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Abstract

Public transportation systems operate in dynamic and unpredictable environments, necessitat-
ing close monitoring of real-world operations. Integrating data into route design, scheduling,
and policy formulation is essential for creating an efficient and sustainable transit network. This
thesis utilises historical bus travel time data to predict future bus travel times, enhancing the
analysis of network reachability.

A literature review identified four prediction models to be investigated: Historical Average,
Vector AutoRegression, Random Forest, and Long Short-Term Memory deep neural network. A
case study involving six bus lines in Groningen was formulated, providing the necessary Kop-
pelVlak 6 and GTFS schedule datasets to be used as inputs for the prediction models. During
model development, patterns in historical travel time data were identified, and prediction accu-
racy was evaluated. The output from the most accurate prediction model was then utilised as
input for the reachability analysis.

The analysis demonstrated that complex machine learning models, such as Random Forest
and Long Short-Term Memory deep neural networks, yielded the most accurate predictions. The
time of day when the journey occurs is particularly predictive of travel and dwell times. Integrat-
ing these predictions into a reachability analysis revealed instances of increased reachability,
decreased reachability, and missed transfers compared to the original schedule.

The findings demonstrate that travel time prediction models can significantly enhance reach-
ability analyses. This more accurate representation of reachability can be used to identify sys-
temic issues in the design of the public transportation network, allowing for interventions to
improve performance.
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Glossary

Term Abbreviation Definition

Artificial Intelligence AI The simulation of human intelligence processes
by machines, especially computer systems.

Conveyal - Software tool to assess the reachability of pub-
lic transport networks and ordinary street net-
works.

Dwell time - Time stopped at stop

Deep learning - A type of machine learning using multi-layered
neural networks to analyse complex data.

General Transit Feed
Specification

GTFS A standardised data format for PT schedules
and geographic information.

Historical Average HA The average value of a dataset over a historical
period, often used as a baseline comparison.

Kalman Filtering KF An algorithm that uses a series of measure-
ments observed over time to estimate unknown,
noisy variables.

Long Short-Term
Memory

LSTM A type of RNN architecture that is capable of
learning long-term dependencies, particularly
useful in time series prediction.

Machine Learning ML A field of AI that uses statistical techniques to
allow computer systems to learn from data and
improve performance over time without being
explicitly programmed.

Mean Absolute Error MAE Average of absolute differences between pre-
dicted and actual values.

KoppelVlak 6 KV6 An interface for real-time PT data, providing ve-
hicle locations and punctuality information for
buses, trams, and metros in the Netherlands.

Nationaal Data
Openbaar Vervoer

NDOV Dutch real-time transit data.

Random Forest RF A ML algorithm that uses multiple decision trees
to improve prediction accuracy.

Reachability - The ability to reach a destination from a given
starting point within a certain time or distance.

Continues on next page
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Term Abbreviation Definition

Recurrent Neural
Network

RNN A neural network designed for processing se-
quences, like time series or text, by using loops
to maintain information.

Time series - A sequence of data points collected or recorded
at successive points in time.

Travel time - The time taken to travel from one stop to an-
other.

Vector AutoRegression VAR A statistical model used to capture the linear in-
terdependencies among multiple time series.

Verbindingswijzer - Movares’ reachability tool built in Conveyal.
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1 Introduction

High-quality Public Transport (PT) improve the lives of citizens considerably. It can reduce traffic
congestion and improve air quality by reducing carbon emissions [1]. Implementing an efficient
and well-managed PT system will enhance a city’s sustainability and improve mobility for its
residents [2]. A key part of efficient PT is providing passengers and PT engineers with accurate
information on the arrival and departure times of PT services. For passengers, accurate infor-
mation reduces waiting times, enables better planning for connections and improves the overall
travel experience [3]. Passengers can make informed decisions about their routes, adjust for
delays, or choose alternative modes of transport if needed.

For transport engineers, accurate information on the performance of the PT network is es-
sential for the design and optimisation of services. The schedule often does not reflect the real-
world operation of the PT network well [4]. Utilising accurate historical information on arrival
times and departure times is beneficial when designing routes, schedules or vehicle allocation
for a PT network. These insights enable better scheduling, bottleneck identification and infras-
tructure planning [5]. By integrating historical data into design processes, engineers can create
networks that minimise delays and enhance passenger satisfaction.

Incorporating this historical data is essential, because PT journeys frequently deviate from
their scheduled times. PT is operating in an urban environment where disturbances are likely [4].
This means that it is difficult to maintain a deterministic travel time, because traffic and weather
conditions can vary greatly. There has been a great development in collecting data on the GPS
location of PT vehicles and leveraging it for the analysis of these uncertain PT networks [6]. For
almost all PT journeys in the Netherlands, there is historical data on arrival and departure times
at stops along the route [7]. There has been significant research in the 20th century to use this
data specifically to make accurate decisions on the travel time of PT [8][9][10][11].

The research of this thesis will focus on the prediction of travel and dwell times of bus jour-
neys. Travel time is defined as the time to reach a final destination or cross a link between two
stops of the PT network. Travel time prediction refers to the prediction of current or future travel
times. Dwell time is the time that a bus is stationary at a stop, meaning the difference between
the arrival and departure time at the stop. Four prediction models will be developed in this thesis:
a baseline Historical Average (HA) prediction model, a Vector Auto-Regression (VAR) prediction
model, a Random Forest (RF) prediction model and a deep learning Long Short-Term Memory
(LSTM) neural network prediction model. These prediction models will be compared and evalu-
ated based on the patterns they identify.

The second focus point of this thesis is utilising the output of the prediction models to make
reachability analysis more realistic. Reachability, in the context of PT, refers to the ability to reach
a certain destination in a certain amount of time. Visual representation, such as an isochrone
map or graph, is a key method to convey reachability information. Interactive software tools
which generate and evaluate these visualisations are of great value to PT engineers. One of
those tools is Conveyal, which utilises pre-planned schedules to present the travel times for PT.
This thesis aims to predict more accurate travel and dwell times using historical travel time data
to implement in this reachability tool.
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1.1 Contributions

The four prediction models developed will predict potential future journeys. Current literature
mainly focuses on predicting arrival time for bus journeys currently in operation. This means
that current weather and traffic data can be incorporated into these models [12][13]. In this
thesis, the training data for the prediction models will be the historical arrival and departure time
data. In addition, extra variables derived from this dataset, such as hour of the day, day of the
week and lagged variables, will be valuable for improving the prediction accuracy. This pro-
cess ensures that all available information in this historical arrival and departure time dataset is
utilised and will indicate whether this kind of data is sufficient for predicting future journeys. The
four models tasked to utilise this training data and engineered features are increasingly more
complex. Complexity refers to their ability to capture intricate patterns and relationships in the
data, with HA and VAR being simple and RF and LSTM being complex. The evaluation of these
models will contribute to the understanding of the nature of the travel and dwell times of a bus
network.

Additionally, this thesis aims to showcase the benefits of incorporating these travel and dwell
time predictions in reachability analysis. The size of the reachability region is often calculated
using the planned PT schedules [14]. This research will calculate the reachability region using
the predicted travel and dwell times. Comparisons between reachability based on the schedule
and the predictions will be investigated. Incorporating these predictions will provide a more
accurate representation of the real world than solely investigating the planned schedule. This will
enable PT engineers and urban planners to make more informed network design and scheduling
decisions.

1.2 Research questions

This thesis combines a proposed travel time prediction model of bus journeys and incorporates
it to be used for reachability analysis. The main research question of this thesis is

How can a predictive model for public transport travel time be developed to improve reachability
analysis?

Below are the sub-research questions of this thesis.

RQ1. What is the state-of-the-art for public transport travel time prediction?

RQ2. How can a real-world case study be designed to validate the output of a public transport
travel time prediction model?

RQ3. Which travel time prediction models achieve high accuracy in predicting public transport
travel times, and what factors influence their performance?

RQ4. What are the implications of integrating prediction models into reachability analysis
tools?

Section 1.3 will present the overview of the methodological approach of this thesis to answer
these research questions.

1.3 Methodological approach

1. Literature review and technical methodology
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The research starts with a comprehensive literature review on the topics of PT travel time
prediction and reachability analysis. This will address RQ1 and provide a good foundation
for RQ3. Insights gained from the literature study will be used to formulate the technical
methodology for developing the four prediction models, HA, VAR, RF and LSTM.

2. Case study

In addition to the literature study, a real-world case study will be formulated to provide
contextual data for building PT travel time prediction models. This step will address RQ2.
This case study will be about a Dutch PT network. The raw data collected from the case
study will undergo preprocessing and preparation, contributing to the development of the
prediction models as training data and input data.

3. Exploratory data analysis

An Exploratory Data Analysis (EDA) will be conducted to better understand the historical
travel time data. The goal is to visualise and analyse patterns in the dataset, ensuring a
solid understanding before starting the development of the prediction models.

4. Prediction model development

Using the insights of the literature study and case study, the development of PT travel
time prediction models will commence. Four different prediction models, HA, VAR, RF
and LSTM, will be developed and evaluated. Comparing their outcomes with the EDA
results provides a deeper understanding of their performance. This will address RQ3.

5. Reachability analysis

The predictions generated by the models will be integrated to enhance the understand-
ing of PT reachability. Here, the implications of these realistic travel and dwell times on
reachability are investigated. This stage will answer the final RQ4.

1.4 Report outline

The report is organised as follows: Section 2 presents the literature review, with Section 2.5
summarising the key findings and identifying the research gap. Section 3 outlines the method-
ology for conducting EDA and developing the prediction models. Section 4 provides a detailed
description of the case study, including data preprocessing, which is covered in Section 4.6.
Section 5 is the results section of the research, which starts with Section 5.1 presenting the
findings of the EDA. Sections 5.2-5.6 discuss the results of the four developed prediction mod-
els. Section 5.7 explores the outcomes of the reachability analysis. To conclude the research,
Section 6 discusses the interpretations and implications of the results. This is followed by Sec-
tion 7, which will offer the conclusions of this thesis.
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2 Literature review

This section presents the relevant literature for this research. An overview of the state-of-the-art
is presented to answer RQ1. The goal of this section is to identify the research gap and formu-
late the building blocks for the methodology and case study.

Section 2.1 highlights the critical role of data in PT, with a focus on Automatic Vehicle Loca-
tion (AVL) systems. Section 2.2 explores various travel time prediction models, including para-
metric models (2.2.1), Kalman Filtering (KF) models (2.2.2), Machine Learning (ML) approaches
(2.2.3) and deep learning models (2.2.4). Model evaluation is discussed in Section 2.3, covering
methods for case study-based validation and key performance metrics. The concept of reach-
ability analysis in urban PT systems is examined in Section 2.4. Finally, the literature review is
summarised in Section 2.5.

2.1 Data in public transport

The widespread implementation of AVL provides large amounts of data on the operation of PT.
Agencies and researchers can use this data to observe, collect and analyse location information
about a vehicle. Ultimately, this data can be used to make informed decisions on network plan-
ning and improving passengers’ experience [15]. Modern AVL systems rely on GPS systems to
receive the longitude and latitude of the bus in real-time. This data is often enriched with arrivals
and departures at stops during the PT journey [16].

This data has been applied to a wide variety of tasks. Performance analysis of the PT bus
network, for example, is useful for the operators. Yan et al. [17] utilised AVL data in statistical
analysis to assess spatial and temporal patterns during various route segments and time-of-day
intervals. D’Acierno et al. [18] propose a method to estimate the urban traffic conditions based
on the AVL data of the buses in the city. The method was able to accurately monitor traffic
conditions not only in the bus lane, but throughout the entire road network.

In the Netherlands, national data standards are utilised. These are available for download
through NDOV, which is the Dutch historical real-time transit data [7]. This database provides
the schedules, actual travel information and rates for all PT services in the Netherlands.

2.2 Travel time prediction models

The application of AVL data that this thesis focuses on is travel time prediction. This section
lays out the prediction models that have been used extensively for this task. These models
include parametric models (2.2.1), KF models (2.2.2), ML models (2.2.3) and deep learning-
based models (2.2.4). Furthermore, the datasets used for these prediction models are also
discussed in this section.

2.2.1 Parametric models

In parametric models, the set of parameters estimated to establish a relationship between de-
pendent and independent variables is predefined. These parameters will be calculated using
data. The most popular parametric models are time series models and regression models. With
time series models, the assumption is made that a pattern exists between historically observed
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data and future travel time patterns. Popular methods that fall under this category are Moving
Average (MA), AutoRegressive (AR) and AutoRegressive Integrated Moving Average (ARIMA).
The main advantage of these methods is their fast computational speed and ease of implemen-
tation. An overview of the literature that deploys historical average techniques is presented in
Table 2.1.

Table 2.1 – Literature overview on bus travel time using analytical model approaches and his-
torical average approaches. The prediction model column displays the prediction model used in
the paper, and the dataset column displays what kind of data is used for predicting travel times.

Paper Prediction model Dataset

Chung and Shalaby
[8], 2007

Regression Historical GPS data, weather
data, schedule

Suwardo et al. [19],
2010

ARIMA Historical arrival and departure
time data, schedule

Maiti et al. [20],
2014

MA, regression Historical GPS data

Ma et al. [9], 2017 Markov chain Historical arrival and departure
time data

Chung and Shalaby [8] propose an estimated arrival time model which incorporates GPS
data of the last five days of operations and the present day’s operational conditions. The model
that incorporated a regression model performed the best. This study concluded that data on the
present operational conditions is necessary for accurate real-time prediction; solely relying on
the past values is insufficient for prediction.

Suwardo et al. [19] propose an ARIMA method for predicting bus travel time solely based
on past observations. The proposed models could effectively predict these times and could be
leveraged for timetable setup.

Maiti et al. [20] propose a historical data model which considers vehicle trajectory and times-
tamps as input features. They have modelled using simple physical equations, such as HA
and regression for vehicle velocity. The model has been shown to outperform alternatives such
as Artificial Neural Networks (ANN) and Support Vector Machines (SVM) prediction models in
training and testing time while retaining accuracy.

Ma et al. [9] developed a model that captures correlations among link travel times condi-
tional on the underlying traffic states. A Markov chain process is proposed to estimate the traffic
transition probability model. The method is effective when correlations in the historical data exist.

These parametric models, such as ARIMA, MA and regression models, have a proven track
record for time series forecasting. Their simplicity in implementation and ease of interpretation
make them valuable tools for initial forecasting results. The papers discussed in this section
show that they have acquired good results for PT travel time prediction. These models can
establish a baseline prediction, which can then be improved by more sophisticated ML or deep-
learning models.

A common limitation of parametric models, such as AR or MA, is their reliance on the last
n previous observations. While this is often sufficient for short-term prediction, it can overlook
important indicators from further in the past. More advanced ML methods discussed in Section
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2.2.3, however, can generalise across the entire dataset without requiring a fixed context win-
dow.

Additionally, historical data must often be filtered by factors such as weekdays, the time
of day, or other relevant characteristics to improve prediction accuracy. This process requires
significant domain knowledge. Another key drawback of parametric models is their linear nature.
This makes them less effective at capturing non-linear relationships in the data.

2.2.2 Kalman filter

KF has been extensively applied to the prediction of bus travel times. Table 2.2 presents a brief
overview of the literature on this topic. KF consists of a state-space model of a linear stochastic
system. It uses a series of measurements observed over time to estimate unknown variables in
the future. Statistical noise and variance are also incorporated to produce a distribution for the
output estimate.

Table 2.2 – Literature overview on bus travel time prediction using a KF approach. The predic-
tion models column for all papers is KF approaches, but these are occasionally used in tandem
with another model.

Paper Prediction model Dataset

Kumar et al. [10],
2017

Ensemble KF Real-time GPS data

Li et al. [21], 2017 KF, k-NN Historical and real-time GPS data

B. Anil Kumar and
Vanajakshi [22],
2019

KF, k-NN Historical and real-time GPS data

Zhang et al. [23],
2022

KF Historical travel time data, GPS
data and IC cards

Kumar et al. [10] propose a prediction method that considers both temporal and spatial vari-
ations in travel time. A Godunov schema was used to discretise the speed-based equation, and
the prediction scheme was based on KF. The proposed method outperformed the HA and ANN
methods.

Li et al. [21] propose a real-time mixed model for bus arrival time prediction. Accurate short-
term predictions are made by considering traffic flow and delay jitter patterns, which are mined
by a K-Nearest Neighbours (k-NN) algorithm. KF was applied to real-time data flow, and multi-
step predictions can be obtained by combining it with a Markov Transfer database on historical
data.

B. Anil Kumar and Vanajakshi [22] propose a method with a k-NN classification algorithm for
data mining. A pattern between the real-time input and historical data is sought and is used for
arrival time prediction. The model is based on a KF framework. It was shown that the proposed
method outperforms a historic average prediction model.

Zhang et al. [23] developed a short-term bus travel time prediction using a KF approach.
Using a large data mining approach from multiple data sources, such as GPS signals, historical
travel time and IC cards.
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KF is unsuitable for the task of predicting travel time in the future, which is the objective of
this thesis. A KF model needs to be updated with the new measurements on the system, and
this makes it suitable for real-time prediction. Applying KF on a model with a larger prediction
horizon, the model will not be accurate, as predictions farther in the future will solely rely on the
physical model. There won’t be corrections using the system measurements. This section is
included in the literature review, because it is widely used for travel time prediction.

2.2.3 Machine learning

In Section 2.2.1 parametric prediction models are discussed; this section discusses ML models,
which are non-parametric models. This means that the relationship between the historical ob-
served data and the future travel time patterns will be obtained from the data itself, along with
corresponding parameters. Popular models are ANN, RF and SVM. This section will discuss
ML models that are not deep learning models. Those will be discussed in Section 2.2.4.

An ANN is an ML model inspired by the brain’s neural networks [24]. It consists of layers of
interconnected nodes that process data and adjust their connections based on learning patterns
in the data. It is an ML model which can learn complex non-linear relationships. RF is an
ensemble ML model which builds multiple decision trees during training and merges their output
for accurate prediction [25]. This also controls overfitting and enables it to handle large, complex
datasets. Lastly, SVM is a supervised ML model, which works by finding the optimal hyperplane
that best divides the data points [26]. Based on this division, it can predict travel and dwell times,
for example. It is effective for complex datasets when the data is not linearly separable.

