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Abstract This paper provides the convex hull description of the single thermal Unit
Commitment (UC) problem with the following basic operating constraints: (1) gen-
eration limits, (2) start-up and shut-down capabilities, and (3) minimum up and down
times. The proposed constraints can be used as the core of any unit commitment formu-
lation to strengthen the lower bound in enumerative approaches. We provide evidence
that dramatic improvements in computational time are obtained by solving the self-
UC problem and the network-constrained UC problem with the new inequalities for
different case studies.
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1 Introduction

The unit commitment (UC) problem requires to optimally operate a set of power
generation units over a time horizon ranging from one day to one week. Despite the
breakthrough in mixed-integer programming (MIP) solvers, the UC problem remains
restricted in size and scope due to the time requested for its solution. Variants of the
UC problem can be solved significantly faster by improving their MIP formulations
by providing the convex hull description of some set of constraints. Even though other
constraints in the problem might add some fractional vertices, this solution should
be nearer to the optimal solution than the solution of the original model would be
(Wolsey 1998; Williams 2013). Some efforts in tightening specific set of constraints
have been done, such as the convex hull of the minimum up and down times (Lee et al.
2004;Malkin 2003; Rajan and Takriti 2005), cuts to tighten ramping limits (Ostrowski
et al. 2012; Damci et al. 2015), tighter approximation for quadratic generation costs
(Frangioni et al. 2009), new formulations for the time-depending start-up costs (Sil-
bernagl et al. 2014), and simultaneously tight and compact description of thermal units
operation (Morales-España et al. 2013a, b, 2015a, b).

The main contribution of this paper is a slight modification of the constraints pre-
sented in Morales-España et al. (2013a) plus the proof that the new model provides
the convex hull description of the solutions satisfying the following set of constraints:
(1) generation limits, (2) start-up and shut-down capabilities, and (3) minimum up and
down times. This result is a basic step towards the definition of a formulation describ-
ing the convex hull of the set of solutions satisfying also general ramp constraints with
a linear number of variables. Recently, a formulation with O(T 3) variables (where
T is the length of the time horizon) describing the convex hull of the feasible solu-
tions has been obtained independently in Frangioni and Gentile (2015) and Knueven
et al. (2015), but using formulations based on the dynamic programming algorithm in
Frangioni and Gentile (2006). Moreover, the techniques used in this paper could be
possibly used also to achieve this more general result. These results are in some sense
orthogonal to those in Damci et al. (2015). In this paper, we consider both start-up and
shut-down capabilities together but we do not consider ramp constraints; in Damci
et al. (2015) two separate polytopes are defined: the ramp-up polytope considering
solutions satisfying ramp-up and start-up limits and the ramp-down polytope consid-
ering solutions satisfying ramp-down and shut-down limits. In Damci et al. (2015) the
convex hull descriptions for ramp-up and ramp-down polytopes are provided for the
case of only two periods and some facet defining inequalities are presented for the
same polytopes with arbitrary time horizon.

On the application side tighter formulations are usually solved in less time by MIP
solvers; however, this must be tested by computational experiments. We compare
the new formulation with two other MIP formulations obtaining results significantly
faster for three different case studies. The first one consists in solving a self-UC
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A tight MIP formulation of the unit commitment... 179

problem only taking into account the constraints proposed in this paper. The self-UC
problem requires to optimize the net profit of a price-taker generation company, that is
a relatively small company that is not able to influence the market price. If we restrict
to the above mentioned constraints, we have a convex hull description also for the
self-UC problem. The second and third case studies solve the network-constrained
UC problem for two IEEE power systems, where other common constraints are taken
into account, such as demand balance, reserves, ramping, and transmission limits.

The remainder of this paper is organized as follows: Sect. 2 introduces the main
notation used to describe the proposed formulation. Section 3 details the basic oper-
ating constraints of a single generating unit. Section 4 contains the facet inducing and
convex hull proofs for the proposed linear description of the self-UC subproblem.
Section 5 provides and discusses results from several case studies, where a compari-
son with other three UC formulations is made. Finally, some relevant conclusions are
drawn in Sect. 6.

2 Notation

Here, we introduce the main notation used in this paper. The length of the time horizon
is denoted by T and the time is indexed by t . The set of generating units is denoted by
G and indexed with g running from 1 to G.

2.1 Unit’s technical parameters

Pg/Pg Maximum/minimum power output [MW] for unit g.
SDg/SUg Shut-down/start-up capability [MW] for unit g.
TDg/TUg Minimum down/up time [h] for unit g.

2.2 Decision variables

ugt Binary variable for the commitment status of unit g for period t , which is equal
to 1 if the unit is online and 0 otherwise.

vgt Binary variable for the start-up status of unit g, which is equal to 1 if the unit
starts up in period t and 0 otherwise.

wgt Binary variable for the shut-down status of unit g, which is equal to 1 if the
unit shuts down in period t and 0 otherwise.

pgt Power production above the unit’s minimum output Pg [MW] for unit g in
period t . The total generation output is equal to ugt Pg + pgt .

3 Modeling the unit’s operation

This section describes the mathematical formulations of the basic operation of a single
generating unit in UC problems. To simplify the notation, here we do not report the
unit index. In Sect. 5 we consider two multi-units UC problems where the single
generating unit formulations must be replicated for each unit.
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180 C. Gentile et al.

