

Delft University of Technology

A software-in-the-loop implementation of adaptive formation control for fixed-wing UAVs

Yang, Jun; Wang, Ximan; Baldi, Simone; Singh, Satish; Fari, Stefano

DOI
10.1109/JAS.2019.1911702
Publication date
2019
Document Version
Final published version
Published in
IEEE/CAA Journal of Automatica Sinica

Citation (APA)
Yang, J., Wang, X., Baldi, S., Singh, S., & Fari, S. (2019). A software-in-the-loop implementation of adaptive
formation control for fixed-wing UAVs. IEEE/CAA Journal of Automatica Sinica, 6(5), 1230-1239.
https://doi.org/10.1109/JAS.2019.1911702

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1109/JAS.2019.1911702
https://doi.org/10.1109/JAS.2019.1911702

A Software-in-the-Loop Implementation of Adapt-
ive Formation Control for Fixed-Wing UAVs

Jun Yang, Ximan Wang, Simone Baldi, Satish Singh, and Stefano Farì

 Abstract—This paper discusses the design and software-in-the-
loop implementation of adaptive formation controllers for fixed-
wing unmanned aerial vehicles (UAVs) with parametric uncer-
tainty in their structure, namely uncertain mass and inertia. In
fact, when aiming at autonomous flight, such parameters cannot
assumed to be known as they might vary during the mission (e.g.
depending on the payload). Modeling and autopilot design for
such autonomous fixed-wing UAVs are presented. The modeling
is implemented in Matlab, while the autopilot is based on Ardu-
Pilot, a popular open-source autopilot suite. Specifically, the Ar-
duPilot functionalities are emulated in Matlab according to the
Ardupilot documentation and code, which allows us to perform
software-in-the-loop simulations of teams of UAVs embedded
with actual autopilot protocols. An overview of realtime path
planning, trajectory tracking and formation control resulting
from the proposed platform is given. The software-inthe-loop
simulations show the capability of achieving different UAV form-
ations while handling uncertain mass and inertia.
 Index Terms—ArduPilot, adaptive formation control, Fixed-wing
UAVs, software-in-the-loop simulations.

I. Introduction

UNMANNED aerial vehicles (UAVs) are generating the
curiosity of several scientific communities. Among the

various types of UAVs, fixed-wing UAVs have been studied
in different contexts from military to commercial, due to their
energy efficient performance while carrying payloads [1], [2].
The holy grail of such researches is to have formations of
UAVs that are able to complete missions autonomously with

little supervision from the human operator [3]. As such, it is
necessary to equip UAVs with a smart flight control unit. Path
following is one of the most crucial tasks for implementation
in flight control units: many mature control theories and al-
gorithms have been proposed for path following. In [4], state-
of-the-art path following algorithms are summarized and com-
pared with each other using two metrics: control effort and
cross-track error. Five algorithms are evaluated, namely car-
rot-chasing, nonlinear guidance, vector-field (VF), linear
quadratic regulation and pure pursuit with line-of-sight (cf.
[5]–[16] for more details on such algorithms and on variants
of such algorithms). Monte Carlo simulations in [4] show that
the VF path following, a technique developed in [17], is more
accurate than the other methods, while requiring more para-
meters to be designed. The basic concept of VF path follow-
ing is to construct a vector field around the desired path, res-
ulting in course commands to the vehicle. Path following laws
are typically derived from Lyapunov stability analysis which
guarantees stable convergence to the desired path. Despite the
advances in the field, several challenges remain in path fol-
lowing. For example, the simulations in [4] and in the afore-
mentioned works highlight three crucial points:

a) The actual performance of path-following methods
considerably depends on the fidelity of the UAV model used
for design. When aiming at autonomy, parametric
uncertainties will inevitably appear in the UAV structure
(uncertain mass and inertia might vary during the mission).
Path-following algorithms that cannot adapt to such changes
will exhibit poor performance.

b) The actual path-following performance depends not only
on the commanded UAV course angle. At a lower level, a
complex suite of algorithms commonly referred to as
autopilot, must be in charge of regulating roll, pitch and
altitude (rudder/wing/aileron actuators) according to the
course commanded by the path-following algorithm.

c) Simulations performed on single UAVs or teams of
UAVs to test path-following protocols usually do not include
the autopilot layer [4]; this testing is to a large extent open.

Given these challenges, this work is driven by the following
research questions: how to cope with parametric uncertainties
in the UAV? How to account for the autopilot low-level
control when testing path-following algorithms? How to scale
the path-following problem to teams of UAVs? While some of
the authors studied in [18]–[24] adaptive formation control
algorithms for various systems with uncertain dynamics, the
corresponding problem for UAVs is much more challenging
due to the complex UAV control architecture as sketched in
Fig. 1. This architecture relies on multiple layers: the autopilot
contains the low-level control algorithms that are able to

Manuscript received April 16, 2019; revised May 19, 2019; accepted July

21, 2019. This work was supported by the Fundamental Research Funds for
the Central Universities (4007019109) (RECON-STRUCT), the Special Guid-
ing Funds for Double First-class (4007019201), and the Joint TU Delft -
CSSC Project ‘Multi-agent Coordination with Networked Constraints’
(MULTI-COORD). The first two authors equally contributed to this work.
Recommended by Associate Editor Wei He. (Corresponding author: Simone
Baldi.)

Citation: J. Yang, X. Wang, S. Baldi, S. Singh, and S. Farì, “A software-in-
the-loop implementation of adaptive formation control for fixed-wing
UAVs,” IEEE/CAA J. Autom. Sinica, vol. 6, no. 5, pp. 1230–1239, Sept.
2019.

J. Yang is with Systems Engineering Research Institute, China State Ship-
building Corporation, Beijing 100094, China (e-mail: yangjun@sohu.com).

X. Wang and S. Singh are with Delft Center for Systems and Control
(DCSC), TU Delft, 2628CD Delft, The Netherlands (e-mail: x.wang-
15@tudelft.nl; satish1989221@gmail.com).

S. Baldi is with School of Mathematics, Southeast University, 211189
Nanjing, China, and also with DCSC, TU Delft, 2628CD Delft, The Nether-
lands.(e-mail: s.baldi@tudelft.nl).

S. Farì is with German Aerospace Center (DLR), Institute of Space Sys-
tems, D-28359 Bremen, Germany, and was with Politecnico di Milano, Italy
and also with DCSC, TU Delft, The Netherlands (e-mail: stefano.fari@mail.
polimi.it).

Color versions of one or more of the figures in this paper are available on-
line at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/JAS.2019.1911702

1230 IEEE/CAA JOURNAL OF AUTOMATICA SINICA, VOL. 6, NO. 5, SEPTEMBER 2019

maintain roll and pitch angles, airspeed, altitude, and roll.
UAV states (or estimated states) and cross-track errors is the
crucial information to be used by the higher levels. The path
following is meant to maintain the vehicle on the desired path
by providing the course heading; the path manager supervises
the navigation of the UAV with a finite-state machine which
converts a sequence of way-points into a sequence of path
primitives that the path following can track.

