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Abstract

Smartphones, or more general handhelds, which are commonly used for in-
door localization purposes, are not a viable option in places where people
do not carry them all the time, e.g., home and office. Alternatively using
wearable devices brings along limitations in regards to power supply, pro-
cessing capability and availability of sensors, which prevents the adoption of
many common handheld localization solutions. In this work a distributed
localization system is presented, using wearable and handheld jointly, to ad-
dress these drawbacks. Using only a magnetometer, an accelerometer, and
Bluetooth radio, localization is performed by means of a particle filter. In
addition, a smart handoff mechanism is presented, which uses the wearable
only when it is necessary, thus reduces energy consumption on the wearable
without affecting the desired location accuracy. Evaluating the system with
ten participants, a localization accuracy of 90.31 % in an indoor environment
spanning about 320 m2 was achieved.



iv



Preface

The motivation for the research topic arose from the need of a pervasive
localization system when offering contextual location-based services in non-
public indoor environments. This report should show the necessity for wear-
able localization and provide an infrastructure approach for future intelligent
service provisioning.

Luis Henrik John is a MSc student in Embedded Systems at Delft University
of Technology.

Delft, The Netherlands
17th October 2016
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Chapter 1

Introduction

As people spend approximately 90 % of their time in indoor environments [1],
personal indoor localization has been considered an important constituent
of pervasive computing applications [2]. Lymberopoulos et al. [3] broadly
categorize indoor localization techniques into two classes – (i) infrastructure-
based, and (ii) infrastructure-free. Since the former often involves expens-
ive deployments in regards to time and money, it renders less suitable
for most such applications. Thus, in the notion of pervasive computing,
infrastructure-independence is usually favorable.

Existing indoor localization systems generally localize an embedded sys-
tem, which in turn localizes the user. A pervasive interface device commonly
utilized for this purpose is the handheld [4, 5, 6], as it offers a variety of
sensors and large processing capability. Such solutions make the user invari-
ably device dependent, which is appropriate for most public indoor spaces
such as shopping malls or airports. However, they are less applicable for
home and office environments, where users may not carry such a device all
the time; handhelds are left behind on desks, tables, or sofas, and remain
static for long durations. Users within such non-public indoor spaces should
represent the target audience of this work.

Recently, wearable devices – holding energy efficient sensing and com-
puting modules – have become increasingly available [7]. They range from
smartwatches, over fitness trackers, body-worn cameras, to head-mounted
displays and smart garment. Even though the processing capabilities of
these devices are often lower compared to handhelds, they are able to track
and measure various human activities continuously, as they are envisioned
to be worn on the body all the time. This provides the opportunity to utilize
wearable devices for ubiquitous indoor localization.
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1.1 Use cases

Location-based service provisioning in non-public indoor spaces, such as
home and office, is diverse. Various monitoring, control, and contextual ser-
vices can be optimized by accurate localization techniques. For example,
Sarkar et al. [8] proposed a room-level indoor lighting and heating control
system that relies on locations of the occupants to provide a comfortable
living and working environment. Apart from this, elderly care systems can
utilize location information of a person to track activities remotely and cross
reference them with the location to acquire better accuracy [9]. Applications
for fall detection could enable healthcare personal to track the location of
a user more precisely and prepare appropriate support [10]. Intelligent sys-
tems, such as personal assistant responsible for time and task management
could be enriched by location information to provide more dynamic range
of features for the user, such as rescheduling meetings when a person has
not left the bedroom and is expected to have overslept [11]. All such ap-
plications along with any future use-cases will benefit from wearable-based
localization systems.

1.2 Challenges

To achieve a small form factor, most wearables have limited battery size,
lower processing power, and a smaller number of sensors as compared to their
handheld counterparts. Of all the wearables, currently, only smartwatches
can offer comparable processing capabilities and sensors as handhelds. How-
ever, out of 274 M wearable devices that are projected to be sold worldwide
in 2016, only about 18 % are smartwatches [7]. On an average, smartphones
sold in 2016 have a battery capacity of 2516 mAh, ranging from 650 mAh
up to 5000 mAh [12]. Tablets, due to larger size, can even provide larger
capacities. On the other hand, smartwatches are ranging from 200 mAh to
400 mAh [13], which is the reason for more efficient, and hence, less capable
processing units. Thus, handheld-based indoor localization solutions cannot
be easily adapted for most of the affordable and less complex wearables. For
these reasons, a distributed localization system using wearable and hand-
held is envisioned. The wearable guarantees completeness of sampled sensor
data, while the handheld, even if not collocated with the user anymore,
can be responsible for demanding processing tasks. To do so a number of
challenges need to be tackled.

� The radio communication between handheld and wearable, and sensor
sampling frequencies need to be limited. As continuous sampling of
not required sensors is inefficient from an energy point of view, it has
to start and stop in an optimized way.

2



� Integrating only a limited number of sensors in commercial wear-
ables is a consequence of a smaller form factor and battery capa-
city. The lack of sensors or radio interfaces can limit the use of tradi-
tional infrastructure-free and infrastructure-based localization meth-
ods [6, 14, 15, 16].

� Devices and their components are developed by various manufacturers.
The feasibility of a wearable needs to be confirmed by a prototype
using common electronic components.

1.3 Contributions

A localization system jointly using wearable and handheld for non-public
indoor spaces is proposed. The assumptions are that the wearable is of low
complexity, holding only an integrated accelerometer and magnetometer,
and can be connected with the handheld using a Bluetooth radio. Con-
sidering a lack of infrastructure in the indoor environment, the wearable
will be localized relative to the handheld’s absolute location, which is as-
sumed to be acquired by one of the common handheld-based localization
techniques [17, 4, 5, 6].

Wearable functions include step detection, heading estimation and de-
duction of distance between the two devices. When localization switches
between handheld and wearable a dynamic handoff takes place to avoid
sampling sensors of both devices continuously. The challenges are approached
by employing a particle filter computed on the handheld, merging informa-
tion received from the wearable on a floor plan. Computing approximations
to posterior distributions causes particle convergence due to map constraints,
which again indicates location of the wearable by eliminating location am-
biguity. The specific contributions of this work are as follows.

� A practical localization solution for location-based pervasive services
is presented. The joint localization system uses a pair of wearable and
handheld.

� To overcome the processing limitations of a wearable, computational
tasks are delegated to a handheld without incurring significant energy
consumption.

� A dynamic handoff mechanism ensures that not required sensors on
both devices are switched off whenever possible.

� This non-intrusive, infrastructure-free, and pervasive localization sys-
tem provides room-level accuracy. Based on an evaluation with ten
participants, on an area of about 320 m2 comprising of 10 rooms, an
accuracy of 90.31 % is achieved.
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Figure 1.1: Common commercially available handheld smartphone and
wearable fitness wristband.

1.4 System summary

The generic terms handheld and wearable will be used throughout this re-
port to describe the involved embedded devices for the localization system
(Fig. 1.1). A handheld is an interface device, commonly held in the hand
when operated and otherwise resting in pockets or bags close to the body,
unless left behind on furnitures. Examples for handheld devices are smart-
phones, but also tablets and e-book readers. On the contrary, a wearable is
worn on the body, mostly with direct skin contact and thus can be assumed
to be with the user throughout the day, that can even include activities such
as sleeping or taking a shower. Wearables are available as smartwatches,
head-mounted displays, body-worn cameras, bluetooth headset, wristbands,
smart garments, chest straps and other fitness monitors.

Fig 1.2 gives a scenario for the proposed system operation. A floor plan
is presented of an indoor environment. Considering the following scenario,
the benefits of wearable localization become apparent. A user arrives via
the staircase (room 1) at her home. She is carrying her handheld device,
which she drops off in the living room (room 2). Shortly after, she proceeds
to the kitchen (room 8) to prepare dinner, and after that, transfers to the
dining room (room 3). In this time, handheld localization is interrupted
and wearable localization needs to be active, to allow for accurate tracking
of the person. A possible application could be the heating system, which
safes energy by deactivating heating elements in rooms, where the user is
not present in.

As the user returns back to the living room, both devices reside in the
same room. In this case, there is no need to perform localization processes
on either device until the user walks out of the living room or the handheld
is picked up again, considering room-level accuracy.

1.5 Report structure

The thesis report is structured as follows. Chapter 2 surveys available in-
door localization techniques and solutions to position and justify this work.
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1. Staircase
2. Living room

3. Dining room

4. Study

5. Bedroom

6. Bathroom
7. Storage

8. Kitchen

9. Corridor 1

0. Corridor 2

H W

W

W 678

9
01

Figure 1.2: High-level overview of proposed system operation. The letter H
indicates handheld location after being put down, while the letter W shows
some of the wearable locations throughout the transfer.

Chapter 3 presents the general system overview and introduces the hardware
configuration used for evaluation. Chapter 4 discusses design choices and
limitations of the proposed method. In chapter 5 the system is evaluated
by means of real-world experiments. Chapter 6 discusses the findings and
limitations to assess feasibility of the proposed system. Chapter 7 concludes
this work.
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Chapter 2

Related Work

The Global Positioning system (GPS) accurately localizes users in the out-
door environment by means of satellite trilateration [18]. An indoor localiz-
ation system as prevalent did not emerge yet from the numerous solutions
suggested in literature. In the specific case of jointly using wearable and
handheld, the latter can be considered part of a pervasive infrastructure,
since its absolute location is known. For this reason, recent infrastructure-
based solutions were surveyed in addition to infrastructure-free ones.