Fig. 1 Unit’s operation
including its start-up and
shut-down capabilities

Two main formulations can be found in the literature: 1bin formulation, so called
because it uses only one vector of binary variables ut denoting the status ON/OFF of
the unit for each time period t ; 3bin formulation, so called because it uses three vectors
of binary variables by adding to the state variables also the start-up vt and shut-down
wt variables. The basic constraints of the 1bin and 3bin formulations are presented in
Appendix 1.

In this paper, the following set of constraints is modeled: generation limits, mini-
mum up and down times, and start-up and shut-down capabilities. As shown in Fig. 1,
the start-up capability SU is the maximum power that a generating unit could pro-
duce when it starts up. Similarly, the unit should be producing below its shut-down
capability SD when it shuts down.

First, we use the following constraints, which were proposed in (Rajan and Takriti
2005) to describe the convex hull formulation of the minimum-up and -down time
constraints:

ut − ut−1 = vt − wt t = 2, . . . , T (1)
t∑

j=t−TU+1

v j ≤ ut t = 2, . . . , T (2)

t∑

j=t−TD+1

w j ≤ 1 − ut t = 2, . . . , T (3)

where inequalities in (2) state that in an interval of TU consecutive time periods a
unit can be started-up at most once; inequalities (3) works similarly for the shut-down
case.

Here, we present the formulation that we now denote as TC obtained by adding to
constraints (1)–(3) the following constraints with start-up and shut-down capabilities:

p1 ≤ (
P − P

)
u1 − (

P − SD
)
w2 (4)

pt ≤ (
P − P

)
ut − (

P − SU
)
vt − (

P − SD
)
wt+1 t = 2, . . . , T − 1 (5)

pT ≤ (
P − P

)
uT − (

P − SU
)
vT (6)

Constraint (5) states that the maximum power above the minimum output in period
t when the unit is started-up (e.g., ut = vt = 1 and wt+1 = 0) is equal to SU − P ,
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when the unit is shut-down at time t + 1 (e.g., ut = wt+1 = 1 and vt = 0) is equal to
SD − P , and when the unit is continuously online (e.g, ut = 1 and vt = wt+1 = 0)
is equal to P − P . Constraints (4) and (6) describe the first and the last period cases.

Be aware that (5) may be infeasible in the event that the unit is online for just
one period. Indeed, when vt = wt+1 = 1 the right side of (5) can be negative.
Consequently, (5) is only valid for units with uptime TU ≥ 2. The correct formulation
for unitswith TU = 1 is given by substituting (5)with the following pair of constraints:

pt ≤ (
P − P

)
ut − (

P − SD
)
wt+1 − max (SD−SU, 0) vt t = 2, . . . , T − 1

(7)

pt ≤ (
P − P

)
ut − (

P − SU
)
vt − max (SU−SD, 0) wt+1 t = 2, . . . , T − 1.

(8)

Finally, the variable bounds are given by

0 ≤ ut ≤ 1 t = 1, . . . , T (9)

vt ≥ 0, wt ≥ 0 t = 2, . . . , T (10)

pt ≥ 0 t = 1, . . . , T . (11)

In summary, inequalities (4)–(6) together with inequalities (1)–(3) and (9)–(11)
describe the operations for unitswith TU ≥ 2, and inequalities (4), (6), (7), (8) together
with inequalities (1)–(3) and (9)–(11) for units with TU = 1. The main contribution of
this paper is that the polytopes described with these formulations always have integral
vertices with respect to the binary variables.

In Morales-España et al. (2013a), a slightly different formulation was presented,
where instead of constraints (7) and (8) the following ones were used:

pt ≤ (
P − P

)
ut − (

P − SD
)
wt+1 t = 2, . . . , T − 1 (12)

pt ≤ (
P − P

)
ut − (

P − SU
)
vt t = 2, . . . , T − 1. (13)

Note that if SU=SD then (7) and (8) and (12) and (13) would be equivalent. We
denote the old formulation (Morales-España et al. 2013a) with the latter constraints
as TC0.

4 Strength of the proposed inequalities

In this section, we prove that inequalities (1)–(11) describe the convex hull of the
feasible solutions. Note that constraints (1) uniquely define the value of the variables
w as a function of u and v. Unless differently specified, in the following, we will
consider only the space defined by the variables u, v, and p. Moreover, we suppose that
all constraints (3)–(5), (7), (8), and (10) are rewritten by substituting the w variables
accordingly.
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Definition 1 Let CT
(
TU,TD, P, P,SU,SD

)
be the convex hull of the feasible inte-

ger solution for the problem. That is, for TU ≥ 2, we write

CT (TU ≥ 2,TD, P, P,SU,SD) =
conv{(u, v, p) ∈ {0, 1}2T−1 × R

T+| (u, v, p) satisfy (1)−(6) and (9)−(11)};

for TU = 1, we write

CT
(
TU = 1,TD, P, P,SU,SD

) = conv
{
(u, v, p) ∈ {0, 1}2T−1 × R

T+| (u, v, p)
satisfy (1)−(4), (6)−(8), and (9)−(11)

}
.

In short we writeCT forCT
(
TU,TD, P, P,SU,SD

)
,CT (TU≥2) forCT (TU≥2,

TD, P, P,SU,SD), and CT (TU = 1) for CT (TU = 1,TD, P, P,SU,SD).

Proposition 2 dim(CT ) = 3T − 1 and thus CT is full-dimensional.

Proposition 3 The inequalities (4), (6) and (11) describe facets of the polytope CT .
Moreover, inequalities (5) describe facets of the polytope CT

(
TU ≥ 2

)
, and inequal-

ities (7) and (8) describe facets of the polytope CT
(
TU= 1

)
.