Having highlighted how modelling and autopilot design are
crucial steps towards the autonomous control of fixed-wing
UAVs, this papers exactly addresses such issues for a team of
autonomous fixed-wing UAVs. The modelling is implemented
in Matlab, while the autopilot algorithms are taken by
ArduPilot, a popular open-source autopilot suite: specifically,
the ArduPilot functionalities are replicated in Matlab
following the Ardupilot documentation and the Ardupilot
code itself (reverse engineering), a feature that allows us to
perform software-in-the-loop simulations with the actual
autopilot protocols. Such software-in-the-loop simulations
show the capability of handling parametric uncertainty in the
UAV structure, (i.e. handling uncertain mass and inertia) for a
team of UAVs.

The rest of the paper is organized as follows: Section II
gives some details on the Matlab UAV simulation platform.
Section III describes some aspects related to the autopilot,
while Section IV discusses hardware and software integration
of the various components. In Section V an algorithm for
adaptive vector field path following is given, followed by an
adaptive formation control method in Section VI, with
simulations tests. Section VII prospects future research directions.

II. Modelling

In line with Fig. 1, the basic level of a reliable fixed-wing
UAV simulator must contain the UAV dynamics and the
dynamics of the environment (wind). These are briefly
sketched below, in conformity with the standard literature
[25], [26]).

A. Equations of Motion
Using the variables in Table I, the motion of a fixed-wing

UAV can be written in the Euler-Lagrange (EL) form as [25]:

m 0 0 0 0 0
0 m 0 0 0 0
0 0 m 0 0 0
0 0 0 Ix 0 −Ixz

0 0 0 0 Iy 0
0 0 0 −Ixz 0 Iz

︸ ︷︷ ︸
D(q)

˙̄u
˙̄v
˙̄w
˙̄p
˙̄q
˙̄r

︸︷︷︸
q̈

+

0 −mr̄ mq̄ 0 0 0
mr̄ 0 −mp̄ 0 0 0
−mq̄ mp̄ 0 0 0 0

0 0 0 0 Izr̄− Ixz p̄ −Iyq̄
0 0 0 Ixz p̄− Izr̄ 0 Ix p̄− Ixzr̄
0 0 0 Iyq̄ Ixzr̄− Ix p̄ 0

︸ ︷︷ ︸
C(q,q̇)

ū
v̄
w̄
p̄
q̄
r̄

︸︷︷︸
q̇

+

mgsin(θ)
−mgsin(ϕ)cos(θ)
−mgcos(ϕ)cos(θ)

0
0
0

︸ ︷︷ ︸
g(q)

=

Fτ1

Fτ2

Fτ3

Mτ1

Mτ2

Mτ3

, τ =

Fτ1

Fτ2

Fτ3

Mτ1

Mτ2

Mτ3

(1)

m Fτ1 Fτ2 Fτ3

I
Mτ1 Mτ2 Mτ3

Vg

where is the mass of the UAV, , , and are the
forces acting in x, y, z coordinate axes; is the inertia tensor
and , and , are the moments acting in x, y, z axes.
It is taken into account that the fixed-wing UAV is symmetric
with respect to x and z axes and inertia in the planes xy and yz
is negligible. As wind may represent 20%-50% of the air-
frame airspeed, wind is included in the simulation, by model-
ling it as the composition of a constant part and a dynamic
part (known in literature as Dryden model [27]). Along the
lines of [26], in order to properly describe the influence of the
wind, one needs to define the ground speed, i.e. the UAV ve-
locity relative to the inertial frame. Such ground speed is com-
monly denoted with , and it is a crucial variable when de-
riving the path-following laws [4].

B. Matlab-Based Simulator
The fixed-wing UAV and wind dynamics have been

implemented in the Matlab-Simulink environment by means

Path Manager

Path Following

Autopilot

Unmanned Aircraft

UAV States,
Cross-Track ErrorWind

Servo
Commands

Altitude,
Airspeed,
Heading

Commands

Path
Definition

Waypoints

Fig. 1. General layout for UAV control with autopilot. In this work we
show how, by reverse engineering the Ardupilot code, one can perform soft-
ware-in-the-loop simulations with the actual autopilot protocols of the UAV.

TABLE I
State Variables for Equations of Motion

State Description

ϕ Euler angle for Roll
θ Euler angle for Pitch

ψ Euler angle for Yaw

ū Angular velocity along x-axis in body frame

v̄ Angular velocity along y-axis in body frame

w̄ Angular velocity along z-axis in body frame

p̄ Roll rate along x-axis in body frame

q̄ Pitch rate along y-axis in body frame

r̄ Yaw rate along z-axis in body frame

YANG et al.: A SOFTWARE-IN-THE-LOOP IMPLEMENTATION OF ADAPTIVE FORMATION CONTROL FOR FIXED-WING UAVS 1231

of the Aerospace blockset [28]. Some screen-shots from the
simulator can be seen in Fig. 2 and Fig. 3. In Fig. 2, the forces
and moments contributions are shown on the left. On the right,
the block 'Derived Conditions' contains the implementation of
the wind dynamics, i.e. the computation of airspeed, angle of
attack, side-slip angle, course angle, and other useful
quantities affected by the wind. A visual interface, shown in
Fig. 3, contains in-flight instruments embedded in the
simulator, to help analyzing the flight status and reveal
potential errors. More details on the simulator can be found in
[29].

III. Ardupilot Autopilot

Recalling that the final goal is to provide a realist UAV
simulation platform, it is essential that the Matlab simulator
can replicate the low-level control structure of the UAV (i.e.
the autopilot layer). The code of ArduPilot, a professional
autopilot software suite, is open-source and it thus can
accessed and replicated in any other simulation platform. One
of the main feature of ArduPilot is to let the user operate
under different flight modes, which are:

Manual: The controller is not active, the pilot closes the
loop. The radio controller stick commands of aileron, elevator,
rudder and thrust are delivered to the control actuators as they
are.

Fly-by-Wire A (FBWA): Control of roll and pitch angles is
enabled, whose reference is given by the user with the radio
controller stick commands.

Fly-by-Wire B (FBWB): In addition to roll and pitch angles,
altitude and airspeed control is enabled, taking as reference
the airspeed and rate of climb given by the user with the radio
commands.

Autotune: Same as FBWA mode, but meanwhile the aircraft
response is used to tune online the pitch and roll controllers.

Auto: The guidance logic is also enabled. The UAV will
follow a set of GPS waypoints set by the user.