2.1 Indoor localization techniques

Common infrastructure-based techniques rely on on a number of different
approaches including fingerprinting, geometric methods and proximity sens-
ing. In advance, there is to say that terminology often differs. Infrastruc-
ture is referred to by different sources as access points, calibration points,
beacons, receivers, and thus changes according to application and use. The
term access point (AP) will be used to describe a single node of a loc-
alization infrastructure. Similarly, the line between infrastructure-based
and infrastructure-free techniques has blurred by WiFi infrastructure being

t0

t1

t2

t3

(a) (b) (c) (d)

Figure 2.1: Common indoor localization techniques: (a) fingerprinting;
(b) trilateration; (c) proximity sensing; and (d) pedestrian dead-reckoning.
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partly considered as infrastructure-free due to its omnipresence. As there is
no WiFi module present on the hardware configuration, the discussion can
be avoided.

The fingerprinting technique is visualized in Fig. 2.1a and consists of two
phases. In an offline phase a radio map of fingerprints is generated, associ-
ating ambient radio signals with physical locations. During an online phase,
a device that observes the ambiance is able to collect a real-time fingerprint
and compare it to the radio map entries using a pattern matching algorithm
in order to estimate its location [19].

In the work of Calderoni et al. [20], such a base system is able to localise
patients in a hospital environment. Patients are equipped with RFID trans-
mitters; corresponding receiver access points store tag identifiers and RSS
values. By using Random Forest classifiers, patient localization was per-
formed correctly in 98 % of the cases with accuracy sufficient to distinguish
between rooms. The area covered spans 4000 m2 subdivided into 48 room
and required a total of 9 access points. Clear advantage of the approach is
the use of affordable RFID technology, which allows cost efficient scalability.
However, the infrastructure required is generally not feasible for the target
environment of a home or small office.

A specific approach to reduce the number of access points is proposed by
Redvzic et al. [21] in the form of SEAMLOC. The Seamless Indoor Localiz-
ation Based on Reduced Number of access points (APs) uses WLAN signals
and requires up to 4 times fewer APs as compared to other approaches. A
users location is interpolated in between APs based on probabilistic Bayesian
functions by solving a system of two non-linear equations. The Naive Bayes
method takes into account RSS and frequency of appearance of APs to
achieve an accuracy of under 2.2 m on average. Nevertheless, the method
is still unsuitable for localization when using only a single access point, due
to high location ambiguity in fingerprints. Also, both approaches are gen-
erally prone to changes in the environment and rely strongly on unaltered
conditions between offline and online phase to avoid recalibration.

A different approach is taken by Gao et al. [22], which concentrates on
the aspect of power saving. ZiFind is presented, which exploits a cross-
technology interface in the unlicensed 2.4 GHz frequency spectrum. With a
low-power ZigBee interface it detects unique interference signature induced
by the WiFi infrastructure and creates a fingerprint from it. A learning
algorithm R-KNN is developed that classifies the location of a user based on
a fingerprint database. The system has been deployed in a 16,000 ft2 office
with 28 rooms. The main drive behind developing ZiFind was developing
the power saving feature by using the ZigBee technology.

And at last, the work by Wu et al. [23] approaches fingerprinting with
the goal of eliminating the need for a site survey. It combines WiFi finger-
prints with user movement related sudden changes in RSS on room change.
A logical floor plan is constructed by assigning fingerprints to rooms. By
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finding a match between the logical floor plan and a ground-truth floor plan,
the user can be localized, without having to survey fingerprints in advance.
The system achieves an average room-level accuracy of 86 %. The method
still requires a number of APs to reduce ambiguity.

Geometric properties of triangles offer an alternative infrastructure-based
localization approach. Triangulation measures the bearing relative to beacons
placed in known locations [24]. Such direction-based techniques make use
of the angle of arrival (AoA) or the angle of departure (AoD) to define
arcs, whose intersection estimate a user’s location. As neither wearable nor
handheld holds an antenna array, direct angle measurement is not possible.
However, in Fig. 2.1b trilateration, which is a ranged-based technique, util-
izing received signal strength (RSS), time of arrival (ToA) or time difference
of arrival (TDoA) information to infer a location, can be envisioned with
a single handheld beacon, although resulting in high location ambiguity.
In recent year no localization solution was proposed relying exclusively on
geometric techniques.

For the sake of completeness it may be important to mention proximity
sensing, where detecting spatial closeness of objects enables relative local-
ization as shown in Fig. 2.1c. A device that is detected by an access point
can be considered collocated with that access point. When a dense access
point grid is present, it is considered to be collocated with the one receiving
the strongest signal [25]. Similar to fingerprinting, the method is rendered
unusable when having only a single handheld as access point. The obstacle
of requiring a dense grid has lead to no implementations within the past
five years utilizing this method exclusively. However, there has been an
algorithm proposed to localize a target device in an indoor environment
using energy efficient Bluetooth by Gu et al. [26]. It requires no access
points or site survey, but explores Bluetooth characteristics. By interpret-
ing Bluetooth RSS readings, the search space can be shrunk down until a
target device is found. It achieves an average localization error of as small
as 0.38 m, however, it does not allow absolute localization, due to a miss-
ing point of reference, but rather provides a tool to find missing bluetooth
enabled objects within a single room.

On the other hand, infrastructure-free localization systems are well re-
searched. Integration of inertial measurement units (IMU), commonly com-
prised of accelerometer, gyroscope and magnetometer, enable measurement
of body-specific forces, angular rates and magnetic orientation of subjects.
Using the infrastructure-free pedestrian dead-reckoning (PDR) methodology
in Fig. 2.1d, the absolute location of a user can be determined by computing
stride length, walking direction and integrating steps [27].

In the work of Kang et al. [5] a smartphone-based pedestrian dead reck-
oning system (SmartPDR) to track pedestrians is proposed. It uses data
from inertial sensor embedded in smartphones. It is able to perform, step
event detection, heading estimation, step length estimation, and location
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estimation. It is able to achieve a localization error of 1.62 m solely based
on smartphone sensors. Similarly Dead-Reckoning Enhanced with Activity
Recognition (DREAR) is proposed by Torok et al. [4]. By nature PDR
systems suffer from cumulative error introduced by the environment, but
also by noisy sensors. Activities such as ascending and descending stairs,
using the elevator or standing are used to recognize landmarks and increase
precision achieving an average localization error of 3 m. DREAR requires
a server side where data is processed which may cause privacy concerns.
Clear advantage of PDR is the lack of required infrastructure. The need
for a gyroscopic sensor prevents implementation on this work’s hardware
configuration.

2.2 Hybrid techniques

More common nowadays are hybrid systems made up of at least two of the
methodologies in Fig. 2.1 in conjunction. In the work of Kumar et al. [6] a
localization median error of 39 cm is achieved. The system called Ubicarse
enables mobile devices to emulate a large antenna array to identify the spa-
tial direction of incoming RF signals. It operates on of-the-shelf WiFi access
points to perform triangulation. This information is used to improve noisy
sensor data from accelerometer, magnetometer and gyroscope to estimate
the antennas position. Later the camera of the mobile device is used for geo-
tagging objects. The test environment being a library, with books arranged
in shelves and racks, emulates multi-pathing. Using triangulation paired
with a dead-reckoning approach, the system achieves sub meter accuracy.
A drawback could be the large number of different sensors used and lack
of evaluation for energy consumption, as a multitude of sensors are used
simultaneously. Also, it would require multiple handheld devices and their
location in the indoor environment to allow for simulation of the antenna
array.

In the work of Wang et al. [16] unsupervised learning is employed to ex-
tract unique sensor signatures from locations (landmarks). Dead-reckoning
schemes track location in between landmarks; once recognizing a landmark
they re-calibrate their location. The system continues to improve local-
ization accuracy over time. The approach does not require a specialized
infrastructure, however, a ground plan of the building. It achieved a median
error of 1.69 m online, however, is rather prone to changes in the ambience.
Thus, being very similar to the approach in [4], the system tries to deal with
an accumulated error in dead-reckoning schemes by using an access point
infrastructure, rather than contextual information from the map.

This drawback of dead-reckoning has also been tackled in a similar way
in the work of Abadleh et al. [28], who propose to use a physical map,
rather than a radio map, in conjunction with smartphone sensors. It deals
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with the accumulated error of a PDR approach by correcting the position
with the position of a reference point. It utilizes a vector based motion
model on a smartphone for direction and distance estimations. In addition,
it uses RSS data of public access points to complement the PDR system. By
representing the inner structure of a building as database relationship, the
system achieves a mean error of 2 m and can perform floor discovery when
leaving the elevator.