The proofs of Propositions 2 and 3 can be performed by exhibiting the right number
of affinely independent points (details of the proofs can be requested to the authors).

For the convex hull proof, we need a preliminary lemma that is very easy to prove
from well-known results (for completeness we report a proof suggested by a referee):

Lemma 4 Suppose that P = {x ∈ R
n|Ax ≤ b} is an integer polyhedron. Suppose that

y ∈ R
K are new variables and that Q = {(x, y) : dkx ≤ yk ≤ ckx, k = 1, . . . , K },

with at most one lower bound dkx and one upper bound ckx for each variable yk . If
dk x ≤ ckx for each x ∈ P, then P ∩ Q has extreme points with x integer.

Proof Consider the linear program LP(P,Q): min{qx+∑K
k=1 hk yk : (x, y) ∈ P∩Q}.

We prove that for each objective function this LP has an integer solution with respect
to x . Set yk = dkx if hk ≥ 0 and yk = ckx otherwise. Solve the resulting LP in
the x-space. Then x is integer and the corresponding (x, y) is optimal for the linear
program LP(P,Q). ��
Theorem 5 Let DT

(
TU,TD, P, P,SU,SD

)
be a polyhedron defined as follows:

• for TU ≥ 2

DT
(
TU ≥ 2,TD, P, P,SU,SD

) ={
(u, v, p) ∈ [0, 1]2T−1 × R

T+| (u, v, p) satisfy (1)−(6) and (9)−(11) } ;

• for TU = 1

DT
(
TU = 1,TD, P, P,SU,SD

) = {
(u, v, p) ∈ [0, 1]2T−1 × R

T+| (u, v, p)
satisfy (1)−(4), (6)−(8), and (9)−(11)

}
.
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A tight MIP formulation of the unit commitment... 183

Then CT
(
TU,TD, P, P,SU,SD

) = DT
(
TU,TD, P, P,SU,SD

)
.

Proof As for CT , we use short notations DT , DT
(
TU ≥ 2

)
, and DT

(
TU = 1

)
. The

proof for TU ≥ 2 easily follows from Lemma 4. Indeed, DT
(
TU ≥ 2

)
is described by

the inequalities (1)–(3) and (9) and (10) that describe an integral polyhedron in u and
v as proved in (Rajan and Takriti 2005), together with inequalities (4)–(6) and (11)
satisfying the hypothesis of Lemma 4.

For TU = 1 let us suppose that SU ≥ SD.We follow Approach 8 in (Wolsey 1998)
(see Section 9.2.3, Problem2,Approach 8).Wefirst introduce an extended formulation
of the problem, then we prove that the extended formulation is integral, and finally
we prove that the projection of the new polyhedron correspond to DT

(
TU = 1

)
. We

divide the proof into a series of claims. We define the following new binary variables
for t = 2, . . . , T − 1: xt = 1 if and only if vt = 1 and wt+1 = 1, ṽt = 1 if and only
if and wt+1 = 0, w̃t+1 = 1 if and only if vt = 0 and wt+1 = 1, ũt = 1, if and only if
ut = 1, vt = 0, and wt+1 = 0. Moreover, ũT = 1 if and only if uT = 1 and vT = 0.

Claim 1. The polyhedron P defined by the points (u, v, w, ũ, ṽ, w̃, x) satisfying the
following inequalities is integral:

vt ≤ ut t = 2, . . . , T (14)
t∑

i=t−TD+1

wi ≤ 1 − ut t ∈ [TD + 1, T ] (15)

ut − ut−1 = vt − wt t ∈ [2, T ] (16)

wt+1 = w̃t+1 + xt t ∈ [2, T − 1] (17)

vt = ṽt + xt t ∈ [2, T − 1] (18)

ut = ṽt + w̃t+1 + xt + ũt t ∈ [2, T − 1] (19)

uT = vT + ũT (20)

0 ≤ ut ≤ 1 t ∈ [1, T ] (21)

vt , wt , ũt ≥ 0 t ∈ [2, T ] (22)

ṽt , xt ≥ 0 t ∈ [2, T − 1] (23)

w̃t ≥ 0 t ∈ [3, T ] (24)

Proof of Claim 1 The proof is carried on by showing that the coefficient matrix asso-
ciated with the above linear system is totally unimodular.

We exploit this well-known property (proved by Ghouila-Houri, see (Nemhauser
and Wolsey 1999), Chapter III.1, Theorem 2.7): let A be a {0, 1,−1}-matrix, if each
subset J of columns of A can be partitioned into J1 and J2 such that

∣∣∣∣∣∣

∑

j∈J1

ai j −
∑

j∈J2

ai j

∣∣∣∣∣∣
≤ 1 (25)

for each row i , then A is totally unimodular. This part of the proof has been inspired
by the proof of Malkin (2003) for the polyhedron defined by (1)–(3).
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184 C. Gentile et al.

First we assign the variables wi ∈ J alternatively to J1 and to J2 in lexicographic
order. Then the variables ut ∈ J are assigned either to J1 if wk ∈ J2, where k =
max{i |1 ≤ i ≤ t, wi ∈ J }, or to J2 if wk ∈ J1, or to the same set with respect to ut−1
if {i |1 ≤ i ≤ t, wi ∈ J } is empty. Thus condition (25) is satisfied for constraints (15).

Variables vt ∈ J are assigned either to J1 if ut ∈ J1, or to J2 if ut ∈ J2, or to the
opposite set with respect to ut−1 if ut /∈ J , or to the same set aswt if both ut−1, ut /∈ J .
This ensures that condition (25) is satisfied for constraints (14) and (16).