ArduPilot is written in C++, with many supporting utilities
written in Python. In order to promote the integration of
Ardupilot along with the aforementioned Matlab-Based UAV
model, the ArduPilot functionalities are replicated in Matlab
after studying the Ardupilot documentation [30] and the
Ardupilot code itself [31]. This step of reverse engineering

[Plant dtat]

[Plant dtat]

[Plant dtat]

[Plant dtat]

Plant dtat

Plant dtat

Plant dtat

Fg

Gravity force

1

3

3

2

DerCond

DerCond

Control actions

DerCond

DerCond

Control

Throttle_cmd
Throttle

M

F

Propulsion

Aero forces

Aero moments

Aerodynamics

+

+

+

+
+

4
Env data

1
3

3

Derived conditions

Plant data

Env data

Crab angle

WAE

qbar

alpha

beta

Va

Course angle

Crab angle

WAE

qbar

alpha

beta

Va

Course

DeCond
Sampling

Cont. Cont. +Disc.

[DerCond]

[A_b]

[ome_d_b]

[ome_d_b] [Vb]

[Vb]

[DCM]

[DCM]

[euler]

[euler][Xe]

[Xe][Ve]

[Ve]

[ome_b]

[ome_b]

[A_b]

[1 1 −1]

2
DerCond.

Velocity (inertial)

Position (inertial)

Euler angles (rad)

Angular rates (body) (rad/s)

Angular accelerations (body/body)

Accelerations (body/body)

From intertial to body matrix

Velocity (body)

ome_e

xyh

xyh_bod
Matrix

Multiply

Fixed
Mass

Body
Euler angles

Fxyz (N)

Ve (m/s)

Vb (m/s)

ωb (m/s)

dωb/dt

Abb (m/s2)

Xe (m)

DCMbe

φθψ (rad)

Mxyz (N-m)

Fig. 2. Matlab Simulink model for UAV dynamics. The model comprises the forces and moments on the UAV, as well as the airspeed, angle of attack, side-
slip angle and course angle after the effect of the wind.

[m/s] [m/s][m]
Actuators

Control demand

Control demand

2

t
e
a
r

(%)

Manual_cmd: Value Manual_cmd5: Value Manual_cmd4: Value Manual_cmd6: Value

THROTTLE

41.11

ELEVATOR

Positive, nose down Positive, right wing down Positive, nose left-yawing

AILERONS RUDDER

−0.01509 0.007544

0 10 20 30 40 50 60 70 80 90 100 −2 −1 0 1 2 −1.0−0.8−0.6−0.4−0.2 0 0.2 0.4 0.6 0.8 1.0 −1.0−0.8−0.6−0.4−0.2 0 0.2 0.4 0.6 0.8 1.0

Fig. 3. Simulink visual interface.

 1232 IEEE/CAA JOURNAL OF AUTOMATICA SINICA, VOL. 6, NO. 5, SEPTEMBER 2019

allows us to perform software-in-the-loop simulations with the
actual autopilot protocols of the UAV. A flowchart illustrating
the structure of the ArduPilot is provided in Fig. 4.

Because the purpose of the autopilot layer is to provide low-
level controllers to govern the various UAV states, let us
illustrate the main ideas behind lateral and longitudinal UAV
control. For most flight maneuvers of interest, autopilots are
designed with the assumption of decoupled and linear lateral
and longitudinal dynamics [26]. In this way, the autopilot
design significantly simplifies. The decoupled linearized
dynamics of the UAV are of first and second order

roll ϕ(s) =
aϕ2

s(s+aϕ1)

(
δa(s)+

1
aϕ2

dϕ2 (s)
)

pitch θ(s) =
aθ3

s2+aθ2 s+aθ1

(
δe(s)+

1
aθ3

dθ2 (s)
)

course χ(s) =
g

Vgs

(
ϕ(s)+dχ(s)

)
dwhere the terms in are disturbances coming from the

coupled dynamics, and the definition for all variables can be
found in [29]. Such first or second order loops allow an effect-
ive use of Proportional-Integral-Derivative (PID) control.

p̄ ϕ Cϕ2 (z)
K̃Pϕ

Ωϕ

Let us focus only on the lateral dynamics, most relevant to
path following: the roll controller structure is depicted in Fig. 5.
It consists of two nested loops: the inner one controls the roll
rate ; the outer the roll angle ; is a PID controller;

 is a feed-forward gain; at the outer loop there is a
proportional controller with gain . Similar reasoning
applies to the pitch control scheme as shown in Fig. 6. The
ArduPilot documentation provides descriptions on the
structure of such loops and on the tuning of the PID
controllers [32], which can then be perfectly replicated in

Matlab and eventually validated on a real fixed-wing UAV.
Validation of both the roll and the pitch control loops has been
performed on a HobbyKing Bixler UAV (cf. the detailed
validation procedure in [29]), showing that the simulated
fixed-wing UAV behaves very closely to the actual fixed-
wing UAV.

IV. Hardware and Software Integration

This section presents the basic steps necessary for
integration of hardware and software on an actual fixed-wing
UAV with ArduPilot.

A. Flight Control Unit
ArduPilot can run on many different micro-controllers and

platforms [33]. The HobbyKing HKPilot32 was chosen (see
Fig. 7). It is a Pixhawk clone, an open-hardware flight
controller specifically meant for UAV applications [34]. It has
two redundant inertial measurement units (IMUs) which
integrate a 3-axis accelerometer, a 3-axis gyroscope, and a
magnetometer. The measurements from these devices are used
by the state estimation protocols of ArduPilot to get the states

Ground Station

MAVLink

ArduPilot

Vehicle-Specific Flight Code

Shared Libraries (Sensors, EKF, PID, etc)

Hardware Abstraction Layer

PX4Firmware

NuttX Other OS

Pixhawk/HKPilot32Hardware

OS

Flight
Code

Communication
Layer

Other Supported
Boards

External Sensors

Fig. 4. Flowchart structure for the Ardupilot autopilot. Such a structure has
been replicated in Matlab following the Ardupilot documentation.

ϕc eϕ Ωϕ
pc

KFFϕ

KPϕ

KDϕ
δa, c

Cϕ2(z)

− −
+ ++

+ Aircraft
ϕ

p−

~

KIϕ
~

z − 1
1

ϕ ϕc

p̄ pc

δa,c

Fig. 5. Roll control scheme of the UAV. The variables , are the roll and
commanded roll angle, while the variables , are the roll rate and com-
manded roll rate. The commanded aileron is .

Turn
Coordination

Offset
qcoord

θc eϕ
Ωθ

q′c qc

δe, cCθ2(z)

KPθ

+ +− −− ×
×

Scaler

Aircraft
θ

q

~

θ θc

q̄ qc

δe,c

Fig. 6. Pitch control scheme of the UAV. The variables , are the pitch
and commanded pitch angle, while the variables , are the pitch rate and
commanded pitch rate. The commanded elevator is .

Fig. 7. The HobbyKing HKPilot32 micro-controller.

YANG et al.: A SOFTWARE-IN-THE-LOOP IMPLEMENTATION OF ADAPTIVE FORMATION CONTROL FOR FIXED-WING UAVS 1233

of the UAV. In fact, each accelerometer can output three
acceleration measurements, one per axes, while the
gyroscopes can measure the body angular rates on the three
orthogonal axes. In HKPilot32 there is also a barometer for
indirect altitude measurement. A real-time Operating System
(OS) runs on HKPilot32, called NuttX: the OS is in charge of
separating the program functions into self-contained tasks and
implements an on-demand scheduling of their execution. The
main benefit is that some tasks can be executed in parallel.

