of the
powerful NEON instructions are used extensively to program critical parts of
the SURF algorithm implementation of this project.

The 13 stage Integer pipeline and 10 stage NEON pipeline view of ARM
Cortex-A8 is as given in Figure 4.4.

Figure 4.4: Functional block diagram of i.MX515 Processor, from the Freescale's
i.MX515 web page.

4.3. SURF ALGORITHM FOR ARM CORTEX-A8 PROCESSOR 43

4.2.1 Development Tools

The development tools used in this project were from the GNU tool chain.

• GCC 4.4.1

• GNU Binutils

� as

� ld

� gprof

� objdump

• GNU make

4.3 SURF Algorithm for ARM Cortex-A8 Processor

This section starts of by explaining how SURF algorithm is built for ARM Cortex-A8
processor and then the focus is entirely devoted to its optimizations. Optimization tech-
niques are successively applied to eventually push the algorithm to reach to an optimum
state, suitable to be used for a real-time object identi�cation application.

Because of a full �edged operating system such as Ubuntu 9.10 running on
i.MX515EVK, software building process was carried out directly on i.MX515EVK rather
than using expensive Cross Compilers on a host system. By making use of the devel-
opment tools mentioned in previous section, SURF Key-Points extraction algorithm was
built for ARM Cortex-A8 processor, from hence forth this version of SURF is referred to
as SURF_ARM.

The compiler options provided to gcc compiler to build SURF_ARM are as given
below:

gcc -O3 −mcpu = cortex-a8 -marm −mfloat− abi = softfp −mfpu = vfpv3

Where,

• −O3: Flag which indicates gcc to carry out the highest level of code optimizations,
for the entire list of optimizations carried out here, refer to gcc 4.4.1 manual.

• −mcpu: It is the name of the CPU, i.e., cortex-a8 in this case.

• −marm: It is used to indicate to the compiler to emit ARM instructions.

• −mfloat−abi: softfp used here allows the generation of code for hardware �oating-
point unit.

• −mfpu: vfpv3 is to indicate to the compiler to make use of VFPv3 for �oating
point operations.

44 CHAPTER 4. HARDWARE PLATFORM: I.MX515 EVALUATION KIT

4.3.1 Processing Time needed to compute Key-Points using
SURF_ARM

To get a perspective on where processing time2 needed by SURF_ARM stands, the
two sets of images used in time measurement tests of section 3.1.2 are used to measure
the processing time on i.MX515EVK, as shown in Figure 4.5. For 640×480 sized images,
optimized SURF_ARM takes between 1.1 - 1.57 seconds to process and for 320 × 240
sized images, it takes between 0.48 - 0.66 seconds.

Observing the processing time needed for both sets it is clear that achieving a good
frame rate in the real-time object identi�cation is an up hill task and the implementation
of SURF_ARM has to go through a lot of optimizations.

Unlike the algorithm optimization carried out in Optimization 1 (Section: 3.1.3),
optimizations carried out from henceforth are not on algorithm, they are rather on the
way SURF_ARM is implemented by making the best use of the processor capabilities.

(a) For a set of twenty two, 640× 480 sized im-
ages, Optimization 1 has brought down between
80 - 280 ms of processing time.

(b) For a set of twenty two, 320× 240 sized im-
ages, Optimization 1 has brought down between
20 - 100 ms of processing time.

Figure 4.5: Processing time needed to compute Key-Points using SURF_ARM . It
also shows a di�erence between SURF_ARM with 4 Octaves and SURF_ARM with
only �rst 2 Octaves.

4.3.2 Optimization 2: Make use of NEON

This section covers details about optimizations carried out on SURF_ARM by making
use of NEON - the SIMD co-processor of the Cortex-A8 processor.

4.3.3 NEON

Single InstructionMultiple Data (SIMD) computers are such computers where multiple
processing elements execute the same instruction while processing distinct data elements.

2The time durations between the start and the end of computing Key-Points are measured using
gettimeofday() function.

4.3. SURF ALGORITHM FOR ARM CORTEX-A8 PROCESSOR 45

SIMD is one of the four classes in the taxonomy of computer design as proposed by Flynn,
the others being SISD, MISD, and MIMD. Multimedia and digital signal processing
applications typically spend signi�cant portions of their execution time in loops applying
same arithmetic and logical operations on a large chunk of 8-bits or 16-bits datatypes
and such cases are classic situations where data level parallelism can be exploited. In
a SIMD processor this is achieved by packing several such small data elements into its
registers and a common operation is then applied on the registers as shown in Figure
4.6. The data elements could be of 8-bits, 16-bits, and 32-bits in length and the SIMD
registers into which they are packed could be of 32-bits, 64-bits, and 128-bits in length.

Figure 4.6: Pictorial representation of a SIMD processor operating on 2 registers.

NEON is a SIMD processor integrated with the ARM Cortex-A8 processor. It
contains 32 64-bit registers as shown in �gure and the NEON unit can view same register
bank in two views as shown in Figure 4.7:

• Sixteen 128-bit quadword registers, Q0-Q15.

• Thirty-two 64-bit doubleword registers, D0-D31.

The NEON instructions support 8-bit, 16-bit, 32-bit, and 64-bit signed and unsigned
integers. It also supports 32-bit single precession �oating point values.

4.3.4 Methods available to program NEON

Three methods are currently available to program NEON as follows -

1. Using gcc Flags for Auto Vectorization

The �rst attempt made to vectorize the SURF_ARM was to use compiler's - gcc, au-
tomatic vectorization option. To do this, the compile line used to compile the source
code appeared like this -

gcc -O3 −mcpu = cortex-a8 -marm −mfpu = neon − ftree− vectorize

46 CHAPTER 4. HARDWARE PLATFORM: I.MX515 EVALUATION KIT

Figure 4.7: Two views of NEON's 32 64-bit registers.

In the above line, �rst of all, the compiler needs to be told to use NEON (−mfpu =
neon), then by passing the �ag −ftree−vectorize we ask the compiler to auto vectorize
the code. However, in this project it was observed that gcc 4.4.1 is not matured enough
to vectorize any portions of SURF_ARM for NEON at all.

To test gcc, Matrix Multiplication, one of the best candidates which can be vector-
ized and also one of the most frequently used operations in Non-Maximum Suppression
(Algorithm: 3) of SURF_ARM was compiled using the auto-vectorization �ags. Upon
comparing the resulting disassembled code with regular non-NEON, −mfpu = vfpv3
code it was found that there was no di�erence at all between the two (For a detailed
look at the disassembled views refer to Appendix C: NEON Tests 7.3.) Several, potential
candidates, such as - parts of Matrix Inverse computation, Integral Image computation,
and SURF Descriptor generation, which can be hand vectorized were given to gcc and in
all of those cases gcc failed to generate NEON code.

2. Using Assembly

Using Assembly, is a direct way of programming NEON. The GNU assembling tool - as
can be directly provided with ARM assembly code and it generates the object code for

4.3. SURF ALGORITHM FOR ARM CORTEX-A8 PROCESSOR 47

NEON.

An example assembly code for NEON, which loads a set of four consecutive 32-bit
values from memory into q0 register and four more 32 bit values from consecutive memory
locations into q1 register, then adds the contents of both registers and stores the results
back into memory is as shown below.

1 . t ex t
2 . g l oba l _do_it4_again
3
4 _do_it4_again :
5 # r0 : Po inter to X Co−o rd ina t e s
6 # r1 : Po inter to Y Co−o rd ina t e s
7 # r2 : Po inter to the r e s u l t
8 push {r4−r7 , l r }
9
10 vld1 .32 {q0 } , [r0]
11 vld1 .32 {q1 } , [r1]
12 vadd .32 q0 , q0 , q1
13 vst1 . 32 [r2] , q0
14
15 pop {r4−r5 , pc }

3. Using NEON Intrinsics

NEON Intrinsics are a C wrapper around NEON assembly instructions. Intrinsics are
the easiest way in which NEON can be programmed. Unlike while using assembly in-
structions, using intrinsics can ease the developer from issues such as register allocation
and interlock. The example given below shows how NEON intrinsic can be used.

1 f loat32x4_t vAddition (f loat32x4_t input)
2 {
3 return (vaddq_f32 (input , input)) ;
4 }

Where, �oat32x4_t is the vector which is of 128-bits wide type, having 4 individual
�oat values and vaddq_f32 is the NEON addition intrinsic to add 2 �oat32x4_t type
values.

4.3.5 SURF_ARM pro�ling

In this section SURF_ARM is pro�led on i.MX515EVK to �nd out in which parts of
SURF_ARM does the processor spend most of its time. This is an in depth analysis of
SURF_ARM carried out to �nd potential areas for improvement.

Pro�ling is carried out using GNU's pro�ling tool gprof (Refer to -pg option in GCC).
An excerpt of gprof pro�ler report, which shows the most Processing-Time consuming
functions is given in Table 4.1. The complete pro�ler report is in Appendix D: Pro�ler
Report (7.4). This report was generated when SURF_ARM extracted 129 Key-Points
from a 640× 480 dimension image.

48 CHAPTER 4. HARDWARE PLATFORM: I.MX515 EVALUATION KIT

Function Name Time Spent (%) Calls
BoxFilterCompute() 69.24 3,383,284

BuildDescriptor() 12.89 129

BuildResponseLayers() 11.11 1

IntegralImageCompute() 2.78 1

MatrixInverseMultiply() 2.57 146

GetOrientation() 1.43 129

Table 4.1: An excerpt of gprof report, when SURF_ARM was given a 640× 480 sized
image as input.

4.3.6 Candidates chosen for Vectorization

On the basis of the pro�ler report, the candidates chosen for vectorization are BuildDe-
scriptor(), IntegralImageCompute(), and MatrixInverseMultiply(). The BoxFilterCom-
pute() as such is a very simple function, the amount of time spent is maximum there
because of the very high number of calls made to it from BoxScaleSpace().

1. Box Filtering using NEON

The signi�cance of box �ltering and how it brings down the computation time of SURF
in general was learnt from previous chapters. Looking at the pro�ler report generated in
the previous section it is clear that, during the execution of SURF_ARM, the function
- BoxFilterCompute() was called the highest number of times and the processor spends
maximum amount of its time in that function.

In this section, an innovative method, which involves NEON is explored to compute
box �lter responses more e�ciently, which optimizes SURF_ARM implementation.

1 f loat BoxFilterCompute (int row , int co l , unsigned int num_rows , unsigned

int num_cols)
2 {
3 f loat area = 0 ;
4
5 // Compute the Co−Ordinates o f A, B, C and D
6 int temp_row = row + num_rows ;
7 int temp_col = co l + num_cols ;
8
9 int r1 = row − 1 ;
10 int r2 = temp_row − 1 ;
11
12 int c1 = co l − 1 ;
13 int c2 = temp_col − 1 ;
14
15 // Compute Box F i l t e r Response . area = A − B − C + D
16
17 area = integra l_image [r1] [c1] − integra l_image [r1] [c2] − integra l_image [

r2] [c1] + integra l_image [r2] [c2] ;
18
19 return area ;

4.3. SURF ALGORITHM FOR ARM CORTEX-A8 PROCESSOR 49

20 }

While computing Key-Points, box �lters are used in three distinct steps of
SURF_ARM (a) Building Scale-Space (b) Orientation Assignment, and (c) Building
Descriptor. For an image of given dimensions, out of these three steps, the Scale-Space
building is a constant and never changing step, so the number of BoxFilterCom-
pute() function calls from within Scale-Space building is always a constant number.
Where as, when it comes to the other two steps, the number of BoxFilterCompute() calls
are dependent on the content of a given image, i.e., the number of feature points
localized and not on image dimensions.

The distribution of BoxFilterCompute() function calls for two images of 640× 480
and two images of 320× 240 dimensions, is as given below in Table 4.2.

Image Dimension Features Total Calls
Building
Scale-Space

Orientation
Assignment
and Descriptor
building

1 640× 480 129 3,383,284 2,658,304 724,980

2 640× 480 153 3,518,164 2,658,304 859,860

1 320× 240 44 816,624 569,344 247,280

2 320× 240 54 872,824 569,344 303,480

Table 4.2: Distribution of BoxFilterCompute() function calls across three steps of
SURF_ARM.

The sheer number of times box �ltering is called makes it the most time con-
suming function and the only way any performance enhancement can be brought to
the SURF_ARM implementation is by cutting down the number of calls made to that
function, which can be achieved using NEON.

The BoxFilterCompute() function is a very simple function as shown below, it can be
used to compute response of the box region(blue) as shown in Figure 4.8.

Figure 4.8: Pictorial representation of computing box(Blue) response, computed using
Integral Image.

50 CHAPTER 4. HARDWARE PLATFORM: I.MX515 EVALUATION KIT

NEON Instructions suitable for performing box �ltering

To vectorize some of the redundant DSP operations, NEON has some very e�ective
instructions in its instructions set. One best example of a redundant DSP operation in
image processing is a Color to Grayscale conversion. Color to Grayscale conversion
is a simple and straight forward step as shown in Figure 4.9, but carrying out in a
serial fashion can be very time consuming, in the event of an availability of a vector
processor with large width registers (32-bits, 64-bits or 128-bits) and good instructions,
COLOR to GRAYSCALE conversion can be carried out at a faster rate. The NEON
SIMD processor has 128-bit registers and it has just the right kind of instructions -
interleaving loads/stores, which can be used to convert 8 RGB → GRAY SCALE
pixels, simultaneously.

Figure 4.9: A pictorial representation of a 24-bit Color to Grayscale image conver-
sion. The constants used to multiply R, G and B values are standard values used in
RGB → GRAY SCALE conversion.

The instruction vld3.u8 can be used to load pixel information, located at every third
memory locations, in this example R, G, and B values, into three separate NEON regis-
ters, which gives a freedom to operate upon individual registers, here they are multiplied
with R, G and B multiplying factors, respectively.

Although these concepts were added to NEON with the intention to solve redundant
DSP related functions, in case of SURF_ARM they can be adopted to compute
several box �lter responses simultaneously.

In NEON, 4 interleaving load/store instructions are available, which are:

• No interleaving load/store instructions - They are used to load/store data
from/to consecutive memory locations, e.g., vld1.32, vld1.16, vld1.8, vst1.32 etc.

• Alternate interleaving load/store instructions - They are used to load/store
data from/to every alternate memory locations, e.g., vld2.32, vld2.16, vst2.32, etc.

4.3. SURF ALGORITHM FOR ARM CORTEX-A8 PROCESSOR 51

• Every third interleaving load/store instructions - They are used to load/store
data from/to every third memory locations e.g., vld3.32, vld3.16, vst3.32, etc.

• Every forth interleaving load/store instructions - They are used to load/store
data from/to every forth memory locations e.g., vld4.32, vld4.16, vst4.32, etc.

