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We study the bias-dependent spin-transfer torque in magnetic tunnel junctions in the Stoner model by
scattering theory. We show that the in-plane �Slonczewski type� torque vanishes and subsequently reverses its
direction when the bias voltage becomes larger or the barrier wider than material and device-dependent critical
values. We are able to reproduce the magnitude and the bias dependence of measured in-plane and out-of-plane
torques using realistic parameters. The condition for the vanishing torque is summarized by a phase diagram
depending on the applied bias and barrier width, which is explained in terms of an interface spin polarization
and the electron focusing by the barrier. Quantum size effects in the spin-transfer torque are predicted as a
function of the thickness of a normal-metal layer inserted between the ferromagnet and tunnel barrier.
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I. INTRODUCTION

Magnetic tunnel junctions �MTJ� are layered structures in
which an insulating tunnel barrier �I� separates two ferro-
magnetic layers �F�.1,2 The interplay between electronic cur-
rents and an order-parameter difference, i.e., magnetizations
rotated away from the equilibrium configurations, is the
magnetic equivalent to the Josephson effect in superconduc-
tivity. The MTJ with a thin normal-metal insertion layer is
the only magnetoelectronic structure that shows quantum
size effects on electron transport.3 MTJs based on epitaxial
MgO barriers4,5 are used in the magnetic random-access
memory �MRAM� devices that are operated by the spin-
transfer torque.6,7 MTJs have been studied vigorously, ini-
tially focusing on the tunnel magnetoresistance �TMR�.3,8–10

More recently, the focus shifted to spin-transfer torque and
current-induced magnetization switching.11–24 On the theo-
retical front, spin-transfer effects have been studied exten-
sively in metallic spin valve structures based on various
models.25–30 For tunneling structures, such studies are still
relatively scarce.15,17–20

Here we report a model study of the spin-transfer torque
in magnetic tunnel junctions. Since the ferromagnets are
separated by tunnel barriers, we cannot use theories existing
for metallic structures that are mostly based on semiclassical
methods.25,31 Instead, we chose a fully quantum-mechanical
treatment of transport through the tunnel barrier by scattering
theory. The high quality of MgO tunnel junctions and the
prominence of quantum oscillations observed in
ferromagnetic-normal metal-insulator-ferromagnetic �FNIF�
structures �even for alumina barriers� provide the motivation
to concentrate on ballistic structures in which the transverse
Bloch vector is conserved during transport. We qualitatively
�and even quantitatively� confirm the results in Refs. 15, 19,
and 20. However, our model is simpler and physically more
transparent than the tight-binding method used in Ref. 15
and the numerical studies of Refs. 19 and 20. We are able to
reproduce simultaneously both the in-plane and out-of-plane
torque experimental data using realistic material and device
parameters, in contrast to a fit based on the tight-binding

model.22 We also show finite zero-bias out-of-plane torque
for asymmetric structures. Scattering theory enables us to
distill a clear physical picture of the peculiarities of the spin-
transfer torque in MTJs, which allows us to understand why
and when the torque goes to zero. The torque zero-crossing
condition can be summarized by a phase diagram spanned by
the applied bias and barrier width parameters. With our ap-
proach we can go beyond the ferromagnetic-insulator-
ferromagnetic �FIF� MTJ and study the effect of a normal-
metal insertion �FINF structures�. Quantum size oscillations
in the torque are predicted as a function of the thickness of
the N insertion layer.

This paper is organized as follows: Section II introduces
the FIF and FNIF structures and the scattering theory. In Sec.
III, approximations are introduced in order to derive analytic
expressions. Section IV presents our main results. Section V
compares our model with experimental results. Sections VI
and VII contain a brief discussion and summary, respec-
tively. Two appendices are attached at the end.

II. STRUCTURE AND METHOD

We consider multilayers as shown in Fig. 1�a� in which
two semi-infinite F leads �F�L� and F�R�� are connected by
an insulating layer �I� of width d and a nonmagnetic metal
layer �N� of width a. The magnetization direction of
F�L� /F�R�, m1 /m2��m1�= �m2�=1�, is treated as fixed/free.
This structure reduces to a conventional FIF MTJ when a
=0.