B. Integration
Integration of all the electronics submodules inside the

airframe is shown in Fig. 8. As the HKPilot32 micro-
controller contains the two IMUs necessary for the estimation
of the plane attitude, it is advised to place it as close as
possible to the center of gravity. It is also advised to place
some foam dampers between the micro-controller and the
fixing surface, at the corners. These dampers are required to:
reduce sensor errors due to mechanical environment
solicitations; protect sensors as they can be damaged by
shocks or vibrations; contain parasitic IMUs movements. In
fact, accelerometers are very sensitive to vibrations: in the
presence of excessive vibrations, the state estimates can lead
to very bad performance, thus preventing accurate positioning.

V. Vector-Field Path Following

χ

As standard in literature, straight-line and orbit path are
considered for path following [17]. VF strategies work under
the assumption of first-order course dynamics

χ̇ = αχ(χc−χ), (2)
χ χc

αχ

with the course angle, the commanded course angle and
 the time constant. The main variables behind the VF path

following are collected in Table II.

A. Straight Line Following
The vector field which describes the reference course to

drive the UAV on the path is

χd(epy) = χq−χ∞
2
π

tan−1(kslepy) (3)

epy χq

χ∞ (0,
π

2
]

ksl

χ→ χd

where is the cross-track error, is the angle between the
reference line and the north, is a parameter in which
is the course reference when the error is large, and a tun-
ing parameter governing the vector field smoothness. In [17] it
is shown that the control law which is able to let and

epy→ 0 t→∞ as is

χc = χ−χ∞
2
π

βsVg

αχ
sin(χ−χq)− κsl

αχ
sat

(
χ̃

εsl

)
(4)

χ̃ = χ−χd βs = ksl/(1+ (kslepy)2) Vg =
∥∥∥Vg

∥∥∥
κsl εsl

sat(x) = x
|x| < 1 sign(x)

where , , . The para-
meters and govern the control aggressiveness and coun-
teract possible chattering in the control action, and ,
if or otherwise.

B. Orbit Path Following
The desired course vector field which drives the aircraft to

loiter on an orbit path is

χd(s̃) = γ+λ
(
π

2
+ tan−1(ko s̃)

)
(5)

s̃ = s−R s
R γ

λ −1

χ→ χd s̃→ 0 t→∞

where is , is the distance of the UAV from the orbit
center, the orbit radius and is the angle between the north
and the UAV position with respect to the orbit center. The
parameter is 1 for clockwise orbit path and for counter-
clockwise orbit path. In [17] it is shown that the control law
which is able to let and as is

χc = χ+
Vg

αχs
sin(χ−γ)+βo

λVg

αχ
cos(χ−γ)− κo

αχ
sat

(
χ̃

εo

)
(6)

βo = ko/(1+ (ko s̃)2) ko κo εowhere , and the parameters , , are
defined similarly to the straight-line case.

PITO TUBE

Battery

GPS/Compass

PPM Encoder

Radio
Receiver

HKPILOT32 ESC

Ail. servo

MOTOR

Elev./Rudd.
Servos Telemetry

CoG

Fig. 8. Cross-section showing CoG and the distribution of electronics inside the UAV.

TABLE II
Variables for Vector-Field Path Following

Variable Description
χ Course angle
χc Commanded course angle
χd Reference course angle (vector field)
χ∞ Reference course at infinity

λ −1=1 clockwise, = counter-clockwise orbit
χq Angle between reference line and the north
γ Angle between UAV-center line and the north

χ̃ Path-Following error (line)

s̃ Path-Following error (orbit)

ksl,ko Vector field smoothness parameter
κsl, κo Control authority parameter
εsl, εo Anti-chattering parameter

Vg Magnitude of ground speed

 1234 IEEE/CAA JOURNAL OF AUTOMATICA SINICA, VOL. 6, NO. 5, SEPTEMBER 2019

VI. Adaptive Formation Algorithm

In this section, a network formation of UAVs is considered,
each one with dynamics:

Di(qi)q̈i+Ci(qi, q̇i)q̇i+gi(qi) = τi, i = {1, ...,N} (7)
where the dynamics are in the EL form (1) as in Section II-A.

A. Preliminaries on Communication Graphs

G = (V,E), V = {1, ...,N}
E ⊆ V×V

Ḡ = {V,E,T }, T ⊆V

A = [ai j] ∈ RN×N

aii = 0
ai j = 1 (i, j) ∈ E, i , j

M = [a j0] ∈ RN

a jo = 1 j ∈ T
a jo = 0

The UAVs are linked to each other via a communication
graph that describes the allowed information flow (cf. the
example in Fig. 9). In a communication graph, a special role is
played by the pinning node, which is a UAV (typically
indicated as system 0) and it does not receive information
from any other UAVs in the network. The communication
graph describing the allowed information flow between all the
systems, pinner excluded, is completely defined by the pair

 where is a finite non empty set of
nodes, and is a set of pairs of nodes, called edges.
To include the presence of the pinner in the network we define

 where is the set of those nodes, called
target nodes, which receive information from the pinner. Let
us introduce the Adjacency matrix of a
directed communication graph, which is defined as and

, if where . In addition, we define a
vector, the target vector , to describe the
directed communication of the pinner with the target nodes.
Specially, the target matrix is defined as if and

 otherwise.

B. Formation Control Law
The main variables behind the formation control law are

collected in Table III, whose explanation is sketched hereafter.
Ḡ
(q0, q̇0)

τi

[qi, q̇i]→ [q0, q̇0] t→∞ i

Given a hierarchical network of EL heterogeneous
uncertain UAVs, a pinner with state , we want to find a
distributed strategy for the inputs that respects the
communication graph, that does not require knowledge of the
EL matrices, and that leads to synchronization of the network,
i.e. as for every UAV . Let us start by
formulating some reference dynamics:

[q̇0
q̈0

]
=

[
0 I

−Kp −Kv

]
︸ ︷︷ ︸

Am

[q0
q̇0

]
︸︷︷︸

xm

+

[
0
I

]
︸︷︷︸

Bm

r (8)

q0, q̇0 ∈ Rn

r = q̈d +Kvq̇d +Kpqd
where is the state of the reference model and

 is a user-specified reference input. The
reference dynamics (8) basically represent some homogen-
eous dynamics all UAVs should synchronize to. With refer-
ence to the formation given in Fig. 9, we propose the control-
lers:

τ1 = Θ
′
D1ξD1︸ ︷︷ ︸

D̂1

(−Kpq1−Kvq̇1+ r)+Θ′C1ξC1︸ ︷︷ ︸
Ĉ1

q̇1+Θ
′
g1ξg1︸ ︷︷ ︸
ĝ1

τ2 = Θ
′
D2ξD2︸ ︷︷ ︸

D̂2

(−Kpq2−Kvq̇2+ r)+Θ′C2ξC2︸ ︷︷ ︸
Ĉ2

q̇2+Θ
′
g2ξg2︸ ︷︷ ︸
ĝ2

(9)

D̂1 Ĉ1 ĝ1 D̂2 Ĉ2 ĝ2

Θ′ξ(q, q̇)
Θ ξ(q, q̇)

where, the estimates , , and , , of the ideal
matrices have been split in a linear-in-the-parameter form (i.e.
any dynamic term is split as for some unknown para-
meter and some known state-dependent regressor).