An approach specifically considering the computational efficiency is presen-
ted with the localization system MapCraft in the work of Xiao et al. [15].
It uses a graphical model known as linear chain conditional random fields
(CRFs). It was found to be two to three orders of magnitude more compu-
tationally efficient than competing techniques. It uses a multitude of sensors
including accelerometer, magnetometer and gyroscope for dead-reckoning,
but also WiFi signals, Bluetooth, FM radio to estimate physical distances
in combination with a ground plan. The system scales with the sensors
available.

In the work of Hong et al. [14] a WiFi-Assisted Particle filter (WaP) is
designed to improve dead-reckoning accuracy. It uses RSS readings by their
contrast relationship, rather than absolute values, to perform turn verifica-
tion, room distinguishing and entrance discovery. Although, it requrires a
ground plan and AP locations, it achieves a localization error of 0.71 m effi-
ciently with only several hundred particles and no interaction with a central
server.

Also, a very promising approach has been taken by the work of Matiaka-
kis et al. [29] with Single AP-based Indoor Localization (SAIL). To avoid a
dense deployment of access points, manual fingerprinting and energy hungry
WiFi scanning, it requires only a single AP in combination with smartphone
sensor-based dead-reckoning using accelerometer, magnetometer and gyro-
scope. Using the propagation delay of direct path between smartphone and
AP helps to eliminate multipath phenomenons, capturing a users location
with a mean error of 2.3 m. The only drawback, is that it relies heavily on
the orientation of a subject to determine how the user is transferring relative
to the access point.

Table 2.1 summarises the surveyed localization solutions. It is important
to note, that some hybrid solutions could not be clearly assigned to specific
localization techniques anymore, as they were using small pieces of inform-
ation of each technique. That also has to do with similarity among some
techniques.

2.3 Justification

To summarize, while infrastruture-based techniques generally come with the
obvious drawback of requiring an infrastructure, depending on technique

11



Table 2.1: Classification of surveyed indoor localization techniques.

Paper a b c d Summary

[20] 3
Equips patients with RFID tags and
uses Random Forest classifiers

[21] 3
SEAMLOC requires 4 times fewer calibration
points based on bayesian probability

[22] 3
ZiFind creates a fingerprint from interference
signatures induced by WiFi infrastructure

[23] 3
Creates a logical floor plan according to a user’s
movement and compares it to ground truth floor plan

[26] 3
Explores Bluetooth characteristics to shrink
down search space when searching another device

[4] 3
DREAR uses landmarks to recover
from dead-reckoning integration bias

[5] 3
SmartPDR integrates steps, using
heading and stride length

[6] 3 3
Ubicarse uses WiFi triangulation in combination
with PDR and camera based geo-tagging of objects

[16] 3 3
Combines AP-based landmark calibration with PDR
and uses unsupervised learning to improve over time

[28] 3 3
Uses PDR in combination with RSS data from
access points for calibration

[15] 3 3 3

MapCraft combined PDR and radio signal
information using conditional
random fields

[14] 3 3
WaP presents a WiFi-assisted particle filter-based
PDR approach; it uses RSS by its contrast relationship

[29] 3 3 3
Using geometric methods SAIL requires only a single
WiFi access point in combination with a PDR approach
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used, additional obstacles present themselves, for instance the offline cal-
ibration phase in fingerprinting systems. There has been a trend towards
crowdsourcing this kind of information for instance by Zee presented in the
work of Rai et al. [17]. It uses a dead reckoning approach in combination
with a particle filter to localize users and take a fingerprint. The same goal
has FreeLoc, which is presented in the work of Yang et al. [30]. It provides
a reliable way to extract an accurate fingerprint from an RSS measurement
lasting no longer than one minute. Real-world experiments using multiple
mobile phones confirm that the proposed method requires no calibration
among heterogeneous devices and resolves the multiple surveyor problem
when crowdsourcing, which can provide a range of different fingerprints for
the same location due to radio propagation phenomena. The need for a
site survey could be eliminated entirely by the work of Wu et al. [23],
which still brings along the drawback of requiring more than a single ac-
cess point in the environment. An alternative, specifically discussing the
problem of radio propagation phenomena presents the work of Yang et al.
[31], which surveys Channel State Information (CSI)-based indoor loaliza-
tion systems. Channel response systems are able to discriminate multipath
characteristics and achieve centimeter-level accuracy, making them interest-
ing for infrastructure-based solutions relying on the 802.11 a/g/n standards.
As the standard is not available for the radio protocol used in the proposed
system, it wont be pursued further.

As can be observed, the trend towards hybrid solutions is justified by
obtaining an increasingly accurate IPS. However, complexity increases by
crowd sourcing approaches and sampling of a multitude of sensors. Infra-
structure requirements are present for fingerprinting, geometric methods and
proximity sensing. On the contrary, there is limited attention given to the
widely available and affordable fitness trackers, which make up a majority
of wearables circulating and generally do not hold a gyroscope required for
most PDR-based systems. These devices are generally not advanced enough
for as complex hybrid solutions. According to this overview of localization
methods, a system similar to SAIL in [29] will be proposed, requiring only a
single access point in the form of the handheld. Given the radio’s RSS, the
distance can be used to calibrate a dead-reckoning approach. In addition a
particle filter, which has been used in [14] and [17] is used to account for
additional sensors noise and dead-reckoning bias.
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Chapter 3

System Overview

In this section, some of the assumptions and design goals that lead to the
system design are discussed. Furthermore, a conceptual overview of the
system is provided.

3.1 Initial assumptions

The localization process of the system works in two different modes – (i) stan-
dalone, and (ii) joint. In standalone mode, only the handheld device is used
for localization, whereas in joint mode both, the handheld and the wearable,
are used. Since there exist a number of solutions that provide sufficiently
accurate indoor localization using a handheld device, no new solution is de-
veloped for the standalone mode. Without loss of generality, a particle filter
based dead-reckoning technique is adapted for the standalone mode, as used
in [17]. As the major contribution is the joint localization system, the rest
of the report will describe and evaluate the system only for the joint mode.

The floor plan of the indoor environment is assumed to be known be-
forehand. In addition, it is aimed for room-level accuracy, as it suffices for
applications such as heating and lightning control [8]. Room size on the
other hand may vary. As Bluetooth is the only radio interface on most
wearables, it is used to communicate with the handheld. Due to the smal-
ler form factor and limited battery capacity, wearables can accommodate
only few sensor units. Thus, only an accelerometer and a magnetometer are
present on the hardware configuration used.

The wearable should be non-intrusive: wearing more than a single device
in uncommon body locations, such as the knees or feet, objects this require-
ment [32]. Hence, the system should run on infrastructure already present
on the body. There are a number of common wearable locations, which
are summarized in Fig. 3.2b. They clearly differ from common handheld
locations in Fig. 3.2a. Each location will yield similar, but not identical
sensor data. While the waist region may offer the clearest signal in regards
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Figure 3.1: Comparison of sensor’s energy consumption.
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Figure 3.2: Common and non-intrusive handheld and wearable positions on
the body: (a) handheld; (b) wearable.

to human locomotion, a wrist-worn wearable is much more wide-spread [7].
For this reason, the wrist-worn wearable will be used as target device for
this report.

3.2 Choice of sensors

In general accelerometer, gyroscope, and magnetometer are used in com-
bination for step detection and heading estimation in dead-reckoning. As
wearables do not feature all the three sensors (except few smartwatches), it
is aimed to choose sensors that generally draw lower energy, and then try
to optimize sampling intervals. Due to the wide range of operating currents
of various sensor components, a direct comparison of energy consumption
is difficult. Based on a survey of two major electrical component distribut-
ors [33, 34], it could be concluded that a magnetometer can provide more
efficient operation than a gyroscope while acquiring heading information
(see Fig. 3.1). In addition, a gyroscope requires continuous sampling to es-
timate heading direction. Additionally, integration of the gyroscope data is
computationally intensive, and causes a cumulative bias error that is often
difficult to rectify. Note that a magnetometer can also be biased by mag-
netic interferences in the indoor environment. However, it is expected to
diminish this specific error by combining a Bluetooth RSS based distance
measurement along with the dead-reckoning.
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Figure 3.3: Overview of proposed system using both, the wearable and the
handheld.

3.3 Design goals

The crux of the system proposed is to share the sensor load and processing
tasks between handheld and the wearable in order to localize a person on
a continuous basis. This amounts to the following two design goals. First,
as the wearables have limited battery capacity, the usage of sensors has to
be optimized towards energy efficiency without losing the required location
accuracy. Thus, sensor sampling needs to be triggered only when it is re-
quired. Second, due to their restricted memory and processing capability,
sensor data processing cannot be performed entirely by most of the commer-
cial low-end wearables. Thus, some of the computational tasks need to be
delegated to the handheld. However, keeping the energy constraint in mind,
communication between the two devices also need to be kept at minimal.

3.4 Architecture

Fig. 3.3 depicts a pictorial overview of the systems architecture. By default,
the localization process is executed on the handheld device in the standalone
mode. The system triggers the joint mode by automatically detecting when
the user moves around without carrying the handheld. As soon as the
person starts roaming with the handheld, the process is switched back to
the standalone mode and any localization-related activity on the wearable
is stopped. In the following, the major building blocks of the system are
briefly introduced.