(a) By using NEON's interleave instruction
vld3.u8. pixel values at every third memory lo-
cations were loaded into three separate 128-bits
wide NEON registers.

(b) The three NEON registers having individual
color values are multiplied with three multiplica-
tion factors, which will then be added together to
get 8 Grayscale values.

Figure 4.10: Figure depicting how NEON registers and interleaving instructions can be
used to perform RGB → GRAY SCALE conversion of 8 pixels.

To compute box �lter responses, it is important to recollect that at the end of Op-
timization 1 (Section: 3.1.3) it was decided that as only 2 Octaves are responsible for
computing more than 80 percent of interest points, the last two octaves were dropped
from computation. In Octaves 1 and 2 the Scaling Down values chosen for �rst and
second Octaves were 2 and 4, respectively, i.e., while computing Octave 1 the box �lters
are moved to every alternate position of integral image, as shown in Figure 4.11(a) and
while computing Octave 2 the box �lters are moved to every 4th position of integral
image, as shown in Figure 4.11(b).

52 CHAPTER 4. HARDWARE PLATFORM: I.MX515 EVALUATION KIT

(a) In Octave 1, box �lters are moved to every
alternate position of Integral Image.

(b) In Octave 2, box �lters are moved to every
4th position of Integral Image.

Figure 4.11: Pictorial representation of how box �lters are positioned and moved in
Octave 1 and Octave 2.

Registers used to store the values

Box �lter responses are computed using integral image and the integral image has data of
32-bits �oating point values and because the largest register size in NEON is 128 bits wide
(Q registers 4.7), 4 32-bits integral image data values can be loaded into these registers,
which in turn implies that 4 box �lter responses can be computed simultaneously, as
shown in Figure 4.12.

Instructions used to compute the responses

Due to two unique scaling values used in Octave 1 and Ocatve 2, to compute box �lter
responses in Octave 1 the vld2. and vst2. variant interleaving instructions are used and
in Octave 2 vld4. and vst4. variant interleaving instructions are used. The C code with
NEON intrinsics which is used to implement this is as given below and a representation
of it is as shown in Figure 4.12.

1 f loat32x4_t BoxFilterCompute (int row , int co l , int num_rows , int num_cols ,
unsigned int step_size , f loat three , int r , int c)

2 {
3
4 int temp_row = row + num_rows ;
5 int temp_col = co l + num_cols ;
6
7 int r1 = row − 1 ;
8 int r2 = temp_row − 1 ;
9 int c1 = co l − 1 ;
10 int c2 = temp_col − 1 ;
11
12 f loat32x4_t v128_areas ;
13
14 f loat32_t * t l = NULL;

4.3. SURF ALGORITHM FOR ARM CORTEX-A8 PROCESSOR 53

15 f loat32_t * t r = NULL;
16 f loat32_t * bl = NULL;
17 f loat32_t *br = NULL;
18
19 t l = (f l oat32_t *) integra l_image [r1] + c1 ;
20 t r = (f loat32_t *) integra l_image [r1] + c2 ;
21 b l = (f loat32_t *) integra l_image [r2] + c1 ;
22 br = (f l oat32_t *) integra l_image [r2] + c2 ;
23
24 struct box_input_structure box_f i l t e r_va r i ab l e s ;
25
26 switch (s t ep_s i ze) {
27 case 2 :
28
29 box_f i l t e r_va r i ab l e s . ptr1 = t l ;
30 box_f i l t e r_va r i ab l e s . ptr2 = t r ;
31 box_f i l t e r_va r i ab l e s . ptr3 = bl ;
32 box_f i l t e r_va r i ab l e s . ptr4 = br ;
33
34 v128_areas = do_it2 (t l , tr , bl , br , r , c) ;
35
36 break ;
37 case 4 :
38
39 box_f i l t e r_va r i ab l e s . ptr1 = t l ;
40 box_f i l t e r_va r i ab l e s . ptr2 = t r ;
41 box_f i l t e r_va r i ab l e s . ptr3 = bl ;
42 box_f i l t e r_va r i ab l e s . ptr4 = br ;
43
44 _do_it4_asm(&box_f i l t e r_var i ab l e s , &v128_areas) ;
45
46 break ;
47 }
48
49 stat ic int x =0 ;
50
51 i f (three == 3 . 0)
52 {
53 f loat32x4_t v128_three = vdupq_n_f32 (3 . 0) ;
54 v128_areas = vmulq_f32 (v128_areas , v128_three) ;
55
56 }
57 return v128_areas ;
58
59 }
60 stat ic i n l i n e f loat32x4_t do_it2 (f l oat32_t * t l , f l oa t32_t * tr , f l oat32_t *

bl , f l oat32_t * br , int r , int c) {
61 f loat32x4x2_t top_le f t , top_right , bottom_left , bottom_right ;
62 f loat32x4_t A, B, C;
63
64 top_le f t = vld2q_f32 (t l) ;
65 top_right = vld2q_f32 (t r) ;
66 bottom_left = vld2q_f32 (b l) ;
67 bottom_right = vld2q_f32 (br) ;
68

54 CHAPTER 4. HARDWARE PLATFORM: I.MX515 EVALUATION KIT

69 A = vsubq_f32 (* top_le f t . val , * top_right . va l) ;
70 B = vsubq_f32 (A, *bottom_left . va l) ;
71 C = vaddq_f32 (B, *bottom_right . va l) ;
72
73 return C;
74 }
75
76 stat ic i n l i n e f loat32x4_t do_it4 (f l oat32_t * t l , f l oa t32_t * tr , f l oat32_t *

bl , f l oat32_t *br , int r , int c) {
77 f loat32x4x4_t top_le f t , top_right , bottom_left , bottom_right ;
78 f loat32x4_t A, B, C;
79
80 top_le f t = vld4q_f32 (t l) ;
81 top_right = vld4q_f32 (t r) ;
82 bottom_left = vld4q_f32 (b l) ;
83 bottom_right = vld4q_f32 (br) ;
84
85 A = vsubq_f32 (* top_le f t . val , * top_right . va l) ;
86 B = vsubq_f32 (A, *bottom_left . va l) ;
87 C = vaddq_f32 (B, *bottom_right . va l) ;
88
89 return C;
90 }

Figure 4.12: Pictorial representation of how 4 box �lter responses are computed si-
multaneously.

4.3. SURF ALGORITHM FOR ARM CORTEX-A8 PROCESSOR 55

Image Dimension Building Scale-Space

Orientation
Assignment
and Descriptor
building

Total

1 640× 480 845,821 724,980 1,570,801

2 640× 480 845,821 859,860 1,705,681

1 320× 240 142,336 247,280 445,816

2 320× 240 142,336 303,480 389,616

Table 4.3: Distribution of BoxFilterCompute() function calls after vectorization us-
ing NEON, across three steps of SURF_ARM. The BoxFilterCompute() function calls
within building Scale-Space is brought down by 4 times.

With this optimization step the number of calls made to BoxFilterCom-
pute() have been brought down by 4 times. The new number of calls made to
BoxFilterCompute() are as shown in Table 4.3.

2. Integral Image computation using NEON

The next potential candidate for vectorization is Integral Image computation. Using
NEON to compute Integral Image is not a straight forward step, the code written to
compute an Integral Image has to be a combination of ARM and NEON instructions,
the reason for this is the need for changing datatypes.

Building an Integral Image is the �rst and foremost step of SURF algorithm. The
equation to build an integral image is as given in equation 2.1.1.

In simple words, every pixel of an integral image is a sum of pixel data at the corre-
sponding position of the input image and all pixel values above and to the left of that
position. The pixel data of input image is represented by 256 colors (8-bits), which means
that the integral image value at position (0, 0) is same as the input image pixel value at
position (0, 0), which could be a value between (0 − 255) (represented by 8-bits). How-
ever, the integral image value at position (1, 1) is a summation of all the pixel values of
input image at (0, 0), (0, 1), (1, 0) and (1, 1). Depending on pixel values at those posi-
tions the resulting value of the summation could be larger than (0− 255), which can't be
represented by using only 8-bits. If all the pixel values of input image with dimensions
(640 × 480) are white (value 255), then the value at position (639, 479) of the integral
image will be a summation of all the pixel values of input image, which is 78,336,000 and
this value can only be represented using 32-bit datatype.

In situations where datatypes need to be changed, such as the one explained above,
NEON processor cannot be used e�ectively. There should be an intermediate step which
makes the datatypes homogeneous, this intermediate step steals away some performance.
There are few NEON datatype conversion instructions available, but they are designed
only to handle FloatingPoint↔ FixedPoint datatype conversions -

• �oat32x2_t vcvt_f32_u32(uint32x2_t)

56 CHAPTER 4. HARDWARE PLATFORM: I.MX515 EVALUATION KIT

• int32x4_t vcvtq_s32_f32 (�oat32x4_t)

The C code used to compute Integral Image is as given below;

1
2 #define PREFETCH_SIZE 64
3
4 void IntegralImageCompute (unsigned char * input_img)
5 {
6
7 // Var iab l e s used in computing the i n t e g r a l image
8 f loat pa r t i a l_ in t [IMAGE_HEIGHT] [IMAGE_WIDTH] ;
9
10 unsigned char image_data [PREFETCH_SIZE] ;
11 uint8x16_t vtemp128 ;
12
13 int i , j , p o s i t i o n = 0 ;
14
15 //*************Type convers ion us ing ARM******************

16
17 for (i =0; i<IMAGE_HEIGHT; i++)
18 {
19 po s i t i o n = i * IMAGE_WIDTH;
20 pa r t i a l_ in t [i] [0] = *(input_img + po s i t i o n) ;
21
22 for (j =1; j<IMAGE_WIDTH; j++)
23 {
24 po s i t i o n = i * IMAGE_WIDTH + j ;
25
26 //*************NEON Pre−f e t c h i n g **************
27 vtemp128 = vld1q_u8 ((input_img + (po s i t i o n))) ;
28 vst1q_u8 (image_data , vtemp128) ;
29
30 vtemp128 = vld1q_u8 ((input_img + (po s i t i o n + 16))) ;
31 vst1q_u8 (image_data+16, vtemp128) ;
32
33 vtemp128 = vld1q_u8 ((input_img + (po s i t i o n + 24))) ;
34 vst1q_u8 (image_data+24, vtemp128) ;
35
36 vtemp128 = vld1q_u8 ((input_img + (po s i t i o n + 32))) ;
37 vst1q_u8 (image_data+32, vtemp128) ;
38
39 for (k=0; k<PREFETCH_SIZE; k++)
40 {
41 pa r t i a l_ in t [i] [j] = pa r t i a l_ in t [i] [j − 1] + image_data [k] ;
42 j++;
43 }
44 }
45 }
46
47 //*******************NEON PART***************************
48
49 f loat32x4_t temp1 , temp2 , temp3 , temp4 ;
50
51 for (i =0; i <2; i++)
52 {

4.3. SURF ALGORITHM FOR ARM CORTEX-A8 PROCESSOR 57

53 for (j =0; j<IMAGE_WIDTH; j+=4)
54 {
55 i f (i == 1)
56 {
57 temp1 = vaddq_f32 (vld1q_f32 (integra l_image [i − 1] + j) , vld1q_f32 (

pa r t i a l_ in t [i] + j)) ;
58 vst1q_f32 (integra l_image [i] + j , temp1) ;
59 }
60 else

61 vst1q_f32 (integra l_image [0] + j , vld1q_f32 (pa r t i a l_ in t [0] + j)) ;
62 }
63 }
64
65 int NEW_HEIGHT = IMAGE_HEIGHT − 2 ;
66
67 for (i =2; i<NEW_HEIGHT; i+=4)
68 {
69 for (j =0; j<IMAGE_WIDTH; j+=4)
70 {
71 temp1 = vaddq_f32 (vld1q_f32 (integra l_image [i − 1] + j) , vld1q_f32 (

pa r t i a l_ in t [i] + j)) ;
72 vst1q_f32 (integra l_image [i] + j , temp1) ;
73
74 temp2 = vaddq_f32 (vld1q_f32 (integra l_image [i] + j) , vld1q_f32 (

pa r t i a l_ in t [i + 1] + j)) ;
75 vst1q_f32 (integra l_image [i + 1] + j , temp2) ;
76
77 temp3 = vaddq_f32 (vld1q_f32 (integra l_image [i + 1] + j) , vld1q_f32 (

pa r t i a l_ in t [i + 2] + j)) ;
78 vst1q_f32 (integra l_image [i + 2] + j , temp3) ;
79
80 temp4 = vaddq_f32 (vld1q_f32 (integra l_image [i + 2] + j) , vld1q_f32 (

pa r t i a l_ in t [i + 3] + j)) ;
81 vst1q_f32 (integra l_image [i + 3] + j , temp4) ;
82 }
83 }
84 }

Experiments show that Vectorization of Integral Image computation
brought down the computation time needed to build an Integral Image by
around 38ms.

3. Other Vectorized Parts

Other functions of SURF_ARM which were vectorized are as follows:

• BuildDescriptor(): A loop in the last part of Building Descriptor was optimized.
In SURF_ARM a series of 64 division operations had to be carried out, by making
use of NEON this number was brought down by 4 times. However, no change in
processing time was observed due to vectorization.

1 f loat32x4_t v128_temp_len = vdupq_n_f32 (1/ l en) ;
2 \\ Due to the absence o f any d i v i s i o n NEON in s t ru c t i on ,
3 \\ in s t ead o f d i v i s i o n by len , 1/ l en i s used for mu l t i p l i c a t i o n

58 CHAPTER 4. HARDWARE PLATFORM: I.MX515 EVALUATION KIT

4
5 int i_d ;
6
7 for (i_d = 0 ; i_d < DESCRIPTOR_SIZE; i_d+=4)
8 {
9
10 vst1q_f32 (d e s c r i p t o r + i_d , vmulq_f32 (vld1q_f32 (d e s c r i p t o r + i_d) ,

v128_temp_len)) ;
11
12 }

• MatrixInverseMultiply()

A 3 × 3 matrix multiplication was vectorized, once again there was no change
observed in processing time of matrix multiplication in SURF_ARM and
SURF_ARM_NEON.

1
2 i n l i n e void mat_inverse_and_multiple (f loat H[] [3] , f loat dD [] [1] ,

f loat r e s u l t [] [1])
3 {
4 f loat i n v e r s e [3] [3] ;
5 unsigned char i , j , k ;
6 i f (inverse_matr ix (H, i nv e r s e))
7 {
8
9 f loat32x4_t v128_result ;
10
11 v128_result = vmulq_n_f32 (vld1q_f32 (i nv e r s e [0]) , dD [0] [0]) ;
12 v128_result = vmlaq_n_f32 (v128_result , vld1q_f32 (i nv e r s e [1]) , dD

[1] [0]) ;
13 v128_result = vmlaq_n_f32 (v128_result , vld1q_f32 (i nv e r s e [2]) , dD

[2] [0]) ;
14
15 v128_result = vnegq_f32 (v128_result) ;
16
17 vst1q_f32 (r e su l t , v128_result) ;
18 }
19 }

4. Pre-fetching

Integral image computation is an excellent and only part of SURF algorithm where the
concept of pre-fetching data can be useful.