Table 2.3 – Literature overview on bus travel time prediction using diverse ML methods. The
prediction model column displays the model that was found to yield the best results; in most
papers, different models are also tested.

Paper Prediction model Dataset

Amita et al. [27],
2015

ANN Historical arrival and departure
time data, schedule, historical
GPS data

Yu et al. [28], 2017 RF, k-NN Historical AVL data

Ma et al. [29], 2019 SVM Historical taxi data, historical
travel time data, historical bus
smart card data

Chondrodima et al.
[30], 2022

RF Historical arrival and departure
time data

García-Mauriño et
al. [11], 2024

ANN Bus schedule, real-time travel
time data

Amita et al. [27] developed an ANN which takes dwell time, delays and distance between bus
stops as input to predict bus travel time. The model demonstrated superior pattern recognition
compared to a linear regression model.

Yu et al. [28] propose a hybridisation approach of an RF model based on a k-NN model.
That is, this RFk-NN model contains two main procedures. The first process involves selecting
the training set for the RF model from the original dataset, which is done using a k-NN algo-
rithm. The second process consists of training and a regression procedure for the RF model.
This approach achieves high accuracy compared to other techniques such as linear regression,
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SVM, and classic RF.

Ma et al. [29] propose a segment-based bus route graph with two independent prediction
models, which predict transit time and dwelling time. An SVM model is trained on bus travel
time data, taxi travel time data and bus smart card data. The model can achieve high prediction
accuracy in both normal and abnormal traffic conditions.

Chondrodima et al. [30] propose a method to use GTFS data in a framework for predict-
ing PT arrival time. This framework combines a GTFS schedule with a real-time GTFS feed.
Several machine learning algorithms are tested on this framework and an ANN had the best
performance. This was mainly due to the large amount of data available and the ability of the
ANN to learn intricate patterns.

García-Mauriño et al. [11] propose a procedure to predict the time of arrival of a bus fleet
that relies solely on historical arrival time records. One model tree and two RF techniques were
selected based on low computational costs, superior structure interpretability and regression ca-
pabilities. Significant improvements in terms of error mean and standard deviation are achieved
for the Madrid and Paris bus fleets.

These studies demonstrate that ML models can identify patterns in data to predict arrival
times effectively. They excel at handling non-linear patterns, which are frequently encountered
in PT datasets. For instance, Chondrodima et al. [30] found that in their dataset, the most com-
plex model, an ANN, yielded the best prediction results.

Unlike VAR and ARIMA models, which are specifically designed for time-series data, ML
models are often more general-purpose. Simpler models like VAR and ARIMA can sometimes
better exploit the sequential nature of the data compared to ML algorithms. This distinction is
not necessarily a drawback of either approach, but it is important to consider when developing
PT travel time prediction models.

The quality of data is crucial for any ML research. Yu et al. [28] required extensive feature
engineering and preprocessing to achieve good results with RF algorithms. One key aspect of
high-quality data is that the selected features must accurately represent real-world scenarios
and ensure that samples are not uncorrelated [28]. Additionally, collecting a large and diverse
dataset helps prevent ML models from overfitting, which is particularly important for more com-
plex models like ANNs.

2.2.4 Deep learning

Deep learning models are considered the state-of-the-art for public transport travel time predic-
tion. These techniques include LSTM neural networks, Recurrent Neural Networks (RNN) and
Convolutional Neural Networks (CNN). These techniques are widely used for time-series fore-
casting problems. An overview of the literature deploying these techniques for bus travel time
prediction is presented in Table 2.4.

RNNS are a type of deep learning model designed to handle sequential data by maintaining
a hidden state that captures information from previous time steps. However, RNNs struggle
with long-term dependencies due to issues like vanishing gradients [31]. LSTM networks ad-
dress this problem by introducing memory cells and gating mechanisms that regulate the flow
of information. This allows them to retain information of longer sequences.
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Table 2.4 – Literature overview on prediction of bus travel times using deep-learning techniques.

Paper Prediction model Dataset

Pang et al. [32],
2019

RNN, LSTM Historical and real-time GPS data,
infrastructure data

He et al. [33], 2019 LSTM Bus schedule, road characteris-
tics, historical travel time data

Liu et al. [34], 2020 LSTM Historical and real-time GPS data

Alam et al. [12],
2020

RNN Historical and real-time GPS data,
weather data

Han et al. [13], 2020 LSTM Bus schedule, historical and real-
time GPS data, weather, bus me-
chanical properties

Chondrodima et al.
[35], 2022

RBF ANN Bus schedule, historical and real-
time arrival and departure time
data

Pang et al. [32] deploys an RNN with an LSTM block to correct for the passing of the earlier
bus stops. Real-time data is incorporated with data on the infrastructure to create an efficient
deep-learning approach. They conclude that long-range dependencies in time are necessary to
accurately predict bus travel time.

He et al. [33] predict bus journey time for an individual passenger by separately predicting
riding and waiting time. An LSTM network is used to predict the riding time of each segment of
the bus/lines and routes. They show that journey time is significantly impacted by waiting time
and is therefore estimated by taking the historical average. Their approach is able to outperform
six baseline approaches in a case study on a part of the Singaporean bus network.

Liu et al. [34] propose a hybrid model of LSTM and ANN based on a spatio-temporal feature
vector. Long-distance arrival-to-station prediction is performed by the temporal feature vector.
Short-distance arrival-to-station prediction is realised by the spatial feature. The proposed ap-
proach is highly accurate in solving bus arrival time prediction problems.

Alam et al. [12] propose an LSTM model which is trained on GPS coordinates of transit buses
and hourly weather data. They found that incorporating weather data drastically improved the
predictive performance of the model. It even captured extreme delays and early arrivals in the
predictions.

Han et al. [13] propose a GPS calibration method and introduces projection rules for specific
road shapes. Using both historical data and real-time GPS information, an LSTM-based train-
ing model is employed for bus arrival prediction. Experimental results show that the proposed
method outperforms traditional time-of-arrival techniques.

Chondrodima et al. [35] propose a data-driven approach for predicting arrival time based
on RBF neural networks, using a modified version of the successful PSO-NSFM algorithm for
training. The proposed model utilises open real-world data feeds. This RBF NN can outperform
state-of-the-art prediction models in prediction accuracy and computational times.

In general, deep learning methods have demonstrated superior predictive performance com-

12



pared to traditional models such as HA, ARIMA and KF. These conventional models often strug-
gle to capture the temporal dependencies and nonlinear relationships present in real-world bus
data. There is a strong consensus that incorporating long-term historical patterns can signifi-
cantly enhance forecasting accuracy. This is because travel times are influenced by complex
factors such as recurring traffic patterns, weather conditions and seasonal influences. This may
not be fully captured by short-term dependencies alone.

In Table 2.4 it can be observed that Pang et al. [32] and He et al. [33] already incorporate
infrastructure data. This suggests that these deep learning approaches are powerful enough to
make informed decisions utilising more diverse data. This is also demonstrated by Alam et al.
[12] and Han et al. [13], which utilise weather data in their LSTM approach.

2.3 Prediction model evaluation

The prediction models outlined in the previous sections require an input data source, which is
provided by a real-world case study. This process is described in Section 2.3.1. Additionally, the
standards for evaluating the performance of these prediction models are discussed in Section
2.3.2.

2.3.1 Case studies in the literature

After formulating the methodology for the PT travel time prediction, the methods must be tested
on real-world scenarios. In all papers discussed in Sections 2.2.1-2.2.4, a case study is nec-
essary to test and evaluate the models. The main goal is to use the real-world data for the
prediction model.

Ma et al. [29] and He et al. [33] analyse multiple bus routes with varying lengths and road
characteristics in the same urban network, as this ensures diverse and comprehensive test-
ing. Different routes exhibit varying traffic patterns, road conditions and passenger demand. A
model trained and tested on a single route may overfit to its specific characteristics, limiting its
generalisability to other routes. García-Mauriño et al. [11] also has this approach, but takes bus
routes from two different European cities, namely Madrid and Paris.

The data sourced from the case study must be of high quality and complete. This ensures
that the model captures true patterns and relationships rather than noise or errors. Also, features
that predict the bus travel time must be available in the case study. This can be historical records
of the network [27][17][30], weather data [12][13] or traffic data [29][32].

2.3.2 Evaluation metrics

When evaluating and making improvements to the prediction models, it is crucial to select a
meaningful evaluation metric. When comparing the performance on an unseen part of the
dataset, comparing it to the actual target variables will quantify how well a regression model
predicts outcomes. This section will discuss four of the evaluation metrics used by the literature
discussed in Sections 2.2.1-2.2.4.

Mean Absolute Error (MAE) measures the average absolute difference between predicted
values and actual values. MAE is useful because it maintains interpretability in the original
units of the target variable and is less sensitive to outliers compared to other metrics like Mean
Squared Error (MSE). For these reasons, it is widely used [10][23][28][33][30]. An alteration
of the MAE metric is the MAE/distance, which is the average error of travel time per km. This
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compensates for the larger error, which may be caused by the longer travel distance [28].

Another metric is the Mean Absolute Percentage Error (MAPE), which measures the aver-
age percentage difference between predicted and actual values. It provides a relative measure
of error, making it useful for comparing models across different datasets. Two drawbacks are
that it is undefined when actual values are equal to zero, and it can over-penalise when the
actual values are small [10][28][33].

The last metric that is used for the evaluation of bus travel time prediction models is Root
Mean Squared Error (RMSE). This metric measures the standard deviation of prediction errors.
Unlike MAE, RMSE gives more weight to larger errors due to squaring the differences, making
it more sensitive to outliers [28].

2.4 Reachability analysis

Reachability refers to the time that it takes a passenger to reach certain destinations. It is a
crucial factor in urban planning and mobility, as it affects economic activity, social inclusion and
overall quality of life. Section 2.4.1 explains the factors influencing reachability and Section 2.4.2
outlines the analytical methods used for the analysis of reachability.

2.4.1 Reachability factors

Reachability is influenced by various factors, both spatial and temporal. Spatial network factors
include the layout of routes, stops, and stations. The logical design of transfer points and hubs
is crucial for enhancing multi-modal reachability. Decisions must be made based on population
centres and Points of Interest (POIs) [36]. In addition to spatial factors, temporal factors also
play a significant role in urban reachability. These include service frequency, operating hours,
and schedule variations, all of which impact how accessible urban areas are.

Besides ensuring good reachability during normal operations, it is crucial for a PT network to
be robust against random errors and systematic attacks [37]. A PT network can easily become
dysfunctional if a single node is disabled. Therefore, designing the network to include viable
alternative routes is imperative to account for these potential disruptions.

Reachability analysis often involves social and inclusion-related considerations. It is essen-
tial to ensure that every citizen in an urban environment has the opportunity to access neces-
sary destinations. For instance, the layout of bus stops significantly influences accessibility to
healthcare services [38]. Also, it has been found that crowding issues during peak hours can
negatively impact reachability to jobs [39]. Olsson et al. [40] found that efficient reachable PT
reduces the reliance on private cars and therefore supports environmental sustainability.

2.4.2 Analytical methods

Computing reachability analysis is a complex computational task that involves analysing numer-
ous factors. This is often achieved using graph theory, where nodes represent stops and edges
represent routes. Algorithms such as Dijkstra’s or A* (A-star) can be utilised to calculate the
shortest paths. There are ongoing advancements in reachability analysis techniques; for exam-
ple, Tesfaye et al. [14] propose a cell partition method for analysing PT networks.

Various data sources can be utilised for reachability analysis. Most commonly, the provided
schedule is analysed. Kujala et al. [41] investigate Pareto-optimal PT journeys to compare
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reachability. Other data sources include credit card information and AVL data, as leveraged by
Arbex and Cunha [39] to investigate reachability.

2.5 Conclusion

This section aims to conclude the findings and set out design directions for the methodology
and case study. As mentioned in the introduction in Section 1, the research gap of this thesis
revolves around three points, namely the usage of minimal historical travel time data, predictions
of future journeys and realistic predictions in the context of reachability.

2.5.1 Data

In the studied literature, the data sources used for PT travel time prediction can be ellobarote.
This means that besides the historical travel time data, weather, traffic, taxi, fare card, and
infrastructure data are also utilised. The input of these datasets is often leveraged by complex
deep learning methods [13][32][33]. Reliable prediction results might be achieved by solely
investigating the past travel time data. This data can be sourced from setting up a case study of
a real-world bus line in an urban environment. This will often yield AVL data for bus travel time
prediction. A form of this data is GTFS data. Chondrodima et al. [35] and Chondrodima et al.
[35] utilise GTFS datasets for their training data representation, but more importantly, to convey
the prediction information for more advanced analysis.

2.5.2 Prediction models

A widely accepted practice is to have a baseline prediction model applied to the data of the spe-
cific case study of the research. A historical average model is often used, due to its simplicity
and intuitive interpretability. Time series models, such as MA, ARIMA and VAR, would be the
next step, as these would be able to capture more intricate patterns.

A more complex approach is ML and deep-learning approaches [28] and [30] use an RF
on historical datasets and yield good results. In Section 2.2.4, various deep learning method-
ologies are comprehensively discussed. The discussion highlights their superiority in achieving
higher prediction accuracy and enhanced robustness. Deep learning techniques are widely
recognised as the state-of-the-art approach for predicting PT arrival times. This establishes a
strong foundation for the proposed research.

2.5.3 Research gap

The existing literature often focuses on the arrival time prediction of a bus that is currently in op-
eration [13]. In these approaches, the prediction models consider real-time traffic and weather
conditions, and the model can also use the arrival and departure times of the current bus trip.
This thesis will focus on the prediction of arrival time for future bus trips. He et al. [33] does
consider passenger journeys in the future, but not the prediction of the future bus schedule.
Short-term future prediction is applied by Zhang et al. [23].

Another aspect of the research gap is that these future predictions will be incorporated into
a reachability analysis. Patterns in travel and dwell times will influence the speed of the bus
network and, therefore, reachability. This temporal factor will be expressed more realistically.
Current literature mainly utilises travel time prediction to provide passengers with arrival time
information of an ongoing bus journey, not to enhance reachability analysis.
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3 Methodology

Section 2 provides an overview of the existing literature on the topic of PT travel time prediction
and reachability analysis. This will be the theoretical foundation for the methodology section.
Based on the literature review in Section 2, this section lays out the methodology for the prepro-
cessing, EDA and prediction models. This will form the foundation for answering RQ3 and RQ4.

Four prediction models have been selected for analysis and comparison of outcomes. The
best-performing model will be utilised for reachability analysis. The first model to be developed
is the baseline HA model. Next, a time-series VAR model will be set up. Additionally, two ML
models will be developed: an RF model and an LSTM deep learning model. This selection of
models represents a step-wise increase in complexity to better understand the trends in travel
and dwell times within the bus network. Further motivation is outlined in section 3.4.

This methodology begins with a description of the symbols that are used in this Methodology
section, which is presented in section 3.1. Secondly, the dataset that is required as input for the
prediction models is described, this is outlined in Section 3.2. Analysing this dataset will be done
in the EDA, discussed in Section 3.3. After this the four prediction models are described, starting
with the HA model in Section 3.5. Next, the time series model VAR is outlined in Section 3.6
and the RF model in Section 3.7. Finally, the most complex model LSTM is described in Section
3.8. The evaluation techniques that will be used for these prediction models are documented in
Section 3.9. Finally, Section 3.10 describes how the output of the prediction models is utilised
for the reachability analysis.
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3.1 Symbol definitions

Table 3.1 defines the symbols used throughout the methodology to ensure clarity and consis-
tency.

Table 3.1 – Symbol definitions used in the methodology.

Symbol Definition Unit

j Index for journey in the dataset -

k Index for stop in a certain journey -

l Index for link in a certain journey -

kj Vector of stops in journey j -

lj Vector of links in journey j -

nj Number of stops in journey j -

N Number of journeys in dataset -

atk Arrival time at stop k (yyyy/mm/dd: hh/mm/ss)

dtk Departure time from stop k (yyyy/mm/dd: hh/mm/ss)

yk Dwell time at stop k s

yl Travel time of link l s

yk,j Vector of dwell times of journey j s

yl,j Vector of travel times of journey j s

ŷk Predicted dwell time at stop k s

ŷl Predicted travel time of link l s

ŷk,j Vector of predicted dwell times in journey j s

ŷl,j Vector of predicted travel times in journey j s

3.2 Dataset description

Two data types are necessary for accurate bus travel and dwell time prediction, namely the
schedule and the historical travel and dwell times. For the historical data, the source data can
be in the form of arrival and departure times at certain stops along the bus routes or the dwell
and travel times of the bus journey. This data should be represented as shown in Table 3.2.
Each row of this dataset is a journey along a certain bus route, the columns are the travel and
dwell times of that journey. This data should be presented as a time series indexed by the
departure time from the first stop of the bus journey.
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Table 3.2 – This is an example of one direction of a single bus line presented in a tabular format.
Dwell time yk1 is the difference between the arrival time atk1 at the first stop and the departure
time dtk1 from the first stop. This is done for all the stops in kj in a journey j. Travel time yl1
is the difference between the departure time dtk1 at the first stop and the arrival time atk2 at
the second stop. This is also done for all links in lj in a journey j. The table is indexed by the
departure time dtk1 from the first stop.

Journey Index yk1 yl1 yk2 yl2 · · · yln−1 ykn

j = 1 t0(1) 30 80 0 65 · · · 125 20

j = 2 t0(2) 45 70 50 90 · · · 135 10

j = 3 t0(3) 0 95 40 85 · · · 140 15

j = 4 t0(4) 45 75 0 75 · · · 130 0
...

...
...

...
...

...
. . .