Handoff manager. The selection of the localization mode is performed
by the handoff manager running on the handheld. Its goal is to reduce
energy consumption by avoiding unnecessary sampling of the sensors on
both devices. It selects a suitable localization mode without incurring energy
waste while ensuring a sufficient localization accuracy.

Sensor module. The sensor module resides on the wearable and switches
the sensors on the device according to the handoff manager as well as ac-
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quires the raw data.

Motion module. The motion module resides on the wearable. By pro-
cessing the raw sensor data, it estimates three pieces of information about
the user, that are, step event detection, heading direction, and distance from
the stationary handheld device.

Location estimator. The location estimator resides on the handheld.
It receives the motion model outputs from the wearable over the Bluetooth
connection. It integrates this information with the map data using a particle
filter based dead-reckoning approach. In addition using the distance inform-
ation, the integration bias is supposed to be minimized.

3.5 Hardware configuration

Initially two different wearable devices were considered, both wristbands:
the Samsung Gear Live is a Smartwatch with 1.63 inch display running the
Android Wear operating system [35], the Xiaomi Mi Band is a fitness mon-
itor without display [36]. Both communicate through Bluetooth 4.0 with a
handheld application. Although these wristbands are representative for the
type of currently available and affordable devices, their application program
interfaces (APIs) were too limited for this work. The Bluetooth connection
of the Samsung Gear Live is handled solely by the operating system. Things
like reading out RSS were not possible, as no object for the Bluetooth ad-
apter was present. The closed system of the Xiaomi Mi Band could not be
programmed and flashed at all. Accelerometer data is processed onboard,
and therefore, no raw accelerometer data could be retrieved either. There-
fore, the decision was made to develop a wristband with similar specifications
to the available devices.

For it, the choice was made to use a Bluetooth enabled System on Chip
(SoC) solution by Nordic Semiconductor, the nRF52832, which was released
March 2016. Bluetooth LE was favoured over Bluetooth Classic for a number
of reasons: (i) Bluetooth LE was introduced in 2011 and has become the
new standard in mobile devices; (ii) there is no audio streaming involved,
which requires high throughput and low loss; (iii) long battery life on small
batteries is necessary; (iv) cost is a concern [37].

The successor of the popular nRF51822 has been developed with two, at
first glance contradictory, goals in mind: energy efficiency and computing
capability. It is build around a 32-bit ARM Cortex-M4F CPU with 64kB
RAM. In addition 512kB storage are integrated, which is sufficient for the
envisioned localization system and makes an additional storage component
obsolete. As the nRF51822 is an often used microcontroller in academia,
industry and hobby, Tab. 3.1 provides a comparison of the the two chips,
which may give some readers an indication of its performance.

The Accelerometer is the ADXL362 by Analog Devices, also used in the
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Table 3.1: Comparison nRF51 and nRF52.

nRF51 nRF52

CoreMark 2.33 3.40
Flash 256 kB 512 kB
RX current (3 V) 9.7 mA 5.4 mA
TX current (3 V) 8.0 mA 5.3 mA

(a) Development board with wearable
board next to it.

(b) Designed wearable board.

Figure 3.4: Hardware configuration of the wearable.

Xiaomi Mi Band. It has been chosen for its low current consumption of
1.8µA at 100 Hz output data rate (ODR) considering a 2 V supply [38]. The
magnetometer is the HMC5883L by Honeywell. It is an older model, even
though labeled with low power consumption, it exceeds the accelerometer
ones by far with its 100µA.

From the available hardware components, two configurations were as-
sembled. A prototype printed circuit board was designed to estimate the
form factor and thus feasibility of the device. It can be seen in Fig. 3.4b
with a width of 11.5 mm and a length of 39 mm. These dimensions are small
enough to allow the wearable to rest comfortably on an average adult’s wrist.
As the process of developing the wearable board is of secondary concern,
it has been left for a later point in time. Fig. 3.4a shows the development
board (blue) next to the designed wearable (green). The development board
provided by Nordic Semiconductors was used for all testing during devel-
opment as well as evaluation. The accelerometer has been interfaced using
SPI, while the magnetometer had to be interfaced using I2C. The axes of
both sensors were aligned accordingly. For this, in some cases remapping of
axes was necessary.
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Chapter 4

System design

In this chapter, the details of the system building blocks are provided (see
Fig. 3.3). It is described how they work in synergy to achieve pervasive
localization.

4.1 Handoff manager

The handoff manager is responsible for switching between the mutually ex-
clusive standalone and joint localization modes (Fig. 4.1). The goal is to
avoid sampling and data processing on wearable and handheld simultan-
eously and thus preserve energy. In general, handoff may take place when
the user leaves behind the handheld and moves around. A trivial solution
would be to trigger the joint mode as soon as the accelerometer data in the
handheld suggests that the device is stationary. Similarly, switching back
to the standalone mode is done, when the handheld becomes mobile again.
However, this solution may lead to unnecessary switching between the two
modes and hence superfluous sensor usage on the wearable. For example,
when the user keeps the handheld on a desk and remains sitting next to it,
the unnecessary handoff would cause energy drain on the wearable.

Since it is aimed for room-level accuracy, there is no need to handoff unless
the user moves out of the handheld room, in which the handheld is located
in and from which all wearable localization should origitate. However, if
the handoff takes place only after the user moves out of the room, it takes
a long time to determine the location of the user, especially in the case
when there are multiple adjacent rooms to the handheld room due to slow
particle convergence. Given the particle filter based localization technique,
it was determined that correct and expeditious particle convergence can be
guaranteed, when the handoff to joint mode takes place before transferring
to an adjacent room.

The system uses a dynamic approach to make the handoff decision, i.e.,
switching between the two localization modes. The handheld’s accelero-
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Figure 4.1: Switching between the two localization modes by the handoff
manager.

meter is leveraged to detect motionlessness, which is a good indicator for
the handheld being left behind. At this point, the location of the user is the
same as the handheld room, and the localization process enters a localization
neutral zone. Using contextual map data, the distance between the hand-
held’s absolute location (based on standalone mode) and the closest wall to
an adjacent room is determined. This distance determines the upper dy-
namic handoff threshold. Depending on the RSS of Bluetooth, the distance
to the wearable is estimated. Once the user crosses the handoff threshold
distance, the joint mode is triggered.

To switch back to standalone mode, the wearable needs to return into
close proximity of the handheld, where the distance between them has to be
less than a lower predefined handoff threshold. RSS measurements are tight
to the synchronous connection interval of the Bluetooth connection, which
is present throughout. Distance measurements can therefore be performed
by both devices, wearable and handheld. In Fig. 4.1 there is a reference
used to a single step from either the wall or the handheld to make the
handoff decision. Depending on the accuracy of the RSS this distance can
be adjusted, which will result in the location neutral zone either growing or
shrinking in size.

4.2 Sensor module

The sensor module in the wearable receives a trigger from the handoff man-
ager when the switching to joint mode takes place. for this, the handheld
sends a message to the wearable over the Bluetooth connection. Only at
this point, the accelerometer and the magnetometer units are activated on
the wearable. The sampling rate for the accelerometer is set to 20 Hz as this
is the minimum required rate to identify frequencies in human locomotion,
including steps accurately [39]. However, the magnetometer is not sampled
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at a fixed frequency. Rather it is sampled in an event driven manner, every
time when a step is detected by the motion module. The details of step
detection by the motion module based on accelerometer data are discussed
in Section 4.3. Additionally, the Bluetooth RSS is measured on the wear-
able to calculate the distance from the handheld. This helps to estimate the
location of the user.

4.3 Motion module

The motion module receives the data from the sensor module, processes
it, and provides three pieces of information – (i) when a step is detected,
(ii) what the heading direction of the user is, and (iii) what the distance
between the user and the handheld is.

Step detector. There exist a number of freely accessible accelerometry-
based step detection algorithms, which have been compared by Marschollek
et al. [40]. However, these algorithms are generally envisioned to process
accelerometer data obtained from a waist-belt. On the other hand, wrist-
worn and non-freely accessible algorithm by wearable manufacturer have
been around for a few years as well. As step detection is not the primary
focus of this work, and there seems to be no need for extensive research, a
simplistic threshold based algorithm will be used as in Alg. 1.

Algorithm 1 Step detection and counting algorithm on Wearable

Input: ~a =
[
a1 a2 a3

]
Output: steps

SAMPLE Process
1: if |~a| > threshold and flag == 0 then
2: steps++
3: flag == 1
4: end if
5: return steps

Timer Reset Process
6: if flag == 1 then
7: wait average step duration..
8: flag == 0
9: end if

Each time when the accelerometer data is sampled, total acceleration is
calculated by computing the magnitude from three axis components. If this
magnitude crosses a predefined threshold, it is considered as a step. Once
the step is detected, the sampling is paused for a small duration roughly
equalling the duration of an average step. This avoid multiple (false) step
detection within the same step period.
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Figure 4.2: Step detection capability for 100 consecutive steps taken.