Over several decades now, Microprocessor performance has been improving dramat-
ically by many scales, however, over this period there has always been a disparity be-
tween the improvement in Microprocessor's performance and the main memory dynamic
RAM's performance. This di�erence is popularly known as �Processor-Memory Perfor-
mance Gap� as depicted in Figure 4.13. The impact of this performance di�erence is an
increase in processor's idle time waiting for memory to respond back with data. Several
techniques have been invented to over come this latency, at the hardware level Cache
Hierarchy is one such method, however, even in spite of having hierarchical caches there

4.3. SURF ALGORITHM FOR ARM CORTEX-A8 PROCESSOR 59

are still stalls in processing due to data unavailability. Fortunately this problem could
be over come by using a technique known as data pre-fetching.

Figure 4.13: Processor-Memory performance gap, borrowed from [4]

While computing an Integral Image it was explained, how due to datatype mismatch
between input data and �nal result NEON processor could not be used e�ectively and how
this was overcome by making use of ARM instructions and building data of homogeneous
datatype, which will then be used to build the Integral Image e�ectively using NEON.
During this �rst step of Integral Image building, input image pixel data accessing is
carried out sequentially, every time the processor needs the next pixel it has to fetch it.
This waiting period can be overcome by pre-fetching a large packet of pixels into the
memory hierarchy in one go.

Due to its sequential locality and due to large 128-bits registers of NEON and
16×4 = 64 bytes of input image pixel data are accessed into the memory hierarchy using
NEON.

Looking at the Cortex-A8's architecture diagram in Figure 4.4 it is clear that NEON
is logically located at the downstream of ARM. The sequence of events which go through
during pre-fetching process are:

• The compiler issues a stream of instructions, which is a mixture of NEON and
ARM instructions. When these instructions go through the ARM pipeline �rst,
the NEON instructions go untouched, while the ARM instructions start to �ll into
the ARM pipeline and wait for data fetch to happen.

• The stream of NEON instructions which come out of the ARM unit starts to �ll into
the instruction queue of the NEON unit and then go through the NEON pipeline.
Once the NEON pipeline is full, the �rst NEON instruction will be executed and
the �rst set of 16 pixels will be fetched into the memory hierarchy.

60 CHAPTER 4. HARDWARE PLATFORM: I.MX515 EVALUATION KIT

• When the �rst 16 pixels are fetched, the ARM unit will be free to use them to build
the partial integral image and the NEON is busy fetching the data, e�ectively, this
introduces parallel operations in time between ARM and NEON.

The experiments conducted in this section shows that Pre-fetching reduces
the Integral Image computation time by about 21ms.

From henceforth, the SURF_ARM version which has parts of it vectorized will be
referred to as SURF_ARM_NEON. The processing time di�erence measured between
the two versions while computing the Key-Points is as given below. For this test, once
again the same two sets of twenty-two images are considered, as in previous tests. From
the results as shown in Figure 4.14 it is clear that, by vectorizing parts of the algorithm
has improved the processing time needed for images of 640× 480 dimension by upto 33%
and for images of 320× 240 dimension by upto 46%.

(a) Processing time measured for images of di-
mensions 640 × 480. A gain of 21 - 33% was
achieved in processing time due to vectorization.

(b) Processing time measured for images of di-
mensions 320 × 240. A gain of 41 - 46% was
achieved in processing time due to vectorization.

Figure 4.14: A comparison showing the performance gain achieved by
SURF_ARM_NEON over SURF_ARM.

4.4 Conclusion

The focus of this chapter was on the implementation and optimization of the SURF
algorithm.

The reduction in number of computations carried out in Optimization 1 (Section
3.1.3) achieved a drop of 80 - 280 ms of processing time for a 640×480 sized image and
20 - 100 ms for a 320×240 sized image, when executed on the i.MX515EVK embedded
platform.

To meet the objective of this project, which is to extract SURF Key-Points at real-
time on an embedded system with limited resources, two strategies of optimizations were
applied on SURF implementation:

4.4. CONCLUSION 61

• Vectorizing Parts of SURF Algorithm - The second level of optimization was
on the basis of pro�ler report. From the report it was learnt that, nearly 75% of
SURF_ARM time was spent in computing Box-Filter responses. For an image from
which 129 Key-Points were extracted by SURF_ARM, the number of calls made to
BoxFilterCompute() function was 3,383,284 times. Just the sheer number of times
this function was called makes it a signi�cant contributor to processing time. Once
again by segregating the number of calls made to BoxFilterCompute() function, it
was found out that, for an image of 640 × 480 dimensions, from which 129 Key-
Points were extracted, 2,658,304 number of calls were made to BoxFilterCompute()
function while building the Scale-Space. By making use of NEON uniquely in
this situation, the number of calls made to BoxFilterCompute() while building
Scale-Space, were dropped by 4 times i.e., from 2,658,304 to 845,821. The �nal
SURF_ARM_NEON implementation takes only (a) 980ms to extract 199 features
for 640× 480 dimension images and (b) 350ms to extract 75 features for 320× 240
dimension images.

• Pre-fetching Data - While computing Integral Image the sequential locality of
image data can be exploited to pre-fetch 64 bytes of image pixel data in one trans-
action and while the ARM processor is busy using this pixel data, NEON will be
busy fetching the data. This helps in overcoming memory latency. Pre-fetching
image data brought down around 21ms of processing time of the Integral Image
computation.

The new processing time achieved due to vectorization will indeed be su�-
cient to compute SURF Key-Points from images with 320×240 dimensions at
real-time, at a frame rate of about 3 frames per second. The following chapter
shows how the SURF Key-Points can be used in object identi�cation. following chapter
SURF_ARM_NEON is used in building a real-time object identi�cation application.

62 CHAPTER 4. HARDWARE PLATFORM: I.MX515 EVALUATION KIT

A Real-Time Object

Identi�cation Application 5
In the previous chapters, the SURF optimization was carried out at two levels: (a)

Algorithm optimization, and (b) Vectorization of important parts of SURF implemen-
tation. As a result the SURF_ARM_NEON implementation which makes use of the
NEON vector facility can compute Key-Points from images of dimensions 320× 240 pix-
els at a rate of around 3 frames per second, suitable for a real-time object identi�cation
application.

In this chapter, details of how SURF_ARM_NEON could be used to build a Real-
Time object identi�cation application are covered. A new algorithm is introduced which
is used to compute matches between two sets of Key-Points. Both the SURF algorithm
and the Key-Points matching algorithm are used to build a real-time object identi�cation
application, while the task chosen to be solved using this application is the identi�cation
of Euro Currency notes from real-time input image frames captured by a camera.

5.1 The Euro Currency Notes Identi�cation Application

The Euro Currency Notes Identi�cation application is designed to identify the seven
Euro currency notes: 5, 10, 20, 50, 100, 200, and 500, irrespective on what side they are
presented in front of the camera.

At the core of this application there are two algorithms: (a) SURF Key-Points
extraction algorithm, which is used to extract SURF Key-Points from a given input
image frame and (b) Key-Points matching algorithm, to which, two sets of Key-
Points extracted from two images are given as inputs, to determine if they both match
or not.

The block diagram of this application is presented in Figure 5.1. The functionality of
this application is achieved in two steps, as described in the following two sections -

5.1.1 Step 1: Extracting SURF Key-Points

The objective of the �rst step in this application is to extract SURF Key-Points at real-
time from image frames captured by a camera.

Input Camera

The camera chosen for this project is a Logitech C200 Web-Camera [35]. Some of its
features relevant to this project are as given below:

• VGA sensor (640 x 480 pixels)

• Video capture up to 30 frames per second (with recommended systems)

63

64 CHAPTER 5. A REAL-TIME OBJECT IDENTIFICATION APPLICATION

• Hi-Speed USB 2.0

• Manual focus

Figure 5.1: Block diagram of Euro Currency Notes Identi�cation Application.

By de�nition [36] a VGA camera provides 640×480 pixel images with 256 colors, how-
ever the SURF implementation used in Euro Currency Notes Identi�cation application
is designed to handle only Grayscale images, so, the RGB → GRAY SCALE conversion
is carried out at the software level. This conversion is done very e�ciently using NEON
as explained in Section 4.3.6.

OpenCV

In the context of input image source it is also important to learn about how image frames
are captured and displayed on a screen.

Developed by Intel, OpenCV (Open Source Computer Vision) libraries are used for a
variety of programming functions of real-time computer vision. It provides an interface to
a USB camera and to display the captured frames on a screen. The OpenCV libraries are
not platform speci�c so they can be built for an i.MX515 processor using open source tool
chain. Because of a full �edged Ubuntu 9.10 operating system running on i.MX515EVK,
OpenCV libraries could be built directly on the i.MX515EVK platform.

Some basic functionalities necessary for this application, such as:

1. Capturing image frames from camera and displaying them on screen.

5.1. THE EURO CURRENCY NOTES IDENTIFICATION APPLICATION 65

2. Displaying text on image frame.

3. Resizing of images from 640× 480→ 320× 240.

are carried out using OpenCV functions.
A function which makes use of OpenCV functions to capture 100 frames from a

USB camera, resize them from 640 × 480 → 320 × 240 and display the frames on a
screen is as shown below.

1
2 #include<cv . h>
3 #include<highgu i . h>
4
5 void CaptureResize ()
6 {
7 IplImage * temp_color_frame = NULL;
8 IplImage * current_gray_frame = NULL;
9 IplImage * temp_current_gray_frame = NULL;
10
11 CvCapture * capture = 0 ;
12 int camera_index = CAMERA_INDEX;
13 unsigned int frame_counter = 0 ;
14
15 i f (CameraSetup (camera_index , &capture))
16 {
17
18 temp_color_frame = NULL;
19
20 temp_current_gray_frame = cvCreateImage (cvS i ze (640 , 480) , IPL_DEPTH_8U,

1) ;
21 current_gray_frame = cvCreateImage (cvS i ze (320 , 240) , IPL_DEPTH_8U, 1) ;
22
23 cvNamedWindow("Current Frame" , CV_WINDOW_AUTOSIZE) ;
24 cvMoveWindow("Current Frame" , WINDOW_POSITION, 0) ;
25
26 //
27 // Conf igure the f on t s needed to d i s p l a y t e x t on the image frame
28 //
29 CvFont font , f ont1 ;
30 cvIn i tFont (&font , CV_FONT_HERSHEY_SIMPLEX, 0 . 3 , 0 . 3 , 0 , 1 , CV_AA) ;
31 cvIn i tFont (&font1 , CV_FONT_HERSHEY_SIMPLEX, 1 . 0 , 1 . 0 , 0 , 1 , CV_AA) ;
32
33 while (frame_counter < 100)
34 {
35 // Capture a co l o r frame from the camera
36 temp_color_frame = cvQueryFrame (capture) ;
37
38 i f (temp_color_frame != NULL)
39 {
40 // Convert the RGB −> GRAYSCALE
41 ColorConvers ion (temp_color_frame , temp_current_gray_frame) ;
42
43 cvRes ize (temp_current_gray_frame , current_gray_frame ,

CV_INTER_LINEAR) ;
44 cvShowImage ("Current Frame" , current_gray_frame) ;

66 CHAPTER 5. A REAL-TIME OBJECT IDENTIFICATION APPLICATION

45
46 frame_counter++;
47 }
48 }
49 cvDestroyWindow ("Current Frame") ;
50
51 cvReleaseCapture(&capture) ;
52 }
53 else

54 {
55 e r r o r = CAMERA_NOT_SETUP;
56 }
57
58 return 0 ;
59 }

The IplImage is a structure used to store all data related to an image frame. The
structure of IplImage is as shown below.

1 typedef struct _IplImage
2 {
3 int nSize ;
4 int ID ;
5 int nChannels ;
6 int alphaChannel ;
7 int depth ;
8 char colorModel [4] ;
9 char channelSeq [4] ;
10 int dataOrder ;
11 int o r i g i n ;
12 int a l i g n ;
13 int width ;
14 int he ight ;
15 struct _IplROI * r o i ;
16 struct _IplImage *maskROI ;
17 void * imageId ;
18 struct _Ip lT i l e In f o * t i l e I n f o ;
19 int imageSize ;
20 char * imageData ;
21 int widthStep ;
22 int BorderMode [4] ;
23 int BorderConst [4] ;
24 char * imageDataOrigin ;
25 }
26 IplImage ;

The OpenCV function cvQueryFrame(); to capture a RGB format image frame
from the USB camera and load into an IplImage type data structure.

After a color image frame is captured from the camera, two intermediate steps are
necessary, which are:

• Color to Garyscale conversion: In this project the SURF algorithm is designed
to handle only Grayscale images hence, the color image captured from the cam-
era must be converted to grayscale by using NEON-optimized color conversion

5.1. THE EURO CURRENCY NOTES IDENTIFICATION APPLICATION 67

function ColorConversion(temp_color_frame, temp_current_gray_frame);.
Color conversion using NEON was explained in detail, in the previous chapter
(Refer to Section 4.3.6).

• Scaling: From the results of the tests conducted in the last section of the
previous chapter, it was noticed that, only for images of 320 × 240 pixels
dimension that SURF_ARM_NEON could extract features at a frame rate
of around 3 frames per second. So, scaling down of input image frames from
640 × 480 to 320 × 240 must be carried out. This is achieved by using OpenCV's
cvResize(temp_current_gray_frame, current_gray_frame,CV_INTER_CUBIC);
function.

With the end of resizing, the SURF algorithm will start processing the frame to
extract Key-Points.

Figure 5.2: Fourteen Model Images of 7 Euro currency notes from which Model
Key-Points are extracted on a one-by-one fashion. These Key-Points are then made as
a part of the application which will be used during the matching phase.

5.1.2 Step 2: Matching the Key-Points and Decision Making

After the SURF Key-Points are extracted from a given frame, they are given to a match-
ing algorithm. The matching algorithm takes the description of every Key-Point from
the current image frame and match it against the description of every Key-Point in a col-
lection of Key-Points known as Model Key-Points. The model Key-Points collection
is always part of the application and they are extracted in a one-by-one fashion from all
7× 2 = 14 sides of Euro currency notes, known as Model Images, as shown in Figure 5.2.

5.1.2.1 Key-Points Matching Algorithm

Every Key-Point extracted by the SURF algorithm is expressed in 64 �oating point
values, which describe a point and its surroundings.

