

Delft University of Technology

Aergia: leveraging heterogeneity in federated learning systems

Cox, B.A.; Chen, Lydia Y.; Decouchant, J.E.A.P.

DOI
10.1145/3528535.3565238
Publication date
2022
Document Version
Final published version
Published in
Middleware '22: Proceedings of the 23rd conference on 23rd ACM/IFIP International Middleware
Conference

Citation (APA)
Cox, B. A., Chen, L. Y., & Decouchant, J. E. A. P. (2022). Aergia: leveraging heterogeneity in federated
learning systems. In Middleware '22: Proceedings of the 23rd conference on 23rd ACM/IFIP International
Middleware Conference (pp. 107–120) https://doi.org/10.1145/3528535.3565238

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1145/3528535.3565238
https://doi.org/10.1145/3528535.3565238

Aergia: Leveraging Heterogeneity in Federated
Learning Systems

Bart Cox
b.a.cox@tudelft.nl

Delft University of Technology
Delft, Netherlands

Lydia Y. Chen
lydiaychen@ieee.org

Delft University of Technology
Delft, Netherlands

Jérémie Decouchant
j.decouchant@tudelft.nl

Delft University of Technology
Delft, Netherlands

Abstract
Federated Learning (FL) is a popular deep learning approach
that prevents centralizing large amounts of data, and instead
relies on clients that update a global model using their lo-
cal datasets. Classical FL algorithms use a central federator
that, for each training round, waits for all clients to send
their model updates before aggregating them. In practical
deployments, clients might have different computing powers
and network capabilities, which might lead slow clients to
become performance bottlenecks. Previous works have sug-
gested to use a deadline for each learning round so that the
federator ignores the late updates of slow clients, or so that
clients send partially trained models before the deadline. To
speed up the training process, we instead propose Aergia,
a novel approach where slow clients (i) freeze the part of
their model that is the most computationally intensive to
train; (ii) train the unfrozen part of their model; and (iii)
offload the training of the frozen part of their model to a
faster client that trains it using its own dataset. The offload-
ing decisions are orchestrated by the federator based on the
training speed that clients report and on the similarities be-
tween their datasets, which are privately evaluated thanks
to a trusted execution environment. We show through exten-
sive experiments that Aergia maintains high accuracy and
significantly reduces the training time under heterogeneous
settings by up to 27% and 53% compared to FedAvg and TiFL,
respectively.

CCS Concepts: • Computing methodologies → Distri-
buted artificial intelligence; • Computer systems orga-
nization→ Cloud computing.

Keywords: Federated learning, Task Offloading, Stragglers

Middleware ’22, November 7–11, 2022, Quebec, QC, Canada
© 2022 Association for Computing Machinery.
ACM ISBN 978-1-4503-9340-9/22/11. . . $15.00
https://doi.org/10.1145/3528535.3565238

ACM Reference Format:
Bart Cox, Lydia Y. Chen, and Jérémie Decouchant. 2022. Aergia:
Leveraging Heterogeneity in Federated Learning Systems. In 23rd
ACM/IFIP International Middleware Conference (Middleware ’22),
November 7–11, 2022, Quebec, QC, Canada. ACM, New York, NY,
USA, 14 pages. https://doi.org/10.1145/3528535.3565238

1 Introduction
Federated Learning (FL) is a decentralized and inherently
privacy-preserving learning paradigm where clients collec-
tively train a machine learning model [3, 22]. During a learn-
ing round, a federator selects a subset of the clients that
return an update of the global model computed using their
local dataset. Upon receiving client updates, the federator
aggregates them into a global model update, which is then
shared with all clients. Most of existing aggregation algo-
rithms, including FedAvg [22] and FedProx [21], are syn-
chronous, and require the federator to collect all updates
from the selected clients before moving to the next training
round.

In a practical FL system, clients might have heterogeneous
computational resources and possess data that differ both
in quantities and class distribution. It has been shown that
both resource and data heterogeneity negatively impact the
performance of a FL system [12, 14, 21, 40]. First, relying on
a mix of weak and strong clients instead of homogeneous
clients to train a model can significantly prolong the training
time [6]. Second, a classification model trained with feder-
ated learning is less accurate when the client datasets are
non independently and identically distributed (non-IID) [7].
To mitigate the impact of weak clients, also called strag-

glers, the state-of-the-art methods attempt to equalize the
learning speed amongst the clients by (i) partitioning them
based on offline profiling [6], or by (ii) dropping the up-
dates of stragglers during the training rounds [20, 24]. The
former approach may fall short in capturing transient het-
erogeneity caused by applications possibly collocated on the
clients, whereas the latter might incur a severe accuracy
degradation. Moreover, the impact of stragglers is further
aggravated when encountering non-IID data among clients.
Indeed, stragglers might possess a unique dataset that is crit-
ical to the overall model accuracy. In addition, due to the
privacy preserving nature of FL, it is not really possible for
the federator to infer the data distribution based only on
the clients model updates [21, 33]. To limit the risk of model

107

This work is licensed under a Creative Commons Attribution International 4.0 License.

https://orcid.org/0000-0001-5209-6161
https://orcid.org/0000-0002-4228-6735
https://orcid.org/0000-0001-9143-3984
https://doi.org/10.1145/3528535.3565238
https://doi.org/10.1145/3528535.3565238
https://creativecommons.org/licenses/by/4.0/

Middleware ’22, November 7–11, 2022, Quebec, QC, Canada Bart Cox, Lydia Y. Chen, and Jérémie Decouchant

divergence, prior studies aggregate the non-IID client data
by adding a regularization term, like in FedProx [21], or by
estimating their contributions, like in FedNova [33]. How-
ever, these works implicitly assume that the client nodes are
homogeneous.

In this paper, we aim to accelerate the FL training of con-
volutional neural networks (CNN) in presence of stragglers
and non-IID data. A CNN is composed of convolutional lay-
ers and fully connected layers [18], which respectively learn
the representation of local data and map the extracted rep-
resentation into classes. The local training of CNN entails
forward and backward passes on both types of layers.

To retain the representation of the unique datasets of strag-
glers, we advocate to freeze their convolutional layers, and
offload the computing and updating of the convolutional lay-
ers to strong clients. We propose Aergia1, a federated learn-
ing algorithm that monitors the local training of selected
clients and offloads part of the computing task of stragglers
to strong clients that have spare and idle capacities. Aergia
relies on a client matching algorithm that associates a strag-
gler to a strong node based on an estimated performance gain
and on the similarity between their datasets, since blindly of-
floading local models to nodes that have drastically different
data distribution leads to weight divergence [7]. To ensure
privacy, data similarities are securely evaluated using the
clients’ local data distributions (i.e., the number of labels per
class) in an Intel SGX enclave [8], which is hosted by the
federator.
We implement Aergia in PyTorch as a middleware run-

ning on top of Kubernetes. We evaluate Aergia on three
datasets, namely MNIST, FMNIST, and Cifar-10, on different
network architectures against four previous heterogeneity
or non-IID aware aggregation solutions [6, 21, 22, 33]. Our
FL systems consist of a mix of 24 weak, medium and strong
nodes that use a different number of CPU cores. Our evalua-
tion results show that Aergia achieves the highest accuracy
within the lowest training time.

In a nutshell, this paper makes the following contributions:

• We explain how a straggler can offload the training of
its model to a strong client.

• Wepresent an algorithm thatmatches the performance
profile and data similarity of clients.

• We design Aergia2, a federated learning middleware
for highly heterogeneous clients and non-IID data that
leverages model training offloading and online client
matching. Aergia relies on a trusted execution envi-
ronment (an Intel SGX enclave) so that the federator
can evaluate the similarity of client datasets without
getting access to their private class distribution.

1In Greek mythology, Aergia is the personification of sloth, idleness, indo-
lence and laziness.
2https://github.com/bacox/fltk

• We evaluate Aergia on a FL cluster built on top of
Kubernetes. Our evaluation results on three datasets
and several networks show that Aergia effectively
leverages the spare computational capacity of strong
clients to achieve high accuracy in low training time.

The remainder of this paper is organized as follows. §2
provides some background on Federated Learning, data and
resource heterogeneity, as well as on their impact on training
time and accuracy. §3 provides an overview of Aergia, while
§4 describes its algorithms and implementations details. §5
presents our performance evaluation. §6 reviews the related
work. Finally, §7 concludes this paper.

2 Background and Motivation
In this section, we first recall necessary background on deep
learning models, which are core components of the federated
learning paradigm, the practical heterogeneity challenges
that federated learning faces and their impact on training
time and accuracy.

2.1 Premier on Convolutional Neural Networks
The state-of-the-art image classifier follows the structure of
convolutional neural networks (CNN) [18], which consist of
convolutional and fully connected layers. The former maps
the image features into a compact representation, hence they
are also referred to as feature layers. The latter are dense fully
connected layers that classify the representation into one of
the classes. The other difference between these two types of
layers is their resource demands [9]: convolutional layers are
computationally intensive while fully connected layers are
memory intensive. The training time of a client’s local model
can be divided into two parts: the forward pass that computes
the classification outcome of images, and the backward pass
that back-propagates the model weights. Consequently, the
training time of a typical CNN classifier can thus further be
categorized into four parts: (i) ff: forward pass on feature
layers, (ii) fc: forward pass on fully connected layers, (iii)
bc: backward pass on fully connected layers, and (iv) bf:
backward pass on feature layers.

2.2 Federated Learning
Federated learning (FL) [12, 14, 21, 40] is an emerging de-
centralized learning paradigm where 𝐾 clients and a feder-
ator jointly train a machine learning model in 𝑇 consecu-
tive rounds while local data stays on premise. In this paper,
we specifically consider an image classification model that
maps images, 𝑥 to one of 𝐶 labels, denoted by 𝑦, through
a function 𝑓 (𝒘), parameterized by weights 𝒘 . Prior to the
training, the federator initializes the model architecture, the
objective function, the training algorithm, the training hy-
perparameters, and the aggregation protocol for the client’s

108

https://github.com/bacox/fltk

Aergia: Leveraging Heterogeneity in Federated Learning Systems Middleware ’22, November 7–11, 2022, Quebec, QC, Canada

0.0 0.1 0.2 0.3 0.4 0.5
Variance of CPUs

1.00

1.25

1.50

1.75

2.00

2.25

Im
pa

ct
on

ro
un

d
du

ra
ti

on

Clients

7

6

5

4

3

2

(a) Impact of CPU heterogeneity among
clients on training time (multiplicative fac-
tor compared to the homogeneous case).