The algorithm has been tested on two users with different height, and
gender. The tests are conducted for two different locations of the wearable
– waist and wrist. From the results summarized in Fig. 4.2, it can be con-
cluded that the algorithm achieves a reasonable accuracy. Note that one of
the drawbacks of this technique is that any acceleration value crossing the
threshold (due to other activities) would be considered as step. However,
the goal is not to detect the step with highest accuracy, but use it for local-
ization. The localization algorithm has to show enough robustness to deal
with miss-detection of some steps.

Heading Detection. When estimating the heading of the owner it is
relied on two assumptions. First of all the wearable is worn on the wrist.
Secondly, while walking, the owner swings her/his arms parallel to the body.
Thus the wearable swings in walking direction back and forth. A magneto-
meter alone cannot detect heading under these circumstances. Hence, a tilt
compensated compass using magnetometer and accelerometer is necessary.
For it, an accelerometer sample, which gives an indication of the gravity
vector a =

[
ax ay az

]
and a magnetometer sample, a vector pointing

to magnetic north e =
[
ex ey ez

]
are acquired. In order to construct a

coordinate system, a third vector perpendicular to both of these vectors is
computed by using their cross product: h and its unit vector ĥ are com-
puted.

h = e× a; ĥ =
h

|h|
(4.1)

The accelerometer and the magnetometer vectors are generally not perpen-
dicular due to earth’s spherical shape and location dependent inclination,
the process of finding a better axis representation for magnetic north has to
be repeated. The unit vector â is found to compute m̂.

â =
a

|a|
; m̂ = â× ĥ (4.2)

This vector is already a unit vector, because â and ĥ are. For completeness
the corresponding change of basis matrix R is presented.

R =

 ĥx ĥy ĥz
m̂x m̂y m̂z

âx ây âz

 (4.3)
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Using the by programming languages defined function atan2(hy,my), the
heading in radians is acquired by using the signs of the vector components hy
and my. Due to the use of an accelerometer, the heading is tilt-compensated
and even when the hands are swung back or forth gives a reliable heading.
The heading, which is stored as 4 bytes floating point number, is computed
with a new magnetometer sample whenever a step event occurs, in order to
limit sensor sampling.

Distance estimator. Though RSS-based distance estimation in the in-
door environment can be erroneous, it is used as a secondary mechanism.
As the dead-reckoning is also subject to error, the RSS-based distance es-
timation is used to calibrate during the localization process. How these two
error-prone technique complement each other to establish accurate location
information is described in Section 4.4.

As the devices are paired using Bluetooth, the RSS, which represents the
relationship between transmission and received power, can give an estimate
of their distance. Eq. 4.4 presents a common approach towards distance
estimation for the received signal strength S in dBm [41].

S = −10ηlog10d+A. (4.4)

Here, η is the propagation path-loss exponent (η = 2 for free space), d is the
distance between the sender and the receiver in meters and A is the received
signal strength at one meter of distance.

To decide an appropriate path loss exponent for the given indoor environ-
ment, RSS was measured with increasing distance between the handheld and
the wearable. When the devices were in line-of-sight in a long corridor, the
resulting path loss exponent is at times less than 2 (Fig. 4.3a). The reason
behind this is that a long corridor may resembles a tunnel, which may act as
wave guide, providing a stronger signal at a relatively shorter distance [42].
The measurements confirm the observations made in the work of [43] as
RSS being rather unreliable. Furthermore, it has been found empirically
that a wall reduces the signal power by approximately 3 dBm (depending
on wall type and construction) [44]. In subsequent measurements with walls
and furnitures in the path a stronger down-trend of the resulting signal was
observed, indicating a higher signal attenuation. In such cases, a better
approximation of the loss exponent is η = 2.5 (Fig. 4.3b).

In order to cope with the deviation, a low-pass filter was implemented,
which cancels out high frequency noise to estimate the distance d more
accurately.

d = α× dt−1 + (1− α)dt0 ; (4.5)

Note, that the distance d is smoothed out, rather than the RSS value directly.
The reason is that the RSS is in a logarithmic relationship to the distance.
Therefore, smoothing the RSS directly may result in changing responsiveness
of the system at different distances between handheld and wearable.
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Figure 4.3: Relative distance of devices and corresponding RSS [45]: (a) free-
space measurement; (b) measurement with obstructing walls and furniture.
The experimental η is updated and adapted for different indoor environment.

4.4 Location estimator

To estimate the location of the user, the system integrates the information
received from the motion module with the map data using a particle filter.
The particle distribution is initiated when the joint mode is triggered by
the handoff manager. As the user walks further, the particle positions are
updated using two sequential mechanisms: first, dead-reckoning, second,
distance-based calibration. As dead-reckoning is prone to cumulative errors,
the RSS-based distance is used to rectify this error.

To expedite the particle convergence initial particle distribution is done
judiciously. As mentioned in Section 4.1, the handoff takes place when the
user moves beyond the threshold distance from the handheld; but still resides
in the same room. Considering the handheld room as the initial location,
all the particles are distributed within this room. However, if particles are
distributed all over the room, they may form multiple clusters if there are
multiple exits from this handheld room. To tackle this issue, the particles
are projected in an arc with mean being the heading direction θ plus the
heading noise introduced into the system.

Similar to the work in [17], each particle is represented using a 2D co-
ordinate on the floor map, where particle i at step k has coordinate (xki , y

k
i ).

If the user is heading at an angle of θ, and the stride length is s, then,
each particles’ location is updated with each step according to the following
equations.

xk
′

i = xki + (s+ lki ) cos(aki + θ) (4.6)

yk
′

i = yki + (s+ lki ) sin(aki + θ), (4.7)

Here, lki and aki are the stride length noise and heading noise respectively,
which are deliberately added to the system to account for unreliable RSS
as well as heading estimate. As a result, the particles are relocated to any
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Figure 4.4: Noise added during particle relocation to catalyze convergence.

location within a determined region as shown in Fig. 4.4a. This noise is also
added to catalyze the particle convergence as well as provide recoverability
from location errors. The noise values are chosen from uniform distributions
where s and θ are the mean of the distributions. The range of the distribu-
tions are selected experimentally and discussed in Section ??. Next, device
distance-based calibration is performed, which can eliminate the integration
error caused by the dead-reckoning. It projects particles into a location cor-
responding to the distance d between the devices (Fig. 4.4b). The value of
d is calculated by the distance estimator based on the RSS value received at
the wearable. To do so, the coordinate (xk

′
i , y

k′
i ) of a particle pk

′
i are trans-

formed from the map coordinate system to a coordinate system centered at
the handheld’s location (x0, y0) and the length of the resulting vector ui is
computed.

ui = (xk
′

i − x0, yk
′

i − y0) (4.8)

|ui| =
√
x′i

2 + y′i
2 (4.9)

This vector is scaled to have length equal to the radius of the distance
sphere, resulting in vi.

vi =
d

|ui|
ui (4.10)

Finally, the vector can be scaled back to the map coordinate system to get
the projection pointed to by the vector wi.

(xk+1
i , yk+1

i ) = vi + (x0, y0) (4.11)

At last, uniformly distributed noise is added by further relocating the particle
pi randomly within a spherical noise space with radius n around the projec-
ted point (Fig 4.4b). This accounts for the unreliable RSS value as well as
diminishes the bias introduced by the projection of a particle.

The newly acquired location is then validated, i.e., whether it is outside
the mapped area or if the line joining (xki , y

k
i ) and (xk+1

i , yk+1
i ) intersects a

wall on the map. In such cases, the particle is eliminated and resampled in
a valid and randomly chosen particle’s location at the previous step.
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Figure 4.5: Working principle of deadlock discrepancy check: (a) step events
go undetected by wearable; (b) particles are left behind; (c) recovery of a
particle.

During tests an undesirable particle behaviour was observed. It may occur
that particles get locked into corners. This is commonly encountered in PDR
systems and is a result of integration bias or falsely detected step events. In
the exceptional case, that every single particle is trapped within a corner,
a deadlock can occur. The particles will be destroyed and resampled in
the locked location. To account for this a check is performed on a single
randomly chosen particle. It’s distance to the handheld is compared to the
distance computed from the RSS. If the discrepancy is too large, the particle
will be allowed to surpass wall restrictions. This will only be granted to a
single particle to avoid discrepancy checks of multiple particles, and thus,
recovery may take a few steps. This process is visualized in Fig. 4.5
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Chapter 5

Evaluation

This section presents the performance evaluation of the system in regards to
location accuracy, computational complexity and robustness of the localiz-
ation process, and efficiency of the handoff mechanism. The evaluation has
been performed in an indoor environment spanning about 320m2. Fig. 5.1
shows the floor plan of the area, which is split into 10 rooms. The cent-
ral corridor including the staircase has an end-to-end distance of about 30
meters. While Bluetooth has a theoretical range of more than 100 m, the
practical communication range is significantly less, especially in the indoor
environment. However, the longest distance in the experimental area was
found to be barely within the communication range of the wearable device
given the environments radiopacity. It is worth noting that reconstructable
disconnects of the Bluetooth connection could be forced for some room pairs
of handheld and wearable, when moving into far ends of certain rooms.