ΘThe adaptive laws for estimating such unknown are:

Θ̇′C1 = −ΓB′mPe1q̇1
′ξ′C1,Θ̇

′
g1 = −ΓB′mPe1ξ

′
g1

Θ̇′D1 = −ΓB′mPe1(−Kpq1−Kvq̇1+ r)′ξ′D1

Θ̇′C2 = −ΓB′mPe2q̇2
′ξ′C1,Θ̇

′
g2 = −ΓB′mPe2ξ

′
g2

Θ̇′D2 = −ΓB′mPe2(−Kpq2−Kvq̇2+ r)′ξ′D2 (10)

Γ P = P′ > 0where, is adaptive gain and is such that:

PAm+A′mP = −Q, Q > 0. (11)
The following controller is proposed for the other UAVs:

τ3 =− D̂3[Kp(q3−q1)+Kv(q̇3− q̇1)]+ Ĉ3q̇3

+ D̂3D1τ1− ̂D3D1C1q̇1+ ĝ3

τ4 =− D̂4[Kp(q4−q2)+Kv(q̇4− q̇2)]+ Ĉ4q̇4

+ D̂4D2τ2− ̂D4D2C2q̇2+ ĝ4 (12)
Here, the adaptive laws for such an estimates are:

Θ̇′D3D1
= −ΓB′mPe13τ

′
1ξ
′
D3D1

Θ̇′D3D1C1
= −ΓB′mPe13q̇′1ξ

′
D3D1C1

Θ̇′C3
= −ΓB′mPe13q̇′3ξ

′
C3

Θ̇′g3
= −ΓB′mPe13ξ

′
g3

Θ̇′D3 = −ΓB′mPe13
[
Kp(q3−q1)+Kv(q̇3− q̇1)′ξ′D3D1

]
(13)

0

2 1

4 3

Trajectory
Generator

(VF System)

Leader 1
(UAV-1)

Leader 2
(UAV-2)

Follower 1
(UAV-3)

Follower 2
(UAV-4)

r r

τ2 τ1

q
0 , q

0
·

q
1 , q

1
·

q 0,
q 0·

q 2,
q 2·

Fig. 9. Communication graph with V formation.

TABLE III
Variables for Formation Control Law

Variable Description

Am,Bm Reference dynamics
Kp,Kv Reference gains

P Lyapunov matrix

Γ Adaptive gain

D̂i,Ĉi, ĝi Estimated dynamics of UAV # i

ΘDi,ΘCi,Θgi iEstimated gains of UAV #

D̂iD ji, ̂DiD jC ji i jEstimated dynamics between UAVs # and #
ΘDiD j ,ΘDiD jD j i jEstimated gains between UAVs # and #

YANG et al.: A SOFTWARE-IN-THE-LOOP IMPLEMENTATION OF ADAPTIVE FORMATION CONTROL FOR FIXED-WING UAVS 1235

Θ̇′D4D2
= −ΓB′mPe24τ

′
2ξ
′
D4D2

Θ̇′D4D2C2
= −ΓB′mPe24q̇′2ξ

′
D4D2C2

Θ̇′C4
= −ΓB′mPe24q̇′4ξ

′
C4

Θ̇′g4
= −ΓB′mPe24ξ

′
g4

Θ̇′D4 = −ΓB′mPe24
[
Kp(q4−q2)+Kv(q̇4− q̇2)′ξ′D4D2

]
. (14)

(i, j) ai j , 0, ei j = (x j− xi) → 0
t→∞ j e j = (x j− x0)
→ 0 t→∞

It is possible prove that, the proposed controllers and
adaptive laws with all closed-loop signals are bounded, for
any such that we have as

. In addition, for every UAV we have
 as . The proposed synchronization protocol can be

extended to include gaps formation, provided that the error:

ei j = x j− xi+ ν ji =

[q j
q̇ j

]
−

[qi
q̇i

]
+

[
ν̄ ji

0

]
(15)

ν ji
ν̄ ji j i

Va = 15 hm = 50
κsl = κo =

π
2

ksl = ko = 0.1 ϵsl = ϵo = 1

is considered, where contains the desired formation dis-
placement among UAVs and . In the forthcoming simu-
lations we will consider the following parameters: constant
airspeed m/s, constant altitude m. The con-
trol parameters of the vector field approach are ,

, , while the control parameters of the
adaptive formation algorithm are

Q = 100 I, Kp = 50, Kv = 50, Γ = 100. (16)
In line with most UAV path generation approaches, the path

is composed of straight lines and orbits. For these simulations
we take a path consisting of a straight line followed an orbit.

±30
±15 ±25

Fig. 10 shows the result of the simulations for an inverted V
formation amongst the UAVs. The simulations of the multi-
UAV formation are carried out for 4 UAVs and a pinner UAV.
The communication graph shown in Fig. 9. It can be noted that
the formation control task is achieved despite uncertainty,
which demonstrates the effectiveness of the proposed
formation control method. It must be remarked that the
kinematic constraints of the UAV are not handled directly by
the path following, but by the low level controllers (for
pitch/roll/altitude) which are implemented inside ArduPilot.
This implies that, for example, the radius of the circle path,
which has been selected as 30 meters for all UAVs, should be
decided according to physical limits: it cannot be too small
otherwise the autopilot of the UAV would not be able to track
the orbit (due to the maximum range of the aileron angle). More
specifically, the following constraints are used in the model, in
line with most commercial fixed-wing UAVs: the aileron
command spans degrees, the elevator command spans

 degrees and the rudder command spans degrees. Table
IV below shows the parameters of the fixed-wing UAVs, which
are used only for the sake of simulations and are unknown for
the purpose of control design. With respect to the initial
conditions for the UAVs, the starting point can basically be
arbitrary, and the initial attitude angles (pitch/roll/yaw) should
be within the autopilot operating ranges, otherwise the autopilot
will not be able to stabilize the UAV.