...
...

j = N t0(N) 35 90 0 70 · · · 140 0

The data described in Table 3.2 can be constructed from a logged AVL dataset. This dataset
should include the historical arrival and departure times at each stop. Using this information,
the Equations 3.1 and 3.2 calculate dwell time yk,j and travel time yl,j , which form the columns
of the dataset.

yk,j = dtk,j − atk,j (3.1)

Where yk,j is the dwell time at stop k for journey j, which is calculated by taking the differ-
ence between the arrival time atk,j and departure time dtk,j at stop k for journey j.

yl,j = atk,j − dtk−1,j (3.2)

Where yl,j is the travel time for link l for journey j which spans between stop k and the pre-
ceding stop k − 1. Travel time yl,j is calculated by taking the difference between the departure
time dtk−1,j from stop k − 1 and the arrival time atk,j at stop k for journey j.

Table 3.2 should not have any missing values. This means that preprocessing steps such as
imputation, duplicate handling and checking schedule adherence might be necessary steps to
acquire this data. These steps for the specific case study are explained in Section 4.6.

Two journeys j and j′ follow the same route when the stop vector kj is identical to the
stop vector kj′ . Stop vector kj = {k1, k2, ..., kn} is defined as the stops visited by a bus in a
journey j, where the first element of the vector is the first stop and the second element is the
second visited stop and so on. The corresponding dwell times at the stops in kj are defined as
yk,j = {yk1,j , yk2,j , ..., ykn,j}.

When the stop vector kj is identical, then the link vector lj will also be identical. This is be-
cause the link vector lj = {l1, l2, ..., ln−1} is defined as the first element being the link between
the first and second stop and the second link the link between the second and third stop and so
on. The corresponding travel times at the links in lj are defined as yl,j = {yl1,j , yl2,j , ..., ykn,j}.
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3.3 Exploratory data analysis

The main objective of the EDA is to gain insights that inform subsequent prediction modelling
and decision-making, which is split into two parts. Firstly, investigating the AVL data used to
create the data format presented in Table 3.2 must be done. It is beneficial to identify missing
values, outliers and duplicate messages in the AVL data source. With this knowledge, precise
data cleaning and data transformation steps can be undertaken.

The second step of the EDA is summarising, visualising and interpreting the created dataset
of travel and dwell times. This begins with generating a summary of the statistics, such as mean,
median, standard deviation and percentiles. After this, histograms, box plots and density plots
can be used to analyse single variables. Scatter plots and time-indexed line plots may reveal
more about the patterns in time. Analysing the z-scores will reveal more about the outliers.

3.4 Prediction model selection

Four prediction models are selected for analysis, increasing in complexity from a simple baseline
model. The goal is for each model to better capture the underlying patterns of travel and dwell
times, thereby increasing prediction accuracy and effectively handling the numerous variables
involved in bus travel time prediction.

The baseline model will be an HA model, chosen for its simplicity as it doesn’t require com-
plex models or assumptions. Maiti et al. [20] demonstrated the effectiveness of using average
travel times for predictions. They also suggested making these averages dependent on the time
of day, an approach that will be developed in this thesis.

The second model will be a VAR model. This multivariate time series prediction model can
capture interdependencies between a large set of variables, which is crucial for predicting travel
and dwell times, where each stop and link is represented as a single variable. With its simplicity
and lag structure, VAR can effectively capture temporal dependencies. Although ARIMA has
been shown to forecast public transport travel times effectively [19], it is applied to a single vari-
able and does not account for interdependencies between variables.

The third model, RF, is the first ML model selected due to its ensemble-based nature, which
combines multiple decision trees to reduce variance and enhance generalisation. Another ad-
vantage of RF is its inherent ability to provide feature importance metrics, enabling the selection
of the most predictive features. This reduces dimensionality and enhances model efficiency [25].
Promising results have been observed when applying RF to historical travel time data [28][30].

The most complex model will be an LSTM neural network. Deep learning methods have
been shown to capture deep underlying patterns [34]. LSTM, in particular, is advanced in pre-
dicting time-series data and can easily incorporate other variables such as weather or traffic
information [12][13]. This versatility will enable us to extract the most from the engineered fea-
tures of the historical travel time data.

3.5 Historical average

This section lays out the mathematical design of an efficient HA prediction model. Two variants
are proposed in this research, the general HA model is described in Section 3.5.1 and the time-
dependent HA model is outlined in Section 5.2.3.
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3.5.1 General historical average

The predictions for a certain route, such that the stop vectors kj and lj are identical for all
journeys considered, are the averages of travel times of the specific links and dwell times of
specific stops. Equation 3.3 is used to calculate the average travel time ŷl for a link l.

ŷl =
1

N

N∑

j=1

yl,j (3.3)

In Equation 3.3, link l has been travelled N times in journeys in the training dataset. yl,j is
the travel time of a certain link l for a journey j. The average is taken over all the instances N
that the link l has been travelled {yl,1, yl,2, ...yl,N}. This will give the prediction for the travel
time ŷl for a link l. Similar to predicting travel times, Equation 3.4 is used to predict the dwell
time ŷk at a stop k.

ŷk =
1

N

N∑

j=1

yk,j (3.4)

In this equation, the predicted dwell time ŷk at stop k is calculated by taking the average of
all the dwell times at this stop for all journeys in the dataset. The average is taken over all the
instances that this stop has been used in a certain route {yk,1, yk,2, ...yk,N}.

Applying Equations 3.3 and 3.4 to all links in l and stops in k, respectively, will yield pre-
dicted travel and dwell times for the complete route. The predicted vector travel times ŷl =
{ŷl1 , ŷl2 , ..., ŷln−1} and predicted vector dwell times ŷk = {ŷk1 , ŷk2 , ..., ŷkn} can be used as
predictions for the reachability analysis.

3.5.2 Time-dependent historic average

The average dwell and travel times will vary during different times of the day [20]. To exploit this,
an advancement on the HA model is developed. The aim of the time-dependent HA model is
to take the average dwell and travel times of journeys with a start time t0 that falls in a certain
interval ⟨t, t + dt⟩ to predict feature journeys that also have start times t0 in that same interval
[20]. This way, the day is divided into similar-sized intervals to predict all journeys with varying
starting times. The size of the interval is decided by the parameter dt. This should be deter-
mined by the interval size dt, which produces the best results on the test dataset.

The Equations 3.3 and 3.4 are adjusted to Equations 3.5 and 3.6. In these equations, t
relates to a specific similar-sized interval ⟨t, t+dt⟩, the day is divided into. This means that yl,t,j
and yk,t,j refer to the past travel and dwell times in certain time interval ⟨t, t+ dt⟩. Furthermore,
ŷl,t and ŷk,t are the predicted travel and dwell times for that time interval. This is similar to the
equations presented in the previous Section 3.5.1.

ŷl,t =
1

N

N∑

j=1

yl,t,j (3.5)

ŷk,t =
1

N

N∑

j=1

yk,t,j (3.6)
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3.6 Vector AutoRegression

This section describes the statistical method VAR that can be used to analyse and forecast
multivariate time series. This method is able to model more intricate patterns in the data than
the HA model. The mathematical formulation in this section for the VAR model and forecasting
methods is based on Lütkepohl [42].

Section 3.6.1 outlines the definition of a VAR model. Following this, Section 3.6.2 details the
optimisation process for the VAR model. Once the model is optimised, it is crucial to determine
the optimal lag order, which is discussed in Section 3.6.3. Finally, Section 3.6.4 explains how
the optimized VAR model can be utilised for forecasting travel and dwell times.

3.6.1 Model definition

The basic p-lag VAR model (denoted as VAR(p)) has the form as displayed in Equation 3.7.

Yt = A1Yt−1 +A2Yt−2 + · · ·+ApYt−p + ut (3.7)

Where:

• n is the number of stops and n−1 is the number of links for a bus line in a certain direction.
This means that (2n− 1) is the number of variables in the VAR model.

• Yt is a (2n− 1)-dimensional vector of dwell times yk and travel times yl at time step t, s.t.
Yt = {yk1 , yl1 , . . . , yln−1 , ykn}. This is a combination of the vectors yk and yl.

• Ai (1, . . . , p) are (2n− 1)× (2n− 1) coefficient matrices.

• ut ∼ N (0,Σu) is a white noise error term with zero mean and covariance matrix Σu.

3.6.2 Estimation procedure

Firstly, residual tests, such as checking for autocorrelation and normality, are conducted to en-
sure model adequacy. The training data input of the VAR prediction model is assumed to be
stationary and the periods should be equally spread. Preprocessing steps must be undertaken
to ensure these features for the prediction model.

After the estimation procedure is performed on the training data. The parameters Ai are
estimated using Ordinary Least Squares (OLS).

Âi = (X ′X)−1X ′Yi (3.8)

where for each time series i the estimated Âi are calculated using this equation. Where X
is the matrix of the lagged variables. Yi is the vector of current values of the i-th time series.

3.6.3 Lag order optimisation

The optimal lag order p is determined using the criteria Akaike Information Criterion (AIC) [43].
AIC is a statistical measure used to compare models by balancing the quality of the fit with
model complexity. It is calculated as:

AIC = 2(2n− 1)− 2ln(L) (3.9)
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Where:

• (2n−1) is the number of estimated parameters in the model (i.e. the coefficient matrices)

• L is the maximum likelihood of the model.

A lower AIC value indicates a better trade-off between model accuracy and complexity. When
using it to compare VAR models, it ensures that the model is neither underfitting nor overfitting.

3.6.4 Forecasting

After attaining an estimated VAR(p) model with an optimal lag value, the future dwell and travel
times can be forecasted iteratively. Equation 3.10 is used for this process.

Ŷt+h = A1Ŷt+h−1 +A2Ŷt+h−2 + · · ·+ApŶt+h−p (3.10)

Where h denotes the forecast horizon. Here, the optimised A1, . . . , Ai are used for future
predictions. Similarly, Ŷt is the combination of vectors ŷk and ŷl.

3.7 Random Forest regression

This section describes the RF model that will be developed. Section 3.7.1 explains the inner
workings of a decision tree which make up the RF algorithm. These decision trees make up
the RF, which is explained in Section 3.7.2. RF is not strictly a time-series model. This means
that lagged variables must be created, this is described in section 3.7.3. Section 3.7.4 explains
the process of tuning the hyperparameters of the RF model, which is important to improve
prediction accuracy. For model evaluation, feature importance analysis can be done on the
trained RF model. This is outlined in the evaluation Section 3.9.2.

3.7.1 Decision trees

A decision tree is a flowchart-like structure where each internal node represents a decision
based on a feature. The features in this case are travel and dwell times. Decisions typically
involve whether a specific feature is higher or lower than a particular value. Depending on the
outcome, the sample is led to another branch of the decision tree. The structure of the decision
tree is as follows:

1. Root node: The topmost node in the decision tree and this represents the entire dataset.
The dataset is split into child notes based on the feature that provides the best split.

2. Internal nodes: These nodes represent decisions based on features and sections of the
dataset. These nodes split into further child nodes.

3. Leaf nodes: Terminal nodes that represent the final output of the regression model.
These nodes take a continuous value to output.

When training the decision tree, the algorithm selects the feature that provides the highest
quality split based on the criterion. The criterion that was selected for splitting is to minimise
the Mean Squared Error when trying to predict the required outcomes. This criterion penalises
larger errors more, which means the model is encouraged to focus on reducing significant errors.
The dataset is split based on the selected feature and the process is repeated recursively. This
stops when a stopping condition is met, such as maximum depth, minimum samples per leaf or
no further information gain. Equation 3.11 displays how the MSE is calculated.
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MSE =
1

N

N∑

i=1

(Yi − Ŷi)
2 (3.11)

Where Ŷi is a vector of the predicted travel and dwell times of a journey in the training
dataset, and Yi are the true values. The goal is to minimise the MSE value in each split made
during the training process.

3.7.2 Random forest

An RF algorithm fits many decision tree regressors on sub-samples of the training dataset and
uses averaging to improve the predictive accuracy [25]. The first step of the process is bootstrap
sampling, where random rows of the training data are selected. After feature sampling, only a
random subset of features is used for each decision tree. This means a selection of travel and
dwell times is used to predict future travel and dwell times. This ensures the diversity of the deci-
sion trees and avoids overfitting. The RF model is trained when every decision tree is configured.

The features that the model will train on are the travel times yl and dwell times yk. The model
is implemented using the scikit-learn library, namely the RandomForestRegressor class is
used. Figure 3.1 displays the prediction process when the model is trained.

Figure 3.1 – Diagram illustrating the process of predicting when the whole RF model is trained
(i.e., the decision trees are trained). The blue path is the path with certain values for input
features and each decision tree outputs its predicted travel and dwell times. All the outcomes
are averaged and this leads to the final prediction.

3.7.3 Lagged features

RF is not inherently a time series forecasting model. This means that lagged features must
be created to enable the model to predict the time series based on historical travel and dwell
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times. The lagged features of a certain journey are the travel and dwell times of the previous
nlags journeys. The travel and dwell times of the current journey are variables that need to be
predicted. nlags is the number of previous journeys incorporated for which lagged features are
created. This can be thought of as how far back the RF model can look.

The parameter nlags can be optimised like a standard hyperparameter, by trying different
values and evaluating the results. However, in the case of this specific hyperparameter, it can
be determined using domain knowledge on the amount of past data that is necessary to capture
patterns of interest in the data. For example, 168 lags are needed to capture the patterns for a
whole week when the data is sampled hourly.

3.7.4 Hyperparameter tuning

After training the model, it is imperative to optimise its hyperparameters. Hyperparameters are
the configuration of the RF model that is set before training the model. Finding the optimal
set of hyperparameters will guarantee the best predictive performance for the dataset. The
hyperparameters tuned for the RF model are displayed in Table 3.3. These can be tuned by
Grid Search or Random Search, which are ways to test a set of hyperparameters and assess
their prediction outcomes. The goal is to find the set of hyperparameters that achieves the
lowest MAE.

Table 3.3 – Hyperparameters of the RF algorithm.

Parameter name Description

n_estimators The number of trees in the forest. This generally improves model
performance, but also increases computational cost.

max_depth Maximum depth of the tree. This helps prevent overfitting, but may
reduce model complexity.

min_sampels_split The minimum number of samples required to split an internal node.
Higher values prevent the model from learning overly specific pat-
terns, reducing overfitting.

min_samples_leaf The minimum number of samples required to be at a leaf node. This
helps the model generalise better.

max_features The number of features to consider when looking for the best split.
This helps to balance model accuracy and computational efficiency.

bootstrap True or False to allow the model to use a different subset of data for
training, improving robustness.

3.8 Long Short-Term Memory deep neural network

The most advanced prediction model will be an LSTM deep neural network. Section 3.8.1
explains the inner workings of a single LSTM unit. These are used in the LSTM layers of
the complete neural network, which is described in Section 3.8.2. Section 3.8.3 describes the
algorithm used to train the LSTM model. Afterwards, the hyperparameters of the model must be
optimised. This is explained in Section 3.8.4. Finally, Section 3.9.3 explains how the evaluation
of the loss function during training indicate wether the model is underfitting or overfitting.
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3.8.1 Long Short-Term Memory unit

An LSTM unit is a type of recurrent neural network, designed to overcome the vanishing gra-
dient problem. This unit is designed to handle sequential data and long-range dependencies
more effectively than standard RNNs. This is done by incorporating memory cells and gating
mechanisms that regulate the flow of information. The key feature is their ability to selectively re-
member and forget information through a set of gating mechanisms [31]. An LSTM unit consists
of a memory cell, which is controlled by the following three gates:

• Forget gate: Determines which past information to discard from the memory cell.

• Input gate: Determines which new information to store in the memory cell.

• Output gate: Determines what information should be passed to the next time step as the
hidden state

These gates allow LSTM networks to retain or discard information selectively. This behaviour
enables the network to learn long-term dependencies. The forget gate is defined as Equation
3.12. It determines what portion of the previous cell state (Ct−1) should be forgotten. It uses a
sigmoid function σ to output values between 0 (forget completely) and 1 (keep completely)

ft = σ(Wf [ht−1, xt] + bf ) (3.12)

where Wf and bf are the weight matrix and bias, and ht−1 is the previous hidden state. The
input gate it determines what portion of the new candidate cell state should be added to the
current memory. The input gate is computed in Equation 3.13.

it = σ(Wi[ht−1, xt] + bi) (3.13)

Where Wi and bi are the weight matrix and bias. A candidate cell state C̃t is computed
using Equation 3.14.

C̃t = tanh(WC [ht−1, xt] + bC) (3.14)

Where WC and bC are the weight matrix and bias. The cell state update Ct combines the
forget and input gates to update the cell state using equation 3.15

Ct = ft ∗ Ct−1 + it ∗ C̃t (3.15)

The output gate ot determines how much of the new cell state should be exposed as the
hidden state and is computed by Equation 3.16.

ot = σ(Wo[ht−1, xt] + bo) (3.16)

Where Wo and bo are the weight matrix and bias. The hidden state ht is computed as
Equation 3.17. This is the short-term memory that carries information from previous time steps
to the current one. This is also the data flow that can be used as output of the unit.

ht = ottanh(Ct) (3.17)
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The weight matrices and biases in Equations 3.12, 3.13, 3.14 and 3.16 are to be configured
during training. To summarise the inner workings of an LSTM unit and how these equations
produce the next cell state and hidden state, Figure 3.2 is a flow diagram of this process.

Figure 3.2 – Diagram of single LSTM unit [34]. Key components include the memory cell, input
gate, forget gate, candidate cell state, output gate and hidden state. The input gate, forget
gate and output gate use sigmoid functions, while the candidate memory uses a tanh function.
The cell state is updated through addition and multiplication operations, and the hidden state is
updated using tanh and sigmoid functions. Arrows in the diagram indicate the flow of information
between these components.

3.8.2 Network layers

A deep neural network is built from different layers that propagate data. Each layer extracts and
refines features from the data, gradually building up more abstract and high-level representa-
tions. The structure consists of an Input layer, LSTM layers, Dense layer and Reshape layer
[34].

• Input layer: This is the first layer that receives the raw data. Each neuron in this layer
represents a feature of the input data.

• LSTM layers: These layers contain the LSTM units, this is where long-term sequential
patterns are captured and prepared for prediction.

• Dense layer: A regular densely-connected NN layer. This layer helps to transform the
hidden states outputted by the LSTM layer into suitable predictions. This layer can capture
non-linear relationships and ensures that the final output is in the desired shape.