2 3 4 5

1. Staircase
2. Living room

3. Dining room

4. Study

5. Bedroom

6. Bathroom
7. Storage

8. Kitchen

9. Corridor 1

0. Corridor 2 0m 5m 10m

678

9
01

Figure 5.1: Floor plan of the indoor environment that is considered for
calibration and testing of the proposed system.
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Figure 5.2: Confusion matrix of individual room transfer accuracies.

5.1 Accuracy

As a room-level accuracy is sufficient in most of the indoor living spaces,
the primary target of the system is to achieve such an accuracy. First, it
was tested whether the system is capable to determine the location and the
transfer of the user within the test environment. For this, the transfer accur-
acy for a limited number of room pairs is evaluated. Fig. 5.2 summarizes the
results of this evaluation, which are an average of ten experiments for each
room pair. Though, most of the room combinations (origin and destination
room) show accurate location estimation, there are a few cases where the
accuracy is below average (generally involving rooms 1, 6, and 7 ).

Classifying transfer accuracy contextually by absolute room distance re-
veals that localization accuracy decreases with increasing distance from the
handheld room (Table 5.1). As RSS-based distance estimates gets hampered
with larger distance, the localization accuracy also decreases at far ends of
the indoor environment. In addition, the lower accuracy involving rooms 6
and 7 can be explained by the density of the area. While the width of the
walls in between rooms 2 through 5 are almost similar (about 10 cm), rooms
6 and 7 can only be accessed through small corridors, that are heavily con-
crete reinforced. Hence, the un-uniform density of an indoor environment
creates low accuracy for the proposed localization system.

Next, it was experimented with ten people of varying age, height, and
gender. The users were asked to transfer randomly between rooms consider-
ing two different handheld locations (handheld rooms) for each of them. The
location of the handheld, i.e., the initial location of the user is determined
using the standalone mode and not included in this evaluation.

The experiments started after the handheld is kept on a table in the
handheld room. At this point, the system enters the localization neutral
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Table 5.1: Accuracy by room distance.

Room distance Accuracy

<10 m 96.91 %

<20 m 93.54 %

<30 m 91.20 %

zone. As the user moves away from the handheld gradually, the handoff
takes place and the localization in joint mode starts. As mentioned earlier,
the handoff takes place based on the dynamic handoff threshold distance,
which is decided based on the distance between the nearest wall and the
handheld in the handheld room. As the user moves from room to room, the
location is also updated accordingly. Note, that the handheld room is not
kept fixed. Based on a total of 350 room transfers, the system achieves a
localization accuracy of 90.31 %.

5.2 Particle filter optimization

The computing load is distributed over the handheld and the wearable, how-
ever, not evenly. Both the devices are limited in processing capability and
power supply, with the handheld being generally more capable. Therefore,
the particle filter has been chosen to run on the handheld, whereas the
wearable provides the required information to update the particles based
on the sensor data. However, to avoid unnecessary processing and memory
consumption, the particle filter can be optimized by limiting the number
of particles. On the other hand, more ambiguity can be rectified with an
abundant number of particles. Thus, there is a clear trade-off between the
number of particles and accuracy.

However, first the noise added to the system during the particle relo-
cation is evaluated (see Fig. 4.4) with an abundant number of particles.
The various noise levels that are used in the experiments are quantized in
Table 5.2. As mentioned earlier, stride length noise and heading noise for
the dead-reckoning approach is introduced. The distance noise n has been
predetermined to be 3s. This measure is retrieved from the floor plan and
can slightly vary for different indoor environments, depending on size of
rooms and density of room entrances. The distance noise resembles the ra-
dius of a sphere, which just barely fits in the smallest room on the floor plan
(room 7 ). It distributes the particles as much as possible, without allowing
too much leakage to the adjacent room, e.g., room 8. All noise is uniformly
distributed. The use of a specific probability distribution is deliberately
avoided, to maintain the independence of the particles from one another,
and thus avoid artificially forced particle convergence. The noise is chosen
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Table 5.2: Noise quantification.

Noise level Stride length (s) Heading (θ) Distance (n)

0 % s θ 3s

25 % s± 0.25s θ ± 11.25◦ 3s

50 % s± 0.5s θ ± 22.5◦ 3s

75 % s± 0.75s θ ± 33.75◦ 3s

100 % s± s θ ± 45◦ 3s

125 % s± 1.25s θ ± 56.25◦ 3s

0 25 50 75 100 125

50

70

90

Noise level (%)

A
cc
u
ra
cy

(%
)

(a) Optimizing amount of noise.

100 300 500 700
50

70

90

Number of Particles

A
cc
u
ra
cy

(%
)

(b) Optimizing amount of
particles.

Figure 5.3: Particle filter optimization.

in relation to a person’s stride length s. Average stride length has been
found to be about 75 cm, though it mostly varies based on the height of the
user.

Fig. 5.3a summarizes the localization accuracy against various noise levels.
Though, there is no observable clear trend, the performance seems to be
peaked at the noise level of 75 %. After that, performance seems to de-
crease with higher noise levels. This could be caused by the noise space
for the heading angle getting too wide, as well as stride length varying too
drastically between particles. Data suggests that it cannot be concluded
with certainty, that the noise levels below 75 % are not entirely unsuitable.
However, it was decided to use said noise level as default for all the evalu-
ations.

When testing accuracy of the localization process with respect to the num-
ber of particles it could be concluded from Fig. 5.3b that at least 300 particles
are necessary to provide good accuracy. This value may vary depending on
the factors such as the average room size of the indoor environment and the
number and distance of room entrances. However, for all experiments, a
number of 300 particles was adopted.
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Figure 5.4: Bluetooth packet as used for transmission during joint mode.

Table 5.3: Packet loss simulation.

Packets missed Accuracy

0 90.31 %

1 74 %

2 66 %

3 <50 %

5.3 Bluetooth communication

The necessity to fit all data sampled at a step event into a single Bluetooth
package arises from the requirement to limit Bluetooth transmission to pre-
serve energy. Distance and heading estimations are stored as floating point
values, each of them 4 bytes long. Therefore, all the data from a single
measurement are transported in a single packet (Fig. 5.4).

As communication incurs additional energy consumption, a less frequent
packet transmission would be energy efficient. However, it may severely im-
pact the localization process. To study this impact, packets are sent with
larger intervals, i.e., instead of sending packets at every step detection, a
packet is sent only on every second, third and fourth step. This provides in-
complete information to the particle filter. Even though, the system seemed
to perform reasonable for missing every second step while transferring within
the corridor (room 0 and 9 ), it more often missed out on the smaller rooms.
The distance-based calibration shows its usefulness by interpolating the dis-
tance traversed when packet loss occurs. The accuracy further degrades
with more missing steps as is summarized in Table 5.3.

The results signify that even if steps are missed every once in a while, it
would not introduce an unrecoverable error. In fact, the RSS-based calibra-
tion aids such scenarios when packets are lost or steps go undetected, as it
calibrates the particles onto the most recent distance. Decreasing commu-
nication rate by default is not advised as it decreases accuracy accordingly.
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Table 5.4: Energy consumption of system activities.

Activity Abbrev. Consumption

Bluetooth connection BTLE 10µA

Handheld accelerometer HA 3µA

Wearable accelerometer WA 3µA

Wearable magnetometer MAG 100µA

Transmit packet TX 2µA

Case 1 Case 2 Case 3 Case 4 Case 5 Case 6
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A
)

BTLE HA WA MAG TX

Figure 5.5: Energy saving for handoff related cases.

5.4 Hand-off

Switching from standalone mode to joint mode is crucial, because on han-
doff the particles are projected into the heading direction of the user. If
projection happens in the wrong direction for a specific handheld room with
multiple exits, recovery will not happen unless the user returns to this hand-
held room. This handoff mechanism has been evaluated in Fig. 5.2 as well.
It uses the transfer accuracy through an exit from the handheld room to an
adjacent room. This transfer was successful in 97 % of the cases. Handoff
accuracy directly contributes to the overall accuracy within 10 m of range
from the origin room.

Averaged theoretical component power consumption of the hardware con-
figuration is summarized in Tab. 5.4. It is important to note that maintain-
ing the Bluetooth connection also enables reading out RSS. Given a number
of cases the current consumption of the system differs (Fig. 5.5).

Case 1. No handoff mechanic is present. Handoff related handheld
sensors as well as all wearable sensors sample continuously.

Case 2. No handoff mechanic is present. Handoff related handheld
sensors as well as all wearable sensors sample continuously. Because stan-
dalone mode requires an accelerometer as well, the system is free-riding.
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Figure 5.7: Energy consumption of wearable.

Case 3. The user is transferring in between rooms, while joint mode is
active.

Case 4. The wearable transfers within the localization neutral zone.

Case 5. The user resides within 1 steps of the location of the handheld.

Case 6. The user rest on a chair while joint mode is active.

Handoff mode offers possibilities to safe energy, considering that the sensors
are significantly more energy demanding than the energy necessary to main-
tain a Bluetooth connection.