Remark 1: The benefit of the adaptive law is to allow all
UAVs to homogenize to the same dynamics, by adapting the
control action to compensate for different mass and inertia. In
fact, it is well known in formation control literature that
homogeneous dynamics are a crucial feature in order to

achieve proper coordinated motion [19], [24].
The proposed algorithm can also be implemented with a

different number of leaders and followers: Fig. 12 shows the
result of the simulations for a Y formation (3 leaders and 1
follower) with control law

τ1 = D̂1(−Kpq1−Kvq̇1+ r)+ Ĉ1q̇1+ ĝ1

τ2 = D̂2(−Kpq2−Kvq̇2+ r)+ Ĉ2q̇2+ ĝ2

τ3 = D̂3(−Kpq3−Kvq̇3+ r)+ Ĉ3q̇3+ ĝ3

τ4 = −D̂4[Kp(q4−q3)+Kv(q̇4− q̇3)]+ Ĉ4q̇4

+ D̂4D3τ3− ̂D4D3C3q̇3+ ĝ4 (17)
with adaptive laws

Θ̇′C1 = −ΓB′mPe1q̇1
′ξ′C1,Θ̇

′
g1 = −ΓB′mPe1ξ

′
g1

Θ̇′D1 = −ΓB′mPe1(−Kpq1−Kvq̇1+ r)′ξ′D1

Θ̇′C2 = −ΓB′mPe2q̇2
′ξ′C2,Θ̇

′
g2 = −ΓB′mPe2ξ

′
g2

Θ̇′D2 = −ΓB′mPe2(−Kpq2−Kvq̇2+ r)′ξ′D2

Θ̇′C3 = −ΓB′mPe3q̇3
′ξ′C3,Θ̇

′
g3 = −ΓB′mPe3ξ

′
g3

Θ̇′D3 = −ΓB′mPe3(−Kpq3−Kvq̇3+ r)′ξ′D3

Θ̇′D4D3
= −ΓB′mPe34τ

′
3ξ
′
D4D3

Θ̇′D4D3C3
= −ΓB′mPe34q̇′3ξ

′
D4D3C3

Θ̇′C4
= −ΓB′mPe34q̇′4ξ

′
C4
,Θ̇′g4
= −ΓB′mPe34ξ

′
g4

Θ̇′D4 = −ΓB′mPe34
[
Kp(q4−q3)+Kv(q̇4− q̇3)′ξ′D4D3

]
. (18)

0 50 100 150 200 250 300
y-axis (m)

−100

−50

0

50

100

150

200

250

300

350

x-
ax

is
 (m

)

Multi fixed-wing UAV formation, XY plane

Reference
Leader 1
Leader 2
Follower 1
Follower 2

Fig. 10. Path following with V formation. The UAVs in the formation fol-
low a line and then orbit around a point.

TABLE IV
Fixed-Wing UAVs Parameters

Mass (kg) Moment of Inertia (kgm2)

UAV-0 (Pinner) 10 Ix = 0.02 Iy = 0.026Iz = 0.053 Ixz = 0.01, ,
UAV-1 (Leader 1) 20 Ix = 0.1 Iy = 0.05Iz = 0.1 Ixz = 0.01, ,

UAV-2 (Follower 1) 30 Ix = 0.2 Iy = 0.1Iz = 0.2 Ixz = 0.02, ,
UAV-3 (Leader 2) 40 Ix = 0.4 Iy = 0.02Iz = 0.4 Ixz = 0.04, ,

UAV-4 (Follower 2) 50 Ix = 0.8 Iy = 0.04Iz = 0.08 Ixz = 0.08, ,

 1236 IEEE/CAA JOURNAL OF AUTOMATICA SINICA, VOL. 6, NO. 5, SEPTEMBER 2019

In other words, the structure of the controller is suitable for
any formation, but because each UAVs has different
neighbors according to the formation, the signals used to
implement the control action will be different. The
communication graph for the Y formation is shown in Fig. 11.
Fig. 14 shows the result of the simulations for an inverted T
formation (1 leader and 3 followers) with control law

τ1 = D̂1(−Kpq1−Kvq̇1+ r)+ Ĉ1q̇1+ ĝ1

τ2 = −D̂2[Kp(q2−q1)+Kv(q̇2− q̇1)]+ Ĉ2q̇2

+ D̂2D1τ1− ̂D2D1C1q̇1+ ĝ2

τ3 = −D̂3[Kp(q3−q1)+Kv(q̇3− q̇1)]+ Ĉ3q̇3

+ D̂3D1τ1− ̂D3D1C1q̇1+ ĝ3

τ4 = −D̂4[Kp(q4−q1)+Kv(q̇4− q̇1)]+ Ĉ4q̇4

+ D̂4D1τ1− ̂D4D1C1q̇1+ ĝ4 (19)
with adaptive laws

Θ̇′C1 = −ΓB′mPe1q̇1
′ξ′C1,Θ̇

′
g1 = −ΓB′mPe1ξ

′
g1

Θ̇′D1 = −ΓB′mPe1(−Kpq1−Kvq̇1+ r)′ξ′D1

Θ̇′D2D1
= −ΓB′mPe12τ

′
1ξ
′
D2D1

Θ̇′D2D1C1
= −ΓB′mPe12q̇′1ξ

′
D2D1C1

Θ̇′C2
= −ΓB′mPe12q̇′2ξ

′
C2
,Θ̇′g2
= −ΓB′mPe12ξ

′
g2

Θ̇′D2 = −ΓB′mPe12
[
Kp(q2−q1)

+Kv(q̇2− q̇1)′ξ′D2D1

]
(20)

Θ̇′D3D1
= −ΓB′mPe13τ

′
1ξ
′
D3D1

Θ̇′D3D1C1
= −ΓB′mPe13q̇′1ξ

′
D3D1C1

Θ̇′C3
= −ΓB′mPe13q̇′3ξ

′
C3
,Θ̇′g3
= −ΓB′mPe13ξ

′
g3

Θ̇′D3 = −ΓB′mPe13
[
Kp(q3−q1)

+Kv(q̇3− q̇1)′ξ′D3D1

]
(21)

Θ̇′D4D1
= −ΓB′mPe14τ

′
1ξ
′
D4D1

Θ̇′D4D1C1
= −ΓB′mPe14q̇′1ξ

′
D4D1C1

Θ̇′C4
= −ΓB′mPe14q̇′4ξ

′
C4
,Θ̇′g4
= −ΓB′mPe14ξ

′
g4

Θ̇′D4 = −ΓB′mPe14
[
Kp(q4−q1)

+Kv(q̇4− q̇1)′ξ′D4D1

]
. (22)

The communication graph for the inverted T formation is
shown in Fig. 13.

C. The Importance of Adaptation
Finally, we would like to highlight the relevance of

embedding adaptation in formation control by showing what
happens in the absence of such adaptation. To this purpose,
we set up another simulation with inverted V formation in
which two UAVs (Leader 2 and Follower 2) adopt the
adaptive algorithm, whereas the other two (Leader 1 and
Follower 1) do not employ adaptation. This means that their
control gains are kept fixed without adapting to different
mass/inertia. Fig. 15 shows the result of such simulation: it
can be seen that the two UAVs not employing adaptation
cannot close the gap with respect to their predecessor and they eventually leave the formation. It can be noted from Table IV

0

21

4

3

Trajectory
Generator

(VF System)

Leader 1
(UAV-1)

Leader 2
(UAV-2)

Leader 3
(UAV-3)

Follower 1
(UAV-4)

r r

r

τ3

q 0
, q

0·
q 3

, q
3·

q
0 , q

0
· q 0, q

0·

Fig. 11. Communication graph with Y formation.