Let A, B, C, D, C�, D�, E, and F be the spin-dependent
amplitudes A†= �A↑

† ,A↓
†� of flux-normalized spinor wave

functions at specific points. The scattering states can be ex-
pressed in terms of two incoming waves A and F, such as:

C� = ŝC�AA + ŝC�FF , �1�

where ŝC�A and ŝC�F are 2�2 matrices in spin space that can
be constructed by concatenating the scattering matrices of
region S1,2 and of the insulating layer bulk �see Fig. 1�. To
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leading order of the transmission �tb� through the bulk I
�similar expansions hold for ŝD�A and ŝD�F as well�:

ŝC�A = ��1 − rb�r̂2�−1tb�1 − r̂1�rb�−1�t̂1, �2a�

ŝC�F = ��1 − rb�r̂2�−1rb� + tb�1 − r̂1�rb�−1r̂1�tb��1 − r̂2rb��
−1�t̂2�,

�2b�

where t̂1,2 / r̂1,2 are the 2�2 transmission/reflection matrices
for S1,2 �see Fig. 1� and tb /rb are the spin-independent
transmission/reflection coefficient for the insulating bulk ma-
terial that are proportional to the unit matrix in spin space
and therefore without hat. The primed and unprimed versions
indicate scattering of electrons impinging from the left and
right, respectively. The reflection coefficient rb is due to the
impurity scattering inside the bulk insulator, which, as tb,
contains an exponential decay factor representing evanescent
states in I. For this reason the magnitude of rb is comparable
to or much smaller than that of tb depending on the density of
the impurities. All scattering matrices are matrices in k space
defined by the propagating states of left and right leads in the
energy window available for transport, labeled by their trans-
verse wave vectors in the leads: q ,q� �the band index is
suppressed� at a given energy.

An applied bias voltage V drives a �conserved� charge
current Jc and �spatially dependent� spin current Js through
the device. At zero temperature, the charge current reads,

Jc =
1

�2��3� dE�
q,q�

jc�q,q�� ,

jc =
4e

�
Tr��Im�ŝEAŝEA

† fL − ŝEFŝEF
† fR�� . �3�

where Tr��¯� denotes the spin trace and the summation is
over all the transverse modes at energy E. fL= fL�E� and fR
= fR�E+eV� are �zero temperature� Fermi–Dirac electron dis-
tribution functions in the left and right reservoirs. We are
therefore disregarding any spin accumulation in the ferro-

magnet, which is valid for tunnel junctions of current interest
in which the spin-flip rate in the ferromagnet is larger than
the tunnel rate. The scattering matrices depend on V by the
bias-induced potential profile. The spin current, or the
angular-momentum current, at the left side of the I /F�R�
interface �within I� reads

Js =
1

�2��3� dE�
q,q�

js�E,q,q�� ,

js = 2 Tr���̂ Im�ŝC�AŝD�A
† fL − ŝC�FŝD�F

† fR�� . �4�

Since the spin current deep in the ferromagnetic �FM�
lead is longitudinal to the magnetization, the torque N acting
on F�R� is equal to the transverse component of the incom-
ing spin current that is absorbed at the interface:6,25,26,28

N = Js − �Js · m2�m2 = N� + N�, �5�

with the in-plane �Slonczewski� torque N� �m2� �m1�m2�
and out-of-plane �fieldlike� torque N��m1�m2. Similarly
n= js− �js ·m2�m2=n� +n�.

At low bias, the nonequilibrium part of the spin current is
proportional to the bias voltage Js−Js

0=GsV, where Js
0 is the

equilibrium spin current that is related to interlayer exchange
coupling at equilibrium and Gs is the spin conductance:

Gs =
1

�2��2 �
q,q�

E=EF

gs�k,k�� ,

gs =
e

�
Tr���̂ Im�ŝC�AŝD�A

† + ŝC�FŝD�F
† �� , �6�

where the scattering matrices are evaluated at zero bias V
=0 and the summation is over transport channels at the
Fermi energy. We define the linear-response torkance30 T
=N /V, and T=Gs− �Gs ·m2�m2=T� +T� and �=gs
− �gs ·m2�m2=�� +��.