• Reshape/output layer: This is the final layer that produces the prediction. The number
of neurons is the number of target variables for regression.

Adding more LSTM layers will increase the depth of the network, which can enhance the ca-
pacity to learn from data. Deeper networks can capture more complex patterns, given sufficient
data and computational resources. However, the depth must be optimal for the task of predict-
ing bus travel and dwell times. This modularity of network structures enables the researcher to
creatively design and structure the network. The goal is to find a suitable structure.
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By varying the number of LSTM layers and evaluating the MAE results on the test dataset.
The optimal number of LSTM layers can be found for the complexity of the data patterns. By
testing multiple lines, a good structure can be found. It is also essential to investigate whether
the models are not overfitting or underfitting. This process is explained in Section 3.9.3.

3.8.3 Model training

The training of an LSTM network follows a gradient-based optimisation approach using Back-
propagation Through Time [44]. The cell states, weights and biases of the LSTM and the weights
of the Dense layers are initialised. For the learning process, there are four steps:

1. Forward pass: Process each time step through the network with the current LSTM and
Dense parameters.

2. Compute loss function: With outputs, the loss function (mean squared-error) is com-
puted on the unseen validation dataset (part of the training dataset).

3. Backwards pass: The loss gradients must be computed through time, propagating errors
backwards.

4. Parameter update: The LSTM and Dense weights are updated using stochastic gradient
descent.

This is repeated over multiple epochs until convergence. Convergence can be defined based
on the validation loss or early stopping parameter. Validation loss indicates how well the model
generalises to new, unseen data and should be minimised. An epoch is one complete pass of
the training dataset through the algorithm.

3.8.4 Hyperparameter tuning

When a suitable structure of the LSTM deep learning network is determined for the task of travel
and dwell time prediction, the hyperparameters of the network should be optimised to ensure
effective learning and reliable results. Table 3.4 presents several hyperparameters that must be
tuned when training the model.
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Table 3.4 – Important hyperparameters that must be tuned for an LSTM deep neural network.
This is a non-exhaustive list of hyperparameters that can be set [45].

Parameter name Description

# of LSTM units Number of units in the LSTM layer. More units can capture more
complex patterns, but may increase the risk of overfitting.

Learning rate Controls how much the model’s weights are adjusted with respect to
the loss gradient. The learning rate is a trade-off between training
speed and precision of adjustments during training.

# of epochs Number of times the entire training dataset is passed through the
model during training. More epochs can improve model perfor-
mance, but may also lead to overfitting.

Optimiser Algorithm that is used to update the model’s weights based on the
loss function. Common optimisers include Adam, SGD, and RM-
Sprop, each with different strategies for adjusting weights.

Activation function Function that determines the output of a neuron given an input or
set of inputs. Common activation functions include ReLU, sigmoid,
and tanh, each affecting the model’s learning and performance dif-
ferently.

Dropout rate Fraction of neurons that are randomly dropped during training to pre-
vent overfitting. A higher dropout rate can improve generalisation but
may slow down training.

Kernel initialiser Algorithm used to initialise the weights of the model. Common ini-
tialisers include ’glorot_uniform’, and ’he_normal’.

Exploring the hyperparameter space can be done by a Random Search and Bayesian op-
timisation. Random search is trying random sets of hyperparameters and evaluating the best
one. A more refined Grid Search can follow this.

Bayesian optimisation is a probabilistic model-based approach for hyperparameter tuning
that uses a Gaussian process to predict the performance of different hyperparameter settings
[46]. It iteratively updates this model and aims to balance exploration of new hyperparameters
and exploitation of well-performing hyperparameters. This method requires fewer evaluations
compared to grid or random search. It is useful for tuning LSTM deep learning models where
evaluations are computationally expensive.

3.9 Prediction model evaluation

This section describes how the prediction models will be evaluated and compared. These evalu-
ation methods will be used to conclude the best-performing travel time prediction model. Firstly,
Section 3.9.1 outlines how the MAE will be calculated on the test dataset which enables the
comparison between prediction models. Section 3.9.2 describes the feature importance evalu-
ation that can be done for the trained RF model. Finally, Section 3.9.3 introduces the analysis
of the loss of the validation and training dataset during the LSTM training process. This will
indicate how reliable the trained models are.
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3.9.1 Actual travel times

Evaluating the model’s ability to predict future travel times is important to ensure that it is capa-
ble of capturing real-life patterns. The data that is being tested on must be more recent than
the travel time data with which the prediction model was trained. This is to avoid lookaheads,
the phenomenon of future information that is improperly or deliberately used when making pre-
dictions on current or past events. This results in data leakage, where the model gains access
to information it would not realistically have in a real-world prediction scenario, leading to overly
optimistic performance metrics during training and evaluation.

To avoid this a test dataset is data of the last 20 percent of the journeys. These trips will be
predicted using the models and evaluated using MAE. This is done by comparing the travel time
of links and the dwell time at stops of the test dataset with the predicted travel and dwell times.
MAE was selected because it is intuitive and robust for outliers. The actual travel time of a link
yl and the predicted travel time of the link ŷl. The MAE for link l is calculated using Equation
3.18, which is travelled N times in the test dataset. Equation 3.19, is the MAE for dwell time at
stop k when travelled in a certain direction.

MAEl =

N∑

i=1

∣∣∣∣
yl,i − ŷl,i

N

∣∣∣∣ (3.18)

MAEk =

N∑

i=1

∣∣∣∣
yk,i − ŷk,i

N

∣∣∣∣ (3.19)

The MAE will be calculated on the unseen test dataset and serve as an indication of the
prediction model’s performance. A lower MAE indicates a better prediction.

3.9.2 Feature importance evaluation

When the RF is trained, there will be prediction decisions made in the decision trees on certain
features. These features can be analysed through feature importance evaluation. The goal is
to investigate which features are determinative for the regression output of the RF model. This
evaluation analyses the Mean Decrease in Impurity (MDI).

MDI is also known as Gini importance. This method measures the average decrease in node
impurity caused by a certain feature. Decision trees use node impurity to decide splits. When a
certain feature is used to split a node, the impurity decreases, and the decision tree gets closer
to an output. This decrease in impurity can be attributed to the feature on which this node is
split. When averaging the impurity decrease of every node in all decision trees in the RF, the
mean impurity decrease caused by each feature is calculated. A higher decrease in impurity
caused by a feature indicates a greater contribution to the model’s decision-making process.

3.9.3 Loss analysis

The loss function measures how well the model’s predictions match the validation dataset during
the training of an LSTM model. Essentially, it quantifies the difference between the predicted
values and the true values. This loss function is calculated using a validation dataset, and the
model tries to minimise the loss value. In addition, the loss function can also be calculated when
trying to predict the outcomes of the training dataset. Analysing the loss functions on the training
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and validation sets will give important insights into the model’s behaviour.

The loss function can be any function. However, it is typically the MSE for regression tasks.
During training, the training and validation losses can be calculated every epoch. A line plot can
be generated with epochs on the x-axis and loss values on the y-axis. When the trends of the
lines are observed, the following things can be identified.

• Convergence: Both losses decrease and stabilise at similar values, the model is well-
trained.

• Underfitting: If both losses remain high, the model is not learning adequately, requiring
changes to the model’s architecture or hyperparameter tuning.

• Overfitting: Validation loss is significantly higher than training loss; the model memorises
the training data rather than generalising.

3.10 Reachability analysis

Section 3.10.1 explains the mathematical definition of reachability and Section 3.10.2 provides
several examples of reachability analysis that can be performed with more accurate travel and
dwell times predictions.

3.10.1 Mathematical definition

Reachability is defined as the ability to access a set of destinations within a given time frame
from a specific starting point. Let:

• S be the set of all possible starting points (e.g., bus stops).

• D be the set of all possible destinations.

• T (s, d) be the travel time function, which gives the travel time from starting point s ∈ S to
destination d ∈ D

The reachability set R(s, t) from a starting point s within a time threshold t is defined as:

R(s, t) = {d ∈ D | T (s, d) ≤ t} (3.20)

This set R(s, t) includes all destinations d that can be reached from s within time t. Another
set that can be defined is the ischrone I(s, t), which is a contour that represents the boundaries
of the reachability set. For a given starting point s and time threshold t, the isochrone I(s, t) is
the set of points that are exactly t units of away from s, defined in Equation 3.21

I(s, t) = {d ∈ D | T (s, d) = t} (3.21)

The travel time function T estimates the time required to travel between two points in a
transportation network. This function will be influenced by the predicted travel times ŷl and
dwell times ŷk. This mathematical framework helps to visualise and analyse how accessible
different parts of an urban PT network are.
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3.10.2 Types of analysis

Plotting the isochrones on a map will visualise the areas that are reachable within specific time
thresholds. This is part of the spatial analysis of reachability. Analysing the variation in travel
and dwell times during the day will help to understand how reachability changes throughout the
day. This would be temporal analysis.

Another powerful analysis is scenario analysis, where different interventions in the bus net-
work are performed (e.g., increased frequency, new routes). The impact on the reachability can
be analysed. This way also the prediction of travel and dwell times can be validated.
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4 Case study

To validate the proposed methodology, a case study is conducted, focusing on the bus network
of Groningen. This case study is introduced in Section 4.1. This section also outlines the two
key datasets in this case study. The first dataset consists of historical arrival and departure time
data, sourced from the Nationale Data Openbaar Vervoer (NDOV) database [7]. Specifically,
this data is formatted as KoppelVlak 6 (KV6), which provides real-time insights into the actual
state of the PT network. The KV6 data format is further detailed in Section 4.2. The second
dataset contains the planned schedules used by PT operators to structure the network. These
schedules are presented in the General Transit Feed Specification (GTFS) format, which is
discussed in Section 4.3. Additionally, Section 4.4 describes Conveyal, a reachability tool that
serves as the input for our predicted dwell and travel times. Section 4.5 outlines the integration
of KV6 and GTFS datasets to create the input for Conveyal, illustrated by a data flow diagram.
Finally, Section 4.6 explains the preprocessing steps necessary for the KV6 and GTFS datasets.
This section aims to answer RQ2 by outlining and designing a real-world case study.

4.1 Public transport Groningen

Groningen’s bus network will be analysed for the case study. The transportation network has
been examined and optimised recently for the province of Groningen [47]. Several mobility
issues regarding the university campus and train stations were solved. In this particular eval-
uation, reachability analysis has been conducted based on the schedule [48]. Additionally, the
choice of this city and network ensures that the necessary PT travel data is present, as it was
also utilised in this project. This previous work provides context for the results and conclusions
of this thesis.

Since 2019, the bus network in Groningen has been operated by Qbuzz. For this analysis,
lines 1, 2, 3, 4, 5, and 6 are selected. These lines belong to the Q-link network of the city
[49]. This network is designed as a fast bus network connecting the city of Groningen and its
neighbouring towns. Lines 11 and 15 also belong to this network, but were not selected for
this case study. These lines drive a similar route as line 1, offering a more direct bus to the
university campus of the city. This overlap makes it unnecessary to assess lines 11 and 15 for
the reachability analysis in this thesis.

The selected six lines ensure comprehensive coverage in all directions out of the city. These
lines have a consistent, frequent schedule, providing quality data for the prediction models. Pre-
dicting these lines allows for a meaningful reachability analysis in diverse regions of Groningen’s
bus network. The lines are referred to in the data and official documentation as g501, g502,
g503, g504, g505, and g506, respectively. This notation will be used throughout the thesis.
Figure 4.1 displays all six bus lines on a map.
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Figure 4.1 – The six bus lines in Groningen that are used in the case study. These lines fan out
in different directions to neighbouring towns. All lines, except g502, stop at the main train station
of Groningen.

Figure 4.1 offers a spatial overview of the six bus lines, Table 4.1 outlines the outer stops of
the bus lines, the number of stops along them and the length.

Table 4.1 – The six Qbuzz lines in Groningen in the case study. Outer stop 1 to outer stop 2 is
indicated as direction 1 and outer stop 2 to outer stop 1 is indicated as direction 2.

Line Outer stop 1 Outer stop 2 #
of stops

Length
(km)

g501 Groningen, P+R Reitdiep Groningen, Hoofdstation 19 7.73

g502 Zuidhorn, Station Groningen, Station Europapark 26 17.90

g503 Groningen, Ruischerbrug Leek, Oostindie 39 29.64

g504 Groningen, Wibenaheerd Roden, Kastelenlaan 39 26.70

g505 Annen, Zuid Scharmer, Goldberweg 33 33.80

g506 Delfzijl, Station Groningen, Hoofdstation 48 36.65

The analysed data covers the period from September 1st to October 25th. This timeframe
was selected to capture regular usage of the PT network. September 1st marks the end of the
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summer vacation, when people resume their normal work routines, leading to consistent PT
usage. October 25th was chosen as the endpoint because the wintertime transition occurs on
October 27th, which would shift travel time data and require adjustments. By using data up to
October 25th, we ensure homogeneity in the dataset.

As explained in Section 3.2, historical travel times are necessary as input for the prediction
models. This case study provides this data in the form of KV6 data. The connected schedule is
presented as GTFS bundles.

4.2 KV6 dataset description

The KV6 dataset, updated in real-time, captures the arrival and departure times at each stop
for all PT journeys in the Netherlands. Table 4.2 provides an overview of the eight types of
messages in the KV6 dataset. When these messages are correctly reconstructed for a PT
journey, they provide a precise overview of its performance and operational patterns.

Table 4.2 – Data message types of KV6 dataset. Each message is sent with a corresponding
combination of keys as defined in Table 4.3 and a timestamp.

Message type Description

Delay Expected delay of journey that has not been ini-
tialised yet.

Init Journey is initialised and the vehicle is as-
signed.

Departure Leaves or passes stop.

Onroute Underway on planned route.

Arrival Arrival at stop.

Onstop Vehicle is at stop (sent when vehicle is longer at
stop than message interval).

Offroute Vehicle is on unknown route.

End Vehicle is uncoupled.

Each message presented in Table 4.2 is indexed with the keys in Table 4.3. The primary keys
can uniquely identify the PT journey and its events. Each message contains other variables with
additional information that can be useful for analysis.
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Table 4.3 – Variables of a message in the KV6 dataset. The first five keys identify a unique
PT journey. The two stop keys are used to identify messages in Table 4.2 that are related to a
certain stop along the PT journey.

Element Description

Primary
keys

DataOwnerCode PT agency

LinePlanningNumber Line number as defined by the PT
agency.

OperatingDay Day of operation.

JourneyNumber Public journey number as defined by the
PT agency.

ReinforcementNumber 0=normal schedule, >0=extra scheduled
PT journey.

Stop keys UserStopCode Stop code of stop defined by the PT
agency, which is being arrived at or de-
parted from

PassageSequenceNumber Passage number corresponding to the
UserStopCode

Other Timestamp Time of sending of the message

Vehicle number Vehicle identification number

Punctuality Divergence of the schedule in seconds

RD-X RDS in meters

RD-Y RDS in meters

For the case study, the KV6 messages are gathered for the six lines in Groningen between
the 1st of September and the 25th of October. This dataset contains 1,808,374 messages, with
only the Init, Arrival, Departure and End messages. The other messages were already deleted
as they are not necessary for the creation of the data format.

Using these messages, the data structure described in Section 3.2 can be constructed.
Dwell times for a journey are derived by calculating the difference between arrival and depar-
ture times at each stop. Similarly, travel times between consecutive stops are determined by
subtracting the departure time of the previous stop from the arrival time at the next stop. This
preprocessing step is further detailed in Section 4.6.4.

4.3 GTFS schedule dataset description

Besides the historical travel times of the KV6 dataset, NDOV also contains the planned PT
schedule of the Netherlands in the NeTEx dataset. In this project, the planned PT schedule is
needed in a GTFS format, as this is required for the Conveyal input. OVapi [50] transforms the
NeTEx schedule from NDOV to GTFS format.

GTFS is a standardised data format that provides a structure for public transit agencies to
describe the details of their services, such as schedules, stops, fares, etc. [51]. The open data

35



standard is the go-to standard for many public transport agencies to represent the schedules. It
contains information about routes, schedules and fares. Table 4.4 presents an overview of the
files that are present in a GTFS schedule.

Table 4.4 – Text files that make up a GTFS schedule dataset. These files are interconnected
through common identifiers, such as route_id, trip_id and stop_id, allowing for a cohesive
representation of the PT system. The purpose of the GTFS schedule is to provide a standard-
ised format for PT agencies to share their transit data.

File name Description

agency.txt Transit agencies with service represented in this
dataset.

stops.txt Stops where vehicles pick up or drop off riders.

routes.txt Transit routes.

trips.txt Trips for each route.

stop_times.txt Times that a vehicle arrives at and departs from
stops for each trip.

calendar_dates.txt Service dates specified using a weekly sched-
ule with start and end dates.

shapes.txt Rules for mapping vehicle travel paths.

transfers.txt Rules for making connections at transfer points
between routes.

feed_info.txt Dataset metadata, including publisher, version
and expiration information.

The different files in Table 4.4 relate to each with specific ids, an overview is presented in
Figure 4.2. These files contain all information on the planned schedule of the six bus lines of
Groningen.

Figure 4.2 – Diagram of how the ids are used in a GTFS Schedule dataset to inter-relate infor-
mation between files [51].
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4.4 Conveyal

For this case study, Conveyal is used as the reachability analysis tool [52]. This tool uses GTFS
datasets as input for PT data and Open Street Map as input for private modes of transport. The
KV6 dataset provides the historical travel data, which will be input for the prediction models. The
predicted schedules are written in the GTFS dataset. The goal is to use these predictions to
improve reachability analysis.

Conveyal is a web-based analysis tool. This tool enables the visualisation of multi-modal
transportation networks. The real strength of the tool is the ability to configure custom scenarios
and studies. The comparison between different scenarios empowers PT engineers to under-
stand and improve the reachability of urban environments. For visualisations, reachability is
displayed using coloured isochrones on a map. An example of this is shown in Figure 4.3.

Figure 4.3 – Example of reachability analysis run in Conveyal. The different coloured areas
depict how far you can travel in 45 minutes from the starting point using walking and public
transport. The red and blue colours display the reachability of different configured scenarios.
The isochrone is coloured purple when the isochrones overlap.