0 50 100 150 200 250 300
y-axis (m)

−50

0

50

100

150

200

250

300

350

x-
ax

is
 (m

)

Multi fixed-wing UAV formation, XY plane

Reference
Leader 1
Leader 2
Leader 3
Follower 1

Fig. 12. Path following with Y formation. The UAVs in the formation fol-
low a line and then orbit around a point.

0

2

1

43

Trajectory
Generator

(VF System)

Leader
(UAV-1)

Follower-1
(UAV-2)

Follower-2
(UAV-3)

Follower-3
(UAV-4)

r

τ1

τ1

τ1

q 0
, q

0·

q 1,
q 1·

q 1
, q

1· q
1 , q

1
·

Fig. 13. Communication graph with T formation.

YANG et al.: A SOFTWARE-IN-THE-LOOP IMPLEMENTATION OF ADAPTIVE FORMATION CONTROL FOR FIXED-WING UAVS 1237

that the masses of the UAVs vary of a factor 5, whereas the
inertia vary of a factor 10: it is remarkable that a unique
algorithm can adapt to such heterogeneity. In the absence of
such adaptation, it might be difficult to find a formation
control strategy that can work for any inertia and mass.
Therefore, the proposed software-in-the-loop simulations
show the capability of achieving different UAV formations
while handling uncertain mass and inertia.

VII. Conclusions

The paper has discussed the research activities on the design
and software-in-the-loop implementation of adaptive
formation controllers for fixed-wing unmanned aerial vehicles
(UAVs). The focus of this paper was on the control and
simulation of fixed-wing UAVs in Matlab environment, in the

presence of parametric uncertainties represented by uncertain
mass and inertia. Several aspects of the guidance and control
for fixed-wing UAVs have been tackled: Matlab modelling of
UAVs, hardware and software integration, ArduPilot autopilot
low-level (roll/pitch/altitude) control, vector field path
following, adaptive formation control and finally the software-
in-the-loop simulations. Software-in-the-loop capability was
achieved by replicating in Matlab the ArduPilot code
(according to the Ardupilot documentation and to the
Ardupilot code itself). This reversed engineering step allowed
us to perform simulations with the actual autopilot protocols
of the UAV. Future work will cover hardware-in-the-loop
simulations (the actual flight controller will send commands
and receive measures from the Matlab simulator), as well as
the real flights.

References
 H. Chao, Y. Cao, and Y. Chen, “Autopilots for small unmanned aerial
vehicles: a survey,” International Journal of Control, Automation and
Systems, vol. 8, no. 1, pp. 36–44, 2010.

[1]

 A. Isidori, L. Marconi, and A. Serrani, Robust autonomous guidance:
an internal model approach. Springer Science & Business Media, 2012.

[2]

 L. Marconi, C. Melchiorri, M. Beetz, D. Pangercic, R. Siegwart, S.
Leutenegger, R. Carloni, S. Stramigioli, H. Bruyninckx, P. Doherty, A.
Kleiner, V. Lippiello, A. Finzi, B. Siciliano. A. Sala, and N. Tomatis,
“The SHERPA project: smart collaboration between humans and
ground-aerial robots for improving rescuing activities in alpine
environments, ” in Proc. 2012 IEEE Int. Symposium on Safety, Security,
and Rescue Robotics (SSRR), 2012, pp. 1–4.

[3]

 P. B. Sujit, S. Saripalli, and J. B. Sousa, “Unmanned aerial vehicle path
following: a survey and analysis of algorithms for fixed-wing unmanned
aerial vehicles,” IEEE Control Systems, vol. 34, no. 1, pp. 42–59, 2014.

[4]

 A. P. Aguiar, J. P. Hespanha, and P. V. Kokotovic, “Performance limi-
tations in reference tracking and path following for nonlinear systems,”
Automatica, vol. 44, no. 3, pp. 598–610, 2008.

[5]

 L. Furieri, T. Stastny, L. Marconi, R. Siegwart, and I. Gilitschenski,
“Gone with the wind: nonlinear guidance for small fixed-wing aircraft
in arbitrarily strong windfields, ” in Proc. 2017 American Control Conf.
(ACC’17), pp. 4254–4261.

[6]

 D. Invernizzi and M. Lovera, “Trajectory tracking control of
thrustvectoring UAVs,” Automatica, vol. 95, pp. 180–186, 2018.

[7]

 D. V. Dimarogonas, “Sufficient conditions for decentralized potential
functions based controllers using canonical vector fields,” IEEE
Transactions on Automatic Control, vol. 57, no. 10, pp. 2621–2626,
2012.

[8]

 M. Kothari, I. Postlethwaite, and D.-W. Gu, “UAV path following in
windy urban environments,” Journal of Intelligent & Robotic Systems,
vol. 74, no. 3-4, pp. 1013–1028, 2014.

[9]

 F. Gavilan, R. Vazquez, and S. Esteban, “Trajectory tracking for
fixedwing UAV using model predictive control and adaptive
backstepping,” in Proc. 1st IFAC Workshop on Advanced Control and
Navigation for Autonomous Aerospace Vehicles (ACNAAV’15), pp.
132-137, pp. 132–137, 2015.

[10]

 J. Chang, J. Cieslak, J. Dávila, A. Zolghadri, and J. Zhou, “Analysis and
design of second-order sliding-mode algorithms for quadrotor roll and
pitch estimation,” ISA Trans., pp. 495–512, 2017.

[11]

 G. Casadei, L. Furieri, N. Mimmo, R. Naldi, and L. Marconi, “Internal
model-based control for loitering maneuvers of UAVs, ” in Proc. 2016
European Control Conf. (ECC), pp. 672–677.

[12]

 J. Chang, J. Cieslak, J. Davila, J. Zhou, A. Zolghadri, and Z. Guo, “A
two-step approach for an enhanced quadrotor attitude estimation via
imu data,” IEEE Trans. on Control Systems Technology, vol. 26, no. 3,
pp. 1140–1148, 2018.

[13]

 B. Zhou, H. Satyavada, and S. Baldi, “Adaptive path following for
unmanned aerial vehicles in time-varying unknown wind environment,”
in Proc. American Control Conf. (ACC’17), pp. 1127–1132, 2017.

[14]

0 50−50 100 150 200 250 350300
y-axis (m)

−150

−100

−50

0

50

100

150

200

250

300

350

x-
ax

is
 (m

)

Multi fixed-wing UAV formation, XY plane

Reference
Leader 1
Follower 1
Follower 2
Follower 3

Fig. 14. Path following with T formation. The UAVs in the formation fol-
low a line and then orbit around a point.