68 CHAPTER 5. A REAL-TIME OBJECT IDENTIFICATION APPLICATION

A Key-Point of one image is said to be matched with a Key-Point of another image
based on how similar their descriptions are. The similarity is measured by calculating
the aggregate di�erence or also known as Root-Sum-Square (RSS) [37] of the 64 �oating
point valued description of one Key-Point with the 64 �oating point values description
of another Key-point. The formula used to compute RSS between two points P_1 and
P_2, is as follows:

difference =

63∑
i=0

√
(P1.descriptor[i])2 − (P2.descriptor[i])2 (5.1.1)

The di�erence between every Key-Point of the model Key-Points collection and every
Key-Point of the current frame is computed and the Key-Point pairs which have the
lowest value of di�erence are considered to bematching pairs. The matching algorithm
returns the number of matching pairs found between Key-Points of a model image and
the Key-Points found in the current frame. From extensive tests conducted it was found
out that, greater than 6 matching pairs found con�rms that the model image and the
current image frame are the same.

This entire operation of matching can be clearly understood from the block diagram
in Figure 5.3.

Figure 5.3: Block diagram describing how matching algorithm is interfaced with Key-
Points extraction algorithm and how the result from matching algorithm is used in the
application.

The C code used in computing the Matching Key-Points is as given below:

1 unsigned int ExtractMatchingFeatures (struct MATCHING_PAIRS *matching_pairs ,
struct INTEREST_POINT *model , int number_model_i_points , struct

INTEREST_POINT * target , int number_target_i_points)
2 {
3 int i , j , k ;
4 f loat d i f f ;

5.1. THE EURO CURRENCY NOTES IDENTIFICATION APPLICATION 69

5 f loat d i f f_square ;
6 unsigned int number_of_matches_found = 0 ;
7
8 for (i =0; i< number_model_i_points ; i++)
9 {
10 f loat be s t e r r o r = FLT_MAX;
11 INTEREST_POINT best_possible_matched_point = NULL;
12
13 for (j =0; j< number_target_i_points ; j++)
14 {
15 i f (model [i] . l a p l a c i a n == ta rg e t [j] . l a p l a c i a n)
16 {
17 ///
18 // Ca l cu l a t i n g the RSS fo r d i f f e r e n c e between every po in t o f the
19 // model and every po in t in the t a r g e t
20 ///
21 d i f f = 0 ;
22 d i f f_square = 0 ;
23
24 for (k=0; k<DESCRIPTOR_SIZE; k++)
25 {
26 d i f f = (model [i] . s u r f_de s c r i p t o r [k] − t a r g e t [j] . s u r f_de s c r i p t o r [k

]) ;
27 d i f f_square += (d i f f * d i f f) ;
28 }
29
30 d i f f = sq r t (d i f f_square) ;
31
32 i f (d i f f < b e s t e r r o r)
33 {
34 b e s t e r r o r = d i f f ;
35 best_possible_matched_point = ta rg e t [j] ;
36 }
37 }
38 }
39
40 i f (best_possible_matched_point != NULL)
41 {
42 matching_pairs [number_of_matches_found] . x_model = model [i] . x ;
43 matching_pairs [number_of_matches_found] . y_model = model [i] . y ;
44 matching_pairs [number_of_matches_found] . x_target =

best_possible_matched_point . x ;
45 matching_pairs [number_of_matches_found] . y_target =

best_possible_matched_point . y ;
46 number_of_matches_found++;
47 }
48
49 }
50
51 return number_of_matches_found ;
52 }

Upon pro�ling the real-time object identi�cation application, it was found that, the
ExtractMatchingFeatures() is one of the signi�cant contributors to the computation time.

To match a set of 71 Key-Points extracted from an image, with 503 Key-Points in

70 CHAPTER 5. A REAL-TIME OBJECT IDENTIFICATION APPLICATION

the Key-Points collection of the application, the matching algorithm would take close to
97ms. By looking at its implementation it was found that critical parts of this function
can be vectorized. So, once again parts of the matching algorithm were vectorized and the
C code with which NEON was programmed to compute the cumulative di�erence between
two Key-Points is as shown below. With this optimization the matching algorithm's
computation time was dropped to 42ms, a 56.7% improvement.

The C code for matching algorithm, which is optimized by using NEON intrinsics is
as given below.

1 unsigned int ExtractMatchingFeatures (struct MATCHING_PAIRS *matching_pairs ,
struct INTEREST_POINT *model , int number_model_i_points , struct

INTEREST_POINT * target , int number_target_i_points)
2 {
3 int i , j , k ;
4 f loat d i f f ;
5 f loat d i f f_square ;
6 unsigned int number_of_matches_found = 0 ;
7
8 for (i =0; i< number_model_i_points ; i++)
9 {
10 f loat be s t e r r o r = FLT_MAX;
11
12 INTEREST_POINT best_possible_matched_point = NULL;
13
14 f loat32x4_t v128_model = vld1q_f32 (model [i] . s u r f_de s c r i p t o r) ;
15
16 for (j =0; j< number_target_i_points ; j++)
17 {
18 i f (model [i] . l a p l a c i a n == ta rg e t [j] . l a p l a c i a n)
19 {
20 ///
21 // Ca l cu l a t i n g the RSS fo r d i f f e r e n c e between every po in t o f the
22 // model and every po in t in the t a r g e t
23 ///
24 f loat32x4_t v128_dif f , v128_dif f_square ;
25
26 int k ;
27 v128_di f f = vsubq_f32 (v128_model , vld1q_f32 (t a r g e t [j] .

s u r f_de s c r i p t o r)) ;
28 v128_dif f_square = vmulq_f32 (v128_dif f , v128_di f f) ;
29
30 for (k=4; k<DESCRIPTOR_SIZE; k=k+4)
31 {
32
33 v128_di f f = vsubq_f32 (vld1q_f32 (model [i] . s u r f_de s c r i p t o r+k) ,

vld1q_f32 (t a r g e t [j] . s u r f_de s c r i p t o r+k)) ;
34 v128_dif f_square = vmlaq_f32 (v128_diff_square , v128_dif f ,

v128_di f f) ;
35 }
36
37 f loat32x2_t v64_result_temp ;
38 v64_result_temp = vadd_f32 (vget_low_f32 (v128_dif f_square) ,

vget_high_f32 (v128_dif f_square)) ;
39

5.2. APPLICATION PERFORMANCE 71

40 f loat32_t d i f f_square ;
41 d i f f_square = vget_lane_f32 (v64_result_temp , 0) + vget_lane_f32 (

v64_result_temp , 1) ;
42
43 d i f f = sq r t (d i f f_square) ;
44
45 i f (d i f f < b e s t e r r o r)
46 {
47 b e s t e r r o r = d i f f ;
48 best_possible_matched_point = ta rg e t [j] ;
49 }
50 }
51 }
52
53 i f (best_possible_matched_point != NULL)
54 {
55 matching_pairs [number_of_matches_found] . x_model = model [i] . x ;
56 matching_pairs [number_of_matches_found] . y_model = model [i] . y ;
57 matching_pairs [number_of_matches_found] . x_target =

best_possible_matched_point . x ;
58 matching_pairs [number_of_matches_found] . y_target =

best_possible_matched_point . y ;
59 number_of_matches_found++;
60 }
61
62 }
63
64 return number_of_matches_found ;
65 }

5.2 Application Performance

Now that the real-time object identi�cation application is completely implemented, its
performance measurement can be conducted. Which is carried out by taking into con-
sideration the following two aspects:

• The Capacity to handle the disturbing conditions, and

• The Processing time or the Frame rate.

Apart from this, other measurements such as (a) Utilized Memory and (b) Energy
consumption, two very important properties associated with any Embedded Application,
are also measured in this section.

5.2.1 Robustness to Changing Conditions

In this section, a test on the application's robustness to changing conditions or distur-
bances such as - scale, blur, orientation, illumination, and viewpoint is carried
on.

For this test a hard copy of a 50 Euro currency note specimen is considered (Refer
to Figure 5.2). This is subjected to various disturbing conditions, while these disturbing

72 CHAPTER 5. A REAL-TIME OBJECT IDENTIFICATION APPLICATION

conditions are being applied on the specimen, using the camera 100 continuous image
frames are captured and each image frame is given as an input to the application. The
SURF algorithm of the application extracts the Key-Points and the matching algorithm
then match these Key-Points with the Model Key-Points. The results tabulated below
are an average of all the results obtained across 100 frames. Any value larger than 6 in
theMatches Found column indicates a true match between a captured frame and the
model image.

Scaling Level Avg. number of Avg. number of
Key-Points Extracted Matches Found

-2 Down Scale 49 0

-1 65 9

0 Normal 59 10

1 64 8

2 104 7

3 62 10

4 Up Scale 78 0

Table 5.1: Performance Measurement: Scaling

Blur Level Avg. number of Avg. number of
Key-Points Extracted Matches Found

0 No Blur 66 9

1 58 12

2 43 7

4 Extreme 50 2

Table 5.2: Performance Measurement: Blurring

Illumination Avg. number of Avg. number of
Key-Points Extracted Matches Found

Darker 64 2

Dark 69 7

Normal 55 7

Bright 71 11

Brighter 60 10

Brightest 52 4

Table 5.3: Performance Measurement: Illumination

5.2. APPLICATION PERFORMANCE 73

Viewpoint Avg. number of Avg. number of
Key-Points Extracted Matches Found

View 1 64 7

View 2 69 4

View 3 55 0

View 4 71 0

View 5 60 1

View 6 52 0

Table 5.4: Performance Measurement: Viewpoint

Orientation Avg. number of Avg. number of
Key-Points Extracted Matches Found

+180◦ 49 0

+135◦ 49 4

+90◦ 50 9

+45◦ 47 7

0◦ 52 8

−45◦ 60 7

−90◦ 62 3

−135◦ 50 1

−180◦ 49 7

Table 5.5: Performance Measurement: Orientation

With the end of Viewpoint change tests, all the tests related to how well the appli-
cation can handle the disturbing conditions at real-time have been completed.

Ultimately, the performance of an objected-identi�cation application which makes use
of Key-Points depends on the nature of Key-Points it extracts, from the results it is clear
that the application is able to handle the scaling (Refer to Table 5.1), blurring (Refer
to Table 5.2), a majority of orientation changes (Refer to Table 5.5) and illumination
(Refer to Table 5.3) changes e�ectively, however, on the basis of SURF Key-Points which
do not perform well with viewpoint changes as seen in Chapter 2, it is expected that the
application performs poorly with viewpoint changes (Refer to Table 5.4).

5.2.2 Processing Time

Once again, to measure the frame rate, 100 image frames are captured continuously from
the camera and they are given as inputs to the application, the average time taken by
the application to process them is considered as the average frame rate at which the
application operates.

Two versions of real-time object identi�cation application are built, the �rst ver-
sion, built around using the SURF_ARM and the second version based on the

74 CHAPTER 5. A REAL-TIME OBJECT IDENTIFICATION APPLICATION

SURF_ARM_NEON. The results of this tests are presented in Table 5.6.

Application Average fps Average fps
Name 640× 480 320× 240

With SURF_ARM 0.89 1.79

With SURF_ARM_NEON 1.42 3.12

Table 5.6: Performance Measurement: Processing Time

Looking at the processing time it is clear that the application built using
SURF_ARM_NEON almost doubles the average processing time for image frames of
both sizes and the application built using SURF_ARM_NEON for scaled down images
(640 × 480 → 320 × 240) is the best version amongst the four. There is a further scope
in improving this which is explored in the next section

Figure 5.4: Distribution of 45 Key-Points and ∼320ms of processing time across 2
Octaves for a 320× 240 image.

5.3 Optimization 3: Progressive SURF Key-Points Extrac-

tion and Matching

Progressive SURF is an innovative way in which matching Key-Points extracted from
SURF algorithm can be carried out even more e�ectively.

In any object identi�cation application which makes use of Key-Points, the conven-
tional method of operation is to extract Key-Points from all Octaves and then send
them to the matching algorithm, which then tries to match all those Key-points with
Key-Points of other images. Here a di�erent approach is used which is referred to as
Progressive Matching in this project. The idea of progressive matching is that, be-
cause Key-Points extraction is distributed across Octaves, matching of Key-Points can
also be carried out at stages. As soon as some number of Key-Points are extracted by
the algorithm, those points can already be used for matching.

It was learnt in previous chapters that, within an Octave Key-Points are extracted in
two iterations and if in an algorithm implementation there are 4 Octaves then there are
4×2 = 8 points where matching of Key-Points could be carried out. In the SURF_ARM

5.3. OPTIMIZATION 3: PROGRESSIVE SURF KEY-POINTS EXTRACTION AND

MATCHING 75

or SURF_ARM_NEON implementations used in the application of this project, there
are 2 Octaves, which means that there are 4 points where matching of Key-Points could
be carried out. If the Key-Points extracted after �rst iteration are su�cient to be used
in establishing a match, then the burden of computing more Key-Points can be given up
and the next frame can be captured for processing.

For example, the distribution of 45 Key-Points and around 320ms processing time
between 2 Octaves from a 320 × 240 image frame is as shown in Figure 5.4. In this
example, right at the point when 10 Key-Points are computed, they can be used for
matching and if the matching algorithm is already able to establish a match, nearly
220ms of processing time and the additional energy drawn by the application to compute
those extra Key-Points can be saved.

Although this method sounds very good in cutting down on processing time, the
stages at which matching algorithm is called must be chosen carefully, because, if there
are 2 Octaves and matching is carried out at the end of every iteration within an Octave
and if a match was unable to be established at the end of a certain early iteration, then
by the end of second Octave the matching algorithm would have already been invoked
four times and still no match would have been established. Keeping this reason in mind,
in SURF_ARM and SURF_ARM_NEON the matching was carried out only at the end
of every Octave rather than at the end of every iteration within an Octave, so even in
worst case scenarios, the matching algorithm would have been called only twice.

Several tests presented in Figure 5.5 were conducted where it was noticed that, when
considerable number of frames were matched right by the end of �rst Octave, then the
total time taken to process 100 frames was drastically reduced. This time is nearly 20%
lesser when compared with time taken by the application with SURF_ARM_NEON with
normal matching and about 56% lesser than SURF_ARM with progressive matching.

Figure 5.5: Progressive search improves the total time taken to process frames. In Trial
1 50 frames were considered and Trial 2 100 frames were considered.

By the end of progressive matching the average frame rate of the real-time object

76 CHAPTER 5. A REAL-TIME OBJECT IDENTIFICATION APPLICATION

identi�cation application was around 3.5 - 4 frames per second.

5.4 Other Measurements

In this section, the application Memory and Energy consumption are discussed.