To evaluate the room for energy saving further, Fig. 5.6 presents three
scenarios in which a user switches between the standalone, joint and neut-
ral localization modes. Each time standalone mode makes up 47.3 % of the
overall duration of the scenario and joint mode makes up 52.7 %. The abso-
lute duration of the scenario is one hour. In Scen. 1, both these modes are
active continuously. In Scen. 2, a handoff takes place when mode changes.
In Scen. 3, the handoff is complemented by the neutral mode, which takes
a place in between the other two modes. That means 34 % of the entire
duration are taken up by neutral mode, which corresponds to 65.5 % of the
time joint mode should have been active.
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The results in Fig. 5.7 suggest that there is a benefit to the handoff mech-
anism. If the wearable would be active throughout as in Scen. 1, the energy
would deplete about twice as fast as with separate modes for joint mode
and standalone mode as in Scen. 2. Scen. 3 shows the benefits of the han-
doff mechanism and the localization neutral mode. which decreases charges
consumed even further as compared to Scen. 2.

It becomes apparent that the benefit of the handoff mechanism cannot be
easily modeled. It depends greatly on the behavior of the user and can thus
vary between almost non existent and clearly present. The energy required
to keep the two devices connected diminishes the benefit of the handoff mech-
anism and makes it additionally highly dependent on the currents consumed
by the sensors.

5.5 Scalability

The survey in [25] mentions the scalability character as an important aspect
of a localization system, since location capability has to be guaranteed even
if the positioning scope gets large. It becomes apparent that the proposed
localization system in the current form is unable to scale on neither of two
axes: geography and density, because merely a single pair of wearable and
handheld is considered. According to [25] geographic scale describes the
area or volume covered, while density scale describes the number of access
points located per unit geographic area. Therefore, deployment of the sys-
tem is only feasible in indoor environments, where end-to-end distances do
not cause disconnects and provide reliable RSS values considering present
radiopacity.
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Chapter 6

Discussion

This chapter discusses the results obtained from the evaluation as well as the
limitations of the system to conclude its overall feasibility for the purpose
of pervasive service provisioning.

6.1 Limitations

In the preceding chapters, limitations of the system have been pointed out
occasionally. As some of them may be crucial to the systems feasibility, this
section summarizes the important ones once again.

Radio propagation phenomena. The radio connection between hand-
held and wearable is based on the Bluetooth protocol operating at 2.4 GHz.
While the speed of theoretical 25 Mbps may be less of a concern, the range,
which is device-based, depends strongly on the radiopacity of the indoor
environment. In the rather lossy test environment with a limited number of
furnitures, that are mainly chairs, desks and computer equipment and thin
walls (from glass or synthetic material), close to optimal requirements are
simulated. This also diminishes the effect of multipath, because the waves
can penetrate objects easier. The significant drawback has become appar-
ent from the rooms 6, 7 and 8, which are hidden behind heavily concrete
enforced walls with metal components for an elevator shaft. Entering these
rooms was generally detected correctly, however, afterwards the distance
was often highly overestimated, leading to false detection of following loc-
ations and particle deadlock. For this reason, during evaluation, the users
were asked to not move to the far ends of these specific room, but rather
remain at their entrance and center areas.

External heading noise. The heading of the user is computed from
the alignment of the sensors in regards to magnetic north. As the sensor
is fixed to the wearable, the wearable orientation becomes important. The
tilt compensation is able to filter out vertical offsets, which are commonly
introduced by the arm swing. However, tilt-compensation relies also on the
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accelerometer data to find the gravity vector, which may be biased due to the
accelerations introduced by the arm swing itself. That means that a strong
arm swing can cause greater heading offsets than smaller ones. During eval-
uation the users have been, to some extend unnecessarily, careful with the
wearable and thus the effect was not observed within the large amount of
deliberately added noise, however, it clearly persists. The simplest, but also
most unreliable, solution to this is to use a low-pass filter, which filters out
the high frequencies from the arm swing. The Android API uses sensor fu-
sion with a gyroscope to provide a virtual sensor, which unfortunately is not
present on the proposed system. In additon to this, noise can be introduced
by any sort of hand gesture during walking. Clearly, this will immediately
give an incorrect heading and lead to inaccurate localization. Orientation
independent heading estimators while walking have been proposed in liter-
ature in [46], [47] and [48] for smartphones in the pocket. The idea is to
project the acceleration from the sensor into the horizontal plane by means
of a change of basis matrix. The heading can then be deducted from the gait
cycle, as there will be accelerations towards the walking direction. However,
this requires a constantly updated change of basis matrix, which again re-
quires a gyroscope and significant processing capability. On the proposed
systems such solutions are currently not feasible. Thus, any noise introduced
other than the arm swing will cause inaccurate localization.

Magnetic field noise The magnetic noise introduced by electric appli-
ances and metal objects in the indoor environment has not been considered
specifically. The magnetic field noise in the test environment was present
but, considering room-level accuracy, did not appear to be of concern. As
this noise has not been quantized, it is not possible to tell how the proposed
system would perform in other indoor environments.

6.2 Feasibility

Given the evaluation results as well as list of limitations the question arises if
the proposed localization system is feasible to achieve pervasive localization.
Personally, I see the main contribution in the notion of using wearable and
handheld in conjunction. To the best of my knowledge, such a distributed
system using two pervasive interface devices has not been proposed in the
past to achieve indoor localization. I am convinced that it presents a viable
system setup also for future work. The addition of a handoff mechanism
shows energy benefits, which, however, appear less significant next to the
energy consumption for maintaining a bluetooth connection. Especially in
this regards, energy saving depends strongly on the efficiency of the sensors
used, and in the presented case, falls short of expectations. The average
localization accuracy of about 90 % seems competitive to some approaches
aiming for room-level accuracy, such as [23], which achieves 86 % accuracy,
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however, lags behind the work in [20], which achieves 98 %. But, looking at
the hidden numbers of the confusion matrix in Fig. 5.2 reveals that localiz-
ation accuracy for some room pairs was observed to be as low as 50 %. This
mainly concerns rooms behind concrete walls, which can be very common.
Providing a location-based service only every second time a specific room is
entered is not practical and unacceptable for all parties involved, provision-
ers as well as recipients. The main contributor to this error seems to be the
RSS. It’s unreliability has been underestimated in the first place and due
to the sequential resampling of particles, it is given too much weight during
localization. Possible options are to improve it in one way or another to
take into account phenomenons such as multipath, or replace it entirely.

6.3 Future work

A number of techniques may improve localization accuracy of the proposed
system in the future.

Bluetooth 5.0. It is expected that with the announcement of Bluetooth
5.0, the technology may get back to the spotlight for indoor localization
solutions. The standard promises to quadruple the range and double the
speed of Bluetooth 4.2, which is the most recent version.

Kalman filtering Currently the dead-reckoning as well as the distance
information are processed sequentially, generally resulting in the distance
information being weighted more. By implementing a Kalman filter, the
two mechanisms could be fused and it would be easier to detect and account
for large errors in either of the two. For example, large RSS deviations can
then be taken into consideration with diminished weight.

Hardware antenna tuning. The RSS appeared to be main cause for
errors in the system. The read out value is highly dependent on the quality
of the antenna circuitry. The nRF52 chip is able to read out RSS in a
significantly higher resolution than the handheld employed for evaluation.
A study on how accurate the RSS value is in other devices would give an
indicator of how feasible the overall idea is.

Improve scalability factor. Instead of utilizing only a single pair of
wearable and handheld, there may be the possibility to use a number of
handheld devices of colleagues or room mates. The feasibility of such an
approach can be researched as it may improve scalability of the system to
provide coverage over larger areas.
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Chapter 7

Conclusion

Indoor localization is an important enabler of pervasive services. As hand-
helds are generally not carried continuously in non-public indoor environ-
ments, the necessity for a wearable-based localization system arises. Existing
methods are heavily tuned for handhelds with respect to requirements for
sensors, processing capability and energy supply. To allow localization on
wearables devices, this work presents a distributed system approach using
both, a handheld and a wearable, complementing one another. It uses a
wearable of low complexity, resembling currently available and affordable
fitness trackers.

In a standalone mode only handhelds are used for loalization. Once the
user leaves the handheld behind on a furniture, the joint mode becomes
active, localizing the the user relative to the handheld using a common
Bluetooth LE connection. For it, a dead-reckoning approach in combina-
tions with distance-based calibration is used. A particle filter fuses inform-
ation from these two sources. In addition a handoff mechanic has been
implemented where the wearable will not expend energy, when it is close to
the handheld. The system achieves a localization accuracy of 90.3% for a
trial of 10 subjects. Handoff reliability was found to be as high as 97%.

The system presents a promising notion for wearable localization in the
future. Before that however, practical limitations originating from wave
propagation phenomena as well as wearable positioning on the body have to
be solved to allow truly non-intrusive and thus pervasive indoor localization.
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[4] A. Török, A. Nagy, L. Kováts, and P. Pach, “Drear-towards
infrastructure-free indoor localization via dead-reckoning enhanced
with activity recognition,” in 2014 Eighth International Conference on
Next Generation Mobile Apps, Services and Technologies, pp. 106–111,
IEEE, 2014.

[5] W. Kang and Y. Han, “Smartpdr: Smartphone-based pedestrian dead
reckoning for indoor localization,” IEEE Sensors journal, vol. 15, no. 5,
pp. 2906–2916, 2015.