0 50 100 150 200 250 300
y-axis (m)

−100

−50

0

50

100

150

200

250

300

350

x-
ax

is
 (m

)

Multi fixed-wing UAV formation, XY plane

Reference
Leader 1
Leader 2
Follower 1
Follower 2

Fig. 15. Unsuccessful path following in the absence of adaptation. Leader 2
and Follower 2, employing the adaptive algorithm, manage to achieve their
part of the formation, while Leader 1 and Follower 1, which do not employ
adaptation, leave the formation.

 1238 IEEE/CAA JOURNAL OF AUTOMATICA SINICA, VOL. 6, NO. 5, SEPTEMBER 2019

 N. Cho and Y. Kim, “Three-Dimensional nonlinear differential
geometric path-following guidance law,” Journal of Guidance, Control,
and Dynamics, vol. 38, no. 12, pp. 948–954, 2015.

[15]

 H. Chen, K. Chang, and C. S. Agate, “UAV path planning with
tangentplus-lyapunov vector field guidance and obstacle avoidance,”
IEEE Transactions on Aerospace and Electronic Systems, vol. 49, no. 2,
pp. 840–856, 2013.

[16]

 D. R. Nelson, D. B. Barber, T. W. McLain, and R. W. Beard, “Vector
field path following for miniature air vehicles,” IEEE Transactions on
Robotics, vol. 23, no. 3, pp. 519–529, 2007.

[17]

 S. Baldi, S. Yuan, and P. Frasca, “Output synchronization of unknown
heterogeneous agents via distributed model reference adaptation,” IEEE
Transactions on Control of Network Systems, 2018.

[18]

 S. Baldi and P. Frasca, “Adaptive synchronization of unknown
heterogeneous agents: an adaptive virtual model reference approach,”
Journal of the Franklin Institute, vol. 356, no. 2, pp. 935–955, 2019.

[19]

 S. Baldi, “Cooperative output regulation of heterogeneous unknown
systems via passification-based adaptation,” IEEE Control Systems
Letters, vol. 2, no. 1, pp. 151–156, 2018.

[20]

 Y. Abou Harfouch, S. Yuan, and S. Baldi, “An adaptive switched
control approach to heterogeneous platooning with inter-vehicle
communication losses,” IEEE Transactions on Control of Network
Systems, vol. 5, no. 3, pp. 1434–1444, 2018.

[21]

 S. Baldi, M. R. Rosa, and P. Frasca, “Adaptive state-feedback
synchronization with distributed input: the cyclic case,” in Proc. 7th
IFAC Workshop on Distributed Estimation and Control in Networked
Systems (NECSYS), Groningen, The Netherlands, 2018.

[22]

 S. Baldi, I. A. Azzollini, and E. B. Kosmatopoulos, “A distributed
disagreement-based protocol for synchronization of uncertain
heterogeneous agents,” European Control Conf., Limassol, Cyprus,
2018.

[23]

 Y. Abou Harfouch, S. Yuan, and S. Baldi, “An adaptive switched
control approach to heterogeneous platooning with inter-vehicle
communication losses,” in Proc. 20th IFAC World Congr., Toulouse,
France, pp. 1382–1387, 2017.

[24]

 B. L. Stevens, F. L. Lewis, and E. N. Johnson, Aircraft Control and
Simulation: Dynamics, Controls Design, and Autonomous Systems.
John Wiley & Sons, 2015.

[25]

 R. W. Beard and T. W. McLain, Small Unmanned Aircraft: Theory and
Practice. Princeton University Press, 2012.

[26]

 “Dryden wind turbulence model (discrete) Simulink, ” 2019. [Online].
Available: https://nl.mathworks.com/help/aeroblks/wind.html

[27]

 “Aerospace block-set Simulink, ” 2019. [Online]. Available: https://nl.
mathworks.com/help/aeroblks/index.html

[28]

 S. Farì, “Guidance and control for a fixed-wing UAV, ” M.S. thesis,
POLIMI. , IT, 2017.

[29]

 “Ardupilot documentation, ” 2019. [Online]. Available: http://ardupilot.
org/

[30]

 “Learning the ardupilot codebase, ” 2019. [Online]. Available:
http://ardupilot.org/dev/docs/learning-the-ardupilot-codebase.html

[31]

 “Roll, pitch and yaw controller tuning, ” 2019. [Online]. Available:
http://ardupilot.org/plane/docs/roll-pitch-controller-tuning.html

[32]

 L. Meier, D. Honegger, and M. Pollefeys, “Px4: a node-based
multithreaded open source robotics framework for deeply embedded
platforms, ” in Proc. 2015 IEEE Int. Conf. on Robotics and Automation
(ICRA), pp. 6235–6240.

[33]

 “Hkpilot32 flight controller, ” 2019. [Online]. Available: https://docs.[34]

px4.io/en/flight-controller/HKPilot32.html

Jun Yang received the MS degree in electronic in-
formation engineering from Northwestern Polytech-
nical university. He is a Research Fellow and a Sys-
tem Designer at the Systems Engineering Research
Institute of China. His current research interests in-
clude unmanned air vehicle systems, airborne detec-
tion information processing, and object detection and
tracking.

Ximan Wang received the B.Sc. degree from Taiy-
uan University, in 2014, and the M.Sc. degree from
University of Sheffield, in 2016. He was a Senior
Engineer at Systems Engineering Research Institute,
Beijing, China, and he is now pursuing the Ph.D. de-
gree at the Delft Center for Systems and Control,
Delft University of Technology with research in-
terests in adaptive optimization for control and UAV
adaptive control.

Simone Baldi received the B.Sc. degree in electrical
engineering, and the M.Sc. and Ph.D. degrees in
automatic control systems engineering from the Uni-
versity of Florence, Italy, in 2005, 2007, and 2011,
respectively. He is currently Professor at the School
of Mathematics, Southeast University, with a guest
position at the Delft Center for Systems and Control,
Delft University of Technology, where he was assist-
ant professor. Previously, he held postdoctoral re-
searcher positions at the University of Cyprus, and at

the Information Technologies Institute, Centre for Research and Technology
Hellas. His research interests include adaptive systems and switching control
with applications in networked control systems and multi-agent systems.

Satish Singh received the B.E. (Bachelor of Engin-
eering) degree in electrical engineering from Nagpur
University, India in 2012. He is currently pursuing
his M.Sc. degree in embedded systems from Delft
University of Technology, Delft, The Netherlands.
His work focuses on software-in-the-loop and hard-
ware-in-theloop simulations for UAVs.

Stefano Farì received the B.Sc. and M.Sc. in auto-
mation engineering from Politecnico di Milano, Italy,
performing his master thesis as guest researcher at
the Delft Center for Systems and Control, Delft Uni-
versity of Technology, The Netherlands. He has
worked at Piaggio Aerospace, Savona, Italy, as flight
control system engineer and he is now working as
GNC engineer at German Aerospace Center (DLR),
Bremen, Germany.

YANG et al.: A SOFTWARE-IN-THE-LOOP IMPLEMENTATION OF ADAPTIVE FORMATION CONTROL FOR FIXED-WING UAVS 1239