∞ 70 50 30 10
Deadline in seconds

0.0

0.5

1.0

1.5

2.0

2.5

T
im

e
(1

03
s)

(b) Total training duration in seconds without
and with deadlines.

∞ 70 50 30 10
Deadline in seconds

60

65

70

75

80

T
es

t
A

cc
ur

ac
y

(c) Accuracy in a non-IID scenario without
and with deadlines.

Figure 1. Heterogeneous computational powers among the clients increase the duration of the FL training process (Figure 1(a)).
One could use deadlines so that the federator discards late updates in a round before starting the next one, which effectively
reduces the training time (Figure 1(b)). However, using deadlines badly degrades the model accuracy, in particular in non-IID
settings (Figure 1(c)).

local update3. We consider convolutional neural networks
(CNN) [18] as the classifier model. The clients train the clas-
sifier model based on their own real data, which never leaves
their premises, whereas the central server iteratively aggre-
gates and distributes models submitted from clients until
reaching the global model convergence.

Local Training. In each global round 𝑡 , the clients receive
the latest aggregated global model 𝑓 (𝑤 (𝑡 − 1)) from the
federator and use their local data to perform local updates for
𝐸 epochs, e.g., stochastic gradient decent (SGD) updates [23].
The cross entropy loss function [29, 30, 39] is widely adopted
for classification problems. Specifically, a client 𝑘 aims to
find𝒘𝑘 (𝑡) that minimizes the loss function:

min
𝒘𝑘 (𝑡)

𝑓𝑘 (𝒘𝑘 (𝑡);𝑥𝑘 , 𝑦𝑘),

using the 𝑛𝑘 local data points (𝑥𝑘 , 𝑦𝑘), where 𝑥𝑘 is an input
data, e.g., images, and 𝑦𝑘 is the class label. Upon finishing
the local training, clients send their local model parameters,
i.e.,𝒘𝑘 (𝑡), to the federator.

Model aggregation. After receiving all model updates
from clients, the federator aggregates the clients’ model pa-
rameters into the latest global model that is returned to
the clients in the beginning of the next round. Specifically,
at each round 𝑡 , a subset of 𝐾 clients is selected to do local
training and send back their latest model weights,𝑤𝑘 (𝑡). The
aggregation algorithms differ in the frequency and weights
in aggregating the local models. FedSGD [4, 23] treats all
local models equally, and trains the entire local data in one
epoch. The gradients are sent to the federator for aggrega-
tion every epoch. To minimize the communication and avoid
the divergence of local models, FedAvg [22] lets local models
train for multiple epochs and then aggregate the models.
Specifically, FedAvg calculates the global model of round 𝑡

3Wenote that a variant of FL [26] does not rely on a federator and aggregates
the model in a peer-to-peer manner. We do not consider this case here.

as the weighted average of all 𝐾 local model weights:

𝒘 (𝑡) =
𝐾∑
𝑘=1

𝑛𝑘∑𝐾
𝑘=1 𝑛𝑘

𝒘𝑘 (𝑡)

2.3 Sources of heterogeneity
Data heterogeneity. Clients possess different and unique
privacy-sensitive datasets. A common assumption in the
prior art is that client data are identically and independently
distributed, which is the so called independent and identi-
cally distributed (IID) case. Taking the image data benchmark
Cifar-10 [16] as an example, which contains 60,000 images
from 10 classes, in the IID case each client would own an
equal amount of images that would be equally distributed
across classes. Recent studies point out that in practice dis-
tributed datasets are highly non-IID, and differ both in size
and in distribution [1, 33]. For instance, it is easier to identify
clients that own horse images than deer images (both are
classes in Cifar-10). Consequently, unique images like deer
are owned by a small client subset, whereas common images
like horse have a higher probability to be equally distributed
across all clients. Such non-IID data distribution, i.e., clients
owning data in different quantities and distributions, have
been shown to be challenging for FL and detrimental to the
accuracy of the global models [12, 14, 40]. The heterogene-
ity of a non-IID dataset can be captured by its Earth Mover
Distance (EMD) [28]. The higher the EMD of a dataset, the
higher the heterogeneity of the client data distribution. To
mitigate the accuracy degradation in FL due to non-IID data,
related studies [21, 33] added regularization terms in the
objective function, altering the aggregation algorithms, or
augmenting the dataset.

Clients resource heterogeneity. Edge devices are highly
heterogeneous in their computing and network resources [34].
Their hardware and software stacks evolve after each genera-
tion, i.e., every 5 to 6 years. It is challenging to find an optimal

109

Middleware ’22, November 7–11, 2022, Quebec, QC, Canada Bart Cox, Lydia Y. Chen, and Jérémie Decouchant

(deep) learning model for a diversified set of devices. Due
to the differences in the type and number of CPU cores and
memory provisioning, the computation time of deep models
on edge devices vary a lot. Moreover, the network connectiv-
ity of edge devices may often be unstable and expensive [7].
Instead of computation, communication is more a bottleneck
for edge devices that have poor connectivity, questioning the
effectiveness of aggregation algorithms relying on frequent
communication. The heterogeneity of clients’ resources es-
sentially leads to (highly) unbalanced local training time and
also long global training time, because the federator can only
aggregate after receiving all the local models, including the
slowest one, during the synchronous training. To alleviate ei-
ther the communication or computation bottleneck, the prior
art proposes to have asynchronous communication across
global round [2], i.e., the federator aggregates the local up-
dates as soon as a new update is received. The downside of
asynchronous training is the risk of slow convergence and
low accuracy of the global model. Thus, the state-of-the-art
mainly addresses resource heterogeneity by equalizing the
communication and computation time across clients so as to
maintain the synchronous training and high model accuracy.

2.4 Motivation: Impact of heterogeneity on training
time and accuracy

Resource heterogeneity in FL algorithms increases training
time. Aergia addresses resource heterogeneity thanks to its
model freezing and offloading approach. Several works also
documented the negative effect of data heterogeneity among
clients on FL accuracy [15, 21, 33], which further increases
the effect of resource heterogeneity. Aergia mitigates this
issue by taking into account the similarities between client
datasets in its offloading scheduling algorithms.

We evaluate the influence of different degrees of CPU core
heterogeneity among clients on the FL training time.We then
evaluate the learning degradation that would be incurred
when naively equalizing the training time of all rounds based
on deadlines. For this experiment, we use the MNIST dataset,
and refer the reader to Section 5.1 for additional experimental
details.

Figure 1(a) shows how the overall training time of various
sizes of FL clusters increases with the variance between the
clients CPUs. We consider 1 to 13 clients. We set the average
computational capacity per client to be 0.5 CPU, and assign
cores to clients with a variation shown in the figures. A
high variance implies a high difference among slow and fast
clients. We compute the overall training time as follows:
we add the time required for any pre-training requirements
(such as offline profiling if the algorithm demands it) to
the time required for all training rounds. The duration of a
training round is measured by the Federator, using its local
clock, from the moment the request is sent to the clients until
the last participating client responds with its results. One
can see that a small perturbation in clients CPU core, i.e.,

model offloading

Federator

Client 3 Client 6

Client 2

Client 1

Client 5

Client 4

secure client
matching

Figure 2. System architecture of Aergia.

standard deviation, can significantly extend the training time
because the federator has to wait for the stragglers because
of the synchronous training process. The delay that is added
to the total training time grows with the variance of capacity
as well as with the cluster size.

The state-of-the-art minimizes the impact of resource het-
erogeneity of clients by equalizing their computation time
through estimating clients speed and assigning different
amounts of training loads. In Figures 1(b) and 1(c), we eval-
uate a naive solution - terminating the training per round
according to the deadlines. Clients who cannot send back
their model weights on time are not included in the aggrega-
tion, which effectively bounds the training time but severely
degrades accuracy. In contrast, the sophisticated equaliza-
tion algorithms carefully factor in the trade-off between the
accuracy and training time, biasing toward achieving a high
accuracy. Motivated by this result, we aim to derive an al-
gorithm that equalizes the training time within and across
training rounds.

3 Overview of Aergia
3.1 System Model
We consider a traditional federated learning architecture,
which Figure 2 illustrates, where multiple clients are con-
nected to a central server, and are also able to directly commu-
nicate with each other. We consider heterogeneous settings
in the sense that clients might have different computational
powers and be interconnected by network links that differ in
terms of bandwidth and latency. We consider that the com-
putational load of each client might evolve with time, e.g.,
because they are running other applications in addition to
the training process that we aim at optimizing. We however
assume that the network properties remain stable during the
training process. We also assume all parties to be honest. We
assume that communications are asynchronous but reliable,

110

Aergia: Leveraging Heterogeneity in Federated Learning Systems Middleware ’22, November 7–11, 2022, Quebec, QC, Canada

1. ff 2. fc

4. bf 3. bc

Figure 3.Model training phases during a local update: for-
ward pass feature layers (ff), forward pass classifier layers
(fc), backwards pass classifier layers (bc), and backwards pass
feature layers (bf).

i.e., that there is no bound on the time it takes for messages
to reach their destination but all messages eventually arrive.
Clients are equipped with local clocks so that they can mea-
sure the time they require to train their models. We do not
assume these clocks to be synchronized, but they do need to
have similar frequencies. We do not require the federator to
make use of a clock. We assume the federator to be correct.
It is however equipped with an Intel SGX enclave that the
clients can authenticate using remote attestation [8], and
to which they send their encrypted and privacy-sensitive
dataset class distribution. The enclave provides code integrity
and confidentiality of the data it manipulates. The federator
relies on the datasets similarity matrix that is computed by
the enclave to refine its offloading decisions and maintain
high accuracy.

Aergia allows the training process to become aware of
the shortcomings and strengths of specific clients and orga-
nize their collaboration so that they rely on each other to
reduce the overall training time. The central server plays a
predominant role in the sense that it coordinates the overall
training process and periodically identifies the clients that
should offload part of their training tasks to more powerful
clients through a model freezing method.

3.2 Leveraging the Heterogeneity of the Learning
Phases

A CNN can be split into two sections. The first set of layers
are the feature layers and the second part are the classifier
layers. During training, for each minibatch the network per-
forms a forward pass and a backward pass, respectively in
the forward and in the backward propagation phases, for
both sections of the layer. Figure 3 illustrates the four phases
of a training cycle: forward pass feature layers (ff), forward
pass classifier layers (fc), backwards pass classifier layers
(bc), and backwards pass feature layers (bf).