III. APPROXIMATIONS

We assume in the following that the spin is conserved
during the scattering. Then t̂i for Si �i=1,2, similar for r̂i� is
diagonal when choosing mi as spin-quantization axis: Ex-
panded in Pauli matrices �̂= ��̂x , �̂y , �̂z�, t̂i= ti

++ ti
−�̂ ·mi, with

ti
�= �ti

↑� ti
↓� /2. ti

� ��= ↑ ,↓� is the transmission amplitude for
spin � for spin-quantization axes mi through the scattering
region Si. In the absence of impurities �rb=0� and to leading
order of tb:

ŝC�A = tb�t1
+ + t1

−�̂ · m1� , �7a�

ŝD�A = �r2
+tbt1

+ + r2
−tbt1

−m1 · m2� + �̂ · �r2
−tbt1

+m1 + r2
+tbt1

−m2

− ir2
−tbt1

−m1 � m2� , �7b�

Similar expansions hold for ŝC�F and ŝD�F.
Next, we adopt the free-electron approximation tailored

for transition-metal ferromagnets.8 We assume spherical
Fermi surfaces for spin-up and spin-down electrons �in both
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FIG. 1. �Color online� �a� FNIF heterostructure, in which S1,2

indicate two different interface scattering regions; �b� The potential
profiles �at positive bias� for majority and minority electron spins in
F are shown by solid and dashed lines, respectively. The exchange
splitting is � and the tunnel barrier has height Ub relative to the
Fermi energy EF. The applied bias V pictured in �b� corresponds to
a net electron �particle� flow from right to left.
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F�L� and F�R�� with Fermi wave vectors kF
↑ =	2mEF /�2 and

kF
↓ =	2m�EF−�� /�2, with an effective electron mass m in F.

Electrons in N are assumed to be ideally matched with the
majority electrons in F �kF=kF

↑�. The effective electron mass
in the tunnel barrier is assumed to be mb=	m. Figure 1�b�
shows the adopted potential profile with barrier height Ub.
We assume an applied potential bias that is smaller than the
barrier height �eV�
Ub that fully drops over the tunnel bar-
rier. Positive bias corresponds to charge current flow from
left to right and electron particle flow from right to left. As in
Refs. 15, 18, and 19, we assume that energy and transverse
wave vector q are conserved, thus disregard any impurity/
interface roughness scattering. All scattering matrices then
become diagonal in k space.

In the free-electron model, the flux-normalized wave
functions in N and F are:

��
N =

e�ikxx

	kx

in N and ��
� =

e�ikx
�x

	kx
�

in F , �8�

Using the WKB approximation,18 the wave function in the
tunneling barrier is

��
b =

e�
0
x��w�dw

	�i��x�
in I , �9�

with

��x� =	2mb

�2 �Ub + EF − E − eV
x

d
� + q2, �10�

where E is the energy of the electron. The WKB approxima-
tion is valid when the potential profile varies slowly in space
within the tunneling barrier, i.e., ���x�
�2�x�. The transmis-
sion coefficient through I reads tb=exp�−
0

d��w�dw�.
For finite bias, from Eqs. �4�, �7a�, and �7b�,

n� = tb
2T1

−T2
+�fL − fR�m2 � �m1 � m2� , �11a�

n� = 2tb
2 Re�T1

−r2
−fL + T2

−r1�
−fR�m1 � m2, �11b�

n�
0 = 2tb

2 Re�T1
−r2

− + T2
−r1�

−�f0m1 � m2, �11c�

where Ti
+= �ti

↑�2+ �ti
↓�2 is the average transmission probability

for scattering region Si, Ti
−= piTi

+= �ti
↑�2− �ti

↓�2 with polariza-
tion pi=Ti

− /Ti
+, and f0 is the equilibrium distribution function

at zero bias. n� in Eq. �11b� includes both the equilibrium
and nonequilibrium contribution to the out-of-plane torque.
The former �n�

0 in Eq. �11c�� is related with the nonlocal
interlayer exchange coupling.32 The nonequilibrium contri-
bution is therefore n�� =n�−n�

0 . The optical theorem
2 Im�r1,2

� �=T1,2
� �see Appendix A� is used in the derivation of

Eq. �11a� to get rid of all internal reflection in I. In Eq. �11a�,
we observe that the in-plane torque is caused by the polar-
ization of the current at the left interface that is expressed by
T1

−. The subsequent absorption of the spin current by the
second magnet is governed by the geometrical projection
expressed by the vector product and the total transparency of
the second interface T2

+. It follows from Eq. �11b� that the out
out-of-plane torque has a very different origin. It does not
depend directly on the difference of the electron distributions

on both sides of the junctions, but consists of two indepen-
dent contributions from both reservoirs. Each contribution
consists of the spin polarization of the first interface, but is
sensitive to the phase of the reflection coefficient of the sec-
ond interface. The out-of-plane torque can be interpreted as
the net spin created at one interface that while reflected at the
second interface briefly precesses in the exchange field of the
second ferromagnet.