[6] S. Kumar, S. Gil, D. Katabi, and D. Rus, “Accurate indoor localization
with zero start-up cost,” in Proceedings of the 20th annual international
conference on Mobile computing and networking, pp. 483–494, ACM,
2014.

[7] V. Woods and R. Van der Meulen, “Gartner says worldwide wearable
devices sales to grow 18.4 percent in 2016,” 2016. Available: http:

//gartner.com/ [Accessed Sep. 23, 2016].

[8] C. Sarkar, A. Uttama Nambi SN, and R. Venkatesha Prasad, “iltc:
Achieving individual comfort in shared spaces,” in Proceedings of the
International Conference on Embedded Wireless Systems and Networks
(EWSN), ACM, 2016.

43

http://gartner.com/
http://gartner.com/


[9] M. A. Stelios, A. D. Nick, M. T. Effie, K. M. Dimitris, and S. C.
Thomopoulos, “An indoor localization platform for ambient assisted
living using uwb,” in Proceedings of the 6th international conference
on advances in mobile computing and multimedia, pp. 178–182, ACM,
2008.

[10] S. Kozina, H. Gjoreski, M. Gams, and M. Luštrek, “Efficient activity
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[21] M. D. Redžić, C. Brennan, and N. E. O’Connor, “Seamloc: Seamless
indoor localization based on reduced number of calibration points,”
IEEE Transactions on Mobile Computing, vol. 13, no. 6, pp. 1326–1337,
2014.

[22] Y. Gao, J. Niu, R. Zhou, and G. Xing, “Zifind: Exploiting cross-
technology interference signatures for energy-efficient indoor localiza-
tion,” in INFOCOM, 2013 Proceedings IEEE, pp. 2940–2948, IEEE,
2013.

[23] C. Wu, Z. Yang, Y. Liu, and W. Xi, “Will: Wireless indoor localization
without site survey,” IEEE Transactions on Parallel and Distributed
Systems, vol. 24, no. 4, pp. 839–848, 2013.

[24] J. S. Esteves, A. Carvalho, and C. Couto, “Generalized geometric trian-
gulation algorithm for mobile robot absolute self-localization,” in Indus-
trial Electronics, 2003. ISIE’03. 2003 IEEE International Symposium
on, vol. 1, pp. 346–351, IEEE, 2003.

[25] H. Liu, H. Darabi, P. Banerjee, and J. Liu, “Survey of wireless indoor
positioning techniques and systems,” IEEE Transactions on Systems,
Man, and Cybernetics, Part C (Applications and Reviews), vol. 37,
no. 6, pp. 1067–1080, 2007.

[26] Y. Gu, L. Quan, F. Ren, and J. Li, “Fast indoor localization of smart
hand-held devices using bluetooth,” in Mobile Ad-hoc and Sensor Net-
works (MSN), 2014 10th International Conference on, pp. 186–194,
IEEE, 2014.

[27] A. R. Jimenez, F. Seco, C. Prieto, and J. Guevara, “A comparison
of pedestrian dead-reckoning algorithms using a low-cost mems imu,”
in Intelligent Signal Processing, 2009. WISP 2009. IEEE International
Symposium on, pp. 37–42, IEEE, 2009.

[28] A. Abadleh, S. Han, S. J. Hyun, B. Lee, and M. Kim, “Ilps: Indoor
localization using physical maps and smartphone sensors,” in World of
Wireless, Mobile and Multimedia Networks (WoWMoM), 2014 IEEE
15th International Symposium on a, pp. 1–6, IEEE, 2014.

45



[29] A. T. Mariakakis, S. Sen, J. Lee, and K.-H. Kim, “Sail: single access
point-based indoor localization,” in Proceedings of the 12th annual in-
ternational conference on Mobile systems, applications, and services,
pp. 315–328, ACM, 2014.

[30] S. Yang, P. Dessai, M. Verma, and M. Gerla, “Freeloc: Calibration-
free crowdsourced indoor localization,” in INFOCOM, 2013 Proceedings
IEEE, pp. 2481–2489, IEEE, 2013.

[31] Z. Yang, Z. Zhou, and Y. Liu, “From rssi to csi: Indoor localization via
channel response,” ACM Computing Surveys (CSUR), vol. 46, no. 2,
p. 25, 2013.

[32] M. Hardegger, G. Tröster, and D. Roggen, “Improved actionslam for
long-term indoor tracking with wearable motion sensors,” in Proceed-
ings of the 2013 International Symposium on Wearable Computers,
pp. 1–8, ACM, 2013.

[33] M. Europe, “Mouser electronics,” 2016. Available: http://eu.mouser.
com [Accessed Sep. 23, 2016].

[34] Digi-Key, “Digi-key electronics,” 2016. Available: http://digikey.

com [Accessed Sep. 23, 2016].

[35] Samsung, “Samsung Gear Live,” 2016. Available: http://www.

samsung.com/us/mobile/wearable-tech/SM-R3820ZKAXAR [Accessed
Apr. 1, 2016].

[36] Xiaomi, “Mi band,” 2016. Available: http://www.mi.com/en/miband/
#03/slide2 [Accessed Apr. 1, 2016].

[37] Argenox, “A guide to selecting a bluetooth chipset,” 2016. Available:
http://www.argenox.com/ [Accessed Oct. 10, 2016].

[38] A. Devices, “Adxl362,” 2016. Available: http://www.analog.com/

[Accessed Oct. 10, 2016].

[39] C. V. Bouten, K. T. Koekkoek, M. Verduin, R. Kodde, and J. D.
Janssen, “A triaxial accelerometer and portable data processing unit
for the assessment of daily physical activity,” IEEE Transactions on
Biomedical Engineering, vol. 44, no. 3, pp. 136–147, 1997.

[40] M. Marschollek, M. Goevercin, K.-H. Wolf, B. Song, M. Gietzelt,
R. Haux, and E. Steinhagen-Thiessen, “A performance comparison
of accelerometry-based step detection algorithms on a large, non-
laboratory sample of healthy and mobility-impaired persons,” in 2008
30th Annual International Conference of the IEEE Engineering in
Medicine and Biology Society, pp. 1319–1322, IEEE, 2008.

46

http://eu.mouser.com
http://eu.mouser.com
http://digikey.com
http://digikey.com
http://www.samsung.com/us/mobile/wearable-tech/SM-R3820ZKAXAR
http://www.samsung.com/us/mobile/wearable-tech/SM-R3820ZKAXAR
http://www.mi.com/en/miband/#03/slide2
http://www.mi.com/en/miband/#03/slide2
http://www.argenox.com/
http://www.analog.com/


[41] O. Oguejiofor, V. Okorogu, A. Adewale, and B. Osuesu, “Outdoor loc-
alization system using rssi measurement of wireless sensor network,”
International Journal of Innovative Technology and Exploring Engin-
eering, vol. 2, no. 2, pp. 1–6, 2013.

[42] J. Radatz, The IEEE standard dictionary of electrical and electronics
terms. IEEE Standards Office, 1997.

[43] E. Elnahrawy, X. Li, and R. P. Martin, “The limits of localization
using signal strength: A comparative study,” in Sensor and Ad Hoc
Communications and Networks, 2004. IEEE SECON 2004. 2004 First
Annual IEEE Communications Society Conference on, pp. 406–414,
IEEE, 2004.

[44] X. Huang, M. Barralet, and D. Sharma, “Accuracy of location identi-
fication with antenna polarization on rssi,” in Proceedings of the Inter-
national MultiConference of Engineers and Computer Scientists, vol. 1,
Citeseer, 2009.

[45] T. S. Rappaport, “Wireless communications–principles and practice,
(the book end),” Microwave Journal, vol. 45, no. 12, pp. 128–129, 2002.

[46] N. Roy, H. Wang, and R. Roy Choudhury, “I am a smartphone and i
can tell my user’s walking direction,” in Proceedings of the 12th annual
international conference on Mobile systems, applications, and services,
pp. 329–342, ACM, 2014.

[47] E. M. Diaz, A. L. M. Gonzalez, and F. de Ponte Müller, “Standalone in-
ertial pocket navigation system,” in 2014 IEEE/ION Position, Location
and Navigation Symposium-PLANS 2014, pp. 241–251, IEEE, 2014.

[48] Z.-A. Deng, G. Wang, Y. Hu, and D. Wu, “Heading estimation for in-
door pedestrian navigation using a smartphone in the pocket,” Sensors,
vol. 15, no. 9, pp. 21518–21536, 2015.

47


	Preface
	List of Figures
	List of Tables
	List of Algorithms
	Introduction
	Use cases
	Challenges
	Contributions
	System summary
	Report structure

	Related Work
	Indoor localization techniques
	Hybrid techniques
	Justification

	System Overview
	Initial assumptions
	Choice of sensors
	Design goals
	Architecture
	Hardware configuration

	System design
	Handoff manager
	Sensor module
	Motion module
	Location estimator

	Evaluation
	Accuracy
	Particle filter optimization
	Bluetooth communication
	Hand-off
	Scalability

	Discussion
	Limitations
	Feasibility
	Future work

	Conclusion