5.4.1 Memory Requirements

The memory requirements can be classi�ed into two types, (a) Application Size and (b)
Runtime Memory Requirements.

5.4.1.1 Application Size

The real-time object identi�cation application consists of three parts, (a) SURF al-
gorithm, (b) Matching Algorithm, and (c) the collection of all Model Key-
Points. The Table 5.7 shows the sizes of all the three individual parts of the appli-
cation. Once again there are two versions of applications considered here, one with
SURF_ARM and one with SURF_ARM_NEON. The slight increase in application size
with SURF_ARM_NEON can be attributed to compiler's inability to optimize the code
in these functions as they have large parts of NEON code written using NEON intrinsics.

Application SURF Matching Model Total
Name Algorithm Algorithm Key-Points Size

(bytes) (bytes) (bytes) (bytes)

With SURF_ARM 34401 476 138828 173795

With SURF_ARM_NEON 34828 517 138828 174173

Table 5.7: Memory Requirements: Application Size

5.4.1.2 Run-Time Memory Requirements

On the i.MX515EVK there is a 512MB DDR-RAM, in this section, the run-time usage
of this memory by the application is recorded. The Htop tool in Ubuntu OS gives an
insight into all the process running and their current memory usage.

To measure the memory usage once again, the application is made to capture and
process 100 frames and the average memory usage of this application during this period
is given in Table 5.8.

Although in case of 640 × 480 sized image frames have 4 times more pixels when
compared with the image frames of 320× 240 sized image frames, the run-time memory
requirement of the former one is only about 1.4 times higher.

5.4. OTHER MEASUREMENTS 77

Application Approximated Approximated
Name Memory Usage Memory Usage

640× 480 320× 240
MB MB

With SURF_ARM 6.16 4.42

With SURF_ARM_NEON 6.16 4.42

Table 5.8: Memory Requirements: Runtime memory

(a) The average idle current drawn by
i.MX515EVK is 0.998mA @ 5V. Sixty samples
were taken over a time period of 30 seconds.

(b) The average current drawn by i.MX515EVK
when SURF_ARM was running is 1.254mA @
5V. Sixty samples were taken over a time period
of 30 seconds.

(c) The average current drawn by i.MX515EVK
when SURF_ARM_NEON was running is
1.248mA @ 5V. Sixty samples were taken over
a time period of 30 seconds.

Figure 5.6: Current drawn by i.MX515EVK.

78 CHAPTER 5. A REAL-TIME OBJECT IDENTIFICATION APPLICATION

5.4.2 Energy Utilizations

The i.MX515EVK is powered by a 5V power supply. In its idle1 state the average current
drawn during by the board is ∼0.998mA.

When the SURF_ARM is made to run on the platform the current drawn by the
board is higher than during the idle state. The processor utilization is at 98% and
the average current drawn by the kit during that time is ∼1.254mA. Similarly, when
SURF_ARM_NEON runs with 98% processor utilization the average current drawn
is once again ∼1.248mA. Which means that the average additional current drawn by
applications with both versions of algorithms is 0.256mA and 0.25mA, respectively,
which is about 25% increase.

Figure 5.7: Average Energy consumed by SURF_ARM and SURF_ARM_NEON. The
trials were conducted for applications with SURF_ARM and SURF_ARM_NEON to
process 100 frames. Around 58% of lesser energy is consumed by the application when
NEON is used.

In the context of energy utilization, an important question arises regarding the usage
of NEON: Does the NEON utilization consume more energy? The answer to this is yes,
to use NEON more energy is de�nitely needed, however, to quote a speci�c �gure is
not possible at this moment due to the absence of any mentioning of it in the i.MX515
processor literature. Upon observing the pipeline architecture (Refer to Figure 4.4) of
ARM Cortex-A8 it is easy to assume NEON to be a part of ARM processor core and
to act more as an instruction set extension and less as an independent core, so, using
NEON only needs very insigni�cant amount of additional energy. This can be observed
upon comparing the results from the conducted tests, where the current drawn by the
kit is measured when only ARM (Refer to Figure 5.6(b)) and ARM+NEON (Refer to
Figure 5.6(c)) are used.

Although from the current drawn results it can be concluded that a very small addi-
tional power is needed to utilize NEON, the total amount of energy used-up when NEON

1During this period USB peripherals such as Key-board, Mouse and Camera were connected to the
board.

5.5. CONCLUSION 79

is turned ON should be comparatively lesser because more work is done by using NEON
during shorter amount of time.

For example, taking the cases of applications with SURF_ARM and
SURF_ARM_NEON + Progressive-Matching in Section 5.3 into consideration,
the time needed by the application with SURF_ARM is 27.9s and the average current
drawn by the application during this time is 0.256mA, so, the energy consumed by the
application is 7.1424mAs. On the other hand, the time needed by SURF_ARM_NEON
with progressive matching is 11.82s and the average current drawn during this time by
application is 0.25mA, so, the energy consumed is only 2.955mAs, which is around
58.5% decrease in energy consumption.

5.5 Conclusion

The details of how a real-time object identi�cation application which is intended to
identify 7 Euro currency notes were discussed in this chapter. This application embeds
two algorithms:

• Key-Points extraction algorithm: SURF_ARM_NEON is used to extract
Key-Points at around 3fps.

• Key-Points matching algorithm: A Key-Points matching algorithm which is
based on Root of Sum of Squares(RSS) is used to �nd matches between Key-Points
extracted from two images.

Once again while implementing the matching algorithm it was found that, crucial part
of that algorithm can be vectorized. The NEON vectorized matching algorithm takes
nearly 56% lesser computation time to complete matching of 71 Key-Points against a
collection of 501 Key-Points.

The nature of the Key-Points decide how well the application performs in handling
the disturbing conditions, unlike SIFT Key-Points, the SURF Key-Points are not very
good at handling viewpoint changes, which re�ects in the application's poor performance
to view point changes.

One of the very important achievements while building the real-time object identi�-
cation application was, showing that it is possible to progressively match Key-Points as
and how they are computed, rather than computing all Key-Points in one go and then
use them to match them; which is how it is done currently in applications which make use
of Key-Points. From several tests conducted here, it was found that when the matching
algorithm is able to �nd considerable number of matching frames right at the end of
Key-Points extracted from the �rst Octave, the total time taken by the application to
process 100 frames decreases by upto 20%. This is a further boost to the application as
this impacts the application's throughput (3.5 - 4 frames per second) directly and it also
improves the runtime memory and energy utilization of the application.

NEON unit is extensively used in this application to bring up the speed and a question
which arises as an outcome of this excessive usage is, does NEON contributes signi�cantly
in increasing the energy consumption of the application? NEON is basically an electronic

80 CHAPTER 5. A REAL-TIME OBJECT IDENTIFICATION APPLICATION

hardware unit and additional energy is de�nitely needed to use it. But during the tests
conducted it was found that, the current drawn by the application which makes use of
NEON is so minuscule that it is practically unobservable and the average amount of
current consumed over a signi�cant duration of time by the application which makes use
of NEON unit is similar to the application which makes of only ARM unit. Nearly 58%
of energy reduction is found when NEON version of the application is used, because, the
amount of work done while making use of NEON is far higher. The following chapter is
the concluding chapter, it gives an outlook of the whole project work carried out and it
also gives the details for future research that can be carried out in this �eld.

Conclusions and Future Work 6
In this project a study was conducted to �nd out, how a real-time object identi�cation
can be built starting from a feature extraction algorithm. This chapter gives a summary
and conclusions of the work carried out and also possible future work related to this
project.

6.1 Summary and Conclusions

Image features are similar to what frequencies or keywords are for sound and text. Ex-
tracting information from images can be very valuable in obtaining the knowledge of the
content in the image.

Images contain various kinds of features such as - lines, corners or edges, color infor-
mation, Key-Points and so on. Every one of these features are useful to address certain
speci�c problems. Key-Points are useful in situations where visual disturbances occur,
because, unlike other features, Key-Points contain description of a point and its surround-
ings and the algorithms developed to extract the Key-Points are resilient to changes such
as - scale, orientation, illumination, blurring and viewpoints.

To choose an algorithm for this project, by keeping the possible image disturbances
such as scaling, orientation, blurring, illumination and viewpoint changes are parameters,
both SIFT and SURF were tested to �nd out how well they can perform in those condi-
tions. From the tests it was found that, both SIFT and SURF perform well in handling
certain disturbing conditions.

Both SIFT and SURF are computationally intensive algorithms and if the application
which is built around it is running on an embedded platform with limited resources,
achieving real-time Key-Point extraction becomes a challenging task. Implementations
of both the algorithms were put to test to on a Linux/Pentium 4 system 1. From these
tests it was found that SURF has very low computation time when compared to SIFT.
While, the average time needed by SIFT to compute features from 33 images was 1.4s,
the average time needed by SURF to compute almost same number of Key-Points from
same set of images was only 0.26s. On the basis of the results from these tests, the
SURF algorithm was chosen over SIFT. The reduction in processing time of SURF can
be attributed to the nature of �lters used in building the Scale-Space. By making use
of Integral Images the box �lter responses were computed with only 5 additions and 1
multiplication.

The SURF algorithm was implemented following the four steps, Scale-Space Analysis,
Key-Point Localization, Orientation Assignment and Key-Point Descriptor Generation.
While studying and implementing the SURF algorithm, it was learnt that out of a given

1Intel Pentium 4 CPU 2.80GHz, 1.49GB RAM.

81

82 CHAPTER 6. CONCLUSIONS AND FUTURE WORK

number of Key-Points computed by SURF algorithm, more than 80% of them are ex-
tracted from the �rst two Octaves alone. The reason for the sudden decrease in the
Key-Points from the higher Octaves can be attributed to the large �lter sizes and higher
stepping values in the higher Octave, which accelerate the movement of box �lters to-
wards the end of the image. Which implies that, fewer computations are made in these
higher Octaves, which in turn result in fewer Key-Points being extracted from them.
Therefore, the algorithm was modi�ed to restrict from computing the Key-Points from
Higher Octaves. By cutting down these computations, nearly 80 - 280ms of processing
time was improved for images with 640 × 480 pixels dimension and 20 - 100 ms of
processing time was improved for images with 320 × 240 pixels dimension. This forms
the Algorithmic Optimization of SURF.

The platform chosen for this project was Freescale's i.MX515EVK, some of the im-
portant features 2 of this platform, which are relevant to this project are listed below:

• CPU: Freescale's i.MX515 at a clock speed of 800 MHz.

• Memory: 512 MB DDR-RAM.

• Ubuntu 9.10 OS

• For the entire list of peripherals refer to Appendix B: i.MX515EVK Details 7.2.

The i.MX515 is a Multimedia Processor which is one of Freescale's latest ad-
ditions to their growing multimedia-focused products; o�ering a High Processing Per-
formance, at a very low power consumption which can be attributed to the core of this
processor, the ARM Cortex-A8. The processor is aimed at applications such as:

• Netbooks

• Handheld devices such as

� Portable Media Devices

� Smart Phones

� Navigation Devices

• Gaming consoles

The ARM Cortex-A8 core is a 32-bit, dual-issue, in-order type processor, with dy-
namic branch predictor.

Some of the key features of this processor are listed below.

• It operates at a Clock Speed of 800Mz.

• 32 KB Instruction and Data Caches.

• A uni�ed 256 KB L2 Cache

• A Vector Floating Point Unit (VFP)

2For the functional block diagram of the i.MX515EVK refer to Appendix B: i.MX515EVK Details
7.2.

6.1. SUMMARY AND CONCLUSIONS 83

• A SIMD unit called NEON

• Instruction Set Architecture (ISA) support

� ARM

� Thumb2

� VFPv3 Floating Point

� NEON

Because of a full �edged operating system such as Ubuntu 9.10 running on
i.MX515EVK, software building process was carried out directly on i.MX515EVK rather
than using expensive Cross Compilers on a host system. By making use of the devel-
opment tools mentioned in previous section, SURF Key-Points extraction algorithm was
built for ARM Cortex-A8 processor, from hence forth this version of SURF is referred to
as SURF_ARM.

The SURF algorithm is built for this project and named as SURF_ARM, which takes
1.1 - 1.57 seconds to process 640×480 pixels sized images and 0.48 - 0.66 seconds for 320×
240pixels sized images. These computation times are too high to achieve a good frame
rate, the SURF_ARM implementation is optimized. During this optimization phase
special attention was paid to NEON and due to the compiler's inability to automatically
vectorize the parts of the algorithm for NEON, they had to be hand coded for NEON.

After pro�ling the algorithm implementation it was found that around 70% of pro-
cessor's time is spent in Box �ltering. Box Filtering as such is a very simple function, but
the sheer number of times it is called, which is around 3,383,2843 makes it the costliest
function. Out of the 3,383,284 calls made, 2,658,304 were made while building the Scale-
Space. In this project, by making use of NEON's interleaving instructions innovatively,
this number was brought down by 4 times to 845,821. This reduction in number can
be termed as the most signi�cant contributor in improving the computation time of the
algorithm.

Other functions which were vectorized during this process were:

• Integral Image computation with pre-fetching of image data: This brought
down the computation time of Integral Image by upto 40%.

• Descriptor Computation and Matrix Multiplication: No signi�cant im-
provement due to vectorization of these functions.

By the end of this step of vectorization, the computation time needed to extract Key-
Points for images of 320×240 dimensions was brought down to 300 - 350ms, a gain of 41
- 46%, which translates to around 3 frames per second. This version of SURF was called
as SURF_ARM_NEON.

Next, by making using the SURF_ARM_NEON a Real-Time Euro currency notes
Identi�cation application was built. The objective of this application is to continuously
capture image frames from a camera and identify the 7 Euro currency notes irrespective
of the face in which they are presented in front of the camera. Key-Points from the

3For 640× 480 size image.

84 CHAPTER 6. CONCLUSIONS AND FUTURE WORK

7 × 2 = 14 sides of images are extracted on a one-by-one fashion and they are stored
within the application. When Key-Points from input image frames are extracted they
are given to a matching algorithm which carries out a matching process between the
freshly extracted Key-Points with the Key-Points within the application. The matching
algorithm takes the 64 �oating point values in the description of every Key-Point from
the current image frame and match it against the description of every Key-Point in a
collection of Key-Points known asModel Key-Points. The model Key-Points collection
is always part of the application and they are extracted in a one-by-one fashion from all
7 × 2 = 14 sides of Euro currency notes, known as Model Images. A Key-Point of one
image is said to be matched with a Key-Point of another image based on how similar
their descriptions are. The similarity is measured by calculating the aggregate di�erence
or also known as Root-Sum-Square (RSS) of the 64 �oating point valued description of
one Key-Point with the 64 �oating point values description of another Key-point. Key-
Point pairs with the lowest value of di�erence are considered to bematching pairs. The
matching algorithm returns the number of matching pairs found between Key-Points of
a model image and the Key-Points found in the current frame. From extensive trials
conducted it was found out that, greater than 6 matching pairs found con�rms that the
model image and the current image frame are the same.