With vanishing bias, tb=exp�−�d� with �
=	2mbUb /�2+q2. By Eqs. �6�, �7a�, and �7b�,

� = �� =
e

2�
e−2�dT1

−T2
+m2 � �m1 � m2� , �12�

and ��=0. For reference, the conductance within the same
theoretical framework is given by:33

gc =
e2

2h
e−2�d�T1

+T2
+ + T1

−T2
−m1 · m2� . �13�

The vector product �m2� �m1�m2��=sin � in Eq. �12�
and m1 ·m2=cos � in Eq. �13�, leading to the well-known
geometrical dependence of the angular transport properties
of tunnel junctions.6 The vanishing of the out-of-plane torque
��=0, is a rather general result that holds for symmetric
tunneling junctions and spin valves in the linear-response
regime.15 We consider a symmetric system with an applied
voltage −V /2 to the left and a voltage V /2 to the right res-
ervoir. To the second order in the bias voltage, the spin cur-
rent in the spacer between the ferromagnets can be expanded
as

Is = �A1m1 + B1m2 + C1m1 � m2�V

+ �A2m1 + B2m2 + C2m1 � m2�V2. �14�

When applying the mirror operation left↔ right �1↔2,
−V /2↔V /2,Is↔−Is� symmetry requires that

− Is = �A1m2 + B1m1 + C1m2 � m1��− V�

+ �A2m2 + B2m1 + C2m2 � m1��− V�2, �15�

which should be identical to Eq. �14�. Therefore A1
=B1 , C1=0 , A2=−B2, whereas C2 is not restricted. Then
the torque on m2 is

N = m2 � �Is � m2� = �A1V − A2V2�m2 � �m1 � m2�

+ C2V2m1 � m2. �16�

This proves that, for symmetric systems, the out-of-plane
torkance ��2C2V� vanishes at V=0. It also shows that be-
yond linear response, there are quadratic �in bias� contribu-
tions to both the in-plane and out-of-plane torques. The ar-
gument does not hold for asymmetric tunneling systems. An
experimental zero-bias out-of-plane torkance should there-
fore provide interesting information on MTJ asymmetries.

IV. RESULTS

In this section, we discuss three different structures: �a� A
symmetric FIF magnetic tunneling junction, �b� an asymmet-
ric FIF structure in which the left and right FM layers have
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different exchange splitting, and �c� an FNIF structure in
which a nonmagnetic layer is inserted between the insulator
barrier layer and one of the ferromagnetic layers.

A. Symmetric ferromagnetic-insulator-ferromagnetic

For a symmetric Fe/MgO/Fe MTJ: kF
↑ =1.09 Å−1 and kF

↓

=0.42 Å−1 for Fe,8 and Ub
1.0–1.2 eV and 	=mb /m
=0.4m for MgO.4,34–36 This implies EF
4.5 eV, �

3.8 eV�0.85EF, and Ub�0.25EF. For an FIF structure
�a=0�, both S1 and S2 contain only a single interface. Using
the potential profile in Fig. 1�b�, we have

t1
� =

2	ik1
���0�/	

k1
� + i��0�/	

, t2
� =

2	ik2
���d�/	

k2
� + i��d�/	

, �17a�

r1�
� =

− k1
� + i��0�/	

k1
� + i��0�/	

, r2
� =

− k2
� + i��d�/	

k2
� + i��d�/	

, �17b�

where �= ↑ ,↓ and k1
↑2+q2=2mE /�2, k1

↓2+q2=2m�E−�� /�2.
k2

� are defined similarly with E replaced by E+eV. We set
t1,2
� =0 when Im�k1,2

� ��0.
Figure 2 shows the computed bias dependence of the in-

plane torque N� �left� and the nonequilibrium part �i.e., not
containing the equilibrium interlayer exchange coupling� of
the out-of-plane fieldlike torque N�� �V�=N��V�−N��0�
�right� at various exchange splittings for mb=0.4m at d
=1.0 nm. The equilibrium exchange coupling gives rise to
an effective magnetic field in the LLG equations that we do
not explicitly discuss. The main features of these curves are:

�1� the in-plane torque has both linear and parabolic contri-
butions, and �2� the fieldlike torque is paraboliclike. These
plots are very similar to the corresponding plots by Theodo-
nis et al.,15 meaning that the band-structure effects caused by
the tight-binding approximation are not important. The in-
plane torque at negative bias and small positive bias is “nor-
mal,” but changes sign at higher positive bias, where normal
means that the direction of the torque in FIF is the same as
the torque in metallic spin valves predicted,6 i.e., the torque
curve appears in the second and fourth quadrants in the left
panel of Fig. 2. When the torque curve is found in the first or
third quadrant, we say that the torque is reversed. In the
normal region, the positive bias �electron flow from right to
left� favors the antiparallel configuration and a negative one
the parallel configuration. In the reversed region, on the other
hand, a current polarity that stabilizes the parallel configura-
tion in the normal region has the opposite effect.