We have profiled the time required by each of the four
phases during the network training process with several

datasets. To accurately measure the computing time, our
profiling time presented here is under the single client sce-
nario. Our results indicate that the time required to perform
a cycle is not uniform across phases. Figure 4 shows that the
majority of the time is spent in the backwards pass of the
feature layers (from 52% to 75%). Aergia therefore focuses
on offloading the backwards pass feature layers phase of the
weak clients to stronger ones.

Aergia leverages parameter freezing, which is commonly
used for transfer learning [25], personalisation tasks [1, 38]
and to accelerate training [5, 37]. Freezing parameters in
layers eliminates the needs to perform back propagation for
the frozen parts of the network.

Cifa
r-1

0-c
cn

Cifa
r-1

0-r
esn

et

Cifa
r-1

00
-vg

g

Cifa
r-1

00
-re

sne
t

fm
nis

t-c
nn

0

20

40

60

80

Pe
rc

en
ta

ge

 3
7.

5%

 2
8.

8%

 8
.6

%

 3
4.

7%

 1
7.

3%

 1
.6

%

 0
.2

%

 3
.3

%

 0
.3

%

 2
.3

% 8
.1

%

 0
.5

%

 3
4.

9%

 0
.8

%

 5
.3

%

 5
2.

9%

 7
0.

5%

 5
3.

3% 6
4.

2% 7
5.

1%

ff
fc
bc
bf

Figure 4. Profiling the different update parts of a network
on several datasets shows that the execution time per phase
is not uniform during a local update.

3.3 Round training with Model Freezing and
Offloading

The client selection and aggregation in Aergia is done in
the same way as in typical federated learning. For each local
update, the server selects a subset of the devices and sends
them the central model. Aergia differs from the standard FL
starting from the moment where clients start training locally.
In the following, we describe the various tasks executed
during a round, starting from the reception of the global
model by the clients. Section 4 provides a precise description
and the implementation details of these tasks.

Early training and profiling. At the beginning of a
training round, clients start by executing complete batches,
i.e., they use the 4 training phases, and monitor the speed at
which they execute each phase. Clients then report their per-
formance measurements, obtained from the online profiler
(which directly uses the clients’ clock to measure processing
times), to the central server, and continue fully training their
model while waiting for the server’s instructions.

Centralized scheduling.When it has received the per-
formance measurements of all clients, the server identifies
the clients that would slow down the entire training process

111

Middleware ’22, November 7–11, 2022, Quebec, QC, Canada Bart Cox, Lydia Y. Chen, and Jérémie Decouchant

by sending their updated model later than others, and com-
putes a schedule where slow clients offload part of their train-
ing process to more powerful and data compatible clients.
This computation takes the clients dataset similarities into
account by leveraging an Intel SGX enclave for privacy. The
server indicates to the slow clients that they should offload
their model to a stronger client, whose IP address is spec-
ified and who will train part of their model for them. The
server also informs the stronger clients that should train the
model of weaker clients. Messages from the server detail the
global training round number so that clients can ignore late
messages.

Model freezing, offloading and training. Clients are
informed of the offloading they might have to execute ac-
cording to the schedule the server computed, and the time
at which all clients are expected to send their updated model
to the server. Weak clients that need to offload their models
freeze the first layers of their model, send their model to a
stronger client and continue updating their model with a
lighter procedure. Strong clients that are executing offloaded
tasks return their own fully trained model and the (possibly
partially trained) model they might have been updating for
a weaker node at the time of the deadline.

Model aggregation. Upon receiving all model updates,
the server recombines the models of clients that offloaded
their training process: the first layers are received from the
stronger client to which their training was offloaded, and
the remaining layers are received directly from the weaker
client. Based on the reconstructed models and based on the
models that were fully trained by clients, the server uses the
classical FL averaging method to compute the next global
model, and start the next global update.

4 System Details of Aergia
In this section, we detail the key components of Aergia.
We first describe Aergia’s model freezing and offloading
algorithm. We then detail how the federator relies on profil-
ing results communicated by clients to schedule the models
freezing and offloading that should happen during a global
round. We finally explain how the federator leverages an
SGX enclave to compute the clients dataset similarities to
refine its schedule.

4.1 Model Freezing and Offloading
Figure 5 illustrates the potential impact of task offloading
on the duration of a learning round with heterogeneous
clients, and allows us to explain how model freezing and
offloading intervene in Aergia. At the beginning of a round,
the server sends the current global model to the clients, af-
ter which they compute their local model using their own
datasets. In this example, clients 3 and 4 are more powerful
than clients 1 and 2, which impacts the time it takes them
to execute a training phase (numbered from 1 to 4). In this

Time

Profiling

Aggregation

1 2 3 4

1 2 43 1 2 43

1 2 3 4 1 2 3 4 1 2 3 4

1 2 3 1 2 3

Global model

Scheduling

Freezing & Offloading

1 2 3 4

Client 1

Client 2

Federator

Figure 5. Illustration ofmodel freezing and offloading. Client
1 freezes and offloads its model to client 2 to accelerate the
training process.

example, the clients profile their performance over a num-
ber of local batch updates (Aergia uses 100 batches), and
report their performance metrics to the server afterwards.
After having collected all performance measurements, the
server determines which clients should freeze the second
part of their model and offload its training to other clients.
The server then informs the clients to freeze their model and
to offload the training of their last layers to a selected strong
client. Symmetrically, the federator also communicates with
the strong clients about the offloading decision so that they
are aware of the identity of the weak client whose model
they should train, and know the number of local training
batches they should use to train it. While they are waiting
for the server’s scheduling decision, clients keep training
their models using all four phases. In Figure 5, clients 1 and
2 are informed that they should respectively freeze and of-
fload their models to clients 3 and 4. When clients 3 and 4
finish executing their local updates (here after 3 batches),
they train the offloaded models they have received on their
local datasets. All clients eventually return the local mod-
els they train (offloaded or not) to the server, which finally
aggregates them. In this example, clients 1 and 2 execute
their rounds faster than they would have without offloading
because they save the execution of two phases. Note that
scheduling decisions are cryptographically signed by the
federator for authenticity, and that they contain a monoton-
ically increasing sequence number so that they cannot be
replayed and so that messages sent by the federator that
arrive late (i.e., in the next round) are ignored.

4.2 Online Profiling
Minimizing the maximum training time of all clients during
a local update is equivalent to minimizing the variance be-
tween the client training times. To reach this goal, Aergia
gathers information about the training speed of each client
over the first local updates of a global training round. This
information is initially not available to the federator, and
might also evolve over time as clients might dedicate a var-
ious proportion of their computing power to the learning
task. During the profiling phase, clients keep track of the
execution time of the forward- and backward propagation of

112

Aergia: Leveraging Heterogeneity in Federated Learning Systems Middleware ’22, November 7–11, 2022, Quebec, QC, Canada

each layer. These execution times are then communicated to
the server and allows it to obtain a clear picture of the current
computational power of the clients, and identify the clients
that are slowing down the whole learning process. The pro-
filing phase should include sufficiently enough batches to
report accurate numbers, but not too many so that there is
still headroom to optimize the remaining part of the learning
process (whose entire duration depends on client dataset
sizes). Aergia profiles the training process during 100 local
batch updates out of 1600 local batch updates4.

4.3 Centralized Scheduling
The federator in Aergia executes a scheduling algorithm
that considers the training process of each client as two con-
secutive tasks that can potentially be executed on different
clients. The first task of each client is always executed lo-
cally while the second task can be offloaded to another client.
Based on the performance metrics gathered by the profiler,
the offloading scheduling algorithm decides whether the sec-
ond task of each client should be offloaded to another client.
In Figure 5, clients 1 and 2 respectively offload the second
task of their training process to clients 3 and 4. Clients 3 and
4 execute these offloaded tasks as soon as they receive them
and are done computing their own model updates. Overall,
thanks to the offloaded tasks, the training time of the overall
round can be reduced.
When it has received the performance measurements of

all clients, the server identifies the clients that would slow
down the entire training process by sending their updated
model later than others, and computes a schedule where
slow clients offload part of their training process to more
powerful and data compatible clients. The server directly
informs the slow clients that should offload their training
process to another client.

The main objective of the server is to minimize computa-
tional variance by correctly matching a weak client with a
strong client. The central server is during the local training
of the clients informed about the training performance of the
clients. The clients gather these performance estimates with
the online profiler while training locally on the data. Note
that the profile has a very low overhead as it only represents
0.58% of the total training time. Using the performance indi-
cators, the central server matches underperforming clients
with strong clients following Algorithm 1. We estimate a
mean compute time for each round based on the performance
data of each client that is active in the current round. The
central server uses the mean compute time (𝑚𝑐𝑡) as a target
time for the offloading schedule. Using𝑚𝑐𝑡 and the perfor-
mance indicators of each client, the weak and strong clients
are identified (Line 13 and 14). Pairs of weak and strong
4The number of local upates used for the profiler depends on the size of
the dataset and the batch size. For our experiments we use 100 local batch
updates to limit the profiling overhead and still achieve a good profiling
accuracy.

Algorithm 1 Scheduling models freezing and offloading
with𝑚 clients
1: Inputs:
2: 𝑡 𝑗,{1,2,3} , 𝑡 𝑗,4: training times of client 𝑗 on tasks

(1, 2, 3) and 4, for 1 ≤ 𝑗 ≤ 𝑚.
3: 𝑟𝑢 𝑗 : remaining local updates of client 𝑗 .
4: 𝑆𝑖, 𝑗 : Similarity values between clients 𝑖 and 𝑗 , de-

scribing pair wise data similarity.
5: 𝑓 : Similarity factor.
6:
7: Outputs:
8: 𝑑𝑒𝑎𝑑𝑙𝑖𝑛𝑒𝑠: array of times at which a client must

send the partially or completely trained models to the
server

9: 𝑠𝑒𝑛𝑑𝑖𝑛𝑔: an array that details the stronger client
to which a client should offload its model to (possibly
None).