Conveyal calculates door-to-door travel time through the actual street plan and public trans-
port options presented in the uploaded GTFS dataset. It uses the centre of a regular grid of cells
as potential destinations that can be reached. Travel time includes reaching nearby transit stops
(walking, bicycling or driving a car), waiting to board PT, riding in PT and travelling from a transit
stop to the destination. The tool calculates travel times for all possible departure times within
a specific departure window for every destination grid cell. All these different travel times form
a statistical distribution, from which a certain percentile of travel time, set in the user interface,
can be displayed.

4.5 Data framework

This section sets out to present the design of the data framework in more detail. The aim is
to show how the KV6 dataset will be used as training data for the travel time prediction model.
The GTFS schedule will be used as query data for the prediction model, and the output of the
prediction model will overwrite certain files in the GTFS schedule. This altered GTFS schedule
will be used as input for the analysis in Conveyal. Figure 4.4 shows the complete overview of
the data framework of the project. The rest of this section explains subparts of this framework
in more detail.
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An important note, as outlined in Section 3.2, the prediction models will predict travel times
between stops and dwell times at stops. In these diagrams, predicted arrival and departure times
at each stop along the route are discussed. These arrival and departure times are cumulatively
constructed from the predicted travel and dwell times. This process is further detailed in Section
4.6.12.

Figure 4.4 – Overview of how the KV6 and GTFS datasets will be leveraged to predict travel
and dwell times, which will be used as input for the reachability analysis in Conveyal. In this
diagram, the prediction model is assumed to be a black box. The yellow diagram on top is
the training data where the KV6 messages are converted to journeys. The blue box displays a
journey from the GTFS dataset that the prediction model will predict. In the red box, the output
of the prediction model is shown, which will be used to overwrite stop_times.txt. This new
GTFS dataset will serve as input for the reachability analysis in Conveyal.

The KV6 dataset will be used as training data for the prediction model. Only Init, Arrival,
Departure and End messages will be used as input for this analysis. With these messages, a PT
journey can be constructed using the arrival and departure messages for each stop the journey
visits. The first and last stops are the Init and End messages, respectively. This approach is
visualised in Figure 4.5.

Figure 4.5 – Overview of the collection of the training data from the KV6 dataset. Using the Init,
Arrival, Departure and End messages, the journeys are reconstructed.

As mentioned in Section 4.4, Conveyal takes a GTFS schedule as input. Using the same
dataset as the query data of the prediction model is an efficient choice. In this proposed setup,
the specific PT journeys that must be predicted are extracted from the GTFS schedule. This
means that a journey specified by trip_id will only keep its value for t0 of the first stop, and
the timestamps of the rest of the journey will be predicted. This process can be seen in Figures
4.6a and 4.6b.
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(a) Overview of the text files which are necessary to extract from the GTFS dataset. From
stop_times.txt, a certain journey is extracted, which is used as a query for the prediction
model. The timestamps of the first stop are kept constant, and all timestamps of all subsequent
stops will be predicted.

(b) Output of prediction model with predicted arrival and departure times of the queried journey.
The predicted timestamps are shown in red in the diagram. These red timestamps overwrite the
original schedule in stop_times.txt of the query GTFS dataset.

Figure 4.6 – Diagrams showcasing the process of the GTFS schedule being predicted by the
prediction model.

After this process, the datasets are combined to create a complete and functional GTFS
schedule. This will be uploaded to Conveyal, where scenario studies can be done on the pre-
dicted schedule. This is shown in the last subdiagram in Figure 4.7

Figure 4.7 – Merging the original GTFS schedule with the changed stop_times.txt to create
a complete GTFS dataset to upload to Conveyal.
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4.6 Data preprocessing

This section and Section 5.1 are closely related, as results from the EDA have influenced design
choices for the preprocessing steps presented in this section. However, this section focuses on
the practical necessities of the data handling and processes presented by the KV6 and GTFS
data. Section 5.1 presents more of the underlying patterns that are found in the EDA, which
impact the decisions made for the ML models.

This section details the preprocessing steps required to convert the KV6 dataset into the
format described in Section 3.2. The KV6 dataset, an AVL dataset, must first be transformed
into a time-series format capturing travel and dwell times, as outlined in Sections 4.6.1-4.6.4.
Following this transformation, additional preprocessing steps specific to each prediction model
are necessary, as described in Sections 4.6.5-4.6.10. All KV6-related preprocessing steps are
summarised in Section 4.6.11.

In addition to preprocessing the KV6 training data, the query and output data also require
minor adjustments. The GTFS dataset, which will be used as input for the reachability analysis,
needs small transformations. These transformations are detailed in Section 4.6.12.

4.6.1 KV6 message imputation

For the proposed data format described in Section 3.2, it is necessary to take the differences
between timestamps to calculate dwell and travel times. This means that for a journey, for
every stop, there should be an arrival and a departure message with a timestamp to compute
these variables. However, in the KV6 dataset, arrival and departure messages are missing
occasionally. To optimise the dataset usage and avoid removing too many journeys, an effort is
made to impute these missing messages. This is done only when a single necessary arrival or
departure message is missing for a stop, not when both are missing.

Arrival messages

Missing arrival messages are due to the way the KV6 data is collected. By design, when a bus
skips a stop, there is no arrival message for that stop. This occurs when no passengers are
boarding or exiting the bus at a certain stop. There will only be a departure message for this
skipped stop and this will prevent the correct calculation for travel time between the previous
stop and this stop.

The solution is to impute an arrival message for each unmatched departure message. This
imputed arrival message has the same dataownercode, lineplanningnumber, userstopcode, op-
eratingday, journeynumber, reinforcementnumber and timestamp as the unmatched departure
message. This means that the dwell time for an imputed arrival message stop is considered
zero seconds, as the timestamps of the arrival and departure messages are identical. This pro-
cess is illustrated in Table 4.5b.
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Table 4.5 – Demonstration of an arrival message imputation. This shows an arbitrary subpart
of a bus journey in the case study dataset. In this journey, the bus didn’t stop at stop 6.

(a) Unmatched departure message in journey at stop 6 of the journey.

Journey Messagetype Stop Timestamp
...

...
...

...

QBuzz, line 1, journey 25 Arrival 5 2024-09-02 11:22:21

QBuzz, line 1, journey 25 Departure 5 2024-09-02 11:22:54

QBuzz, line 1, journey 25 Departure 6 2024-09-02 11:23:48

QBuzz, line 1, journey 25 Arrival 7 2024-09-02 11:24:32

QBuzz, line 1, journey 25 Departure 7 2024-09-02 11:25:03
...

...
...

...

(b) Imputed arrival message with the same journey information, stop and timestamp as the
unmatched departure message.

Journey Messagetype Stop Timestamp
...

...
...

...

QBuzz, line 1, journey 25 Arrival 5 2024-09-02 11:22:21

QBuzz, line 1, journey 25 Departure 5 2024-09-02 11:22:54

QBuzz, line 1, journey 25 Arrival 6 2024-09-02 11:23:48

QBuzz, line 1, journey 25 Departure 6 2024-09-02 11:23:48

QBuzz, line 1, journey 25 Arrival 7 2024-09-02 11:24:32

QBuzz, line 1, journey 25 Departure 7 2024-09-02 11:25:03
...

...
...

...

When this preprocessing step was applied to the case study dataset, 507,782 arrival mes-
sages were imputed. The dataset now contains 2,162,655 messages in total.

Departure messages

The KV6 dataset also has missing departure messages. In contrast to the missing arrival mes-
sages, there is no good explanation for these messages to be missing. This likely happens when
there is a malfunction in the computer that tracks the vehicle’s location. When there is a missing
departure message, there is an arrival message for that stop. This means that the bus did visit
the stop. The same solution is applied to the missing departure messages, meaning copying the
data of the unmatched arrival message and imputing it as a departure message. This means
that these stops are assumed to be skipped stops with a dwell time of zero seconds. This is
mainly done to retain as many journeys in the dataset for training as possible. The process of
departure message imputation is illustrated in Table 4.6b.
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Table 4.6 – Visualisation of an example of a departure message imputation. This shows an
arbitrary subpart of a bus journey in the case study dataset.

(a) Unmatched arrival message in journey.

Journey Messagetype Stop Timestamp
...

...
...

...

QBuzz, line 1, journey 30 Arrival 10 2024-09-04 14:11:55

QBuzz, line 1, journey 30 Departure 10 2024-09-04 14:12:24

QBuzz, line 1, journey 30 Arrival 11 2024-09-04 14:13:34

QBuzz, line 1, journey 30 Arrival 12 2024-09-04 14:14:04

QBuzz, line 1, journey 30 Departure 12 2024-09-04 14:14:38
...

...
...

...

(b) Imputed departure message with the same journey information, stop and timestamp as the
unmatched departure message.

Journey Messagetype Stop Timestamp
...

...
...

...

QBuzz, line 1, journey 30 Arrival 10 2024-09-04 14:11:55

QBuzz, line 1, journey 30 Departure 10 2024-09-04 14:12:24

QBuzz, line 1, journey 30 Arrival 11 2024-09-04 14:13:34

QBuzz, line 1, journey 30 Departure 11 2024-09-04 14:13:34

QBuzz, line 1, journey 30 Arrival 12 2024-09-04 14:14:04

QBuzz, line 1, journey 30 Departure 12 2024-09-04 14:14:38
...

...
...

...

In the KV6 dataset of the case study, only 49 departure messages were imputed. These
imputations ensured that for complete journeys, there is a departure message for each stop.
For these 49 messages, the dwell time will be calculated as zero.

4.6.2 KV6 duplicate messages

In the KV6 dataset, duplicate messages frequently occur, which can cause issues when calcu-
lating travel and dwell times. For example, if there are duplicate departure messages, a decision
must be made on which message to use for calculating the difference between the timestamps
of the arrival message. The following rules have been set up for the removal of duplicate mes-
sages.

• Two messages are deemed duplicates when they have the same dataownercode, operat-
ingday, lineplanningnumber, userstopcode, messagetype and reinforcement number. The
timestamp does not have to be identical.

• For the message types ’init’ and ’arrival,’ the message with the earliest timestamp is re-
tained, and duplicates are removed from the dataset. The first message is kept because,
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for ’init’ and ’arrival,’ it is logical to assume that the system correctly detected the event at
that first time.

• For the message types ’departure’ and ’end,’ the message with the latest timestamp is
retained, and duplicates are removed from the dataset. This approach ensures that the
system’s final message confirms the bus’s departure from the stop, indicating that the bus
left the stop at that specific time.

The process following the rules above is demonstrated in Table 4.7.

Table 4.7 – Demonstration of an example of handling duplicate messages. In this table, the red
messages are removed from the KV6 dataset.

(a) Example of duplicate handling of arrival messages. For arrival messages, the message with
the earliest timestamp is kept. Here, the bus has a double arrival message for stop 3 along this
route. This process is similar to init messages.

Journey Messagetype Stop Timestamp
...

...
...

...

QBuzz, line 1, journey 12 Departure 2 2024-09-15 09:48:38

QBuzz, line 1, journey 12 Arrival 3 2024-09-15 09:49:51

QBuzz, line 1, journey 12 Arrival 3 2024-09-15 09:49:54

QBuzz, line 1, journey 12 Departure 3 2024-09-15 09:50:31
...

...
...

...

(b) Example of duplicate handling of departure messages, where there is a duplicate departure
message for stop 14. For departure messages, the message with the latest timestamp is kept.
This process is similar to end messages.

Journey Messagetype Stop Timestamp
...

...
...

...

QBuzz, line 1, journey 3 Arrival 14 2024-09-23 06:07:01

QBuzz, line 1, journey 3 Departure 14 2024-09-23 06:07:41

QBuzz, line 1, journey 3 Departure 14 2024-09-23 06:07:43

QBuzz, line 1, journey 3 Arrival 15 2024-09-23 06:09:21
...

...
...

...

In the case study dataset, 153,590 messages were removed due to being duplicates.

4.6.3 Schedule adherence

For the end goal of calculating all the travel and dwell times of a bus journey, there are several
requirements. Two of the requirements, namely no missing messages and no duplicate mes-
sages, are discussed in the Sections 4.6.1 and 4.6.2. Other issues arise when certain stops
are not accounted for in the messages; this means that you cannot correctly calculate the travel
times between the preceding and following stops. Also, there is no information on the dwell time
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of this stop. This issue is solved by the schedule adherence check. This is the final preprocess-
ing step before the creation of the data format described in Section 3.2.

Schedule adherence is done by checking if every stop is present for a certain journey. That
is to say, kj is equal to the message sequence for that journey and what the schedule pre-
scribes it to be. This is done with the GTFS schedule of the same journey. By matching the
journey with the corresponding service_id and realtime_trip_id in the GTFS schedule.
This combination can be matched with a trip_id and its corresponding schedule stop times in
stop_times.txt. The rules for checking if the stop order is identical are formulated below.

• KV6 journey stop order kj should be identical to the GTFS schedule stop order kj′ of the
corresponding journey.

• For every stop along the journey, the arrival message’s timestamp should precede the
departure message’s timestamp.

• Missing init or end messages for the first and last stop of the journey, respectively, can be
ignored, and the dwell time of these stops is set at zero.

• KV6 journeys that do not adhere to the schedule are deleted from the KV6 dataset.

When applying these rules to the case study dataset, two main reasons for removal were
identified. Firstly, there were 9554 journeys where several stops were not visited at all in the
messages. Most of these journeys only included an ’init’ message and lacked the information
necessary for the prediction models. Additionally, journeys that missed one or two stops com-
pared to the schedule were also removed. Although this led to the deletion of useful information,
the decision was made for practical efficiency.

Secondly, 3196 journeys were removed because their stop order did not match the sched-
ule. In these cases, all necessary stops were present in the messages, but were not in the
correct order. This issue was most prevalent for line g504, due to a temporary deviation from
the schedule. Consequently, valuable journeys were removed.

While these removals were necessary to advance the preprocessing, there is potential for
future improvements. Refining the criteria for journey inclusion and developing methods to han-
dle deviations more effectively could preserve more useful data and enhance the accuracy of
the prediction models.

4.6.4 Data format creation

The three previous sections discuss message imputation, duplicate handling and schedule ad-
herence of the KV6 messages dataset. At this stage, the KV6 messages dataset is transformed
into a dataset with travel and dwell times per link and stop. This is done by looping over the
messages of the journeys and applying Equations 3.1 and 3.2. The time series index is taken
as the departure time from the first stop of the journey. This process created the dataset that
will form the basis for the training data of the prediction models.

This has been done for the case study KV6 dataset, which initially contained 32094 journeys.
19344 complete journeys could be constructed from this dataset. This concludes the sections
that describe the relevant preprocessing of training data for all prediction models. The next sec-
tions will discuss model-specific preprocessing steps.
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4.6.5 Outliers handling

Outlier winsorization is a technique used to limit extreme values in a dataset to reduce the impact
of outliers. In this method, we identify outliers using z-scores and replace them with a specified
percentile value. Equation 4.1 states the definition of the z-score. The z-score measures how
many standard deviations a data point is from the mean.

z =
x− µ

σ
(4.1)

where x is the data point, µ is the mean and σ is the standard deviation. Data points with
z-scores higher than three are considered outliers. These data points are replaced with the 95th
percentile value of the corresponding travel or dwell time. The 95th percentile is the value below
which 95% of the data points fall. Low outliers were not removed, as these were often the zero
values of dwell times, meaning they are significant for the analysis of the behaviour of the bus.
Outliers were removed for the VAR and LSTM prediction models.

4.6.6 Periodic resampling

Prediction models such as VAR and RF require periodic data. The time series data is indexed by
the departure time from the first stop of the journey, which, because of the schedule, means that
it is approximately periodic (e.g. a bus departs from the first stop every 15 minutes). However,
departure times of the bus can differ by a small amount, thus making it not periodic. This problem
can be fixed by periodic resampling of the dataset. Another issue fixed with this preprocessing
step is bus journeys that were removed due to not adhering to the schedule. Resampling im-
putes these removed journeys with the average travel and dwell times of the journeys before
and after. This process is demonstrated in Table 4.8b.
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Table 4.8 – Demonstration of periodic resampling, where multiple journeys falling in a certain
time interval are combined to a single entry with the averaged travel and dwell times.

(a) The entries are not periodic. The bus seemingly leaves every 30 minutes, but in reality this
will always deviate.

Index yk1
yl1 yk2

yl2 · · ·
...

...
...

...
...

...

2024-09-11 17:14:31 32 79 0 62 · · ·
2024-09-11 17:45:21 41 71 54 93 · · ·
2024-09-11 18:16:54 0 95 41 88 · · ·
2024-09-11 18:42:58 47 78 0 71 · · ·

...
...

...
...

...
. . .

(b) The data is resampled to be periodic. In this case, the resampling period is one hour. The
average values that fall in that hourly interval are taken from the previous table to calculate
the new values for the dwell and travel times. This means that these four journeys are now
represented as two journeys.

Index yk1
yl1 yk2

yl2 · · ·
...

...
...

...
...

...

2024-09-11 17:00:00 36.5 75 27 77.5 · · ·
2024-09-11 18:00:00 23.5 86.5 20.5 79.5 · · ·

...
...

...
...

...
. . .

4.6.7 Lagged features

RF is not inherently designed to forecast time series data. Consequently, it requires that the data
be enriched with lagged features to provide the prediction models with information about the
past. Lagged features are variables that represent past values of the time series. For example,
a lagged feature could be the value of the travel time of the previous hour. The number of past
time steps (lags) to include needs to be decided based on the patterns that are present in the
data. Creating lagged features is as simple as shifting the dataset for that feature. After shifting
the dataset, there will be missing values at the beginning of the time series. These rows are
removed from the training data. This process of creating lagged features is shown in Table 4.9b.
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Table 4.9 – Example of the creation of lagged features, where each row gets a lagged copy of
the previous time sample variables. This is done for a dataset that already underwent periodic
sampling.

(a) Initial dataset without lagged features.

Index yk1
yl1 · · ·

...
...

...
...