The zero crossing of the in-plane torque in Fig. 2 can be
traced to the sign change of T1

− in Eq. �11a�, i.e., the sign
change of the polarization of S1 �the F�L� / I interface�p1
=T1

− /T1
+
0.37 The polarization p1��2�0�−k↑k↓, which can

take any sign depending on parameters chosen12 �see Appen-
dix B for a more detailed discussion of this point�. The van-
ishing torque phenomenon becomes more transparent with-
out an effective-mass mismatch, i.e., for 	=1 instead of 	
=0.4 used in Fig. 2. The polarization vanishes when

�2�0� − k↑k↓ = 0. �18�

Since ��x=0� �near left interface� increases and k� decreases
with q, Eq. �18� is fulfilled at a certain critical value qc. The
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FIG. 2. �Color online� The magnitude of N� �left� and N�� �right� acting on the right magnetization in Fig. 1 vs applied bias eV for 	
=0.4 and d=1.0 nm. Inset figure shows the out-of-plane torque including the equilibrium contribution at zero bias.
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latter increases with the electron energy E, because ��0� de-
creases and k� increases with E. This can be seen clearly
from the following equation:

qc
2 =

2m

�2 �E −
�EF + Ub�2

2�EF + Ub� − �
� . �19�

which implies that at the Fermi energy qc is well defined
�qc

2�0� only when Ub
2
EF�EF−��.

When qc
2
0 at low bias, there is no polarization sign

change for any q, and the �in-plane� torque behaves nor-
mally. When the potential profile becomes distorted by an
applied bias as in Fig. 3�b�, the electrons injected from the
right lead have a maximum energy E=EF+eV. When the
applied bias V is large enough, we reach the regime qc

2�0,
and a polarization sign change of the left interface comes
into play. As qc increases further, more and more electron
contribute to the opposite torque. When V is large enough,
the total torque changes sign as seen in Fig. 2. On the other
hand, when the applied bias is negative �see Fig. 3�a��, the
transport is dominated by the electron injected from the left
lead. The electron energy and effective barrier height at the
left interface do not change with applied bias, which means
T1

− �and so the polarization� does not change either. There-
fore, we do not see a zero crossing �on the right magnetiza-
tion� at negative bias in Fig. 2.

We can analogously understand the dependence of the
in-plane torque on the barrier width d. We know that there is
a polarization sign change for q
qc if Ub is not too high
�such that qc

2�0�. In tunneling junction, the transport is
dominated by electrons with small q because of the focusing
effect due to the exponential extinction factor in tb. When the
electron with q values smaller than qc dominates, the torque
reverses sign. At a critical barrier width dc, the contributions
from q
qc cancel those from q�qc, and the torque or tor-
kance vanishes: N��dc�=T��dc�=0, whereas it has opposite
direction for d�dc. The left panel of Fig. 4 shows dc vs Ub
in linear response for various values of the barrier effective
mass. dc increases with Ub simply because the polarization
sign change behavior is less prominent at higher barrier
heights �qc decreases with Ub�.

The right panel of Fig. 4 shows the bias dependence of dc
at barrier height Ub=0.25EF for various barrier effective
masses. Because both the positive and negative biases reduce
the average barrier height, tb increases with �V�. However, the
applied bias is very ineffective in changing the focusing be-
havior, i.e., the transmission is hardly less focused by the
reduced average barrier height. This is very unlike the geo-
metrical barrier width d, to which, focusing very sensitively,
larger �smaller� d means more �less� focusing. Rather, a posi-

tive bias enhances the polarization sign change behavior,
which leads to a smaller critical barrier width dc. Since there
is no polarization sign change �qc

2
0� at zero or negative
bias for 	=0.7 and 0.4, a torque zero crossing is not ob-
served. For 	=1.0, polarization could change sign at zero
bias, hence the torque zero crossing is also observed at nega-
tive bias. As mentioned before, negative bias does not
change T1

− or polarization of the left interface, but it does
change T2

+. At negative bias, the barrier height at the right
interface is reduced by �eV�, which leads to the decrease of
T2

+ at small q, thus the polarization sign change behavior is
weakened because of the smaller product T1

−T2
+ at small q

where the product is negative. Weaker polarization sign
changes, then requires larger dc for torque zero crossing at
negative bias and we see dc increasing with negative bias for
	=1.0. For comparison, a critical barrier width for the sign
change of TMR is also calculated for 	=0.4, and is shown as
the solid black curve with “+” symbol in the right panel of
Fig. 4. Since the TMR is symmetric in the applied bias for
the symmetric structures, the curve is also symmetric.