Basic functions such as image resizing, displaying them on the screen, placing text
on the image frame were carried out by using OpenCV libraries for real-time computer
vision were used.

Upon pro�ling the real-time object identi�cation application, it was found that, the
ExtractMatchingFeatures() is one of the signi�cant contributors to the computation time.

To match a set of 71 Key-Points extracted from an image, with 503 Key-Points in
the Key-Points collection of the application, the matching algorithm would take close to
97ms. By looking at its implementation it was found that critical parts of this function
can be vectorized. So, once again parts of the matching algorithm were vectorized. With
this optimization the matching algorithm's computation time was dropped to 42ms, a
56.7% improvement.

The performance of the real-time object identi�cation is measured by conducting tests
to see how well it is able to handle changing Scale, Illumination, Orientation, Blurring
and Viewpoint. From these tests it was found that, except for the Viewpoint changes,
the application can handle all the changing conditions very well. The lack of the ability
to handle viewpoint changes can be attributed to the SURF Key-Points, compared to
SIFT algorithm, SURF is not resilient to changes to viewpoint.

On an average, the application was able to process 320×240 pixels sized image frames
at a rate of 3.12 frames per second.

While studying the SURF algorithm it was learnt that the Key-Points extracted by
SURF in each Octave are unique in nature, the motive behind progressive matching arises
from this study. The idea here is, when the Key-Points extracted from an Octave are
provided to matching algorithm and if it is able to extract enough number of matching
Key-Point pairs to decide that the two input images match or not, further Key-Point
computations are not needed any longer and processing of next frame can be started
instantly. The contribution of this approach was a signi�cant amount of reduction in
computation time when considerable number of image frames were matched by the end

6.2. RECOMMENDATIONS FOR FUTURE WORK 85

of �rst Octave. In one of the trials it was found that the total time taken for processing
100 frames was reduced by nearly 29% due to progressive matching.

By the end of progressive matching the average frame rate of the real-time object
identi�cation application was around 3.5 - 4 frames per second.

The application size of the Euro Currency notes identi�cation is 34KB and it was
utilizing around 4.42MB of runtime memory.

Towards the end of the project another important question was answered, which is, if
excessive usage of NEON needed more energy or not. NEON is an additional hardware
unit and to power it additional energy is certainly needed. However, from the tests
conducted it was found that practically an unobservable amount of additional current
was drawn when NEON was used. But on the other hand it was seen that in a given
amount of time greater amount of work was completed when NEON was used. So, for
such minute increment in the power consumption and such high throughput achieved, it
is not wrong to conclude that the NEON usage in fact brings down the overall energy
consumption.

The energy consumed by the application with SURF_ARM_NEON + Progressive
matching, to process 100 frames is around 2.955mAs.

6.2 Recommendations for Future Work

The recommendations for future work in this direction is classi�ed into two parts, they
are:

1. Accuracy

To improve the accuracy of the Key-Points further, an algorithm known as Fast ap-
proximated SIFT can be tried [5]. This algorithm is a fusion of concepts proposed in
both SIFT and SURF algorithms. The authors have recorded that in their experiments,
the Fast approximated SIFT algorithm takes eight times lesser processing time when
compared to SIFT algorithm and the Key-Points show better repeatability performance
over the SURF Key-Points.

2. Speed

Algorithmic Improvements

In some applications such as face recognition, rotation invariance is not required, so the
descriptor computation can be simpli�ed by excluding the computation of orientation
information. This might considerably improve the processing time. Such a version of
SURF is called as Upright SURF (U-SURF)[19].

Future Processors

The ARM Cortex-A8 processor is only the second of the four processors in the Cortex-A
family. ARM has already launched the next two processors in its Cortex-A series known
as Cortex-A9 and Cortex-A15 processors.

86 CHAPTER 6. CONCLUSIONS AND FUTURE WORK

A Cortex-A9 is a 2Ghz capable processor with upto 4 scalable coherent cores as shown
in Figure 6.1. Each core of Cortex-A9 has its individual �oating point and NEON unit.

This processor is targeted for next generation of handheld devices which have - Full
HD camcorders, High resolution touch screen displays, High performance 3D graphics,
multiple cameras, multiple operating systems and so on. ST Ericsson have already used
Cortex-A9 processor for building a Smartphone Platform known as U8500 [38].

Figure 6.1: ARM Cortex-A9 processor, which is 2Ghz capable processor with upto 4
scalable cores.

By using such multicore processors SURF Key-Points computations can be carried
out in parallel[2]. Candidate parts of the SURF algorithm which can be computed in
parallel are -

• Building Scale-Space: Unlike in SIFT where every layer in its Scale-Space must
be built by applying Gaussian Filters on a previous layer, which makes it a serial
process, Scale-Space building in SURF can be carried out in parallel, because every
layer of SURF Scale-Space is built by applying box �lters directly on the input
image. Like in the case of Cortex-A9 processor where every core has a NEON and
a FPU unit of its own, the number of box �lters needed to build the Scale-Space can
once again be computed very e�ectively using NEON as described in this project.

• Generating Key-Points: Once a Scale-Space is built, Key-Points from each Oc-
tave can be computed using individual cores. If the algorithm designer chooses to
have 4 Octaves in his/her design and if the processor has four cores, Key-Points
from each Octave can be computed simultaneously.

• Apart from computing SURF Key-Points in parallel, their unique nature which fa-
cilitated in implementing progressive matching in the real-time object identi�cation
application, can also be carried out in parallel.

Bibliography

[1] C. Evans, �Notes on the opensurf library,� Tech. Rep. CSTR-09-001, University of
Bristol, January 2009.

[2] N. Zhang, �Computing parallel speeded-up robust features (p-surf) via posix
threads.,� in ICIC (1) (D.-S. Huang, K.-H. Jo, H.-H. Lee, H.-J. Kang, and V. Bevilac-
qua, eds.), vol. 5754 of Lecture Notes in Computer Science, pp. 287�296, Springer,
2009.

[3] �Improving arm code density and performance.� http://arch.eece.maine.edu/

ece471/images/3/32/Thumb-2CoreTechnologyWhitepaper-Final4.pdf.

[4] C. Carvalho, �The gap between processor and memory speeds.,�

[5] M. Grabner, H. Grabner, and H. Bischof, �Fast approximated sift.,� in ACCV (1)
(P. J. Narayanan, S. K. Nayar, and H.-Y. Shum, eds.), vol. 3851 of Lecture Notes in
Computer Science, pp. 918�927, Springer, 2006.

[6] C. G. G. ROBERT DESIMONE, THOMAS D. ALBRIGHT and C. BRUCE,
�Stimulus-selective properties of inferior temporal neurons in the macaque,� 1984.

[7] K. Tanaka, �Mechanisms of visual object recognition: monkey and human studies,�
1997.

[8] Google, �Google goggles application for android.� http://www.google.com/mobile/
goggles/#text.

[9] T. Libor, �Sharpstitch a c# image stitching library.� http://sharpstitch.

sourceforge.net/.

[10] �Sony cameras panorama.�

[11] �Canon cameras panorama views.�

[12] Real-time eye blink detection with GPU-based SIFT tracking, 2007.

[13] S. Se and P. Jasiobedzki, �Stereo-vision based 3d modeling for unmanned ground
vehicles,� 2007.

[14] S. N. Sinha, J. michael Frahm, M. Pollefeys, and Y. Genc, �Gpu-based video feature
tracking and matching,� tech. rep., In Workshop on Edge Computing Using New
Commodity Architectures, 2006.

[15] T.-K. Kim and R. Cipolla, �Gesture recognition under small sample size,� in
ACCV'07: Proceedings of the 8th Asian conference on Computer vision, (Berlin,
Heidelberg), pp. 335�344, Springer-Verlag, 2007.

[16] C. ting Hsu and M. chou Shih, �Content-based image retrieval by interest points
matching and geometric hashing.�

87

http://arch.eece.maine.edu/ece471/images/3/32/Thumb-2CoreTechnologyWhitepaper-Final4.pdf
http://arch.eece.maine.edu/ece471/images/3/32/Thumb-2CoreTechnologyWhitepaper-Final4.pdf
http://www.google.com/mobile/goggles/#text
http://www.google.com/mobile/goggles/#text
http://sharpstitch.sourceforge.net/
http://sharpstitch.sourceforge.net/

88 CHAPTER 6. CONCLUSIONS AND FUTURE WORK

[17] M. Bokeloh, A. Berner, M.Wand, H.-P. Seidel, and A. Schilling, �Symmetry de-
tection using feature lines.� http://www.gris.uni-tuebingen.de/people/staff/

bokeloh/project_symmetry2.html.

[18] D. G. Lowe, �Distinctive image features from scale-invariant keypoints,� Interna-
tional Journal of Computer Vision, vol. 60, no. 2, p. 91, 2004.

[19] H. Bay, A. Ess, T. Tuytelaars, and L. V. Gool, �Speeded-up robust features (SURF),�
Computer Vision and Image Understanding, vol. 110, no. 3, pp. 346 � 359, 2008.
Similarity Matching in Computer Vision and Multimedia.

[20] D. Marr and E. Hildreth, �Theory of edge detection,� Proceedings of the Royal Society
of London Series B, vol. 207, pp. 187�217, 1980.

[21] J. Canny, �A computational approach to edge detection,� IEEE Transactions on
Pattern Analysis and Machine Intelligence, vol. 8, no. 6, pp. 679�698, 1986.

[22] C. Harris and M. Stephens, �A combined corner and edge detector,� in Proceedings
of the 4th Alvey Vision Conference, pp. 147�151, 1988.

[23] R. Szeliski, �Computer vision: Algorithms and applications.� https://web.engr.

oregonstate.edu/~hess/publications/siftlib-acmmm10.pdf.

[24] J. H. Elder and R. M. Goldberg, �Image editing in the contour domain.,� IEEE
Trans. Pattern Anal. Mach. Intell., vol. 23, no. 3, pp. 291�296, 2001.

[25] S. N. Sinha, D. Steedly, R. Szeliski, M. Agrawala, and M. Pollefeys, �Interactive
3d architectural modeling from unordered photo collections.,� ACM Trans. Graph.,
vol. 27, no. 5, p. 159, 2008.

[26] �Scale invariance wikipedia page.� http://en.wikipedia.org/wiki/Scale_

invariance.

[27] K. Mikolajczyk, T. Tuytelaars, C. Schmid, A. Zisserman, J. Matas, F. Scha�alitzky,
T. Kadir, and L. Gool, �A comparison of a�ne region detectors,� International
Journal of Computer Vision, vol. 65, pp. 43�72, November 2005.

[28] R. Hess, �An open-source sift library.� https://web.engr.oregonstate.edu/

~hess/publications/siftlib-acmmm10.pdf.

[29] O. G. Luo Juan, �A comparison of sift, pca-sift and surf.� http://www.cscjournals.
org/csc/manuscript/Journals/IJIP/volume3/Issue4/IJIP-51.pdf.

[30] J.-M. Geusebroek, A. W. M. Smeulders, and J. van de Weijer, �Fast anisotropic gauss
�ltering.,� IEEE Transactions on Image Processing, vol. 12, no. 8, pp. 938�943, 2003.

[31] M. Brown and D. G. Lowe, �Invariant features from interest point groups.,� in BMVC
(P. L. Rosin and A. D. Marshall, eds.), British Machine Vision Association, 2002.

[32] C. W. Andrew N. Sloss, Dominic Symes, ARM System Developer's Guide: Designing
and Optimizing System Software. Elsevier, 2004.

http://www.gris.uni-tuebingen.de/people/staff/bokeloh/project_symmetry2.html
http://www.gris.uni-tuebingen.de/people/staff/bokeloh/project_symmetry2.html
https://web.engr.oregonstate.edu/~hess/publications/siftlib-acmmm10.pdf
https://web.engr.oregonstate.edu/~hess/publications/siftlib-acmmm10.pdf
http://en.wikipedia.org/wiki/Scale_invariance
http://en.wikipedia.org/wiki/Scale_invariance
https://web.engr.oregonstate.edu/~hess/publications/siftlib-acmmm10.pdf
https://web.engr.oregonstate.edu/~hess/publications/siftlib-acmmm10.pdf
http://www.cscjournals.org/csc/manuscript/Journals/IJIP/volume3/Issue4/IJIP-51.pdf
http://www.cscjournals.org/csc/manuscript/Journals/IJIP/volume3/Issue4/IJIP-51.pdf

6.2. RECOMMENDATIONS FOR FUTURE WORK 89

[33] �Five billionth arm processor for mobile devices.� http://www.arm.com/about/

newsroom/16535.php.

[34] J. Hoogerbrugge, L. Augusteijn, J. Trum, and R. van de Wiel, �A code compres-
sion system based on pipelined interpreters.,� Softw., Pract. Exper., vol. 29, no. 11,
pp. 1005�1023, 1999.

[35] �Logitech webcam c200.� http://www.logitech.com.

[36] �Vga de�nition.� http://www.pcmag.com/encyclopedia_term/0,2542,t%

3DVGA&i%3D53801,00.asp.

[37] �Root-sum-square (rss) calculations of digital timing delays.� http://www.klabs.

org/richcontent/General_Application_Notes/SDE/RSS.pdf.

[38] �St ericsson u8500 - the smartphone platform.� http://www.stericsson.com/

platforms/U8500.jsp.

http://www.arm.com/about/newsroom/16535.php
http://www.arm.com/about/newsroom/16535.php
http://www.logitech.com
http://www.pcmag.com/encyclopedia_term/0,2542,t%3DVGA&i%3D53801,00.asp
http://www.pcmag.com/encyclopedia_term/0,2542,t%3DVGA&i%3D53801,00.asp
http://www.klabs.org/richcontent/General_Application_Notes/SDE/RSS.pdf
http://www.klabs.org/richcontent/General_Application_Notes/SDE/RSS.pdf
http://www.stericsson.com/platforms/U8500.jsp
http://www.stericsson.com/platforms/U8500.jsp

90 CHAPTER 6. CONCLUSIONS AND FUTURE WORK

Appendicies 7
7.1 A: Results of the comparative repeatability tests con-

ducted between SIFT and SURF algorithms.