10:
11: Algorithm:
12: 𝑚𝑐𝑡 = 1

|𝑀 |
∑𝑀
𝑚=1 𝑟𝑢𝑚 ∗ (𝑡𝑚,{1,2,3} + 𝑡𝑚,4)

13: 𝑠𝑒𝑛𝑑𝑖𝑛𝑔 = {𝑥 |∀𝑥 ∈ 𝑀, 𝑟𝑢𝑥 ∗ (𝑡𝑥,{1,2,3} + 𝑡𝑥,4) > 𝑚𝑐𝑡}
14: 𝑟𝑒𝑐𝑒𝑖𝑣𝑖𝑛𝑔 = {𝑦 |∀𝑦 ∈ 𝑀, 𝑟𝑢𝑦 ∗ (𝑡𝑦,{1,2,3} + 𝑡𝑦,4) ≤ 𝑚𝑐𝑡}
15: 𝑠𝑜𝑟𝑡_𝑎𝑠𝑐𝑒𝑛𝑑𝑖𝑛𝑔(𝑠𝑒𝑛𝑑𝑖𝑛𝑔)
16: 𝑠𝑜𝑟𝑡_𝑑𝑒𝑠𝑐𝑒𝑛𝑑𝑖𝑛𝑔(𝑟𝑒𝑐𝑒𝑖𝑣𝑖𝑛𝑔)
17: 𝑑𝑒𝑎𝑑𝑙𝑖𝑛𝑒𝑠 = []
18: for each 𝑐 ∈ 𝑠𝑒𝑛𝑑𝑖𝑛𝑔:
19: 𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑_𝑐𝑙𝑖𝑒𝑛𝑡 = 𝑁𝑜𝑛𝑒
20: 𝑜 𝑓 𝑓 𝑙𝑜𝑎𝑑𝑖𝑛𝑔_𝑐𝑜𝑠𝑡 = ∞
21: 𝑜𝑝 = 0
22: for each 𝑘 ∈ 𝑟𝑒𝑐𝑒𝑖𝑣𝑖𝑛𝑔:
23: 𝑐𝑡, 𝑑 = 𝑐𝑎𝑙𝑐_𝑜𝑝 (𝑡𝑐 {1,2,3,4}, 𝑡𝑘 {1,2,3,4}, 𝑡𝑘 {4}, 𝑟𝑢𝑐 , 𝑟𝑢𝑘)
24: 𝑐𝑜𝑠𝑡𝑡𝑒𝑚𝑝 = 𝑐𝑡 ∗ (1 + log(𝑆𝑐,𝑘 ∗ 𝑓 + 1))
25: if 𝑐𝑜𝑠𝑡𝑡𝑒𝑚𝑝 < 𝑜 𝑓 𝑓 𝑙𝑜𝑎𝑑𝑖𝑛𝑔_𝑐𝑜𝑠𝑡 :
26: 𝑜 𝑓 𝑓 𝑙𝑜𝑎𝑑𝑖𝑛𝑔_𝑐𝑜𝑠𝑡 = 𝑐𝑜𝑠𝑡𝑡𝑒𝑚𝑝
27: 𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑_𝑐𝑙𝑖𝑒𝑛𝑡 = k
28: 𝑜𝑝 = 𝑑

29: 𝑟𝑒𝑐𝑒𝑖𝑣𝑖𝑛𝑔 = 𝑟𝑒𝑐𝑒𝑖𝑣𝑖𝑛𝑔 − 𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑_𝑐𝑙𝑖𝑒𝑛𝑡
30: 𝑑𝑒𝑎𝑑𝑙𝑖𝑛𝑒𝑠 [𝑐] = (𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑_𝑐𝑙𝑖𝑒𝑛𝑡, 𝑜𝑝)
31: if 𝑟𝑒𝑐𝑒𝑖𝑣𝑖𝑛𝑔 = ∅:
32: break
33: return (𝑑𝑒𝑎𝑑𝑙𝑖𝑛𝑒𝑠, 𝑠𝑒𝑛𝑑𝑖𝑛𝑔)

clients are created such that the compute time of the weak
clients approaches the initial mean compute time. Similarly,
the additional offloading work of the strong client should
be bounded by mean compute time, i.e., its original compute
time and offloading time should not exceed the mean com-
pute time. Clients are sorted based on their expected training
duration. The set of clients who are not able to meet the
imposed mean compute time are the weak clients. For these
clients, a suitable strong client needs to be identified. The
scheduling algorithmmatches clients starting by the weakest

113

Middleware ’22, November 7–11, 2022, Quebec, QC, Canada Bart Cox, Lydia Y. Chen, and Jérémie Decouchant

Algorithm 2 𝑐𝑎𝑙𝑐_𝑜𝑝 (): Calculating the optimal offloading
point (𝑜𝑝) between two nodes
1: Inputs:
2: 𝑡𝑎 : training time for client 𝑎.
3: 𝑡𝐵 : training time for client 𝑏.
4: 𝑥𝑏 : training time of only conv layer for client 𝑏.
5: 𝑟𝑎 : remaining local updates of client 𝑎.
6: 𝑟𝑏 : remaining local updates of client 𝑏.
7:
8: Outputs:
9: 𝑐𝑡 : Estimated duration between two nodes.
10: 𝑑 : Number of local updates to be executed before of-

floading to the other node.
11:
12: opt_time(𝑡𝑎, 𝑡𝑏, 𝑥𝑏, 𝑟𝑎, 𝑟𝑏):
13: 𝑐𝑡 = ∞
14: for 𝑑 ∈ 1 . . .min(𝑟𝑎, 𝑟𝑏) :
15: 𝑐𝑢𝑟𝑟𝑒𝑛𝑡_𝑐𝑡 = max((𝑟𝑎 −𝑑) ∗ 𝑡𝑎 +𝑑 ∗ 𝑥𝑏, (𝑟𝑏 −𝑑) ∗ 𝑡𝑏)
16: if 𝑐𝑢𝑟𝑟𝑒𝑛𝑡_𝑐𝑡 > 𝑐𝑡 :
17: return 𝑐𝑡 , 𝑑
18: 𝑐𝑡 = 𝑐𝑢𝑟𝑟𝑒𝑛𝑡_𝑐𝑡
19: return 𝑐𝑡 , 𝑑

ones because the global training time in a round is deter-
mined by the weakest client. For a possible offloading option,
the algorithm evaluates the optimal offloading time (Line 23).
The optimal offloading time is calculated using the perfor-
mance indicators of two nodes as can be seen in Algorithm
2. A strong client can only be used one time per round for
offloading. Once a strong client is assigned to a weak client,
the strong client is removed from the list of possible receiv-
ing nodes (Line 29). One can modify Algorithms 1 and 2 to
support heterogeneous network transmission latencies and
bandwidths, which is straightforward and has been omitted
for space reasons.
Globally minimizing the time required to train all client

models during a FL round can be seen as a 𝑄𝑚 |𝑟 𝑗 |𝐶𝑚𝑎𝑥 job
scheduling problem, which can be solved using dynamic
programming [17]. Our algorithm is a variant of the greedy
longest-processing-time-first (LPT) algorithm that distributes
the training tasks over the clients, which has been demon-
strated to produce schedules that are close to optimal [11]. In
addition, LPT scales linearly with the number of clients, and
therefore does not significantly slow down the federator.

Training procedure. The scheduling algorithm is used
by the federator to orchestrate the training process. The
actions of the Federator during a training round consist of the
following steps. First, the client selection, in the samemanner
as with FedAvg, is performed. The selected clients are by the
Federator instructed to start training for 𝑇 rounds with the
online profiler active. Each client after 𝑃 number of local
batch updates informs the federator about the performance
metrics that are gathered with the profiler. Simultaneously,

the clients stop the online profiler and continue training until
further instruction. With all the performance metrics that
the federator receives, an offloading schedule is created using
Algorithm 1. The clients are informed by the federator about
the offloading schedule. The model aggregation is performed
when the federator has received a training result from all
selected clients. This process is repeated for 𝑇 rounds.

4.4 Refining Schedules with Data Heterogeneity
So far, the scheduling algorithm we have presented does
not take into account the fact that clients might possess
non-IID local datasets. In practice, offloading the model of
a client to a stronger client with a vastly different dataset
would be detrimental to the training accuracy. The central
server therefore also takes into account the similarity of two
datasets to compute the model freezing and offloading that
should take place during a round. The similarity between
datasets is computed by the federator using the data distri-
bution over the classes. We implemented this process using
a trusted execution environment, namely Intel SGX, but it
could also be implemented using cryptographic methods
such as homomorphic encryption. We demonstrate that us-
ing dataset similarities allows Aergia to improve its model
accuracy and leave such privacy-preserving extensions to
future work. The local data distribution of a client is privacy
sensitive, therefore, we calculate the similarity matrix 𝑆 in-
side a trusted execution environment (i.e., an SGX enclave)
of the federator node. Clients send an encrypted vector that
contains the number of labels per class to the enclave. The
trusted execution environment computes the pair-wise sim-
ilarity between pairs of clients based on the EMD metric.
The result is a similarity matrix 𝑆 , a𝑚 ×𝑚 triangular matrix
where𝑚 is the number of clients. The similarity matrix 𝑆
enables Aergia to improve the offloading algorithm without
publicly sharing sensitive information.

The cost function on line 24 of Algorithm 1 takes the data
similarity of two clients into account. The similarity matrix
𝑆 is calculated before the training starts, and it contains the
pair wise similarity of the local data using the EMD metric.
Variable 𝑓 on line 24 of Algorithm 1 is used to control the
effect of the inter client similarity. With 𝑓 = 0, the sched-
uling only takes the performance metrics into account and
ignores the local data similarities, as discussed in section 4.3.
As soon as 𝑓 > 0, the inter-client data similarity is taken
into consideration while creating the schedule. A larger 𝑓
increases the influence of data similarity when determining
the offloading decisions. Using this simple objective function,
the scheduling algorithm associates each weak client to a
suitable stronger client that will partially train its model on
a dataset that is sufficiently similar to its own.

114

Aergia: Leveraging Heterogeneity in Federated Learning Systems Middleware ’22, November 7–11, 2022, Quebec, QC, Canada

0.0

0.2

0.4

0.6

0.8

T
es

t
A

cc
ur

ac
y

FedAvg FedProx FedNova TiFL FreezOff

0.0

0.2

0.4

0.6

0.8

T
e
st

A
c
c
u

ra
c
y

(a) Accuracy MNIST
0.0

0.2

0.4

0.6

0.8

T
e
st

A
c
c
u

ra
c
y

(b) Accuracy FMNIST
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

T
e
st

A
c
c
u

ra
c
y

(c) Accuracy Cifar-10
0.0

0.2

0.4

0.6

0.8

T
im

e
(1

03
s)

(d) Time MNIST
0.00

0.25

0.50

0.75

1.00

1.25

1.50

T
im

e
(1

03
s)

(e) Time FMNIST
0

2

4

6

8

10

T
im

e
(1

03
s)

(f) Time Cifar-10

Figure 6. IID Data set. The time reported in subfigures 6(d), 6(e), 6(f) is the training time in seconds used to complete 100
communication rounds.