B. Asymmetric ferromagnetic-insulator-ferromagnetic

As discussed at the end of Sec. III, the zero-bias �linear-
response� out-of-plane torkance does not vanish for asym-
metric structures. Figure 5 shows both the in-plane and out-
of-plane torkances for the right FM layer at zero bias �V
=0� for an asymmetric FIF structure, in which the left and
the right FM layers have different exchange splitting: �1
=0.85EF for the left and �2 for the right, where the latter
varies from 0 to EF. From Fig. 5, we can see that the out-of-
plane torkance is generally nonzero for asymmetric struc-
tures when �2��1, and it vanishes when the right layer
becomes nonmagnetic ��2=0� or when the structure be-
comes symmetric ��2=�1�. The in-plane torkance in Fig. 5
decreases with �2 simply because the average transmission
probability through the right interface T2

+ decreases.

C. Ferromagnetic-normal metal-insulator-ferromagnetic

An FNIF structure, with a nonmagnetic layer of width a
between one of the F layers and the insulating I layer, has
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never been studied in the regime of spin-transfer torque.
Such an asymmetric FNIF device can be operated in two
nonequivalent modes �as in any nonsymmetric MTJ�: The

left F is static and the right F �F̃� is free �mode 1: FNIF̃� and

vice versa �mode 2: F̃NIF�. Equations �11a�–�11c� and �12�
apply to mode 1, and apply to mode 2 with subscripts 1 and
2 exchanged. The a dependence of the in-plane torkance �in
linear response� is shown in Fig. 6. The sign of the in-plane
torkance can be controlled by a in mode 1, but not in mode
2. This sign is determined by the sign of T1

−. In mode 1, T1
−�a�

covers region F�L�-N-I and its sign can be modulated by the
N insertion layer width a. However, in mode 2, T1

− covers
I-F�R�, which is independent of a, therefore the sign is un-
changed. The a dependence of the in-plane torkance in mode
2 comes from T2

+�a�, which is always positive. Due to the
aliasing effect caused by discrete thickness of the N layer,38

the period of the quantum oscillation in Fig. 6 should be
about � / �kF−� /�� instead of � /kF�3 Å shown in the fig-
ure, where � is the monolayer thickness for N layer.

The asymmetry in FNIF structure shall also give rise to a
finite linear-response out-of-plane torkance, which shows
similar oscillations as the in-plane torkance in Fig. 6. The
magnitude of the zero-bias out-of-plane torkance could be
comparable to the in-plane counterpart.

V. COMPARISON WITH EXPERIMENTS

Using realistic material parameters and the geometry pa-
rameters provided by Ref. 22, we are able to reproduce, even
the absolute scale, the experimental data from Ref. 22 as
shown in Fig. 7, which includes the bias dependence of the
in-plane torque N��V� and the nonequilibrium part of the out-
of-plane torque N�� �V�=N��V�−N��0� and the correspond-
ing torkance. The experimental data for the torkance in the
bottom panels of Fig. 7 are adapted from Fig. S3�d� �	ST,FT� �
and Fig. 2 �I-V data� of Ref. 22 by �dN�,� /dV� /sin �
= �dI /dV��dN�,� /dI� /sin �= �dI /dV�	ST,FT� . Our model ap-
pears to have a problem with the upturn of the torque at
higher positive bias. The fit in Ref. 22 based on the tight-
binding model of Ref. 15 is slightly better in this respect for
a rather large exchange splitting. However, the out-plane
torque is poorly reproduced for the same parameter set. In
contrast, we succeed with a single set of �realistic� param-
eters to reproduce both in-plane and out-of-plane torques
�torkance�. The resistance for this particular device in our
model is R��=137°��150 �, which is consistent with the
experimental values ��200 ��. However, the TMR value in
our calculation �about 15%� is considerably smaller than that
in the experiment. We believe that the spin-transfer torque is
better represented by the free-electron model than the TMR
because TMR� p1p2, whereas torque on m2� p1. If the po-
larization p1 , p2 at the interfaces are underestimated by a
factor of �, the TMR value is too small by a factor of �2,
whereas the spin-transfer torque is affected only by a factor
of � �see also Sec. VI�. In addition to this, the TMR value
depends sensitively on the exchange splitting �. For in-
stance, the TMR value increases from 15% to 30% when �
increases from 0.87EF to 0.9EF,