91

Disturbance Type

Scaling

SIFT

Value Image Name Features Found Matches Obtained Performance

Original.png 505

1 Scale1.png 800 230 0.352490421

2 Scale2.png 334 193 0.460071514

3 Scale3.png 296 175 0.436953808

4 Scale4.png 179 121 0.35380117

SURF

Value Image Name Features Found Matches Obtained Performance

Original.bmp 380

Scale1 Scale1.bmp 517 113 0.251950948

Scale2 Scale2.bmp 261 122 0.380655226

Scale3 Scale3.bmp 227 111 0.365733114

Scale4 Scale4.bmp 144 66 0.251908397

Disturbance Type

Blurring

SIFT

Value Image Name Features Found Matches Obtained Performance

Original.png 505

1 Blur1.bmp 391 231 0.515625

2 Blur2.bmp 250 168 0.445033113

3 Blur3.bmp 195 135 0.385714286

4 Blur4.bmp 161 115 0.345345345

SURF

Value Image Name Features Found Matches Obtained Performance

Original.bmp 380

Scale1 Blur1.bmp 342 270 0.747922438

Scale2 Blur2.bmp 380 233 0.613157895

Scale3 Blur3.bmp 310 196 0.568115942

Scale4 Blur4.bmp 304 170 0.497076023

Disturbance Type

Illumination

SIFT

Value Image Name Features Found Matches Obtained Performance

Original.bmp 615

-2 dark2.bmp 0 0 0

-1 dark1.bmp 74 81 0.235123367

1 bright1.bmp 763 501 0.727140784

2 bright2.bmp 693 290 0.443425076

SURF

Value Image Name Features Found Matches Obtained Performance

Original.bmp 390

-2 dark2.bmp 1 1 0.00511509

-1 dark1.bmp 131 121 0.464491363

1 bright1.bmp 459 346 0.815076561

2 bright2.bmp 418 165 0.408415842

Disturbance Type

Viewpoint

SIFT

Value Image Name Features Found Matches Obtained Performance

Original.bmp 376

1 View1.bmp 379 108 0.286092715

2 View2.bmp 369 50 0.134228188

3 View3.bmp 690 82 0.153846154

4 View4.bmp 273 3 0.009244992

5 View5.bmp 453 68 0.164053076

SURF

Value Image Name Features Found Matches Obtained Performance

Original.bmp 268

1 View1.bmp 274 3 0.011070111

2 View2.bmp 228 13 0.052419355

3 View3.bmp 431 21 0.060085837

4 View4.bmp 225 3 0.012170385

5 View5.bmp 313 25 0.08605852

Disturbance Type

Orientation

SIFT

Value Image Name Features Found Matches Obtained Performance

Original.bmp 312

30 Ori1.bmp 327 134 0.419405321

60 Ori2.bmp 326 100 0.313479624

90 Ori3.bmp 290 96 0.318936877

120 Ori4.bmp 293 112 0.370247934

150 Ori5.bmp 301 129 0.420880914

180 Ori6.bmp 306 143 0.462783172

210 Ori7.bmp 331 107 0.33281493

240 Ori8.bmp 326 107 0.335423197

270 Ori9.bmp 259 89 0.3117338

300 Ori10.bmp 315 107 0.341307815

330 Ori11.bmp 328 144 0.45

SURF

Value Image Name Features Found Matches Obtained Performance

Original.bmp 243

30 Ori1.bmp 237 70 0.291666667

60 Ori2.bmp 244 60 0.246406571

90 Ori3.bmp 227 83 0.353191489

120 Ori4.bmp 231 59 0.248945148

150 Ori5.bmp 237 62 0.258333333

180 Ori6.bmp 244 89 0.36550308

210 Ori7.bmp 241 57 0.23553719

240 Ori8.bmp 247 45 0.183673469

270 Ori9.bmp 243 65 0.267489712

300 Ori10.bmp 248 57 0.232179226

330 Ori11.bmp 260 90 0.357852883

 SIFT

Image Name Features Found Processing Time

Original.png 505 1.67

Scale1.png 800 2.2

Scale2.png 334 1.35

Scale3.png 296 1.26

Scale4.png 179 1.02

Original.png 505 1.66

Blur1.bmp 391 1.55

Blur2.bmp 250 1.25

Blur3.bmp 195 1.14

Blur4.bmp 161 1.08

Original.bmp 312 1.28

Ori1.bmp 327 1.29

Ori2.bmp 326 1.33

Ori3.bmp 290 1.28

Ori4.bmp 293 1.27

Ori5.bmp 301 1.28

Ori6.bmp 306 1.31

Ori7.bmp 331 1.33

Ori8.bmp 326 1.32

Ori9.bmp 259 1.23

Ori10.bmp 315 1.34

Ori11.bmp 328 1.33

Original.bmp 615 1.78

dark2.bmp 0 0.69

dark1.bmp 74 0.86

bright1.bmp 763 2.02

bright2.bmp 693 2.05

Original.bmp 376 1.41

View1.bmp 379 1.41

View2.bmp 369 1.36

View3.bmp 690 1.94

View4.bmp 273 1.22

View5.bmp 453 1.56

SURF

Image Name Features Found Processing Time

Original.bmp 380 0.32

Scale1.bmp 517 0.42

Scale2.bmp 261 0.24

Scale3.bmp 227 0.22

Scale4.bmp 144 0.19

Original.bmp 380 0.32

Blur1.bmp 342 0.29

Blur2.bmp 380 0.32

Blur3.bmp 310 0.28

Blur4.bmp 304 0.27

Original.bmp 243 0.24

Ori1.bmp 237 0.23

Ori2.bmp 244 0.24

Ori3.bmp 227 0.23

Ori4.bmp 231 0.24

Ori5.bmp 237 0.24

Ori6.bmp 244 0.25

Ori7.bmp 241 0.25

Ori8.bmp 247 0.24

Ori9.bmp 243 0.24

Ori10.bmp 248 0.23

Ori11.bmp 260 0.25

Original.bmp 390 0.32

dark2.bmp 1 0.1

dark1.bmp 131 0.17

bright1.bmp 459 0.37

bright2.bmp 418 0.34

Original.bmp 268 0.28

View1.bmp 274 0.26

View2.bmp 228 0.24

View3.bmp 431 0.36

View4.bmp 225 0.23

View5.bmp 313 0.29

96 CHAPTER 7. APPENDICIES

7.2 B: i.MX515EVK Details

Overview
Freescale delivers the cost-effective i.MX51

evaluation kit, allowing customers to develop,

debug and demonstrate their next great product

without compromising performance. As part

of our new price, performance and personality

series, the evaluation kit is designed to support

all the features of the device in a small, single-

board design to enable designers to complete

a development platform at a low price point of

less than an estimated $700USD. The i.MX51

EVK has two optional add-on modules: an LCD

module and an expansion board which includes

a camera, TV out, keypad and UART. Based on

a powerful ARM Cortex™-A8 core, the i.MX51

EVK delivers extreme performance and low

power consumption, helping developers design

products that meet today’s demands for

energy efficiency.

A range of connectivity options makes the

i.MX51 EVK suitable for developing many

different types of user applications. The

provided board support packages (BSP) for

Linux® OS and Windows® Embedded CE

enable rapid prototyping which helps to speed

up the processor selection process and quickly

deliver a demo into the hands of the project

stakeholders. The i.MX51 EVK includes two SD

cards: one pre-loaded with Linux and the other

with Windows Embedded CE. Both options

support a wide range of automotive, consumer,

general embedded and industrial applications.

Key Benefits

• Explore multiple connectivity options

with the i.MX51 applications processor:

display, touch screen, USB, SDIO,

Ethernet and others

• Investigate usage of the video and graphics

through the hardware accelerated video

processing unit, OpenGL® ES 2.0 and

OpenVGTM 1.1 graphics processing units

• Develop with the MC13892 power

management chip from Freescale that

supports power sequencing of the i.MX51

device and output rails to supply power to

external components such as memories and

other system peripherals

• Use proven design examples and software

drivers to reduce hassles associated with

design-in of key connectivity and power

management options

• Enable rapid prototyping of human-machine

interfaces (HMI) via the on-board digital visual

interface (DVI) peripheral that allows the EVK

to interface to a standard PC monitor

• Boot from SD, SPI or NAND flash

Performance
With the i.MX51 EVK, designers have access to

key features needed for an end design offering

hardware functionality and connectivity required

for developing many applications, such as

portable media players, mobile Internet devices,

smartbooks, gaming consoles, ebooks,

media phones, digital photo frames, high-end

appliances, video and navigation, security and

surveillance, medical and factory automation.

With production-ready software components,

an optimized OS and a system-validated BSP,

designers have the tools to test and maximize

the performance of the applications they

have developed.

Software and hardware engineers can also

download this code to the target EVK to test

and validate their software and to run and

evaluate performance metrics. The ability to

have all communications ports working (serial,

USB) and to debug over JTAG and Ethernet is

essential for product development. The EVK

also provides boot select switches, which

provide the user with the option to override

the default boot setting of the CPU.

Personality
Freescale’s EVK for the i.MX51 applications

processor allows designers to quickly prototype

and demonstrate the results of their development

efforts in a small, portable design the size of a 5 x

5 portrait, giving confidence to project decision

makers that the product is that much closer to

production. Develop user-interactive software

and display your product-specific graphical

data on a high-quality, touch screen-enabled

7" WVGA LCD available as an add-on module

to the EVK. Connect additional input and output

peripherals such as a camera, TV out, keypad

and UART with the expansion board add-

on module. With the Freescale i.MX51 EVK,

prototyping and development are simplified to

improve time to market.

i.MX51 EVK Key Features

CPU

•	 i.MX51 applications processor

•	 4 x 128 MB DDR2

•	 4 MB SPI NOR

•	 PMIC: Freescale MC13892

•	 NAND and EIM header

i.MX Applications Processors

Evaluation Kit (EVK) for the
i.MX51 Applications Processor
Price. Performance. Personality.

 Learn More: For current information about Freescale
products and documentation, please visit
www.freescale.com/imx51evk.

Freescale and the Freescale logo are trademarks or registered trademarks of Freescale Semiconductor, Inc. in the U.S. and other
countries. All other product or service names are the property of their respective owners.
© Freescale Semiconductor, Inc. 2009

Document Number: IMX51EVKFS / Rev 0

Peripherals

•	 7” WVGA touch screen LCD display

(add-on module)

•	 Two LVDS connectors

•	 DVI-I connector

•	 Two SD/MMC card slots

•	 USB host x2/USB OTG x1

•	 Ethernet port

•	 Mini PCI Express®

•	 SATA HDD connector

•	 SIM card connector

•	 Keyboard connector

•	 Mic input, stereo headphone output (jack),

V2IP headphone

•	 Speaker connector

•	 USB camera connector

•	 PS-2 TP connector

•	 RGB output through DVI-I connector

•	 Expansion header

•	 Ambient light sensor footprint

•	 FM receiver footprint

•	 Expansion board (add-on module) with

camera, TV out, keypad and UART

Debug

•	 Debug serial port

•	 JTAG

•	 Reset, boot switches

•	 Debug LED

•	 Power source

•	 Power on/off button

•	 Power measurement header

Software Development Kit

• Optimized and validated for both

Linux and Windows Embedded CE

operating systems

• Integrated and validated BSP for the i.MX51

EVK feature set

• Highly optimized software that is coded by

Freescale processor experts

• Consistent application programming

interface (API) and frameworks across

software packages

• Evaluation and production software

packages available through a streamlined,

Web-based licensing and delivery system

• Freescale development tools, test streams

and documentation provided

Part Number Peripheral Features MSRP (USD)

MCIMX51LCD i.MX51
LCD
Module

WVGA with
resistive
touch screen

$250.00

MCIMX51EXP i.MX51
Expansion
Board

-CMOS
camera
-TV out
-Keypad
-UART

$200.00

i.MX51 Evaluation Kit

Part Number Operating Systems MSRP (USD)

MCIMX51EVKJ Linux and Windows
Embedded CE

$699.00

The MC13892 Power Management
and User Interface IC (PMUI IC)
The MC13892 PMUI IC is designed

for use with the i.MX51 applications

processor requiring a highly integrated,

bi-directional power management IC and

communications device. Features include:

•	 Battery charging system for

wall charging and USB charging

•	 10-bit ADC for monitoring battery

and other inputs

•	 Four adjustable output buck converters

•	 12 adjustable output low drop

outs (LDO) with internal and external

pass devices

•	 Two boost converters

•	 Serial backlight drivers

•	 Power control logic with processor

interface and event direction

•	 Real-time clock and crystal

oscillator circuitry

•	 Touch screen interface

•	 SPI/I2C bus interface

i.MX51 Evaluation Kit assembled with LCD and

expansion boards

7.3. C: NEON TEST 99

(a) Top View.

(b) Bottom View.

Figure 7.1: The Top and bottom views of the i.MX515EVK.

7.3 C: NEON test

C:\Users\VikBoy\Documents\Thesis Report\Report\Images\Matrix_multiplication.c Saturday, 20 November, 2010 4:13 PM

inline void MatrixMultiplication(float H[][3], float dD[][1], float result[][1])

{

unsigned char i, j, k;

for(i=0;i<3;i++)

{

for(j=0;j<1;j++)

{

result[i][j] = 0;

}

}

for(i=0;i<3;i++)

{

for(j=0;j<1;j++)

{

for(k=0;k<3;k++)

{

result[i][j] += H[i][k] * dD[k][j];

}

}

}

}

-1-

C:\Users\VikBoy\Documents\Thesis Report\Report\Images\vfp3.asm Saturday, 20 November, 2010 4:17 PM

;\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\

; With gcc -vfpu=vfpv3

;\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\

Disassembly of section .text:

000083fc <MatrixMultiplication>:

83fc: e52db004 push {fp} ; (str fp, [sp, #-4]!)