2024-09-28 12:00:00 28 73 · · ·
2024-09-28 13:00:00 36.5 75 · · ·
2024-09-28 14:00:00 23.5 86.5 · · ·
2024-09-28 15:00:00 30.5 70 · · ·

...
...

...
. . .

(b) For all travel and dwell times of the dataset lagged features are created. In this case, the lag
is equal to 1. However, more lagged features might be needed to capture patterns from the past
effectively.

Index yk1
yk1

(lag = 1) yl1 yl1(lag = 1) · · ·
...

...
...

...
...

...

2024-09-28 12:00:00 28 34 73 70.5 · · ·
2024-09-28 13:00:00 36.5 28 75 73 · · ·
2024-09-28 14:00:00 23.5 36.5 86.5 75 · · ·
2024-09-28 15:00:00 30.5 23.5 70 86.5 · · ·

...
...

...
...

...
. . .

4.6.8 Time features

Besides creating lagged features, another way to provide more information to the prediction
models is to encode the time index in so-called time features. These features can function as
the exogenous features of a VAR model or be used by ML algorithms such as RF and LSTM.

The time features are computed by encoding the datetime index as an integer. For hours,
this is achieved by mapping each hour of the day to an integer in the range 0, . . . , 23. Similarly,
for days of the week, the mapping assigns integers 0, . . . , 6 to Monday through Sunday.

Sinusoidal transformations are performed to capture the periodic behaviour of hours of the
day and days of the week. For example, this ensures that hour 0 and hour 23, which appear far
apart but are actually adjacent, are encoded with values that are near each other. It has been
shown that these enable ML models to capture temporal patterns more easily [53]. Equations
4.2-4.5 have been used to encode the hour of the day and day of the week for this case study.
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hour_sin = sin(2π
h

24
) (4.2)

hour_cos = cos(2π
h

24
) (4.3)

day_sin = sin(2π
d

7
) (4.4)

day_cos = cos(2π
d

7
) (4.5)

Where h denotes the encoded hour of the day and d is the day of the week. An example of
time feature engineering can be seen in Table 4.10.

Table 4.10 – Example of the sinusoidal time features. These features are calculated by first
encoding the hour of the index to an integer 0, . . . , 23 and the day to an integer 0, . . . , 6. Then,
using equations 4.2-4.5 to calculate the values displayed in this table.

Index Hour_sin Hour_cos Day_sin Day_cos
...

...
...

...
...

2024-10-02 13:00:00 -0.259 -0.966 0.975 -0.223

2024-10-02 14:00:00 -0.500 -0.866 0.975 -0.223
...

...
...

...
...

2024-10-05 07:00:00 0.966 -0.259 -0.975 -0.223

2024-10-05 08:00:00 0.866 -0.500 -0.975 -0.223
...

...
...

...
...

4.6.9 Feature scaling

Feature scaling is a crucial preprocessing step for LSTM, as these models are sensitive to the
scale of the input data. The method commonly used for scaling is the MinMaxScaler, which
transforms data into the range [0, 1]. This ensures that all input features contribute equally to
the learning process. When data is not scaled, some features with large values might have
a greater impact on the learning process. This will lead to issues like slow convergence or
poor generalisation. Equation 4.6 shows the equation used for scaling the input features of the
training data.

Xscaled =
X −Xmin

Xmax −Xmin
(4.6)

Where:

• X is the original feature.

• Xmin and Xmax are the minimum and maximum value of the feature.

• Xscaled is the transformed feature with a value in the range [0, 1].
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4.6.10 Sequence creation

The raw data format must be converted into meaningful input-output sequences for the LSTM
model. This is crucial for this model to capture temporal dependencies. The input data must be
structured as a 3d array with the shape (samples, timesteps (input), features (input).
The input has an associated 3D target array with the shape (samples, timesteps (target),
features (target)

• Samples: represents the number of training examples. The number of samples is the
same for the input and target arrays.

• Timesteps (input): denote the number of time steps in each input sequence. These are
the number of timesteps a prediction is based on.

• Features (input): indicates the number of variables in each time step of the input.

• Timesteps (target): denotes the number of time steps in each output sequence. This is
how many timesteps in the feature are predicted.

• Features (target): indicates the number of variables in each time step of the target.

4.6.11 Summary of preprocessing of training data

The previous sections presented in detail the preprocessing steps that were undertaken for the
creation of the training data. The first four sections apply to creating the data format and this is
identical for all the prediction models that are used in this research. The sections after this are
model-specific preprocessing steps. This information is summarised in the Table 4.11. Upon
completing these steps, the historical travel data from the KV6 dataset will be prepared for the
prediction models.

Table 4.11 – This table outlines the necessary preprocessing steps for each prediction model.
The steps are listed in the order they should be applied for each respective model.

Preprocessing technique HA VAR RF LSTM

KV6 message imputation 4.6.1 ✓ ✓ ✓ ✓

KV6 duplicate messages 4.6.2 ✓ ✓ ✓ ✓

Schedule adherence 4.6.3 ✓ ✓ ✓ ✓

Data format creation 4.6.4 ✓ ✓ ✓ ✓

Outlier handling 4.6.5 ✓ ✓

Resampling 4.6.6 ✓ ✓ ✓

Lagged features 4.6.7 ✓

Time features 4.6.8 ✓ ✓

Feature scaling 4.6.9 ✓

Sequence creation 4.6.10 ✓

4.6.12 GTFS preprocessing

The previous sections discussed the preprocessing steps necessary for the KV6 training data.
As explained in Section 4.5, the GTFS schedule will be overwritten by the output of the predic-
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tion models.

The following steps must be completed:

1. Every KV6 journey must be matched with the correct trip in the GTFS schedule. (i.e.
matching trip_id.

2. Arrival and departure times in stop_times.txt are in string format and must be con-
verted to a timestamp.

3. For each predicted journey with corresponding trip_id, the arrival and departure times
are overwritten. This process is shown in Table 4.12b.

4. The new stop_times.txt file can be integrated into the complete dataset and uploaded
as a zip folder to Conveyal.

Upon completing these steps, the GTFS dataset is ready to serve as input data for the
reachability analysis in Conveyal.

Table 4.12 – The process of overwriting the GTFS schedule with the output of a prediction
model. This is done for every journey that is predicted in the dataset.

(a) The original schedule for a journey in stop_times.txt.

Stop Arrival time Departure time

k1 atk1
dtk1

k2 atk2
dtk2

k3 atk3 dtk3

k4 atk4 dtk4

...
...

...

(b) The new schedule in stop_times.txt with the predictions ŷk and ŷl.

Stop Arrival time Departure time

k1 atk1 dtk1

k2 âtk2 = dtk1+ŷl1 d̂tk2 = âtk2 + ŷk2

k3 âtk3
= d̂tk2

+ ŷl2 d̂tk3
= âtk3

+ ŷk3

k4 âtk4
= d̂tk3

+ ŷl3 d̂tk4
= âtk4

+ ŷk4

...
...

...
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5 Results

Section 3 sets up the Methodology for the design of the four prediction models and reachability
analysis. The results of developing these models and conducting the reachability analysis are
presented in this section. Section 4 described the case study and preprocessing steps of the
datasets that will be used for the development of these models.

The results section aims to answer the final two research questions RQ3 and RQ4. Answer-
ing RQ3 means assessing the accuracy of the four models predicting future travel and dwell
times. Besides accuracy, it is also important to investigate the factors influencing the decision-
making of the models to unveil patterns in the data. To answer RQ4, the reachability analysis is
conducted with the predicted travel and dwell times. The goal is to investigate the implications
of the more accurate representation of the reachability of the PT network.

The results section begins with Section 5.1 presenting the outcomes of the EDA. The results
of HA (5.2), VAR (5.3), RF (5.4) and LSTM (5.5) are discussed. Section 5.6 summarises and
compares the four prediction models. Finally, Section 5.7 discusses the reachability analysis,
which incorporates the predictions of the best-performing prediction model.

5.1 Exploratory data analysis

Having a preliminary understanding of underlying patterns in the data is crucial before devel-
oping prediction models. This understanding aids in evaluating the models and explaining their
outcomes. The EDA consists of four parts: rush hours, day of the week, outliers, and skipped
stops. This selection is based on domain knowledge and insights gained from preliminary in-
vestigations.

Section 5.1.1 explores the patterns in travel and dwell times during rush hours. Section 5.1.2
examines how weekdays and weekends affect journey duration. Section 5.1.3 investigates the
presence of outliers in the data. Finally, Section 5.1.4 outlines the occurrences of skipped stops.

5.1.1 Rush hours

During rush hours, both travel and dwell times are expected to increase. The analysis conducted
in this section will explore not only rush hours but also general behaviour during other parts of
the day. There are two peak periods during the day: the morning rush from 07:00 to 09:00 and
the evening rush from 16:30 to 18:30. When visualising the cumulative travel time, it becomes
evident that a significant number of journeys during these periods take longer than those outside
of rush hours. This trend is illustrated for line g506 in direction 1, in Figure 5.1. In this figure,
it can be observed that the red rush hour journeys tend to be higher than the blue non-rush
hour journeys. This means that these journeys are generally slower. In this plot, it can also
be observed that some blue journeys are high, meaning that slow journeys can happen outside
rush hours.
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Figure 5.1 – The cumulative travel time is measured from the first stop of the route. The x-axis
represents the stop number relative to the starting point, while the y-axis shows the cumulative
travel time taken to reach each stop from the first stop.

When plotting the Kernel Density Estimation (KDE) of the total travel time of the journey (i.e.
the travel time from the first stop to the last stop of the journey) with the same definition of rush
hours. It can be observed that journeys during rush hour exhibit a different pattern. Figure 5.2
shows that the non-rush hour journeys tend to be faster than the journeys during rush hours.
However, in both KDE plots, it can be observed that slow journeys happen during non-rush
hours, and not every rush hour journey is slow.

Also, in Figure 5.2, the orange vertical line displays the time the bus journeys should take
according to the schedule. The majority of the mass of the KDEs, for both rush hours and non-
rush hours, is to the left of this line. This means that the schedule is always conservative on the
time the journeys take.
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(a) G501, direction 1 (b) G506, direction 2

Figure 5.2 – KDE visualisation of total travel times of the bus. On the x-axis is the total duration
of the journey in seconds. The y-axis displays the distribution.

To investigate more closely the travel and dwell time behaviour per hour, the z-score is
calculated. This measures how many standard deviations a data point is from the mean of a
dataset. It helps to understand the position of a value within a distribution. The definition is given
in Equation 4.1, but is also displayed below.

z =
x− µ

σ
(5.1)

Figure 5.3 illustrates the average z-score of travel and dwell times for each hour of the day.
A high z-score indicates slower journeys, while a low z-score indicates faster journeys. The
distribution of these averages is represented by boxplots, which are displayed side-by-side in
Figure 5.3.

Figure 5.3 visualises the travel and dwell times for line g501 in direction 1. The boxplots
show that daytime values are generally higher than those for the evening and early morning,
likely due to increased traffic during the day. Notably, the boxplot for 8:00 is higher than the
others, indicating that the slowest journeys occur during this time. However, a similar peak is
not observed for the afternoon rush hour, suggesting that journeys throughout the daytime are
consistently slow. The fastest journeys seem to occur in the time interval of 6:00 and 7:00.
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Figure 5.3 – Boxplots per hour of the average z-score of the travel and dwell times of line g501
in direction 1. The higher the boxplot is, the slower the journeys are for that hour; the lower the
boxplot is, the faster the journeys are.

In conclusion, the duration of journeys, along with their travel and dwell times, is influenced
by the time of day. This suggests that incorporating time features, such as the hour of the day,
into the prediction models will be beneficial.

5.1.2 Weekdays

In the same manner that Figure 5.3 is constructed in Section 5.1.1, the impact of the day of the
week is analysed. This can be seen for line g501 in direction 2 in Figure 5.4.

Figure 5.4 shows that the boxplots for Monday through Thursday are quite similar. Friday’s
boxplot is higher, indicating that the slowest journeys of the week occur on that day. Saturday’s
boxplot is more stretched, suggesting that bus journeys can be either fast or quite slow. The
boxplot for Sunday has the lowest z-score distribution, indicating that the fastest journeys of the
week occur on that day, likely due to decreased ridership during the weekend.

Figure 5.4 – Boxplots per weekday of the average Z-score of the travel and dwell times of line
g501 in direction 1.

The EDA results in Sections 5.1.1 and 5.1.2 indicate that the time of day and the day of
the week significantly impact overall journey performance. For instance, travel and dwell times
are higher during the day and midweek. Therefore, incorporating this information into prediction

54



models through time feature engineering can yield positive prediction results. The process of
time feature engineering is detailed in Section 4.6.8.

5.1.3 Outliers

During the initial data analysis, numerous outliers were identified, stemming from various causes.
These outliers can be categorised into two main groups.

1. Real-world incidents: These include genuine disruptions such as traffic incidents, delays
caused by rush hours and extended dwell times due to unforeseen circumstances.

2. Data-related issues: Errors arising from data collection faults or systems malfunction.
This was evident during the preprocessing of the KV6 messages, where duplicate and
missing messages were frequently observed.

A common threshold for defining data points as outliers is having a z-score |Z| > 3. Z-score
z is defined as

z =
x− µ

σ
(5.2)

Where x is the travel or dwell time, µ and σ are the mean and standard deviation, respec-
tively, of the travel time between two stops or dwell time at a certain stop. The percentage of
data points that can be considered outliers is displayed in Table 5.1.

Table 5.1 – The percentage of travel and dwell times that are considered outliers when defining
outliers of having a |Z| > 3.

Line Direction 1 Direction 2

g501 1.171 1.256

g502 1.516 1.375

g503 1.213 1.176

g504 1.334 1.273

g505 1.503 1.849

g506 1.393 1.389

Another way to visualise outliers is by using boxplots. Outliers are common across all fea-
tures for the various bus lines and directions. Figure 5.5 illustrates the spread of values for four
features of bus line g504 in direction 1. The dots outside the boxplot are outliers, which can be
severe for some travel and dwell times, as shown in the figure. Outliers in a boxplot are data
points that fall outside the whiskers, which extend to 1.5 times the InterQuartile Range from the
first and third quartiles (Q1 and Q3). Specifically, any data point below Q1− 1.5 · IQR or above
Q3+1.5 · IQR is considered an outlier. These outliers are represented as individual dots in the
plot.
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Figure 5.5 – Singular boxplots of two travel times and two dwell times of line g504 in direction
1. The x-axes show the times in seconds.

Figure 5.5 serves solely as an example of outliers. However, these kinds of extreme outliers
are present in the travel time data for all directions and lines. The existence of outliers can
negatively impact the predictive power of models such as HA, VAR and LSTM. RF is more
robust to outliers.

5.1.4 Skipped stops

Skipped stops are represented in the data as dwell time equal to zero. Such zero values can
have a great impact on the performance of prediction models. For example, it can heavily skew
the average dwell time of a certain stop. Therefore, it is necessary to analyse and investigate
the occurrences of skipped stops. Also, other ML learning models will have difficulties with pre-
dicting zero values.

In Figure 5.6, it is evident that the frequency of skipped stops varies depending on the time
of day. Fewer stops are skipped during the day, while more stops are skipped in the evening and
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early morning. This pattern can be explained by the varying number of public transport users at
different times of the day.

Figure 5.6 – Distribution of skipped stops vs visited stop per hour for line g504, direction 1.

Figure 5.7 displays that not every stop is skipped equally. Some stops will be relatively easy
to predict, as they are skipped roughly 80 percent of the time.

Figure 5.7 – Distribution of skipped stop vs visited stop per stop for line g504, direction 1.

To conclude the EDA section, this overview highlights key patterns in the travel and dwell
time data used for training prediction models. Firstly, travel and dwell times heavily depend
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on when the journey takes place. Secondly, the data contains many outliers, which must be
handled effectively for good prediction performance. Finally, there are identifiable patterns in
skipped stops, suggesting that prediction models could efficiently predict zero values for dwell
times. These conclusions will aid in evaluating the prediction models.

5.2 Historical average

This section presents the results of the baseline HA prediction model. The methodology out-
lined in Section 3.5 is applied to the travel time dataset of the Groningen bus network. This is
the first step in predicting travel and dwell times and therefore addresses RQ3. The primary goal
is to establish a baseline for prediction evaluation and outline expectations for more advanced
models.

As explained in Section 3.5, the HA model predicts future travel and dwell times by averag-
ing the corresponding times from past journeys. This prediction will be evaluated against a test
dataset, yielding an MAE result. After this first approach, a more advanced time-dependent HA
model will be developed. This section will also present key insights and evaluations.

Section 5.2.1 explains the process of averaging travel and dwell times to get the prediction
value. This initial version’s MAE results are evaluated in Section 5.2.2. Section 5.2.3 will intro-
duce the results of the time-dependent HA model. Finally, Section 5.2.4 will offer concluding
remarks on the HA models.

5.2.1 Averaging dwell and travel times

The data format presented in Table 3.2 enables us to take the averages of the columns to get
the average travel and dwell times. These will be the predictions ŷk and ŷl calculated using
Equations 3.3 and 3.4. This is done for all 6 lines in both directions. Figure 5.8 visualises the
cumulative predicted journey for line g506 in direction 1. The blue lines are all the cumulative
journeys on which this average journey is based. This figure shows how the prediction reflects
the average journey of the dataset.

Figure 5.8 – Average journey that is used for the prediction of future journeys visualised between
the training journeys on which it is based.
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5.2.2 Evaluation

To evaluate the performance of the HA model, the MAE will be calculated for all lines and
directions. MAE is calculated by averaging the training dataset and evaluating it against the test
dataset. The training data consists of the first 80% of journeys, while the test dataset comprises
the most recent 20% of journeys. This is done for both directions of every line of the dataset.
The results are shown in Table 5.2.

Table 5.2 – MAE results of the HA model. Overall, MAE is evaluated on dwell and travel times.
Dwell MAE and travel MAE are evaluated on only dwell and travel times, respectively.