If vt , wt+1 ∈ J , then assign ṽt ∈ J to the same subset as vt , xt ∈ J to the opposite
set with respect to ṽt , and w̃t ∈ J to the same subset as wt . These assignments
guarantee that condition (25) is satisfied for constraints (17) and (18) both in the case
that vt and wt+1 are in the same set or in different sets. Moreover, the assignment for
ũt can be chosen to satisfy condition (25) for constraints (19). If one between vt and
wt+1 does not belong to J then proceed as follows: suppose w.l.o.g. that vt /∈ J ,
then assign wt+1, w̃t+1, and ṽt to the same set and xt to the other set, then ũt can be
chosen to satisfy condition (25) for constraints (19). Similar choices can be done if
some of the variables ṽt , w̃t+1, xt , ũt do not belong to J and the claim follows. End
of Claim 1.

Then we define the polyhedron Q̃ by adding to (14)–(24)

pv
t ≤ (SU − P)ṽt t ∈ [2, T − 1] (26)

pxt ≤ (SD − P)xt t ∈ [2, T − 1] (27)

pw
t ≤ (SD − P)w̃t+1 t ∈ [2, T − 1] (28)

put ≤ (P − P)ũt t ∈ [2, T ] (29)

pv
T ≤ (SU − P)vT (30)

p1 ≤ (P − P)u1 − (P − SD)w2, (31)

where pv, px , pw, pu and p1 are new non-negative variables.

Claim 2. The polyhedron Q̃ is integral with respect to variables u, v, w, x , ũ, ṽ, w̃.
End of Claim 2.

Claim 2 follows by applying Lemma 4 to the polyhedron P of Claim 1. Then we
define the polyhedron Q by adding to (14)–(24), (26)–(31)

pt = pv
t + pxt + pw

t + put t ∈ [2, . . . , T − 1] (32)

pT = pv
T + puT , (33)

where pt for t ∈ [2 . . . T ] are non-negative variables.

Claim 3. The polyhedron Q is integral with respect to variables u, v, w, x , ũ, ṽ, w̃.
End of Claim 3.

Claim 3 follows from Claim 2 and by the straightforward extension of Lemma 4,
where the role of P is played by the integral polyhedron Q̃. Finally we prove that

Claim 4. The projection of Q onto the space of variables u, v, p is equivalent to DT .
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Proof of Claim 4 We start by eliminating the variables pv
t , p

x
t , p

w
t , and put by simply

substituting constraints (32) and (33) with the following:

pt ≤ (SU − P)ṽt + (SD − P)xt + (SD − P)w̃t+1 + (P − P)ũt t ∈ [2, T − 1]
(34)

pT ≤ (SU − P)vT + (P − P)ũT , (35)

which are obtained by using constraints (26)–(30). ��
Now, we replace ũT from (20) in (35) to obtain pT ≤ (

P − P
)
uT − (

P − SU
)
vT

that coincides with (6). Then we eliminate variables in (34) according to the following
order: ũt by using the Eq. (19); w̃t+1 by using the Eq. (17); ṽt by using the Eq. (18).
It is not difficult to see that for t ∈ [2, T − 1] we obtain the following constraints:

pt ≤ (P − P)ut − (P − SU)vt − (P − SD)wt+1 + (P − SU)xt (36)

xt ≥ 0 (37)

xt ≥ vt + wt+1 − ut (38)

xt ≤ vt (39)

xt ≤ wt+1. (40)

Now we can apply the Fourier-Motzkin elimination procedure to variables xt as
follows: (i) from constraints (39) and (36)we obtain constraint (7); (ii) from constraints
(39) and (37)weobtain vt ≥ 0; (iii) fromconstraints (39) and (38)weobtainwt+1 ≤ ut
that is dominated by constraints (2); (iv) from constraints (40) and (36) we obtain
constraint (8); (v) from constraints (40) and (37) we obtain wt+1 ≥ 0; and from
constraints (40) and (38) we obtain ut ≥ vt . Finally, the claim follows by observing
that (31) coincides with (4). End of Claim 4.

From Claim 4 it follows that DT is integral with respect to the variables u and v.
The proof for SD ≥ SU can be performed in a symmetric way. ��

5 Numerical results

To illustrate the computational performance of the formulation presented in this paper,
three sets of case studies are carried out: one for a self-UC problem and two others
for a network-constrained UC problem. This section compares the computational per-
formance of the proposed TC formulation with two other formulations, (Carrion and
Arroyo 2006) and (Ostrowski et al. 2012), which have been recognized as computa-
tionally efficient in the literature (Morales-España et al. 2013a, 2014; Tahanan et al.
2015).

The following three formulations are then implemented:

• TC This is the complete formulation presented in this paper. For the network-
constrained UC, we include other common constraints such as demand-balance,
reserves, ramping, and transmission limits. The complete network-constrained UC
is presented in Appendix 2.
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186 C. Gentile et al.

• 1bin This formulation is presented in (Carrion and Arroyo 2006) and requires a
single set of binary variables (per unit and per period), i.e., the start-up and shut-
down decisions are expressed as a function of the commitment decision variables.