0.0

0.2

0.4

0.6

0.8

T
es

t
A

cc
ur

ac
y

FedAvg FedProx FedNova TiFL FreezOff

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

T
e
st

A
c
c
u

ra
c
y

(a) Accuracy MNIST
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

T
e
st

A
c
c
u

ra
c
y

(b) Accuracy FMNIST
0.0

0.1

0.2

0.3

0.4

0.5

0.6

T
e
st

A
c
c
u

ra
c
y

(c) Accuracy Cifar-10
0.0

0.2

0.4

0.6

0.8

T
im

e
(1

03
s)

(d) Time MNIST
0.00

0.25

0.50

0.75

1.00

1.25

1.50

T
im

e
(1

03
s)

(e) Time FMNIST
0

2

4

6

8

10

T
im

e
(1

03
s)

(f) Time Cifar-10

Figure 7. Non-IID Data set. The time reported in subfigures 7(d), 7(e), 7(f) is the training time in seconds used to complete 100
communication rounds.

5 Evaluation
In this section, we summarize the evaluation results of Aergia
on a testbed, where heterogeneous clients own diversified
data sets and learn the CNN classifier in a federated manner.
We compare the overall training time and accuracy against
four state of the art solutions on three datasets. We also con-
duct a sensitivity analysis to demonstrate the effectiveness
of Aergia under different degrees of non-IIDness.

5.1 Evaluation Setup
The central federator performs the default FL tasks (client se-
lection and model aggregation) and also computes the client
matching for the offloading of model training. During the
local training, the client sends the federator performance
metrics of the local training. With this information, the fed-
erator can spot stragglers that slow down the training pro-
cess. Using these performance metrics, the federator matches
stragglers with powerful clients in order to offload computa-
tional tasks. The matched clients communicate directly and
transfer the tasks to each other.

Baselines.We compare Aergia to four baselines:
FedAvg [22], FedNova [33], FedProx [21], and TiFL [6].
FedAvg, FedNova, and FedProx implicitly assume that client
nodes are homogeneous and that communication is syn-
chronous. FedProx minimizes the amount of drift a client
can obtain during local training to improve the convergence
when learning over non-IID data. FedNova normalizes the

client updates at the aggregation stage. TiFL handles strag-
glers on a global level by grouping the clients in tiers based
on their computation speed.

Testbed. The evaluations are performed on a testbed
aimed to run FL systems in a distributed environment. The
testbed is implemented in Python and built on top of Py-
Torch. Each node is fully isolated from each other and can
only communicate through messages. All communication
is asynchronous and peer to peer and based on RPC. This
means that nodes can message each other directly without
relying on the Federator as a relay (Most FL systems assume
a star network). In our evaluation we assume a fully con-
nected network. The testbed allows all nodes in the system
to run independent and isolated from each other. We use an
Aurora R13 desktop with a 5.20 GHz i9 CPU with 24 cores
and 64 GB RAM. We use up to one client per CPU core. We
implemented the dataset similarity computation that runs
in an Intel SGX enclave in C++ and used Graphene [31].

Datasets.Weevaluate Aergia using three datasets:MNIST,
FMNIST and Cifar-10. The MNIST and FMNIST datasets con-
tain 60,000 training images and 10,000 test images with a
dimension of 28x28 pixels. The Cifar-10 dataset has a total
of 60,000 images of 32x32 pixels split over 50,000 training
images and 10,000 test images.

Networks There are three networks used to evaluate the
datasets. For the MNIST dataset we use a three layer CNN
with two convolutional layers and a single fully connected

115

Middleware ’22, November 7–11, 2022, Quebec, QC, Canada Bart Cox, Lydia Y. Chen, and Jérémie Decouchant

layer. For FMNIST we use the same model as used to eval-
uate MNIST. Lastly, an eight layer CNN is used to evaluate
Cifar-10 consisting of six convolutional layers and two fully
connected layers.

Heterogeneous Resource Setup. In the real world, ma-
chines are rarely equal in computing power. Therefore, using
large discrete steps, such as 0.25, 0.5, 0.75 and 1.0 CPU, to
define resource heterogeneity between nodes is not realis-
tic. We use a total of 24 cores to evaluate all the algorithms
we consider. To reproduce a real-world scenario, the CPU
speed of each client is selected uniformly at random as a
fraction that ranges between 0.1 and 1.0 of the original CPU
speed. We use Docker containers to isolate the nodes on
different cores and control their CPU speed. This allows for
an realistic approximation of the aforementioned scenario.

Heterogeneous Data Distribution. The clients that par-
ticipate in the Federated Learning process may have non-
uniform data distributions. To evaluate performance under
non-IID heterogeneity, clients sample 3 classes out of the 10
available.Clients are then biased towards their local dataset
during training. Local client datasets are disjoint, i.e., they do
not share images. This approach is used for all three datasets
when evaluating the non-IID scenario.

5.2 Accuracy and training times
We divide our evaluation into two scenarios: IID and non-IID
on three datasets. We report the accuracy and training time
in Figures 6-7.
IID:When the local training data has a IID distribution,

the effects of the resource heterogeneity are negligible. In
figure 6(b)-a we compare the accuracy of FedAvg, FedNova,
FedProx, TiFL, and Aergia on the FMNIST dataset. The
accuracy after 100 rounds is comparable among the afore-
mentioned algorithms. In contrary to the accuracy values,
the results of the real-time duration show that there is a no-
ticeable difference between Aergia and the rest. On average,
Aergia is able to do the same amount of training as FedAvg
and TiFL in 27% and 45 % less time respectively.

Non-IID: The impact of non-IID data is intensified by
the system heterogeneity and leads to a significant longer
training times. This effect can be seen in Figure 7(f). Aergia
is able to reduce the training time per round and thereby
reduce the overall global training time by 27% compared to
FedAvg and 53% compared to TiFL. The same trend is visible
in Figures 7(d) and 7(e). The accuracy reached in non-IID
scenarios is comparable between the Aergia and the other
algorithms with the exception of FedNova. Figures 7(e) and
7(f) show that TiFL is unable to prevent the slowdown of
the FL system, in contrary to what is reported in [6]. We
think this is caused by the higher variation of CPU power
in this scenario. TiFL is in this scenario not able to reduce
the variance in CPU using their tier solution due to a higher
intra-tier CPU variance. Overall we observe that Aergia is
able to reduce the training time up to 53% while achieving

the comparable accuracy as the state of the art non-IID aware
aggregation algorithms.

To better understand the performance advantages of
Aergia, we zoom into the detailed performance of FMNIST,
i.e., the time distribution per training round. Figure 8 shows
the density of the rounds duration during the training pro-
cess for Aergia and the baselines we consider. Aergia’s
distribution is shifted to the left compared to all baselines,
which indicates its ability to minimize the duration of rounds
during training.

0 20 40 60 80 100 120

Round Duration (s)

0.000

0.002

0.004

0.006

0.008

D
en

si
ty

FedAvg

FedProx

FedNova

TiFL

FreezOff

Figure 8. Density of the duration of rounds.

5.3 Rounds duration and impact of the similarity
factor

Aergia uses the similarity factor 𝑓 in Line 24 in Algorithm
1 to control the impact of the inter-client data similarity.
A value of 0 means that the inter-client similarity has no
effect on the scheduling while 𝑓 > 0 increases the impact of
similarity in Algorithm 1. A higher value of 𝑓 restricts the
number of favourable strong offloading options. Figure 9(b)
shows that the average round time decreases when similarity
is not taken into account. A low values of 𝑓 has impact on
the global model accuracy as can be seen in Figure 9(a). A
positive value of 𝑓 increases the global model accuracy in
Aergia.

We evaluate learning FMNIST on 24 clients, 3 of which are
selected in each round. Figures 9(a) and 9(b) report the impact
of the similarity factor parameter on accuracy and on the
training time, respectively. With a similarity factor of 0, the
scheduling algorithm ignores the inter-client similarity and
uses performance indicators only. With a positive similarity
factor, the inter-client similarity has more impact on the
scheduling decisions. Increasing the similarity factor can
restrict the available offloading options and thereby increases
the average round time.

5.4 Impact of the Degree of Non-IIDness
The degree of data non-IIDness has an impact on the con-
vergence speed during training. We control the number of
classes a client can own as a measure to evaluate and create
non-IID data. The lower the number of sampled classes the

116

Aergia: Leveraging Heterogeneity in Federated Learning Systems Middleware ’22, November 7–11, 2022, Quebec, QC, Canada

1 0.75 0.5 0.25 0.0
Similarity factor

0.82

0.84

T
es

t
A

cc
ur

ac
y

(a) Impact of the client similarity factor (parameter f in Algo-
rithm 1) on accuracy when offloading.

1 0.75 0.5 0.25 0.0
Similarity factor

10

20

30

T
im

e
(s

)

(b) Impact of the client similarity factor (parameter f in Algo-
rithm 1) on the training time.

Figure 9. Impact of similarity factor on accuracy and training time.

higher the degree of non-IID in the clients local data. For
instance, non-IID(2) indicates each client only has 2 classes
of data points out of 10 available classes. In Figure 10 we
show the effect of the degree of non-IIDness on the Aergia’s
algorithm. All variations train for the same amount of rounds.
The difference in completion time is low but the difference
in accuracy is apparent. A high degree of non-IID data re-
sults in a decrease of model accuracy. This is comparable to
previously reported results [6].

Profiler The profiling time of the online profiler impacts
the error in the performance indicators used for scheduling.
A longer profiling time offers better performance indicators,
but a longer profiling time reduces the training speed and
increases the training time. The profiler has a negligible
overhead of 0.22% ± 0.09 on average for all models.

0 200 400 600 800 1000 1200

Time (s)

20

40

60

80

T
es

t
A

cc
ur

ac
y

IID

non-IID(10)

non-IID(5)

non-IID(2)

Figure 10. Test accuracy depending on the level of dataset
non-IIDness measured during the training process. The level
of non-IID limits the number of sampled classes in a clients’
local training data. The levels of non-IIDness follow the setup
used in [6].