Another set of experimental data is shown in Fig. 8
adopted from Fig. 3�a� of Ref. 21. The experimental data are
now the in-plane �red squares� and out-of-plane �blue dia-
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monds� torkance. We fit the out-of-plane and the linear part
of the in-plane torkance again on absolute scale. Theory con-
tains a quadratic component of the in-plane torque, which
does not show up in this experiment. The resistance for this
particular device in our model is R��=71°��4 k�, consis-
tent with the experimental value ��3.5 k��, whereas our
TMR, 5%, again is too small. Note that the torkances are
much smaller than in Ref. 22 because of the thicker barrier
and the smaller cross-section area, as reflected by the higher
resistance.

Deac et al.23 also measured the in-plane and out-of-plane
torque in a MgO based tunneling junction. The out-of-plane
torque in this experiment agrees well with other experiments
and theory. However, the in-plane torque depends paraboli-
cally on the applied bias �AV2 for positive bias and −BV2 for
negative bias, where A and B are positive constants�, which
is quite different from both Refs. 21 and 22. A voltage noise
measurements done by Petit et al.16 also suggest a linear
out-of-plane torkance �or parabolic out-of-plane torque�,
which is about 20% of the in-plane counterpart. Hence all
experiments and theories appear to agree on the out-of-plane
torque, whereas consensus about the in-plane torque has not
been reached yet.

VI. DISCUSSION

Because of the high quality of epitaxial MgO tunnel
layers,4,5 we ignored interface roughness and barrier disor-
der. The main effect of the geometric interface roughness is
to reduce the nominal thickness of the barrier.39 Impurity
states in the barrier generally increase tunneling because of
the opening of additional tunneling channels with lower bar-
rier height Ub�
Ub. Impurities states also weaken the spin-
dependent effects when spin flip is involved. In general, in-
terface roughness and disorder can be important
quantitatively, but have been shown not to qualitatively
change the features predicted by a ballistic model.40–43

The free-electron Stoner model is only a poor representa-
tion of the real electronic structure of transition metals for

the tunneling problem: It fails to properly reproduce the
nearly half-metallic nature of transition-metal ferromagnets
based MgO tunnel junctions, that is caused by the symmetry
of the bands at the Fermi energy,44 leading to the underesti-
mated TMR ratios by our model noted above. On the other
hand, the band-structure calculations by Heiliger and Stiles17

show that the free-electron model can perform quite well as
far as the torque is concerned. We explained this in Sec. IV
by its dependence on only one interface polarization leading
to a better performance of a model that is not accurate in this
respect. The band-structure calculations in Ref. 17 indicate
that the torque is strongly localized to a few monolayers
which is in support of our simple model.

The issue of the wave-function symmetry should also be
considered when a normal metal is inserted. When the elec-
trons with wave vector normal to the interface dominate, the
normal metal �Cr� is actually a potential barrier for the Fe
majority spins,45 rather than a potential well as assumed
here.

In contrast to metallic spin valve structures, in which the
out-of-plane torque is generally less than 10% of the in-plane
counterpart, the out-of-plane contribution has been found
quite large in tunneling junctions �a 30% contribution at high
bias is measured in Ref. 21�. Close to the zero crossing of the
in-plane torque at positive bias the out-of-pane torque should
become dominant.

An experimental “phase diagram” that can be compared
with Fig. 4 would constitute a stringent test of our predic-
tions. Since the barrier height and the effective electron mass
in the barrier cannot be controlled, we suggest measuring the
torques systematically for several MTJ structures with differ-
ent barrier width �otherwise identical� to test the red curve in
the right panel of Fig. 4. The zero crossing of the in-plane
torque is predicted to occur at voltages that are too high for
the experiments in Refs. 21–23. For wider tunneling barriers
it should happen at smaller voltages.