• 3binThe convex hull of theminimumup/down time constraints proposed in (Rajan
and Takriti 2005) (see (1)–(3) and (9)–(10)) is implemented with the three-binary
formulation. This formulation is presented in (Ostrowski et al. 2012)

Notice that different set of constraints is used for the self-UC and for the network-
constrained UC problems. For the self-UC problems, 1bin and 3bin are modeled only
considering (1) generation limits, (2) minimum up and down times, and (3) start-up
and shut-down capabilities. For the network-constrained UC problems, 1bin and 3bin
are modeled taking into account the full set of constraints presented in (Carrion and
Arroyo 2006) and its 3bin equivalent (Ostrowski et al. 2012), respectively; in addition,
these formulations are further extended by introducing downwards reserve (which is
modeled in the same fashion as the upward reserve, see Appendix 2), transmission
limits [see (48] in Appendix 2), and wind generation [which is taken into account in
the demand-balance (45) and transmission-limit constraints (48)].

All tests were carried out using CPLEX 12.5 with its default parameters on an
Intel-i7 3.4-GHz personal computer with 8GB of RAM memory. The problems are
solved until they hit the time limit of 10,000s or until they reach optimality (more
precisely to 10−4% of relative optimality gap).

5.1 Self-UC

We illustrate the computational performance of the formulation proposed in this paper
by solving the self-UC problem for a price-taker producer for different time spans.
The goal of a price-taker producer is to maximize his profit [which is the difference
between the revenue and the total operating cost (Morales-España et al. 2013b)] during
the planning horizon:

max
T∑

t=1

G∑

g=1

[
πt

[
ugt Pg + pgt

]
−

(
CNL
g ugt + CLV

g

[
ugt Pg + pgt

]

+CSU
g vgt + CSD

g wgt

)]
(41)

where subscript g stands for generating units and G is the number of units; πt refers to
the energy prices; CNL

g , CLV
g , CSU

g and CSD
g are the no-load, linear-variable, start-up,

and shut-down costs of unit g, respectively (for this case study CSD
g = 0 for all units).

The objective function (41) is optimized over the solution set described by generation
limits, start-up, and shut-down capabilities, and minimum up and down times con-
straints. The self-UC also arises when solving UC with decomposition methods such
as Lagrangian Relaxation (Frangioni et al. 2008; Frangioni and Gentile 2006) (where
the prices are the Lagrangian multipliers).
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Table 1 Generator data

Gen Technical information Cost coefficientsc

P [MW] P [MW] TU/TD [h] SU [MW] SD [MW] p0 [MW/h]a Ste0 [h]b CNL [$/h] CLV [$/MWh] CSU [$]

1 455 150 8 252 303 150 8 1000 16.19 9000

2 455 150 8 252 303 150 8 970 17.26 10,000

3 130 20 5 57 75 20 5 700 16.60 1100

4 130 20 5 57 75 20 5 680 16.50 1120

5 162 25 6 71 94 25 6 450 19.70 1800

6 80 20 3 40 50 20 3 370 22.26 340

7 85 25 3 45 55 25 3 480 27.74 520

8 55 10 1 25 33 10 1 660 25.92 60

9 55 10 1 25 33 10 1 665 27.74 60

10 55 10 1 25 33 10 1 670 27.79 60

a p0 is the unit’s initial production prior to the first period of the time span
b Ste0 is the number of hours that the unit has been online prior to the first period of the time span
c CNL,CLV and CSU stand for no-load, linear-variable, and startup costs, respectively

Table 2 Energy price ($/MWh)

t = 1 . . . 12 → 13.0 7.2 4.6 3.3 3.9 5.9 9.8 15.0 22.1 31.3 33.2 24.8

t = 13 . . . 24 → 19.5 16.3 14.3 13.7 15.0 17.6 20.2 29.3 49.5 53.4 30.0 20.2

The 10-unit system data are presented in Table 1 and the energy prices are shown
in Table 2. The power system data are based on information presented in (Carrion and
Arroyo 2006; Morales-España et al. 2013a).

Here, apart from TC, 1bin and 3bin, the tight and compact formulation presented
in (Morales-España et al. 2013a), labeled as TC0, is also implemented. It is important
to note that the formulation TC0 uses constraints (12) and (13) instead of (7) and (8)
for units with TU = 1. Apart from those constraints, TC and TC0 are identical. Note,
however, that (7) and (8) are needed to describe the convex hull, as proved in Sect. 4.

Table 3 shows the computational performances for four cases with different time
spans. All formulations achieve the same MIP optimum since all of them model the
same MIP problem. However, they present different LP optima, the relative distance
between their MIP and LP optima is measured with the Integrality Gap (Williams
2013; Morales-España et al. 2013a). Note that the MIP optima of TC were achieved
by just solving the LP over (1)–(11), IntGap=0, hence solving the problems in LP
time. On the other hand, as usual, the Branch-and-Cut (B&C) method was needed to
solve the MIP for TC0, 3bin and 1bin. Table 3 also shows the MIP time and B&C
nodes explored that were required by the different formulations to reach optimality. It
is interesting to note that although TC0 reached optimality exploring zero B&C nodes,
TC0 needed to make use of the solver’s cutting planes strategy because the relaxed
LP solution did not achieve the integer one, IntGap 	=0 (the solver used 227 and 1224
cuts for the smallest and largest case, respectively). This tightening process took more
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time than the time required to solve the initial LP relaxation, which is why the MIP
time for TC0 is more than twice its LP relaxation time.