6 Related Work
Devices may differ in computational and communication
capabilities due to hardware (CPU, memory) and network
connectivity. Challenges such as straggler mitigation, client
drift, and the effect of non-IID data are exacerbated by the
aforementioned system-level characteristics. FedProx [21]

Data
hetero-
geneity
aware

Resource
hetero-
geneity
aware

Minimize
training
time

FedAvg [22] - - ✗
FedProx [21] + - ✗
FedNova [33] + - ✗
TiFL [6] + + ✓

Aergia ++ ++ ✓

Table 1. FL solutions for heterogeneous settings.

limits how far the local model of the client is allowed to
drift from the global model. The objective function is altered
with a parameter 𝜇 to penalize drift from the global model.
Their theory shows that choosing 𝜇 > 0 should improve
convergence when learning over non-IID data, but practice
shows that this is not the case for non-IID label distributions.
The solution of Li et al. [21] does not account for stragglers.

FedNova [33] limits the effect of heterogeneous clients in
the system by altering the global aggregation rule. Clients
that perform more steps return a larger update and thus
more significantly impact the global model, even when the
datasets of all clients have the same size. Although Wang et
al. [33] mitigate the effect that heterogeneous nodes have on
the model accuracy, it is not able to remove the under repre-
sentation of stragglers in federated learning systems. Table 1
summarizes our analysis of the existing works that consider
heterogeneous client resources or datasets, and shows that
Aergia is the only algorithm that minimizes the actual train-
ing time, thanks to its model freezing and offloading mech-
anisms, and maintains high accuracy even in presence of
non-IID datasets, thanks to its similarity computation that is
executed in an SGX enclave.

6.1 Task Offloading
Dong et al. [10] use an edge server equipped with a Trusted
Execution Environment (TEE) to offload tasks of edge de-
vices. Because of the limited capabilities of the TEE, this

117

Middleware ’22, November 7–11, 2022, Quebec, QC, Canada Bart Cox, Lydia Y. Chen, and Jérémie Decouchant

method is only tested on the MNIST dataset on a very small
network. Besides that, the data is also randomly (but equally)
distributed over the clients. The main goal of this work is to
mitigate the straggler problem by utilizing themore powerful
edge servers for task offloading. EAFL [13] offloads federated
learning tasks from edge clients to nearby edge servers. To
lighten to computational burden of weak clients, EAFL par-
tially offloads data to an edge server, while Aergia offloads
models, which is more privacy preserving. FedAdapt [35]
leverages split learning to allow an IoT device to train its
model with the help of the central server by exchanging par-
tially trained models during each round. In comparison, we
leverage model freezing and allow clients to offload training
tasks to each other, which is more scalable, and consider the
data heterogeneity issue, without which accuracy would be
decreased.

6.2 Federated Learning with deadlines
One solution to mitigate stragglers is for the federated learn-
ing system to impose a deadline for the clients to submit
their locally trained models. While this reduces the overall
idle in the whole system, it often diminishes the contribution
of the straggler by dropping late submission. Li et al. [20]
use the imposed deadline to tune the local settings such as
CPU frequency on each client to meet the deadline with the
least amount of energy consumption. This approach lowers
the amount of dropped clients, however the effect of non-IID
data is not considered. Nishio and Yonetani [24] use resource
aware client selection (FedCS) to limit the amount of partici-
pating stragglers. They show that this solution works mainly
works in an IID data settings in large networks. When deal-
ing with non-IID data, models trained with FedCS incur a
significant drop in accuracy.

6.3 Stragglers
Different techniques can be used to minimize the impact
of stragglers. TiFL [6] groups clients in tiers based on their
performance characteristics. Each round a different tier is
chosen for client selection. This reduces the variance be-
tween training times within each round.
Sageflow [27] uses periodic aggregation rounds to limit

the decrease of training time per round caused by stragglers.
Late contributions send in by stragglers are incorporated
into the global model corrected with a staleness factor. The
downside of Sageflow is that the method uses public data
distributed across the clients.
Lee et al. [19] use adaptive deadlines to accelerate the

convergence to the global model. By calculating a deadline
per round based on the participating devices, the mean idle
time per device is minimized. This solution still can cause
stragglers to be dropped by the system, since the deadline is
calculated based on the fastest participating client plus the
tolerated waiting time. The authors note that their solution
has no guarantees when applied on non-IID data.

6.4 Parameter freezing
Parameter freezing is a well known technique in transfer
learning that is used to fine tune the model. An alternative
use for Parameter Freezing is to speed up the training pro-
cess. Chen et al. [7] limit the communication between the
federated and edge device by freezing parameters in the early
stage of the training process. However, challenges are that
the local parameters excluded from global synchronization
may diverge on different clients, and meanwhile some pa-
rameters may only temporally stabilize. Adaptive Parameter
Freezing (APF) proposes to fix (freeze) the non-synchronized
stable parameters in intermittent periods.
In order to reduce the communication cost, parameter

freezing can be used. Brock et al. [5] use parameter freezing
to speed up the computations by slowly freezing out the first
few layers. This avoids the cost of computing the gradients
and speeds up convergence. This approach is coarse and
degrades the accuracy of model in spite of a speedup in
training. Chen et al. [7] use parameter freezing to lower the
communication cost when sending the model of weights. By
freezing stale parameters the number model weights that are
shared with the server are reduced. While this significantly
reduces data transfers, it does not alleviate the computational
burden of stragglers.
Veit and Belongie [32] use partial execution of networks

to speed up the model execution during inference. By ex-
cluding some layers in the network from execution based
on the input image, the inference execution time is reduced
while retaining accuracy. Similarly, Wu et al. [36] use layer
dropping in residual networks to create dynamic execution
path to reduce the execution time during inference.

7 Conclusion
In practical settings, Federated Learning (FL) is largely im-
pacted by the heterogeneity of clients, as each training round
needs to wait for slow clients, which are also called strag-
glers. In this work, we have proposed Aergia a novel FL
algorithm that leverages model freezing and offloading. In
this protocol, slow clients freeze the first layers of their model
and offload it to a faster client that trains these layers using
its own dataset. Aergia uses a simple, yet fast and scalable,
scheduling algorithm to regularly organize the offloading
of models between clients. The central server uses its own
dataset to decide which clients have compatible datasets to
maintain high accuracy when organizing model freezes and
offloadings. Our experiments on three datasets demonstrate
that Aergia reduces the overall training time by up to 53%
and maintains high accuracy.

References
[1] Manoj Ghuhan Arivazhagan, Vinay Aggarwal, Aaditya Kumar Singh,

and Sunav Choudhary. 2019. Federated Learning with Personalization
Layers. CoRR abs/1912.00818 (2019). arXiv:1912.00818 http://arxiv.
org/abs/1912.00818

118

https://arxiv.org/abs/1912.00818
http://arxiv.org/abs/1912.00818
http://arxiv.org/abs/1912.00818

Aergia: Leveraging Heterogeneity in Federated Learning Systems Middleware ’22, November 7–11, 2022, Quebec, QC, Canada

[2] Dmitrii Avdiukhin and Shiva Kasiviswanathan. 2021. Federated Learn-
ing under Arbitrary Communication Patterns. In Proceedings of the 38th
International Conference on Machine Learning, ICML 2021, 18-24 July
2021, Virtual Event (July 18 - 24, 2021) (Proceedings of Machine Learn-
ing Research), Marina Meila and Tong Zhang (Eds.), Vol. 139. PMLR,
425–435. https://proceedings.mlr.press/v139/avdiukhin21a.html

[3] Kallista A. Bonawitz, Hubert Eichner, Wolfgang Grieskamp, Dzmitry
Huba, Alex Ingerman, Vladimir Ivanov, Chloé Kiddon, Jakub Konečný,
Stefano Mazzocchi, Brendan McMahan, Timon Van Overveldt, David
Petrou, Daniel Ramage, and Jason Roselander. 2019. Towards Federated
Learning at Scale: System Design. In Proceedings of Machine Learning
and Systems 2019, MLSys 2019, Stanford, California, USA, March 31 -
April 2, 2019, Ameet Talwalkar, Virginia Smith, and Matei Zaharia
(Eds.). mlsys.org, 374–388. https://proceedings.mlsys.org/book/271.
pdf

[4] Kallista A. Bonawitz, Vladimir Ivanov, Ben Kreuter, Antonio Marce-
done, H. Brendan McMahan, Sarvar Patel, Daniel Ramage, Aaron
Segal, and Karn Seth. 2017. Practical Secure Aggregation for Privacy-
Preserving Machine Learning. In Proceedings of the 2017 ACM SIGSAC
Conference on Computer and Communications Security, CCS 2017, Dallas,
Texas, USA, October 30 - November 03, 2017, Bhavani Thuraisingham,
David Evans, Tal Malkin, and Dongyan Xu (Eds.). ACM, 1175–1191.
https://doi.org/10.1145/3133956.3133982

[5] Andrew Brock, Theodore Lim, James M. Ritchie, and Nick Weston.
2017. FreezeOut: Accelerate Training by Progressively Freezing Layers.
CoRR abs/1706.04983 (2017). arXiv:1706.04983 http://arxiv.org/abs/
1706.04983

[6] Zheng Chai, Ahsan Ali, Syed Zawad, Stacey Truex, Ali Anwar, Nathalie
Baracaldo, Yi Zhou, Heiko Ludwig, Feng Yan, and Yue Cheng. 2020.
TiFL: A Tier-based Federated Learning System. In HPDC ’20: The 29th
International Symposium on High-Performance Parallel and Distributed
Computing, Stockholm, Sweden, June 23-26, 2020, Manish Parashar,
Vladimir Vlassov, David E. Irwin, and Kathryn Mohror (Eds.). ACM,
125–136. https://doi.org/10.1145/3369583.3392686

[7] Chen Chen, Hong Xu, Wei Wang, Baochun Li, Bo Li, Li Chen, and
Gong Zhang. 2021. Communication-Efficient Federated Learning with
Adaptive Parameter Freezing. In 41st IEEE International Conference on
Distributed Computing Systems, ICDCS 2021, Washington DC, USA, July
7-10, 2021. IEEE, 1–11. https://doi.org/10.1109/ICDCS51616.2021.00010

[8] Victor Costan and Srinivas Devadas. 2016. Intel SGX Explained. IACR
Cryptol. ePrint Arch. (2016), 86. http://eprint.iacr.org/2016/086