8400: e28db000 add fp, sp, #0

8404: e24dd01c sub sp, sp, #28

8408: e50b0010 str r0, [fp, #-16]

840c: e50b1014 str r1, [fp, #-20]

8410: e50b2018 str r2, [fp, #-24]

8414: e3a03000 mov r3, #0

8418: e54b3007 strb r3, [fp, #-7]

841c: ea000013 b 8470 <MatrixMultiplication+0x74>

8420: e3a03000 mov r3, #0

8424: e54b3006 strb r3, [fp, #-6]

8428: ea00000a b 8458 <MatrixMultiplication+0x5c>

842c: e55b3007 ldrb r3, [fp, #-7]

8430: e1a02103 lsl r2, r3, #2

8434: e51b3018 ldr r3, [fp, #-24]

8438: e0823003 add r3, r2, r3

843c: e55b2006 ldrb r2, [fp, #-6]

8440: eddf7a4d vldr s15, [pc, #308] ; 857c <MatrixMultiplication+0x180>

8444: ee171a90 vmov r1, s15

8448: e7831102 str r1, [r3, r2, lsl #2]

844c: e55b3006 ldrb r3, [fp, #-6]

8450: e2833001 add r3, r3, #1

8454: e54b3006 strb r3, [fp, #-6]

8458: e55b3006 ldrb r3, [fp, #-6]

845c: e3530000 cmp r3, #0

8460: 0afffff1 beq 842c <MatrixMultiplication+0x30>

8464: e55b3007 ldrb r3, [fp, #-7]

8468: e2833001 add r3, r3, #1

846c: e54b3007 strb r3, [fp, #-7]

8470: e55b3007 ldrb r3, [fp, #-7]

8474: e3530002 cmp r3, #2

8478: 9affffe8 bls 8420 <MatrixMultiplication+0x24>

847c: e3a03000 mov r3, #0

8480: e54b3007 strb r3, [fp, #-7]

8484: ea000036 b 8564 <MatrixMultiplication+0x168>

8488: e3a03000 mov r3, #0

848c: e54b3006 strb r3, [fp, #-6]

8490: ea00002d b 854c <MatrixMultiplication+0x150>

8494: e3a03000 mov r3, #0

8498: e54b3005 strb r3, [fp, #-5]

849c: ea000024 b 8534 <MatrixMultiplication+0x138>

84a0: e55b3007 ldrb r3, [fp, #-7]

84a4: e1a02103 lsl r2, r3, #2

84a8: e51b3018 ldr r3, [fp, #-24]

84ac: e0821003 add r1, r2, r3

84b0: e55b0006 ldrb r0, [fp, #-6]

84b4: e55b3007 ldrb r3, [fp, #-7]

84b8: e1a02103 lsl r2, r3, #2

84bc: e51b3018 ldr r3, [fp, #-24]

84c0: e0823003 add r3, r2, r3

-1-

C:\Users\VikBoy\Documents\Thesis Report\Report\Images\vfp3.asm Saturday, 20 November, 2010 4:17 PM

84c4: e55b2006 ldrb r2, [fp, #-6]

84c8: e083c102 add ip, r3, r2, lsl #2

84cc: ed9c7a00 vldr s14, [ip]

84d0: e55b2007 ldrb r2, [fp, #-7]

84d4: e1a03002 mov r3, r2

84d8: e1a03083 lsl r3, r3, #1

84dc: e0833002 add r3, r3, r2

84e0: e1a03103 lsl r3, r3, #2

84e4: e1a02003 mov r2, r3

84e8: e51b3010 ldr r3, [fp, #-16]

84ec: e0823003 add r3, r2, r3

84f0: e55b2005 ldrb r2, [fp, #-5]

84f4: e083c102 add ip, r3, r2, lsl #2

84f8: eddc6a00 vldr s13, [ip]

84fc: e55b3005 ldrb r3, [fp, #-5]

8500: e1a02103 lsl r2, r3, #2

8504: e51b3014 ldr r3, [fp, #-20]

8508: e0823003 add r3, r2, r3

850c: e55b2006 ldrb r2, [fp, #-6]

8510: e083c102 add ip, r3, r2, lsl #2

8514: eddc7a00 vldr s15, [ip]

8518: ee667aa7 vmul.f32 s15, s13, s15

851c: ee777a27 vadd.f32 s15, s14, s15

8520: ee173a90 vmov r3, s15

8524: e7813100 str r3, [r1, r0, lsl #2]

8528: e55b3005 ldrb r3, [fp, #-5]

852c: e2833001 add r3, r3, #1

8530: e54b3005 strb r3, [fp, #-5]

8534: e55b3005 ldrb r3, [fp, #-5]

8538: e3530002 cmp r3, #2

853c: 9affffd7 bls 84a0 <MatrixMultiplication+0xa4>

8540: e55b3006 ldrb r3, [fp, #-6]

8544: e2833001 add r3, r3, #1

8548: e54b3006 strb r3, [fp, #-6]

854c: e55b3006 ldrb r3, [fp, #-6]

8550: e3530000 cmp r3, #0

8554: 0affffce beq 8494 <MatrixMultiplication+0x98>

8558: e55b3007 ldrb r3, [fp, #-7]

855c: e2833001 add r3, r3, #1

8560: e54b3007 strb r3, [fp, #-7]

8564: e55b3007 ldrb r3, [fp, #-7]

8568: e3530002 cmp r3, #2

856c: 9affffc5 bls 8488 <MatrixMultiplication+0x8c>

8570: e28bd000 add sp, fp, #0

8574: e49db004 pop {fp} ; (ldr fp, [sp], #4)

8578: e12fff1e bx lr

857c: 00000000 .word 0x00000000

-2-

C:\Users\VikBoy\Documents\Thesis Report\Report\Images\vneon.asm Saturday, 20 November, 2010 4:18 PM

;\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\

; With gcc -vfpu=neon -ftree-vectorize

;\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\

Disassembly of section .text:

000083fc <MatrixMultiplication>:

83fc: e52db004 push {fp} ; (str fp, [sp, #-4]!)

8400: e28db000 add fp, sp, #0

8404: e24dd01c sub sp, sp, #28

8408: e50b0010 str r0, [fp, #-16]

840c: e50b1014 str r1, [fp, #-20]

8410: e50b2018 str r2, [fp, #-24]

8414: e3a03000 mov r3, #0

8418: e54b3007 strb r3, [fp, #-7]

841c: ea000013 b 8470 <MatrixMultiplication+0x74>

8420: e3a03000 mov r3, #0

8424: e54b3006 strb r3, [fp, #-6]

8428: ea00000a b 8458 <MatrixMultiplication+0x5c>

842c: e55b3007 ldrb r3, [fp, #-7]

8430: e1a02103 lsl r2, r3, #2

8434: e51b3018 ldr r3, [fp, #-24]

8438: e0823003 add r3, r2, r3

843c: e55b2006 ldrb r2, [fp, #-6]

8440: eddf7a4d vldr s15, [pc, #308] ; 857c <MatrixMultiplication+0x180>

8444: ee171a90 vmov r1, s15

8448: e7831102 str r1, [r3, r2, lsl #2]

844c: e55b3006 ldrb r3, [fp, #-6]

8450: e2833001 add r3, r3, #1

8454: e54b3006 strb r3, [fp, #-6]

8458: e55b3006 ldrb r3, [fp, #-6]

845c: e3530000 cmp r3, #0

8460: 0afffff1 beq 842c <MatrixMultiplication+0x30>

8464: e55b3007 ldrb r3, [fp, #-7]

8468: e2833001 add r3, r3, #1

846c: e54b3007 strb r3, [fp, #-7]

8470: e55b3007 ldrb r3, [fp, #-7]

8474: e3530002 cmp r3, #2

8478: 9affffe8 bls 8420 <MatrixMultiplication+0x24>

847c: e3a03000 mov r3, #0

8480: e54b3007 strb r3, [fp, #-7]

8484: ea000036 b 8564 <MatrixMultiplication+0x168>

8488: e3a03000 mov r3, #0

848c: e54b3006 strb r3, [fp, #-6]

8490: ea00002d b 854c <MatrixMultiplication+0x150>

8494: e3a03000 mov r3, #0

8498: e54b3005 strb r3, [fp, #-5]

849c: ea000024 b 8534 <MatrixMultiplication+0x138>

84a0: e55b3007 ldrb r3, [fp, #-7]

84a4: e1a02103 lsl r2, r3, #2

84a8: e51b3018 ldr r3, [fp, #-24]

84ac: e0821003 add r1, r2, r3

84b0: e55b0006 ldrb r0, [fp, #-6]

84b4: e55b3007 ldrb r3, [fp, #-7]

84b8: e1a02103 lsl r2, r3, #2

84bc: e51b3018 ldr r3, [fp, #-24]

-1-

C:\Users\VikBoy\Documents\Thesis Report\Report\Images\vneon.asm Saturday, 20 November, 2010 4:18 PM

84c0: e0823003 add r3, r2, r3

84c4: e55b2006 ldrb r2, [fp, #-6]

84c8: e083c102 add ip, r3, r2, lsl #2

84cc: ed9c7a00 vldr s14, [ip]

84d0: e55b2007 ldrb r2, [fp, #-7]

84d4: e1a03002 mov r3, r2

84d8: e1a03083 lsl r3, r3, #1

84dc: e0833002 add r3, r3, r2

84e0: e1a03103 lsl r3, r3, #2

84e4: e1a02003 mov r2, r3

84e8: e51b3010 ldr r3, [fp, #-16]

84ec: e0823003 add r3, r2, r3

84f0: e55b2005 ldrb r2, [fp, #-5]

84f4: e083c102 add ip, r3, r2, lsl #2

84f8: eddc6a00 vldr s13, [ip]

84fc: e55b3005 ldrb r3, [fp, #-5]

8500: e1a02103 lsl r2, r3, #2

8504: e51b3014 ldr r3, [fp, #-20]

8508: e0823003 add r3, r2, r3

850c: e55b2006 ldrb r2, [fp, #-6]

8510: e083c102 add ip, r3, r2, lsl #2

8514: eddc7a00 vldr s15, [ip]

8518: ee667aa7 vmul.f32 s15, s13, s15

851c: ee777a27 vadd.f32 s15, s14, s15

8520: ee173a90 vmov r3, s15

8524: e7813100 str r3, [r1, r0, lsl #2]

8528: e55b3005 ldrb r3, [fp, #-5]

852c: e2833001 add r3, r3, #1

8530: e54b3005 strb r3, [fp, #-5]

8534: e55b3005 ldrb r3, [fp, #-5]

8538: e3530002 cmp r3, #2

853c: 9affffd7 bls 84a0 <MatrixMultiplication+0xa4>

8540: e55b3006 ldrb r3, [fp, #-6]

8544: e2833001 add r3, r3, #1

8548: e54b3006 strb r3, [fp, #-6]

854c: e55b3006 ldrb r3, [fp, #-6]

8550: e3530000 cmp r3, #0

8554: 0affffce beq 8494 <MatrixMultiplication+0x98>

8558: e55b3007 ldrb r3, [fp, #-7]

855c: e2833001 add r3, r3, #1

8560: e54b3007 strb r3, [fp, #-7]

8564: e55b3007 ldrb r3, [fp, #-7]

8568: e3530002 cmp r3, #2

856c: 9affffc5 bls 8488 <MatrixMultiplication+0x8c>

8570: e28bd000 add sp, fp, #0

8574: e49db004 pop {fp} ; (ldr fp, [sp], #4)

8578: e12fff1e bx lr

857c: 00000000 .word 0x00000000

-2-

7.4. D: GPROF PROFILER REPORT 105

7.4 D: gprof Pro�ler Report

C:\Users\VikBoy\Documents\Thesis Report\Report\Images\Appendix\profiler2.stats Wednesday, 01 December, 2010 12:55 PM

Flat profile:

Each sample counts as 0.01 seconds.

 % cumulative self self total

 time seconds seconds calls ms/call ms/call name

 69.24 0.17 0.17 3383284 0.00 0.00 box_area_compute

 12.89 0.31 0.05 129 0.39 1.03 get_descriptor

 11.11 0.35 0.04 1 40.01 210.05 build_response_layers

 2.78 0.36 0.01 1 10.00 10.00 integral_image_compute

 2.57 0.36 0.00 146 0.00 0.00 mat_inverse_and_multiple

 1.43 0.36 0.00 129 0.00 0.05 get_orientation

 0.00 0.36 0.00 8 0.00 0.00 alloc_2D_float

 0.00 0.36 0.00 8 0.00 0.00 alloc_2D_uchar

 0.00 0.36 0.00 8 0.00 0.00 free_2D_float

 0.00 0.36 0.00 8 0.00 0.00 free_2D_uchar

 0.00 0.36 0.00 2 0.00 0.00 file_check

 0.00 0.36 0.00 2 0.00 0.00 file_close

 0.00 0.36 0.00 1 0.00 0.00 alloc_pixels

 0.00 0.36 0.00 1 0.00 0.00 bmp_check

 0.00 0.36 0.00 1 0.00 0.00 bmp_get_image_details

 0.00 0.36 0.00 1 0.00 0.00 bmp_read_pixels

 0.00 0.36 0.00 1 0.00 0.00 bmp_verify_image_size

 0.00 0.36 0.00 1 0.00 350.08 build_scalespace

 0.00 0.36 0.00 1 0.00 0.00 free_pixels

 % the percentage of the total running time of the

time program used by this function.

cumulative a running sum of the number of seconds accounted

 seconds for by this function and those listed above it.

 self the number of seconds accounted for by this

seconds function alone. This is the major sort for this

 listing.

calls the number of times this function was invoked, if

 this function is profiled, else blank.

 self the average number of milliseconds spent in this

ms/call function per call, if this function is profiled,

 else blank.

 total the average number of milliseconds spent in this

ms/call function and its descendents per call, if this

 function is profiled, else blank.

name the name of the function. This is the minor sort

 for this listing. The index shows the location of

 the function in the gprof listing. If the index is

 in parenthesis it shows where it would appear in

 the gprof listing if it were to be printed.

FF

-1-

7.4. D: GPROF PROFILER REPORT 107

[H]

Figure 7.2: Functional block diagram of i.MX515EVK, borrowed from the i.MX515EVK
data sheet.

	List of Figures
	List of Tables
	Acknowledgements
	Introduction
	Research Goals
	Thesis Contributions
	Thesis Organization

	Key-Point Feature Extraction Algorithms
	Key-Point Feature Extraction Algorithms
	Edge or Corner Detectors
	Scale Invariant Feature Transform or SIFT
	Speeded-Up Robust Features or SURF

	The comparison between SIFT and SURF
	Parameters
	Results of the Repeatability Test
	Processing Times

	Conclusion

	The Algorithm Implementation and Optimization
	The SURF Algorithm
	The Four Steps of SURF Algorithm
	Processing time
	Optimization 1: Algorithm Optimization

	Conclusion

	Hardware Platform: i.MX515 Evaluation Kit
	Fresscale's i.MX515 Processor
	ARM Cortex-A8 Processor
	Development Tools

	SURF Algorithm for ARM Cortex-A8 Processor
	Processing Time needed to compute Key-Points using SURF_ARM
	Optimization 2: Make use of NEON
	NEON
	Methods available to program NEON
	SURF_ARM profiling
	Candidates chosen for Vectorization

	Conclusion

	A Real-Time Object Identification Application
	The Euro Currency Notes Identification Application
	Step 1: Extracting SURF Key-Points
	Step 2: Matching the Key-Points and Decision Making

	Application Performance
	Robustness to Changing Conditions
	Processing Time

	Optimization 3: Progressive SURF Key-Points Extraction and Matching
	Other Measurements
	Memory Requirements
	Energy Utilizations

	Conclusion

	Conclusions and Future Work
	Summary and Conclusions
	Recommendations for Future Work

	Bibliography
	Appendicies
	A: Results of the comparative repeatability tests conducted between SIFT and SURF algorithms.
	B: i.MX515EVK Details
	C: NEON test
	D: gprof Profiler Report