Table 4 shows the dimensions of all the formulations for four selected instances.
Note that TC and TC0 are more compact, in terms of quantity of constraints and
nonzero elements, than 3bin and 1bin. The formulation 1bin presents a third of binary
variables in comparison with the other formulations, but three times more continuous
variables. This is because the work in (Carrion and Arroyo 2006) reformulated the
units’ operation model to avoid the start-up and shut-down binary variables, claiming
that this would reduce the node enumeration in the B&C process. Note, however, that
this reformulation considerably damaged the strength of 1bin; hence it presented the
worst computational performance; similar results are obtained in (Ostrowski et al.
2012; Morales-España et al. 2013a). The formulation 1bin presents more continu-
ous variables than the other formulations because it requires the introduction of new
continuous variables to model the start-up and shut-down costs of the generating units.

In conclusion, TC presents a dramatic improvement in computation in comparison
with 3bin and 1bin due to its tightness (speedups above 90x and 8500x, respectively);
and it also presents a lower LP burden due to its compactness, see Table 4. Compared
with TC0, the formulation TC is tighter; consequently, TC requires less time to solve
the MIP problem (speedup above 4.1x).

5.2 Network-constrained UC

Here, two IEEE systems are used for different time spans, from 24 to 96 hours, the
IEEE 118-bus system and the IEEE 73-bus reliability test system. All data for these
two systems can be found in (Morales-España 2014) and (Wong et al. 1999; Hedman
et al. 2010), respectively. The IEEE-118 bus system has 118 buses; 186 transmission
lines; 54 thermal units; 91 loads, with average and maximum levels of 3991 and
5592MW, respectively; and three wind generation units, with aggregated average and
maximum production of 867 and 1333MW, respectively. For this system, the upward
and downward reserve requirement are set as the 5% of the total expected wind
production for each hour. The IEEE 73-bus reliability test system has 73 buses; 120
transmission lines; 99 thermal units; 51 loads, with average and maximum levels of
7094 and 8547MW, respectively; and no wind generation. For this system, the upward
and downward reserve requirement are set as the 1% of the total expected demand for
each hour.

Bear in mind that the network-constrained UC problem is considerably more com-
plex than the self-UC problem, described in Sect. 5.1, due to the new complicating
constraints that are now included (into all the formulations), such as demand-balance,
reserves, ramping and transmission limits (see Appendix 2).

Table 5 shows the problem size for all formulations for the two IEEE systems.
This table shows the problem size for a time span of 24h; larger problem sizes are
proportional (approximately) to the quantity of hours. On the other hand, there is no
direct size relation between the two systems because they have different proportions
in thermal and wind units as well as transmission lines. For example, the IEEE 73-bus
system has 45 (83%) more units than the IEEE 118-bus system, but 66 (35%) less
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transmission lines. Similarly to the self-UC case study (Sect. 5.1), TC is more com-
pact than the others, in terms of quantity of constraints. For the IEEE 118-bus system,
having a larger number of transmission lines, TC presents more nonzeros than the
others because TC uses Pgugt + pgt , which appear in each of the line constraints, to
represent the total unit’s production, unlike other formulations that use one variable
to represent the total production. Beware, however, that a new variable could be intro-
duced representing the total unit’s production, thus decreasing the number of nonzeros,
but this will increase the number of variables and constraints. Despite this increase in
nonzeros, the LP complexity of TC for the IEEE 118-bus system is significantly lower
than that of both 3bin and 1bin, which took in average 15.1 and 17.9 times longer than
TC to solve the LP problem, respectively (see Table 6). Similarly, for the IEEE 73-bus
system, TC could solve the LP problem in average 15.6 and 14.2 times faster than 3bin
and 1bin, respectively (see Table 7). In short, TC presents a lower LP burden than the
others due to its compactness, as also concluded in the self-UC case in Sect. 5.1.

Tables 6 and 7 show the computational performance of the network-constrained UC
problem for both IEEE test systems and for all formulations and different time spans
(up to 96h). For these experiments, TC is the tightest formulation since its IntGap
is always lower than that of 1bin and 3bin. On the other hand, although 1bin has a
third of binary variables in comparison with the others, it has the largest quantity of
constraints and it is the least tight (see IntGap Table 6), consequently presenting the
worst computational performance, as also discussed in Sect. 5.1.

Interestingly, for the IEEE 118-bus system, all three formulations achieved the
same optimum integer solution (all of themmodel the same integer problem), although
TC was the only formulation that could prove optimality within the time limit. 3bin
could prove optimality for only one case, the smallest case; and 1bin could not prove
optimality for any of the cases. Notice that due to the tightness, TC could prove
optimality exploring considerably fewer B&C nodes less than (an order of magnitude)
3bin and 1bin, which could not even converge to optimality.

For the IEEE 118-bus system, TC always found better integer solutions (reported
in Table 6) than the other formulations. 3bin and 1bin could not prove optimality for
any of the cases. TC could prove optimality for the two smallest cases, where TC
explored fewer nodes than the others, which could not even reach optimality. For the
two largest cases, none of the formulations could reach optimality, but TC was an
order of magnitude nearer to optimality. Also notice that for these two large cases, TC
could explore more nodes within the time limit due to its compactness, which lower
the LP complexity solved during the iterations.