[9] Bart Cox, Jeroen Galjaard, Amirmasoud Ghiassi, Robert Birke, and
Lydia Y. Chen. 2021. Masa: Responsive Multi-DNN Inference on the
Edge. In 19th IEEE International Conference on Pervasive Computing
and Communications, PerCom 2021, Kassel, Germany, March 22-26, 2021.
IEEE, 1–10. https://doi.org/10.1109/PERCOM50583.2021.9439111

[10] Shifu Dong, Deze Zeng, Lin Gu, and Song Guo. 2020. Offloading
Federated Learning Task to Edge Computing with Trust Execution
Environment. In 17th IEEE International Conference on Mobile Ad Hoc
and Sensor Systems, MASS 2020, Delhi, India, December 10-13, 2020.
IEEE, 491–496. https://doi.org/10.1109/MASS50613.2020.00066

[11] Ronald L. Graham. 1969. Bounds on Multiprocessing Timing Anom-
alies. SIAM Journal of Applied Mathematics 17, 2 (1969), 416–429.
https://doi.org/10.1137/0117039

[12] Kevin Hsieh, Amar Phanishayee, Onur Mutlu, and Phillip B. Gibbons.
2020. The Non-IID Data Quagmire of Decentralized Machine Learning.
In Proceedings of the 37th International Conference on Machine Learning,
ICML 2020, 13-18 July 2020, Virtual Event (Proceedings of Machine
Learning Research), Vol. 119. PMLR, 4387–4398. http://proceedings.
mlr.press/v119/hsieh20a.html

[13] Zhongming Ji, Li Chen, Nan Zhao, Yunfei Chen, Guo Wei, and
F. Richard Yu. 2021. Computation Offloading for Edge-Assisted Fed-
erated Learning. IEEE Trans. Veh. Technol. 70, 9 (2021), 9330–9344.
https://doi.org/10.1109/TVT.2021.3098022

[14] Peter Kairouz, H. Brendan McMahan, Brendan Avent, Aurélien Bellet,
Mehdi Bennis, Arjun Nitin Bhagoji, Kallista A. Bonawitz, Zachary
Charles, Graham Cormode, Rachel Cummings, Rafael G. L. D’Oliveira,
Hubert Eichner, Salim El Rouayheb, David Evans, Josh Gardner,
Zachary Garrett, Adrià Gascón, Badih Ghazi, Phillip B. Gibbons, Marco
Gruteser, Zaïd Harchaoui, Chaoyang He, Lie He, Zhouyuan Huo, Ben
Hutchinson, Justin Hsu, Martin Jaggi, Tara Javidi, Gauri Joshi, Mikhail
Khodak, Jakub Konečný, Aleksandra Korolova, Farinaz Koushanfar,
Sanmi Koyejo, Tancrède Lepoint, Yang Liu, Prateek Mittal, Mehryar
Mohri, Richard Nock, Ayfer Özgür, Rasmus Pagh, Hang Qi, Daniel
Ramage, Ramesh Raskar, Mariana Raykova, Dawn Song, Weikang
Song, Sebastian U. Stich, Ziteng Sun, Ananda Theertha Suresh, Florian
Tramèr, Praneeth Vepakomma, Jianyu Wang, Li Xiong, Zheng Xu,
Qiang Yang, Felix X. Yu, Han Yu, and Sen Zhao. 2021. Advances and
Open Problems in Federated Learning. Found. Trends Mach. Learn. 14,
1-2 (2021), 1–210. https://doi.org/10.1561/2200000083

[15] Sai Praneeth Karimireddy, Satyen Kale, Mehryar Mohri, Sashank J.
Reddi, Sebastian U. Stich, and Ananda Theertha Suresh. 2020. SCAF-
FOLD: Stochastic Controlled Averaging for Federated Learning. In
Proceedings of the 37th International Conference on Machine Learn-
ing, ICML 2020, 13-18 July 2020, Virtual Event (Proceedings of Machine
Learning Research), Vol. 119. PMLR, 5132–5143. http://proceedings.
mlr.press/v119/karimireddy20a.html

[16] Alex Krizhevsky and Geoffrey Hinton. 2009. Learning multiple layers
of features from tiny images. Technical Report 0. University of Toronto,
Toronto, Ontario.

[17] Eugene L. Lawler, Jan Karel Lenstra, Alexander H. G. Rinnooy Kan,
and David B. Shmoys. 1993. Chapter 9 Sequencing and scheduling:
Algorithms and complexity. In Logistics of Production and Inventory,
Stephen C. Graves, Alexander H. G. Rinnooy Kan, and Paul Herbert
Zipkin (Eds.). Handbooks in Operations Research and Management
Science, Vol. 4. North-Holland, 445–522. https://doi.org/10.1016/s0927-
0507(05)80189-6

[18] Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. 1998.
Gradient-based learning applied to document recognition. Proc. IEEE
86, 11 (1998), 2278–2324. https://doi.org/10.1109/5.726791

[19] Jaewook Lee, Haneul Ko, and Sangheon Pack. 2022. Adaptive Deadline
Determination for Mobile Device Selection in Federated Learning.
IEEE Trans. Veh. Technol. 71, 3 (2022), 3367–3371. https://doi.org/10.
1109/TVT.2021.3136308

[20] Li Li, Haoyi Xiong, Zhishan Guo, Jun Wang, and Cheng-Zhong Xu.
2019. SmartPC: Hierarchical Pace Control in Real-Time Federated
Learning System. In IEEE Real-Time Systems Symposium, RTSS 2019,
Hong Kong, SAR, China, December 3-6, 2019. IEEE, 406–418. https:
//doi.org/10.1109/RTSS46320.2019.00043

[21] Tian Li, Anit Kumar Sahu, Manzil Zaheer, Maziar Sanjabi, Ameet Tal-
walkar, and Virginia Smith. 2020. Federated Optimization in Heteroge-
neous Networks. In Proceedings of Machine Learning and Systems 2020,
MLSys 2020, Austin, Texas, USA, March 2-4, 2020, Inderjit S. Dhillon,
Dimitris S. Papailiopoulos, and Vivienne Sze (Eds.). mlsys.org, 429–450.
https://proceedings.mlsys.org/book/316.pdf

[22] Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and
Blaise Agüera y Arcas. 2017. Communication-Efficient Learning of
Deep Networks from Decentralized Data. In Proceedings of the 20th
International Conference on Artificial Intelligence and Statistics, AIS-
TATS 2017, 20-22 April 2017, Fort Lauderdale, Florida, USA (Proceedings
of Machine Learning Research), Aarti Singh and Xiaojin (Jerry) Zhu
(Eds.), Vol. 54. PMLR, 1273–1282. http://proceedings.mlr.press/v54/
mcmahan17a.html

[23] H. BrendanMcMahan, Eider Moore, Daniel Ramage, and Blaise Agüera
y Arcas. 2016. Federated Learning of Deep Networks using Model
Averaging. CoRR abs/1602.05629 (2016). arXiv:1602.05629 http://arxiv.
org/abs/1602.05629

119

https://proceedings.mlr.press/v139/avdiukhin21a.html
https://proceedings.mlsys.org/book/271.pdf
https://proceedings.mlsys.org/book/271.pdf
https://doi.org/10.1145/3133956.3133982
https://arxiv.org/abs/1706.04983
http://arxiv.org/abs/1706.04983
http://arxiv.org/abs/1706.04983
https://doi.org/10.1145/3369583.3392686
https://doi.org/10.1109/ICDCS51616.2021.00010
http://eprint.iacr.org/2016/086
https://doi.org/10.1109/PERCOM50583.2021.9439111
https://doi.org/10.1109/MASS50613.2020.00066
https://doi.org/10.1137/0117039
http://proceedings.mlr.press/v119/hsieh20a.html
http://proceedings.mlr.press/v119/hsieh20a.html
https://doi.org/10.1109/TVT.2021.3098022
https://doi.org/10.1561/2200000083
http://proceedings.mlr.press/v119/karimireddy20a.html
http://proceedings.mlr.press/v119/karimireddy20a.html
https://doi.org/10.1016/s0927-0507(05)80189-6
https://doi.org/10.1016/s0927-0507(05)80189-6
https://doi.org/10.1109/5.726791
https://doi.org/10.1109/TVT.2021.3136308
https://doi.org/10.1109/TVT.2021.3136308
https://doi.org/10.1109/RTSS46320.2019.00043
https://doi.org/10.1109/RTSS46320.2019.00043
https://proceedings.mlsys.org/book/316.pdf
http://proceedings.mlr.press/v54/mcmahan17a.html
http://proceedings.mlr.press/v54/mcmahan17a.html
https://arxiv.org/abs/1602.05629
http://arxiv.org/abs/1602.05629
http://arxiv.org/abs/1602.05629

Middleware ’22, November 7–11, 2022, Quebec, QC, Canada Bart Cox, Lydia Y. Chen, and Jérémie Decouchant

[24] Takayuki Nishio and Ryo Yonetani. 2019. Client Selection for Feder-
ated Learning with Heterogeneous Resources in Mobile Edge. In 2019
IEEE International Conference on Communications, ICC 2019, Shanghai,
China, May 20-24, 2019. IEEE, 1–7. https://doi.org/10.1109/ICC.2019.
8761315

[25] Maxime Oquab, Léon Bottou, Ivan Laptev, and Josef Sivic. 2014.
Learning and Transferring Mid-level Image Representations Using
Convolutional Neural Networks. In 2014 IEEE Conference on Com-
puter Vision and Pattern Recognition, CVPR 2014, Columbus, Ohio,
USA, June 23-28, 2014. IEEE Computer Society, 1717–1724. https:
//doi.org/10.1109/CVPR.2014.222

[26] Róbert Ormándi, István Hegedüs, and Márk Jelasity. 2013. Gossip
learning with linear models on fully distributed data. Concurr. Comput.
Pract. Exp. 25, 4 (2013), 556–571. https://doi.org/10.1002/cpe.2858

[27] Jungwuk Park, Dong-Jun Han, Minseok Choi, and Jaekyun Moon.
2021. Sageflow: Robust Federated Learning against Both Stragglers
and Adversaries. In Advances in Neural Information Processing Systems
34: Annual Conference on Neural Information Processing Systems 2021,
NeurIPS 2021, December 6-14, 2021, virtual, Marc’Aurelio Ranzato, Alina
Beygelzimer, Yann N. Dauphin, Percy Liang, and Jennifer Wortman
Vaughan (Eds.). 840–851. https://proceedings.neurips.cc/paper/2021/
hash/076a8133735eb5d7552dc195b125a454-Abstract.html