Bus route Overall MAE Dwell MAE Travel MAE

g501, 1 11.344 12.285 10.495

g501, 2 11.533 13.473 9.739

g502, 1 13.628 13.206 14.000

g502, 2 12.563 10.699 14.427

g503, 1 11.527 13.827 9.226

g503, 2 10.860 12.823 8.948

g504, 1 11.485 13.235 9.782

g504, 2 15.103 17.346 12.765

g505, 1 14.857 14.023 15.665

g505, 2 12.563 10.699 14.427

g506, 1 10.407 11.701 9.197

g506, 2 10.396 11.733 9.116

In Table 5.2, it can be observed that overall MAE is similar for all lines when comparing di-
rection 1 and direction 2. G506 has the best MAE results, and G502 has the worst. Comparing
MAE results between lines, however, is not meaningful. Table 4.1 shows that there is a large
difference between the length and number of stops of each bus line. Increasing the size of the
bus line will introduce variability and randomness and therefore increase the MAE. Comparing
MAE is only justifiable between the different prediction models trained on the same dataset,
which is the purpose of this baseline HA model.

Overall, the predictive performance of the dwell times is lower, primarily due to the presence
of zero values in the data from skipped stops. These zero values skew the distribution. In Figure
5.9, the impact of these zero values on the predicted mean dwell time can be observed. The
histograms show that the average dwell time does not represent the non-zero distribution well,
and it can not predict any zero values (i.e. skipped stops) for future journeys.
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(a) Dwell time at stop Framaheerd along bus line
g504 in direction 1.

(b) Dwell time at stop Hereplein along bus line
g501 in direction 1.

Figure 5.9 – In these dwell time histograms, the distribution is not well represented by the
average value due to the presence of zero values. This also means that the baseline HA model
cannot predict skipped stops for future journeys.

When plotting the MAE of the travel times on a map of Groningen, it can be observed that
the links in the city centre have the highest MAE. This means that taking the average for links
in these dense urban regions is less predictive than for regions outside of the city. This can be
seen for line g501 in Figure 5.10. For this route specifically, the first link from Hoofdstation to
Hereplein has the highest MAE when tested against the test dataset.

Figure 5.10 – MAE of travel time of the links along line g501 in direction 1 for the HA model.
The MAE of the of the first link (Hoofdstation to Hereplein) is especially high.
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The same plot has been made for the line g503 in direction 1, which is shown in Figure 5.11.
In this figure, it can be observed that the MAE increases around the city centre of Groningen.
The travel times near the centre are more variable, thus making it more difficult to predict. The
links in the starting town of Leek and the end in Groningen have relatively low MAE values.
Also, the long link on the highway between Midwolde and Hoogkerk has a high MAE. This is the
longest link, and according to the schedule, this link takes around 9 minutes to travel. This will
also inflate the MAE, compared to the shorter links.

Figure 5.11 – MAE of travel time of different links along g503 in direction 1 for the HA model.

The MAE travel time maps of the lines and directions is displayed in Appendix B.1.

5.2.3 Time-dependent historical average

A more advanced HA model is the time-dependent HA model. In this model, the predictions
ŷk,t and ŷl,t are based on the average of journeys within a specific time of day. These are cal-
culated using Equations 3.5 and 3.6 for all 6 lines in both directions. The EDA (Section 5.1.1)
suggests that travel and dwell times heavily depend on the time of day the journey occurs. The
time-specific HA model aims to exploit this pattern.

The first step is investigating the optimal size of the time interval. This is done by comput-
ing the MAE results for each time interval in the same manner that the ordinary HA model is
evaluated. The results of this analysis are displayed in Table 5.3.
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Table 5.3 – The overall MAE results of different time intervals for the time-dependent HA model.
For each line and direction, the lowest MAE is bold.

Direction 30 min 60 min 120 min 180 min

g501, 1 10.177 10.165 10.293 10.447

g501, 2 10.467 13.345 13.426 13.534

g502, 1 12.432 14.105 14.177 14.222

g502, 2 12.778 13.387 13.721 13.698

g503, 1 10.781 10.722 10.774 10.772

g503, 2 10.928 10.213 10.195 10.198

g504, 1 10.746 11.448 11.496 11.548

g504, 2 15.492 15.148 15.126 15.118

g505, 1 14.102 15.720 15.697 11.822

g505, 2 12.329 12.418 12.365 12.358

g506, 1 9.652 9.530 9.533 9.547

g506, 2 9.989 10.636 10.666 10.678

In Table 5.3, it is shown that overall, the best MAE results are achieved with the smallest
time window of 30 minutes. This is the case for 6 out of the 12 lines in both directions, which
is the most of all time intervals. For uniformity, this time interval is selected for all lines and
directions for the analysis of the time-dependent HA model. Reducing this 30-minute window
will be nonsensical for most lines, as there is a bus every half hour. This means an even smaller
window will not differ from the 30-minute time interval. This would be a form of overfitting as
the model memorises the training data so closely that it will not be able to generalise to new
data. The model might start to capture irrelevant variations or noise, rather than any consistent
patterns present for the 30-minute interval.

Figure 5.12 shows several examples of 30-minute averages for two predicted travel times
and two predicted dwell times. It can be seen that there is a clear peak for these features
around the morning rush hour. This means that a higher travel and dwell time will be predicted
around this time. This is in agreement with what is expected from the EDA.
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Figure 5.12 – Examples of travel and dwell times averages per 30 minutes for line g506 in
direction 1.

The 30-minute MAE in Table 5.3 is the same as the overall MAE column in Table 5.4. In
addition, this table also displays the dwell and travel MAEs. The 30-minute HA model improves
on every line and direction compared to the ordinary HA model. This can be seen by the overall
MAE, which is lower for the 30-minute HA model. Also, for the 30-minute HA model, the dwell
MAE is higher than the travel MAE for most lines and directions. This means the same problem
persists when predicting these zero values for the dwell times described in Section 5.2.2.
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Table 5.4 – MAE results of 30-minute HA model for 6 lines in both directions.

Bus route Overal MAE Dwell MAE Travel MAE

G501, 1 10.177 10.738 9.649

G501, 2 10.467 11.795 9.212

G502, 1 12.432 12.099 12.738

G502, 2 12.778 11.884 13.564

G503, 1 10.781 12.351 9.210

G503, 2 10.928 12.231 9.660

G504, 1 10.746 11.980 9.544

G504, 2 15.492 17.447 13.455

G505, 1 14.102 12.673 15.487

G505, 2 12.329 9.884 14.774

G506, 1 9.652 10.570 8.793

G506, 2 9.989 10.798 9.215

5.2.4 Summary of historical average models

This section aimed to develop baseline prediction results, which were done by setting up the
time-dependent HA model. This model performed slightly better than the ordinary HA model,
demonstrating its effectiveness in leveraging time-of-day patterns. Additionally, the spatial in-
terpretation of the MAE results provided insights for the reachability analysis. The findings for
this baseline HA model will be instrumental in refining prediction models and improving overall
performance.

As suggested by the EDA on skipped stops and dwell times equal to zero, there is some
difficulty with predicting these occurrences. Taking the median or using a zero-inflated distribu-
tion might give better results. However, the current version of the model will be sufficient as a
baseline model.

5.3 Vector autoregression

The second prediction model developed in this research is the VAR model. This time series
model is a relatively computationally simple model. Besides producing a meaningful prediction
of travel and dwell times, it also gives a good insight into whether the travel and dwell times have
any significant autoregressive patterns. A VAR prediction model is a statistical model used to
capture the linear interdependencies among multiple travel and dwell time series. The goal is to
optimise the coefficient matrices, which can in turn be used for future prediction.

Section 5.3.1 provides an overview of how the model is implemented and the preprocessing
steps that are necessary. Section 5.3.2 presents the MAE results of the prediction model. This
is followed by Section 5.3.3, which investigates more closely the prediction behaviour of single
travel and dwell times. Section 5.3.4 discusses the addition of time features in the form of
exogenous variables to the VAR model. Finally, Section 5.3.5 concludes the findings of the
implementation of the VAR prediction model.
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5.3.1 Model implementation

The training data represented in the format of Table 3.2 must undergo two preprocessing steps
to make it suitable for training. Firstly, travel and dwell time prediction will significantly improve
when outliers are handled. VAR’s performance is suboptimal when many outliers are present in
the data. This process is described in Section 4.6.5. Secondly, the data must be resampled to
become periodic, as this is assumed for a VAR model. This is outlined in Section 4.6.6.

For a VAR model, the primary hyperparameter to tune is the maximum lag order used for
autoregression. This is determined by fitting the VAR model to the training data, which involves
estimating the optimal coefficients for prediction. For each lag order, the AIC (Equation 3.9 is
computed and the goal is to select the lag order with the lowest AIC. This indicates the model
with the best predictive performance, and this VAR model with the corresponding maximum lag
order is used for the prediction of future travel and dwell times. The model is implemented using
the VAR model from Statsmodels [54].

5.3.2 Evaluation

The VAR models were fitted to the training data of the six bus lines in both directions. These
VAR models were used to predict future travel and dwell times and were tested against the test
dataset. The MAE results of this analysis are shown in Table 5.5.

Table 5.5 – The MAE results of the ordinary VAR prediction model with the corresponding opti-
mal lag order.

Bus route Overall MAE Lag order

G501, 1 8.040 1

G501, 2 8.387 1

G502, 1 55.485 9

G502, 2 65.516 9

G503, 1 43.755 8

G503, 2 20.089 7

G504, 1 17.508 10

G504, 2 9.902 1

G505, 1 11.057 1

G505, 2 12.172 1

G506, 1 12.958 7

G506, 2 12.667 6

Comparing Table 5.5 to the MAE results of the time-dependent HA model (Table 5.4), for
several directions the VAR model can improve on the baseline model. This is the case for g501
in both directions, g504 in direction 2 and g505 in both directions. For all the other lines and
directions, the MAE on the test dataset did not improve.

The lag order is equal to one for all improved directions compared to the baseline model.
Also, it was found that in the other directions, the lag order was higher than one. When the
optimal lag order is found to be equal to one, the prediction model uses the values from just one
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previous time period to make predictions. This implies that these models are relatively simple
and the current values of the variables are highly dependent on the values from the previous
time period.

For lines g502 and g503 in both directions, it can be observed that the VAR model performs
extremely poorly on the test dataset. These models were not able to find meaningful linear
patterns in the historical travel and dwell times and often completely broke down. This resulted
in MAE values which increased between 84-413% increase compared to the baseline model.
For all models that did not improve on the baseline HA model, the optimal lag order that was
found ranges between 6 and 10. There can be several reasons for poor performance for these
models, such as overfitting, data quality and incorrect lag selection criteria.

5.3.3 Individual travel and dwell times

To better understand the prediction behaviour of VAR models, it is crucial to investigate individ-
ual travel and dwell times. This section will highlight how the best-performing algorithms predict
travel and dwell times. Additionally, examples will illustrate instances where a VAR model fails
to generalise and predict properly.

The premise is that the following day’s travel and dwell times are predicted based on the
previous day’s travel and dwell times using the optimal VAR. These VAR models have been
sampled hourly. The operating hours of a specific line determine which hours are predicted.
For directions where the lag value is smaller than the number of hours to be predicted, future
time steps are predicted using previously predicted time steps. This can lead to the prediction
converging to a single value over time. Multiple days in the test dataset are incorporated into
this analysis for a better overview of patterns.

In Table 5.5, it can be observed that line g501 in direction 1 is one of the few instances
where the baseline HA model has been improved upon. For this model, the optimal AIC value
was achieved with a lag value of 1. This VAR model has been analysed more thoroughly. Figure
5.13 shows that the predictions for the travel time between Nijenborgh and Zernikeplein re-
main relatively stable, consistently forecasting a travel time of approximately 24 seconds. What
causes the good prediction results is that the travel time of the test dataset is relatively stable,
ranging from 20 to 30 seconds. As a result, the low MAE gives the impression of strong predic-
tive performance. However, closer inspection of the graph reveals that the VAR model doesn’t
seem able to generalise the patterns in the data effectively.

Additionally, Figure 5.13 suggests that the test data appears almost erratic, with no clear
rush hour patterns, as analysed in the EDA in Section 5.1.1. This lack of discernible trends at
the individual link level highlights an important consideration for the model’s practical application:
it is more effective when used for the prediction of whole bus lines than for predicting individual
travel and dwell times.
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Figure 5.13 – Travel time predictions between the Nijenborgh and Zernikeplein stops from Oc-
tober 15, 2024, to October 24, 2024. The upper plot shows the actual travel times from the test
dataset alongside the predictions made by the VAR model. The lower plot presents the MAE for
each hourly prediction.

Besides improving on the baseline HA model, it can also happen that the VAR model seems
to completely fall apart on the test data. This, for example, happens with line g502 in direction 1
with an MAE of 55.485. When optimising the VAR model using the training data in this direction,
it was found that a lag order of 9 was the most optimal. Figure 5.14 shows one of the worst-
performing travel time predictions of this line, which is the link between the Boumaboulevard and
P+R Euroborg P3.

A first thing to note when looking at Figure 5.14 is that this link is longer than the link anal-
ysed in Figure 5.13. A longer link with larger travel times can inflate the MAE figure significantly.
However, when inspecting Figure 5.14, it can be observed that the predictions for this travel time
are poor for the test results. In the plot, the test travel times range between 60 seconds and 120
seconds. However, the predictions range from -200 to 400 seconds.

As mentioned, the predictions can also be negative. This is, of course, not possible. This
will negatively impact the MAE results of the model. This happens because outliers or extreme
values can largely influence the optimised coefficient matrices in the test data, which is used as
input for the prediction. This can, for example, be fixed by making all the negative predictions
equal to zero.
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Figure 5.14 – Travel time predictions between the Boumaboulevard and P+R Euroborg P3 stops
from October 21, 2024, to October 24, 2024. The upper plot shows the actual travel times from
the test dataset alongside the predictions made by the VAR model. The lower plot presents the
MAE for each hourly prediction.

A limitation of this VAR model approach is its assumption that journeys are continuously
connected. This implies that the autoregressive components for early journeys on a given day
are calculated using data from the latest journeys of the previous day. For some lines, these
journeys are relatively close together (e.g., there are no buses from 01:00 to 04:00 at night).
However, as shown in Figure 5.14, the schedule for this line spans from 08:00 to 18:00. This
can lead to issues, as the journeys from the previous day do not appear to have predictive
significance for the following day.

5.3.4 Exogenous time features

In the VAR model of Statsmodels, exogenous features can be added to improve predictive power
[54]. For this analysis, time features discussed in Section 4.6.8 are added to the model as the
exogenous features. These were primarily engineered for the more complex models, RF and
LSTM, which can utilise this extra information to find patterns in the dataset. Equation 5.3
displays how the VAR model equations change when exogenous variables are incorporated into
the model.

Yt = A1Yt−1 + · · ·+ApYt−p +B0Xt−1 + · · ·+BsXt−s + ut (5.3)

In these equations, Xt is a vector of these exogenous time features, and Bj is the corre-
sponding coefficient matrix. These need to be optimised in the same manner as Ai matrices.
To investigate the effect of these time features on the VAR model with exogenous features, the
model has been fitted and optimised in the same way as the ordinary VAR model. The MAE
results are shown in Table 5.6. It can be observed that the MAE results do not significantly
improve compared to Table 5.5.
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Table 5.6 – MAE results of VAR with exogenous variables, which are the time features presented
in Section 4.6.8. The MAE does not improve for any line or direction.

Bus route Overall MAE Stop order

g501, 1 18.856 22

g501, 2 25.947 23

g502, 1 62.790 9

g502, 2 79.481 9

g503, 1 43.636 8

g503, 2 20.176 7

g504, 1 17.699 10

g504, 2 17.894 8

g505, 1 37.943 10

g505, 2 15.942 5

g506, 1 12.968 7

g506, 2 12.810 6

The VAR model does not seem to benefit from the extra information the time features provide.
This can be caused by the fact that it overcomplicates the simple VAR model, and it cannot
generalise well with these time features.

5.3.5 Summary of vector autoregression

The development of the VAR model has provided valuable insights into the auto-regressive prop-
erties of travel and dwell times within the Groningen dataset. When analysing the MAE results,
it is evident that the VAR models have outperformed the baseline HA prediction model for the
lines g501 and g505. However, in many other directions, the predictions have been poor. This
suggests that a more complex ML model may be required to train on the data, as the short-term
values do not appear to be predictive of travel and dwell times.

One issue with the VAR model is its inability to predict zero values for dwell times. This often
resulted in the model overshooting and predicting negative values. This could be addressed
by ensuring all predictions are zero or higher, potentially improving prediction performance.
Additionally, incorporating time features as exogenous variables did not yield fruitful results.
Enhancing the model with features such as weather and traffic conditions, which may be more
indicative of bus performance, could lead to better predictions.

5.4 Random Forest regression

The first ML model applied to the data is the RF regression model. This is an ensemble learning
method that builds multiple decision trees. By combining the predictions of all decision trees,
the accuracy is improved and the risk of overfitting is mitigated. The main reason to investigate
this model is its ability to handle non-linear relationships and good predictive performance on
incohesive datasets. This is necessary because HA and VAR couldn’t capture patterns in the
dwell and travel times efficiently.
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Section 5.4.1 explains the process of training the RF model. The hyperparameter tuning is
presented in Section 5.4.2. After this, Section 5.4.3 investigates whether the tuned models are
overfitting on the training data. Section 5.4.4 outlines the feature importance evaluation. Finally,
Section 5.4.5 offers concluding remarks on the RF model.

5.4.1 Model training

As described in Section 4.6.11, for the RF model, the following preprocessing steps were nec-
essary. How these preprocessing mutations are executed is described in that section; however,
below, the essential preprocessing steps for RF are reiterated. These choices stem from domain
knowledge and EDA.

• Resampling (4.6.6): This step ensures the data is periodic and complete for analysis.
Since the RF model is not sequential, structuring the prediction steps coherently enhances
its predictive performance.

The data is resampled by the hour, which means that every day has as many hours as the
bus is in operation. Hours where there is no bus service are removed from the data (i.e.
hours at night).

• Lag features (4.6.7): These features provide the prediction model with the corresponding
historic dwell and travel times for that corresponding journey.

To capture the information of the past two weeks, 280 lag features per feature are added.

• Time features (4.6.8): Adding time-related features provides the model with valuable
context about the journey, improving its ability to make accurate predictions.