Tables 6 and 7 show the computational performance of the UC formulations trying
to reach optimality (more precisely to 10−4% of relative optimality gap) within a
10,000s time limit. Notice that 1bin could only reach optimality gaps above 0.13%
for 7 out of 8 cases, and in the best case the optimality gap was above 0.09%. Sim-
ilarly, 3bin presented optimality gaps above 0.09% for 7 of the cases. In short, only
3bin could reach an optimality gap below 0.09% in just one case. To observe the per-
formance of TC around these orders of magnitude of optimality gaps, Table 8 shows
the performance of TC for a required optimality gap of 0.05% for the two IEEE test
systems. Notice that 4 cases could even be solved before branching (0 B&C nodes), 5
cases were solved in less than 15s, and all the cases could be solved in less than 170s,
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Table 8 IEEE 118-bus and 73-bus system results: computational performance of TC for 0.05% of opti-
mality gap and different time spans

Hours MIP time (s) Optimality gap (%) B&C nodes

118-bus 73-bus 118-bus 73-bus 118-bus 73-bus

24 3.45 3.54 0.030 0.045 0 5

48 9.25 7.94 0.036 0.032 0 0

72 68.2 13.09 0.034 0.049 625 0

96 167.44 45.76 0.041 0.049 560 490

Table 9 IEEE 73-bus system: initial vs. final lower bounds of UC formulations for different time spans

Hours LP relaxations (M$) Final best lower bound (M$)

TC 3bin 1bin TC 3bin 1bin

24 1.695161 1.691586 1.675454 1.695434 1.693621 1.693167

48 3.326716 3.319535 3.289971 3.327422 3.322417 3.32144

72 4.958264 4.947482 4.904489 4.958887 4.951332 4.947532

96 6.589812 6.575429 6.519006 6.590607 6.57985 6.569458

unlike 3bin and 1bin which could not reach that low optimality gaps within 10,000
seconds. Due to the simultaneous tightness and compactness, TC could reach 0.05%
optimality tolerance for four cases (one for the IEEE 118-bus system and three for the
IEEE 73-bus system) in less time than that required by 1bin and 3bin to solve their LP
problem.

Furthermore, for the IEEE 73-bus system, TC presented better (higher) lower
bounds in the initial LP relaxation than the final lower bounds found by 3bin and
1bin within the time limit, as shown in Table 9 (this was not the case for the IEEE
118-bus system). Thanks to the convex hull provided in this paper, for the IEEE 73-
test system, TC could provide initial lower bounds, in less than 2s (see LP time in
Table 7), which were better than the final lower bounds obtained by 3bin and 1bin
within 10,000s.

6 Conclusion

This paper presented the convex hull description of the single thermal Unit Com-
mitment problem with the following basic constraints: generation limits, start-up and
shut-down capabilities, and minimum up and down times. The model does not include
some crucial constraints, such as ramping, but the proposed constraints can be used
as the core of any UC formulation and they can help to tighten the final UC model.

Computational experiments have been carried out among the new proposed for-
mulation and two previous formulations called 1bin and 3bin considering two UC
variants: the self-UC and the network-constrained UC problems. For both problems,
the new proposed formulation presents a dramatic improvement in computation in
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comparison with 3bin and 1bin due to its tightness; and it also presents a lower LP
burden due to its compactness (see Tables 4 and 5).

Acknowledgements The authors thank Laurence Wolsey, Santanu Dey, Antonio Frangioni, and Paolo
Ventura for useful discussions on the paper.

Appendix 1: 1bin and 3bin UC formulations

This section presents the basic constraints for the 1bin and 3binUC formulations. The
nomenclature used here is the same one presented in Sect. 2; the new nomenclature is
defined once it is introduced. It is important to highlight that 1bin and 3bin formulations
consider the total energy production variable p̂t from 0 to P , unlike the formulation
presented in this paper where pt represents the energy production above P .

1bin formulation

The 1bin formulation is the following (see Carrion and Arroyo (2006)):

Put ≤ p̂t ≤ Put t = 1, . . . , T

p̂t ≤ p̂t−1 + RUut−1 + SU(ut − ut−1) + P(1 − ut ) t = 2, . . . , T

p̂t−1 ≤ p̂t + RDut + SD(ut−1 − ut ) + P(1 − ut−1) t = 2, . . . , T

G∑
j=1

(1 − u j ) = 0

t+TU−1∑
j=t

u j ≥ TU(ut − ut−1) t = H + 1, . . . , T − TU + 1

T∑
j=t

[
u j − (ut − ut−1)

] ≥ 0 t = T − TU + 2, . . . , T

L∑
j=1

u j = 0

t+TD−1∑
j=t

(1 − u j ) ≥ TD(ut−1 − ut ) t = L + 1, . . . , T − TD + 1

T∑
j=t

[
1 − u j − (ut−1 − ut )

] ≥ 0 t = T − TD + 2, . . . , T

suct ≥ CSU(ut − ut−1) t = 2, . . . , T

sdct ≥ CSD(ut−1 − ut ) t = 2, . . . , T

0 ≤ ut ≤ 1 t = 1, . . . , T

(42)
where H = min{T, (TU − τ0)u0} and L = min{T, (TD + τ0)(1 − u0)} are the
minimum number of time instants the unit must be initially on or off, respectively (τ0
indicates the number of time instants the unit has been on prior to time 0 if τ0 > 0,

123



A tight MIP formulation of the unit commitment... 197

while −τ0 indicates the number of time instants the unit has been off prior to time 0
if τ0 < 0).

Note that 1bin models the unit’s start-up and shut-down capabilities inside the
ramping constraints. For the set of experiments presented in 5.1, where no ramping
constraints are considered, the ramping constraints of 1binwere adapted to onlymodel
the start-up and shut-down capabilities. Therefore, the constraints for the unit’s start-
up and shut-down capability become p̂t ≤ SU(ut − ut−1) + P(1 + ut−1 − ut ) and
p̂t−1 ≤ SD(ut−1 − ut ) + P(1 + ut − ut−1), respectively.