[28] Yossi Rubner, Carlo Tomasi, and Leonidas J. Guibas. 1998. A Metric
for Distributions with Applications to Image Databases. In Proceedings
of the Sixth International Conference on Computer Vision (ICCV-98),
Bombay, India, January 4-7, 1998. IEEE Computer Society, 59–66. https:
//doi.org/10.1109/ICCV.1998.710701

[29] Shizhao Sun, Wei Chen, Liwei Wang, Xiaoguang Liu, and Tie-Yan Liu.
2016. On the Depth of Deep Neural Networks: A Theoretical View. In
Proceedings of the Thirtieth AAAI Conference on Artificial Intelligence,
February 12-17, 2016, Phoenix, Arizona, USA, Dale Schuurmans and
Michael P. Wellman (Eds.). AAAI Press, 2066–2072. http://www.aaai.
org/ocs/index.php/AAAI/AAAI16/paper/view/12073

[30] Yichuan Tang. 2013. Deep Learning using Support Vector Machines.
CoRR abs/1306.0239 (2013). arXiv:1306.0239 http://arxiv.org/abs/1306.
0239

[31] Chia-che Tsai, Donald E. Porter, and Mona Vij. 2017. Graphene-SGX:
A Practical Library OS for Unmodified Applications on SGX. In 2017
USENIX Annual Technical Conference, USENIX ATC 2017, Santa Clara,
California, USA, July 12-14, 2017, Dilma Da Silva and Bryan Ford (Eds.).
USENIX Association, 645–658. https://www.usenix.org/conference/
atc17/technical-sessions/presentation/tsai

[32] Andreas Veit and Serge J. Belongie. 2018. Convolutional Networks
with Adaptive Inference Graphs. In Computer Vision - ECCV 2018 -
15th European Conference, Munich, Germany, September 8-14, 2018,
Proceedings, Part I (Lecture Notes in Computer Science), Vittorio Ferrari,
Martial Hebert, Cristian Sminchisescu, and YairWeiss (Eds.), Vol. 11205.
Springer, 3–18. https://doi.org/10.1007/978-3-030-01246-5_1

[33] Jianyu Wang, Qinghua Liu, Hao Liang, Gauri Joshi, and H. Vincent
Poor. 2020. Tackling the Objective Inconsistency Problem in Hetero-
geneous Federated Optimization. In Advances in Neural Information
Processing Systems 33: Annual Conference on Neural Information Pro-
cessing Systems 2020, NeurIPS 2020, December 6-12, 2020, virtual, Hugo
Larochelle, Marc’Aurelio Ranzato, Raia Hadsell, Maria-Florina Balcan,
and Hsuan-Tien Lin (Eds.). 7611–7623. https://proceedings.neurips.cc/
paper/2020/hash/564127c03caab942e503ee6f810f54fd-Abstract.html

[34] Carole-Jean Wu, David Brooks, Kevin Chen, Douglas Chen, Sy Choud-
hury, Marat Dukhan, Kim M. Hazelwood, Eldad Isaac, Yangqing
Jia, Bill Jia, Tommer Leyvand, Hao Lu, Yang Lu, Lin Qiao, Bran-
don Reagen, Joe Spisak, Fei Sun, Andrew Tulloch, Peter Vajda, Xi-
aodong Wang, Yanghan Wang, Bram Wasti, Yiming Wu, Ran Xian,
Sungjoo Yoo, and Peizhao Zhang. 2019. Machine Learning at Face-
book: Understanding Inference at the Edge. In 25th IEEE Interna-
tional Symposium on High Performance Computer Architecture, HPCA

2019, Washington, DC, USA, February 16-20, 2019. IEEE, 331–344.
https://doi.org/10.1109/HPCA.2019.00048

[35] Di Wu, Rehmat Ullah, Paul Harvey, Peter Kilpatrick, Ivor T. A. Spence,
and Blesson Varghese. 2021. FedAdapt: Adaptive Offloading for
IoT Devices in Federated Learning. CoRR abs/2107.04271 (2021).
arXiv:2107.04271 https://arxiv.org/abs/2107.04271

[36] Zuxuan Wu, Tushar Nagarajan, Abhishek Kumar, Steven Rennie,
Larry S. Davis, Kristen Grauman, and Rogério Schmidt Feris. 2018.
BlockDrop: Dynamic Inference Paths in Residual Networks. In 2018
IEEE Conference on Computer Vision and Pattern Recognition, CVPR
2018, Salt Lake City, Utah, USA, June 18-22, 2018. Computer Vision
Foundation / IEEE Computer Society, 8817–8826. https://doi.org/10.
1109/CVPR.2018.00919

[37] Xueli Xiao, Thosini Bamunu Mudiyanselage, Chunyan Ji, Jie Hu, and
Yi Pan. 2019. Fast Deep Learning Training through Intelligently
Freezing Layers. In 2019 International Conference on Internet of Things
(iThings) and IEEE Green Computing and Communications (GreenCom)
and IEEE Cyber, Physical and Social Computing (CPSCom) and IEEE
Smart Data (SmartData), iThings/GreenCom/CPSCom/SmartData 2019,
Atlanta, Georgia, USA, July 14-17, 2019. IEEE, 1225–1232. https://doi.
org/10.1109/iThings/GreenCom/CPSCom/SmartData.2019.00205

[38] Jie Zhang, Song Guo, Xiaosong Ma, Haozhao Wang, Wenchao
Xu, and Feijie Wu. 2021. Parameterized Knowledge Transfer
for Personalized Federated Learning. In Advances in Neural In-
formation Processing Systems 34: Annual Conference on Neural In-
formation Processing Systems 2021, NeurIPS 2021, December 6-14,
2021, virtual, Marc’Aurelio Ranzato, Alina Beygelzimer, Yann N.
Dauphin, Percy Liang, and Jennifer Wortman Vaughan (Eds.).
10092–10104. https://proceedings.neurips.cc/paper/2021/hash/
5383c7318a3158b9bc261d0b6996f7c2-Abstract.html

[39] Zhilu Zhang and Mert R. Sabuncu. 2018. Generalized Cross Entropy
Loss for Training Deep Neural Networks with Noisy Labels. In Ad-
vances in Neural Information Processing Systems 31: Annual Conference
on Neural Information Processing Systems 2018, NeurIPS 2018, December
3-8, 2018, Montréal, Canada, Samy Bengio, Hanna M. Wallach, Hugo
Larochelle, Kristen Grauman, Nicolò Cesa-Bianchi, and Roman Gar-
nett (Eds.). 8792–8802. https://proceedings.neurips.cc/paper/2018/
hash/f2925f97bc13ad2852a7a551802feea0-Abstract.html

[40] Yue Zhao, Meng Li, Liangzhen Lai, Naveen Suda, Damon Civin, and
Vikas Chandra. 2018. Federated Learning with Non-IID Data. CoRR
abs/1806.00582 (2018). arXiv:1806.00582 http://arxiv.org/abs/1806.
00582

120

https://doi.org/10.1109/ICC.2019.8761315
https://doi.org/10.1109/ICC.2019.8761315
https://doi.org/10.1109/CVPR.2014.222
https://doi.org/10.1109/CVPR.2014.222
https://doi.org/10.1002/cpe.2858
https://proceedings.neurips.cc/paper/2021/hash/076a8133735eb5d7552dc195b125a454-Abstract.html
https://proceedings.neurips.cc/paper/2021/hash/076a8133735eb5d7552dc195b125a454-Abstract.html
https://doi.org/10.1109/ICCV.1998.710701
https://doi.org/10.1109/ICCV.1998.710701
http://www.aaai.org/ocs/index.php/AAAI/AAAI16/paper/view/12073
http://www.aaai.org/ocs/index.php/AAAI/AAAI16/paper/view/12073
https://arxiv.org/abs/1306.0239
http://arxiv.org/abs/1306.0239
http://arxiv.org/abs/1306.0239
https://www.usenix.org/conference/atc17/technical-sessions/presentation/tsai
https://www.usenix.org/conference/atc17/technical-sessions/presentation/tsai
https://doi.org/10.1007/978-3-030-01246-5_1
https://proceedings.neurips.cc/paper/2020/hash/564127c03caab942e503ee6f810f54fd-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/564127c03caab942e503ee6f810f54fd-Abstract.html
https://doi.org/10.1109/HPCA.2019.00048
https://arxiv.org/abs/2107.04271
https://arxiv.org/abs/2107.04271
https://doi.org/10.1109/CVPR.2018.00919
https://doi.org/10.1109/CVPR.2018.00919
https://doi.org/10.1109/iThings/GreenCom/CPSCom/SmartData.2019.00205
https://doi.org/10.1109/iThings/GreenCom/CPSCom/SmartData.2019.00205
https://proceedings.neurips.cc/paper/2021/hash/5383c7318a3158b9bc261d0b6996f7c2-Abstract.html
https://proceedings.neurips.cc/paper/2021/hash/5383c7318a3158b9bc261d0b6996f7c2-Abstract.html
https://proceedings.neurips.cc/paper/2018/hash/f2925f97bc13ad2852a7a551802feea0-Abstract.html
https://proceedings.neurips.cc/paper/2018/hash/f2925f97bc13ad2852a7a551802feea0-Abstract.html
https://arxiv.org/abs/1806.00582
http://arxiv.org/abs/1806.00582
http://arxiv.org/abs/1806.00582

	Abstract
	1 Introduction
	2 Background and Motivation
	2.1 Premier on Convolutional Neural Networks
	2.2 Federated Learning
	2.3 Sources of heterogeneity
	2.4 Motivation: Impact of heterogeneity on training time and accuracy

	3 Overview of Aergia
	3.1 System Model
	3.2 Leveraging the Heterogeneity of the Learning Phases
	3.3 Round training with Model Freezing and Offloading

	4 System Details of Aergia
	4.1 Model Freezing and Offloading
	4.2 Online Profiling
	4.3 Centralized Scheduling
	4.4 Refining Schedules with Data Heterogeneity

	5 Evaluation
	5.1 Evaluation Setup
	5.2 Accuracy and training times
	5.3 Rounds duration and impact of the similarity factor
	5.4 Impact of the Degree of Non-IIDness

	6 Related Work
	6.1 Task Offloading
	6.2 Federated Learning with deadlines
	6.3 Stragglers
	6.4 Parameter freezing

	7 Conclusion
	References