VII. SUMMARY

To summarize, scattering theory of transport is used to
calculate the spin-transfer torque for a magnetic multilayer
structure at finite bias. The experimental spin-torque data
�both in-plane and out-of-plane� can be reproduced using re-
alistic parameters in our model. The spin-transfer torque on a
given layer may change sign for only one bias polarity. The
torque zero crossing is caused by the combined effects of the
polarization sign change at the FI interface and the focusing
effect of the barrier. The bias voltage required for torque
zero-crossing decreases as a function of the barrier width.
The out-of-plane torkance at zero bias vanishes for symmet-
ric FIF structures, but remains finite for asymmetric struc-
tures. In FNIF structure we find on top of the previously
reported oscillating TMR �Ref. 3� and charge pumping
voltage33 that the spin-transfer torque also oscillates and may
change sign with the N layer thickness.
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APPENDIX A: OPTICAL THEOREM IN TUNNEL
JUNCTION

The scattering matrices in Eq. �2a� and �2b� include the
reflection amplitude inside the insulator �r̂1� and r̂2�. Expres-
sions become more transparent when the reflection ampli-
tudes are replaced by the transmission probabilities, how-
ever. This can be achieved by the optical theorem tailored for
tunnel junction that reflects current conservation. Note that
the equivalent statement in metallic systems is the well-
known relation �r�2+ �t�2=1 that follows from the unitary of
the scattering matrix.

The optical theorem for light is derived from conservation
of energy, whereas in electronic transport it is based on con-
servation of charge. We consider here the nonstandard situa-
tion of the interface between a metal and a tunneling barrier,
for which the unitary of the scattering matrix cannot be in-
voked without some care. Let us consider a nonmagnetic
IXN structure, where X could be basically anything. We as-
sume flux-normalized plane waves eiknx /	kn in N with mode
index n, and exponential solutions e��mx /	�m in I with mode
index m. The electron with wave function e−�px /	�p in I is
reflected with amplitude rmp, and transmitted into N with
amplitude tnp. Then the wave functions in I and N are:

�I
m =

e−�px

	�p

�mp + rmp
e�mx

	�m

, �N
n = tnp

eiknx

	kn

. �A1�

The current in I is given by the imaginary part of the reflec-
tion amplitudes since

II =
�

m
�
m

Im��I
m��x�I

m� =
2�

m
Im�rpp� , �A2�

The current in N reads

IN =
�

m
�

n

Im��N
n��x�N

n � =
�

m
�

n

�tnp�2. �A3�

By current conservation: II= IN, we have

2 Im�rpp� = �
n

�tnp�2 � �
n

Tnp. �A4�

This relation reduces to

2 Im�rpp� = �tpp�2 � Tpp, �A5�

for the ballistic model used in the text.

APPENDIX B: POLARIZATION SIGN CHANGE

For a better understanding of the polarization sign change,
let us inspect the simple potential barrier depicted in Fig. 9
�thick solid line�, ignoring the spin dependence for the mo-
ment. The barrier width is d and the relative barrier height
Ub=�2�2 /2m. As seen in Fig. 9, Ub is measured relative to
the longitudinal electron energy in the barrier E−E�=E�

+V, where E is the total electron energy, E� and E� are the
longitudinal �normal to the interfaces� and transverse kinetic
energies, and V is the band edge. By solving this standard
quantum-mechanical exercise, we find the transmission prob-
ability through the barrier

T =
1

1 +
�E�+Ub�2

4E�Ub
sinh2��d�

�
16E�Ub

�E� + Ub�2e−2�d, �B1�

where the approximation is accurate when �d�1. Equation
�B1� shows that for a fixed Ub �or ��, T is maximal when
E� /Ub=1 �see Fig. 10�, where E� can be tuned by changing
the band edge V.

In an FIF MTJ, for electrons in F with the same total
energy E=E�

↑/↓+V↑/↓+E� and the same transverse energy
E�, the relative barrier height �Ub in Eq. �B1�� is the same
for spin-up and spin-down electrons. However, the band
edges �V↑/↓� are spin dependent as indicated by the solid
�spin up� and dashed �spin down� lines in Fig. 9. The longi-
tudinal kinetic energies �E� in Eq. �B1�� is larger for spin-up
than spin-down electrons. In our Stoner model we typically
find E�

↓ /Ub�1, whereas E�
↑ /Ub�2. According to Eq. �B1�

and Fig. 10, we find for the parameters in our Stoner model
the surprising result that T↑
T↓. In general, electrons close
to the Fermi energy with small transverse wave vectors q
show this inverted polarization sign change behavior. For
large q, spin-up electrons tend to have higher transmission
again, and the polarization becomes positive.
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