3bin formulation

The 3bin formulation is the following Ostrowski et al. (2012):

Put ≤ p̂t ≤ Put t = 1, . . . , T
p̂t ≤ p̂t−1 + RUut−1 + SUvt t = 2, . . . , T
p̂t−1 ≤ p̂t + RDut + SDwt t = 2, . . . , T

(43)

where the minimum up and down constraints are guaranteed using (1)–(3), and the ini-
tial conditions of those constraints are ensured in the same way as 1bin (see Appendix
1.1).

Similarly to 1bin, 3bin also models the unit’s start-up and shut-down capabilities
inside the ramping constraints. Then, for the set of experiments presented in Sect. 5.1,
the ramping constraints of 3binwere adapted to onlymodel the start-up and shut-down
capabilities. Therefore, the constraints for the unit’s start-up and shut-down capability
become p̂t ≤ Put−1 + SUvt and p̂t−1 ≤ Put + SDvt , respectively.

Note that, unlike 1bin, 3bin and TC do not need extra variables suct and stdt for the
start-up and shut-down costs since these costs can be directly expressed with variables
vt and wt and included in the objective function, see (41).

Appendix 2: Network-constrained UC formulation

Here, we present the network-constrained UC formulation, whose core is based on the
tight and compact model presented in Sect. 3.

Nomenclature

In the following we present the additional needed notations beyond the ones presented
in Sect. 2.

Indexes and Sets

b ∈ B Buses, running from 1 to B.
BW Set of buses in B with wind power injection.
l ∈ L Transmission lines, running from 1 to L .
g ∈ G Generating units, running from 1 to G.
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t ∈ T Hourly periods, running from 1 to T hours.

System parameters

Dbt Energy demand on bus b at the end of hour t [MWh].
D−
t /D

+
t System requirements for downward/upward reserve for hour t [MW].

Fl Power flow limit on transmission line l [MW].
�lb/�G

lg Shift factor for line l associated with bus b/unit g [p.u.].

PW
bt Nominal forecasted wind energy for hour t [MWh].

Unit’s parameters

CSD
g /CSU

g Shut-down/start-up cost [$].
RDg/RUg Ramp-down/ramp-up capability [MW/h].

Decision variables

pWbt Wind energy output for hour t [MWh].
r−
gt /r

+
gt Downward/upward power reserve [MW].

Objective function

The UC seeks to minimize all production costs:

min
∑

g∈G

∑

t∈T

[
CLV
g

(
Pgugt + pgt

)
+ CNL

g ugt + CSU
g vgt + CSD

g wgt

]
(44)

The proposed formulation also takes into account variable start-up costs, which
depend on how long the unit has been offline. The reader is referred to (Morales-
España et al. 2013a, b) for further details.

System-wide constraints

Energy demand balance and upward/downward reserves requirements are guaranteed
as follows:

∑

g∈G

(
Pgugt + pgt

)
=

∑

b∈B
Dbt −

∑

b∈BW

pWbt ∀ t (45)

∑

g∈G
r+
gt ≥ D+

t ∀ t (46)

∑

g∈G
r−
gt ≥ D−

t ∀ t (47)
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Transmission limits are ensured with

−Fl ≤
∑

g∈G
�G
lg

(
Pgugt + pgt

)
+

∑

b∈BW

�lb p
W
bt −

∑

∀ b∈B
�lbDbt ≤ Fl ∀ l, t (48)

Individual unit constraints

The commitment, start-up/shut-down logic, and theminimumup/down times are guar-
anteed by constraints (1)–(3) and (9)–(10) replicated for each generation unit g and
where the initial conditions for the minimum up/down constraints are detailed in
(Morales-España et al. 2013a). Basically, ugt is fixed (become constant) to 0 or 1 for
the initial periods where the unit must remain offline or online, respectively.

The energy production and reserves must be within the power capacity limits:

pgt + r+
gt ≤

(
Pg − Pg

)
ugt − (

Pg − SDg
)
wg,t+1

− max
(
SDg−SUg, 0

)
vg,t ∀ g∈G1, t

(49)

pgt + r+
gt ≤

(
Pg − Pg

)
ugt − (

Pg − SUg
)
vgt

− max
(
SUg−SDg, 0

)
wg,t+1 ∀ g∈G1, t

(50)

pgt + r+
gt ≤

(
Pg − Pg

)
ugt − (

Pg − SUg
)
vgt

− (
Pg − SDg

)
wg,t+1 ∀ g /∈G1, t (51)

pgt − r−
gt ≥ 0 ∀ g, t (52)

where G1 is defined as the units in G with TUg =1.
Ramping capability limits are ensured with

(
pgt + r+

gt

)
− pg,t−1 ≤ RUg ∀ g, t (53)

−
(
pgt − r−

gt

)
+ pg,t−1 ≤ RDg ∀ g, t (54)

notice that by modeling the generation output pgt above Pg , the proposed formulation
avoids introducing binary variables into the ramping constraints (53) and (54), unlike
1bin and 3bin, seeAppendix 1 respectively. In other words, when the generation output
variable is defined between 0 and Pg , then the ramping constraints should consider
the case when a generator’s output level should not be limited by the ramp rate, when
it is starting up or shutting down; such complicating situations are usually tackled
by introducing big-M parameters together with binary variables into the ramping
constraints.
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Wind production limits are represented by

pWbt ≤ PW
bt ∀ b ∈ BW, t (55)

Finally, non-negative constraints for all decision variables:

pgt , r
+
gt , r

−
gt ≥ 0 ∀ g, t (56)

pWbt ≥ 0 ∀ b ∈ BW, t (57)
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