There are four time features (i.e. hour_sin, hour_cos, day_sin, day_cos) appended to
the training data.

The initial dataset is divided into a training set and a test set to ensure the model is evalu-
ated on unseen data. When performing the split, the input features (X) consist of all lag features
and time-related features, while the target variables (y) are the travel times and dwell times at the
time of the journey. The model that is used for the training is SKLearn’s RandomForestRegressor
[55].

5.4.2 Hyperparameter tuning

There are six hyperparameters of the RF prediction model selected to be optimised, namely
n_estimators, max_depth, min_samples_split, min_samples_leaf, max_features and
bootstrap. n_estimators refers to the number of trees, with more trees generally improving
predictions but increasing computational cost. max_depth limits the depth of each tree to pre-
vent overfitting. min_samples_split sets the minimum number of samples needed to split a
node, balancing complexity and overfitting. min_samples_leaf ensures a minimum number of
samples in leaf nodes, promoting simpler trees. max_features controls the number of features
considered for splitting a node, affecting randomness and accuracy. bootstrap determines if
bootstrap sampling is used, enhancing robustness by training each tree on a random subset of
data. Table 5.7 displays the values that will be searched for the hyperparameter optimisation.
This selection is based on preliminary trial-and-error using the RF model on the historical travel
and dwell times.
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Table 5.7 – Hyperparameters grid used for RandomGridSearchCV of RF algorithm.

Parameter name Search values

n_estimators [50, 100, 200, 400, 800, 1200]

max_depth [10, 20, 40,None]

min_sampels_split [2, 4, 8, 16]

min_samples_leaf [1, 5, 10]

max_featuresv [’sqrt’, ’log2’]

bootstrap [True,False]

To efficiently explore the hyperparameter space for the RF model, first, a RandomizedSearchCV
was applied, followed by a more precise GridSearchCV. The primary reason for using RandomizedSearchCV
initially is computational efficiency. Unlike GridSearchCV, which evaluates every possible com-
bination of hyperparameters, RandomizedSearchCV samples a subset of parameter combina-
tions. Given the search grid in Table 5.7, training all possible models would require evaluating
1,600 configurations. Therefore, a randomised search provides a more practical way to identify
promising hyperparameter values before refining them with a grid search.

A different RF model is trained for each direction, which means that a different set of hy-
perparameters will be optimal for each direction. A set of hyperparameters is optimal when it
achieves the lowest MAE on the test dataset. The optimal hyperparameters for each direction
are displayed in Table 5.8.

Table 5.8 – Tuned RF hyperparameters for the 6 lines in Groningen. For all directions, bootstrap
is set as false.

Direction n_estimators max_depth min_samples
_split

min_samples
_leaf

max_features

g501, 1 800 20 4 5 sqrt

g501, 2 800 20 4 5 sqrt

g502, 1 200 40 4 5 sqrt

g502, 2 800 20 4 5 sqrt

g503, 1 800 20 4 5 sqrt

g503, 2 50 40 8 10 sqrt

g504, 1 800 20 4 5 sqrt

g504, 2 1200 20 4 5 log2

g505, 1 50 40 8 10 sqrt

g505, 2 200 40 4 5 sqrt

g506, 1 800 20 4 5 sqrt

g506, 2 800 20 4 5 sqrt

In Table 5.8, it can be observed that for most directions, except g503 in direction 2 and g505
in both directions, the models prefer a high number of estimators in the RF. Also, it was found that
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the max_depth parameter was never set to None, which means the models generalise better
on the test dataset when the depth is limited, reducing overfitting. For the hyperparemteres
min_samples_split and min_samples_leaf, were both in the middle of the possible values.
For max_features, the square root was preferred over log2 for 11 out of 12 lines and directions.

5.4.3 Overfitting analysis

This section presents the predictive performance of the trained models from the previous Section
5.4.1. For this section, the best models with the best-performing hyperparameters are tested on
the test dataset. The MAE results on this dataset are presented in Table 5.9. Besides the MAE
on the test dataset, the MAE on the training dataset is also displayed in this table. When the MAE
on the training dataset is significantly lower than the MAE on the test dataset, it may indicate that
the model is overfitting. Overfitting occurs when a model learns the historical travel and dwell
times too well, including their noise and outliers, which negatively impacts its performance on
new, unseen data. On the other hand, a slightly lower MAE on the training dataset compared to
the test dataset is expected and not a sign of overfitting. This slight difference is normal because
the model is optimised to perform well on the training data.

Table 5.9 – RF MAE evaluation.

Direction MAE test dataset MAE training dataset Overfitting

g501, 1 7.527 5.495

g501, 2 7.872 4.943

g502, 1 9.991 6.171

g502, 2 11.287 6.25

g503, 1 9.726 5.335

g503, 2 9.122 5.926

g504, 1 7.997 5.766

g504, 2 13.34 1.788 ✓

g505, 1 11.183 7.036

g505, 2 9.391 5.481

g506, 1 8.726 6.139

g506, 2 8.961 6.629

In Table 5.9, it can be observed that for g504, direction 2, the MAE on the training dataset
is significantly lower than the MAE on the unseen dataset. This discrepancy indicates that the
model may be overfitting the training data. To address this, the model’s hyperparameters, such
as max_depth, min_samples_split, or min_samples_leaf, can be adjusted.

However, for the specific case of g504, direction 2, the preprocessing step for schedule ad-
herence (Section 4.6.3) removed many journeys from the dataset. This issue arose due to a
mismatch between the end station in the GTFS schedule and the KV6 dataset. Manually fixing
this would be time-consuming, resulting in incomplete data for this bus line. Consequently, this
may lead to poor predictive results for the RF model.

When comparing the MAE results of the RF model to the baseline HA model (5.2), it can be

72



observed that the more complex MAE model was able improve the prediction accuracy for all
lines and directions.

5.4.4 Feature importance evaluation

RF models allow us to evaluate the importance of the features. The goal is to get an insight into
what features influence the end outcome of the regression model the most. The first step would
be a decrease in impurity analysis.

Mean Decrease in Impurity (MDI), also known as Gini Importance, is a method used to mea-
sure the reduction in impurity of a feature. This reduction in impurity refers to the variance for
regression that a particular feature provides across all decision trees in a Random Forest (RF)
regression model. During the training of an RF model, decision trees split nodes based on fea-
tures that most effectively reduce impurity. This can be calculated for the entire RF model, giving
each feature in the training dataset a performance score. Features with higher scores contribute
more significantly to the model’s prediction of travel and dwell times, while features with lower
scores are less influential.

The MDI has been analysed for all 12 directional RF models. Notably, in 5 out of the 12
models, a time feature emerged as one of the most influential features. This suggests that while
the travel and dwell times of past journeys are important, the journey departure time of the
predicted journey is even more critical. For these 5 models, an hourly time feature consistently
played a prominent role in decision-making. This aligns with the findings in Section 5.1.1, which
indicate that the time of day significantly impacts the length of travel and dwell times. Figures
5.15 and 5.16 illustrate this, showing the high influence of time features in these RF models.

Figure 5.15 – Feature importance analysis of line g502, direction 1. The time feature hour_sin
is influential for the prediction of future travel and dwell times.

73



Figure 5.16 – Feature importance analysis of line g504, direction 1. The time feature hour_cos
is influential for the prediction of future travel and dwell times. Here it can be seen that

Another pattern that can be observed is that, for some RF models, the same feature is very
influential at different lags. This means that the value of a specific past feature at various points
in time is quite indicative of the predicted journey. This is evident in Figure 5.16, where the travel
time between Hoofdstation (Perron E) and Paterswoldseweg has a high influence. Lags 1 and 2,
representing the two most recent data points, are at the top. Besides, lag 1 and 2, lags around
140 are also present, these are the same journeys from a week ago. The dataset was sampled
hourly and four hours in the night were removed, so this comes to 20 entries per day. Which
results in weeks of 140 data entries.

The phenomenon of the same feature being utilised a lot by the model can also be observed
in Figure 5.17, where the feature travel time from Julianaplein to Hoofdstation (Perron J) and
dwell time at Julianaplein are the most dominant features for the prediction for line g505 in
direction 1.

Figure 5.17 – Feature importance analysis of line g505, direction 1. Travel time from Julianaplein
to Hoofdstation (Perron J) and the dwell time at the Julianalaan are the most dominant features.

The feature importance analysis figures for the other lines and directions can be found in Ap-
pendix B.2.

5.4.5 Summary of Random Forest regression

The RF model, not inherently designed for time-series prediction, demonstrated promising re-
sults for predicting travel and dwell times. RF’s ability to uncover complex patterns, where
relationships are not immediately obvious, was leveraged for the development of the model.
The MAE results of the RF model significantly outperformed the time-dependent HA baseline
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model. Incorporating time features notably enhanced the accuracy of the predictions, proven by
the feature importance analysis. This was also anticipated based on the results of the EDA.

The case study provides a relatively small dataset in relation to the number of features it aims
to predict. Although the MAE results on the test dataset appear to be good for the RF prediction
model, it is crucial to be aware of the noise found in the VAR analysis in Section 5.3.3. These
patterns, even for a complex model such as RF, are difficult to pick up.

5.5 Long Short-Term Memory deep neural network

LSTM is the final model that will be developed. This deep learning model is designed to handle
sequences of data, which in our case are the historical travel and dwell times. Its strength is its
ability to learn patterns in the data which are not readily apparent.

Section 5.4.1 outlines the choices that are made for the training of the LSTM model. After this
the optimal network structure is investigated, which is described in Section 5.5.2. The model’s
hyperparameters are tuned in Section 5.5.3. Section 5.5.4 presents the MAE evaluation of
the trained prediction models and Section 5.5.5 investigates the validation and accuracy plots.
Section 5.5.6 concludes the LSTM results.

5.5.1 Model training

As explained in Section 4.6, several preprocessing steps are necessary for the LSTM deep
learning model. These steps are outlined below. The first three are essential to improve model
accuracy. The last two steps are essential for the way the LSTM network expects the data to be
represented as sequences.

• Outlier handling (4.6.5): Outlier winsorization involves identifying outliers using z-scores
and replacing them with the 95th percentile, to reduce their impact on the dataset. High
outliers are replaced, while low outliers, often zero values, are retained.

• Resampling (4.6.6): This step ensures the data is periodic and complete for analysis.
Since the RF model is not sequential, structuring the prediction steps coherently enhances
its predictive performance.

The data is resampled by the hour, which means that every day has as many hours as the
bus is in operation. Hours where there is no bus service are removed from the data (i.e.
hours at night).

• Time features (4.6.8): Adding time-related features provides the model with valuable
context about the journey, improving its ability to make accurate predictions.

There are four time features (i.e. hour_sin, hour_cos, day_sin, day_cos) appended to
the training data.

• Feature scaling (4.6.9): The MinMaxScaler method transforms data into the range [0, 1],
ensuring all features contribute equally to the learning process and preventing issues like
slow convergence or poor generalisation.

• Sequence creation (4.6.10): To prepare the historical travel and dwell times for the LSTM
model, it must be converted into meaningful input-output sequences to capture temporal
dependencies.

The input data is structured as a 3D array with the shape (samples, timesteps (input),
features (input)), and the target data is similarly structured as (samples, timesteps
(target), features (target)).
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The models model is trained as a Sequential linear model from the Keras package [45]. From
this same package, the layers LSTM, Dropout, Dense and Reshape are used. The follow-
ing hyperparameters are selected for the training processes until the hyperparameter tuning.
These values are considered the standard values of the Keras package. Table 5.10 presents
an overview of the hyperparameters which are kept constant between testing the different struc-
tures. Early stopping is turned on when the validation loss does not improve in 10 epochs.

Table 5.10 – Hyperparameters that are kept constant when testing before the hyperparameters
are tuned.

Hyperparameter Value

Epochs 200

Validation split 0.2

Early stopping 10 epochs without val_loss improvement

Loss MSE

Batch size 64

Optimiser adam

5.5.2 Network structure

When designing the structure of a neural network, it is crucial to determine the number and
types of layers to include. This decision significantly impacts the network’s ability to learn and
generalise from data. Given the nature of sequential data, incorporating LSTM layers is essen-
tial, as they are effective at capturing temporal dependencies and patterns.

The literature review indicates that LSTM networks have been effective for PT travel time
prediction. However, it is essential to evaluate the performance of various models on the spe-
cific data from the bus network in Groningen to determine the most suitable network structure
for this case study.

Data from three bus lines have been tested to evaluate the performance of different network
structures. These lines are g501 in both directions and g504 in direction 1, which are the bus
lines that have the most data available in the case study dataset. This experiment aims to de-
termine the necessary complexity of the deep neural network, which largely depends on any
underlying patterns in the training data. Although the three previous predictions had difficulty
with predicting the seemingly noisy data, the complex nature of LSTM networks may reveal
patterns when the network complexity is increased. This complexity, in this case, is adding an
LSTM layer.

Besides the LSTM layer, there is an input layer which receives the preprocessed training data
in the 3d Numpy array sequences described in Section 4.6.10. When adding LSTM layers to the
model, there is also a Dropout layer between each LSTM layer. At the end of the Sequential
model, there are two Dense layers. These layers create the required output of the model using
the output of the LSTM layers.
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Table 5.11 – Three network structures were tested to determine the required network complexity.
The main characteristic column of an LSTM layer is the number of LSTM units in the layer and
of a dropout layer is the fraction of input units to drop.

Layer type Main characteristic Network 1 Network 2 Network 3

Input layer - ✓ ✓ ✓

LSTM layer 1 256 ✓ ✓ ✓

Dropout 0.2 ✓ ✓

LSTM layer 2 128 ✓ ✓

Dropout 0.2 ✓

LSTM layer 3 64 ✓

Dense - ✓ ✓ ✓

Dense - ✓ ✓ ✓

Reshape - ✓ ✓ ✓

For training, the dataset is split into an 80 % training and a 20 % test dataset. The trained
model is used on the test dataset and the MAE results are calculated. These results are shown
in Table 5.12.

Table 5.12 – Line g501 direction 1, line g501 direction 2 and line g504 direction 1 are tested
as these lines have the most journeys in the case study dataset. The network with three LSTM
layers had the best MAE results on the test dataset. The lowest MAE for each line and direction
is bold.

# of LSTM layers g501, 1 g501, 2 g504, 1

1 7.172 7.300 7.574

2 6.808 6.945 7.314

3 6.734 6.846 7.247

It can be observed in Table 5.12, that for all three lines, the MAE decreases when increasing
the complexity of the model. This suggests that a three-layer LSTM model seems to be optimal
for capturing the patterns in the dataset. However, investigating the validation loss plot suggests
that there are deeper issues with the training of these models. This is also suggested by not
improving the MAE considerably compared to the other models.

When examining the validation loss plots in Figures 5.18a and 5.18b, it becomes evident
that after only a few epochs, the validation loss ceases to improve significantly. This suggests
that the model is not consistently learning and improving as training progresses. Several factors
could explain this behaviour. One common reason is underfitting; however, in this case, under-
fitting can be ruled out. Specifically, in the loss plot for the three-layer LSTM in Figure 5.18b,
the training loss is lower than the validation loss, which indicates that the model is capturing
patterns from the training data. Additionally, for g501 in direction 1 of the three-layer LSTM, the
training MAE is 6.372, slightly lower than the validation MAE of 6.734, which means that the
model is not overfitting.

The plateauing behaviour observed in Figures 5.18a and 5.18b may indicate challenges in
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extracting meaningful patterns from the data. This could also be caused by the small amount
of data provided in the case study dataset. The hyperparameter tuning discussed in the next
section could help enhance prediction performance.

(a) Validation and training loss of a network of
one LSTM layer.

(b) Validation and training loss of a network of
three LSTM layers.

Figure 5.18 – Validation and training loss plots with epochs on the x-axis. Displayed for two
different network structures for line g501 in direction 1.

To conclude this section, the network structure displayed in Table 5.13 will be analysed
further in the hyperparameter tuning section. This table also displays the output shape of each
layer. This way

Table 5.13 – Primary LSTM network structure for a certain direction.

Layer type Output shape

Input layer (input_timesteps, # of features)

LSTM layer 1 (input_timesteps, LSTM_units_1)

Dropout (input_timesteps, LSTM_units_1)

LSTM layer 2 (input_timesteps, LSTM_units_2)

Dropout (input_timesteps, LSTM_units_2)

LSTM layer 3 LSTM_units_3

Dense pred_timesteps*# of pred features

Dense pred_timesteps*# of pred features

Reshape (pred_timesteps, # of pred features)

5.5.3 Hyperparameter tuning

Table 5.14 presents the hyperparameter space that will be searched for the optimised structure
found in the previous section.
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Table 5.14 – Hyperparameters space used for Bayesian Optimisation of LSTM algorithm. LSTM
units refer to the units of each LSTM layer in the neural network. Dropout rates are for the two
dropout layers present in the neural network. Activation 1 and 2 are the activation functions of
the first and second LSTM layers, respectively. The kernel initialiser is for the first LSTM layer.
Optimiser and learning rate control the behaviour during model training. The discrete hyper-
parameter options allow for fewer options for the Bayesian Optimisation algorithm to explore,
meaning faster training.

Parameter name Search values

LSTM units 1 [128, 256, 384, 512]

LSTM units 2 [64, 128, 192, 256]

LSTM units 3 [32, 64, 96, 128]

Dropout rate 1 [0.1, 0.3, 0.5]

Dropout rate 2 [0.1, 0.3, 0.5]

Activation 1 [’relu’, ’tanh’, ’swish’]

Activation 2 [’relu’, ’tanh’, ’swish’]

Kernel initialiser [’HeNormal’, ’GlorotUniform’, ’Orthogonal’]

Optimiser [’adam’, ’rmsprop’, ’adamw’]

Learning rate log scale between 10−4 and 10−2

In Table 5.14, three activation algorithms are tested, namely relu, tanh and swish. These
activation functions are for the first two LSTM layers, respectively. ReLu means Rectified Linear
Unit, which outputs the input directly if it is positive and otherwise outputs zero. This is shown in
Equation 5.4.

f(x) = max(0, x) (5.4)

Tanh means hyperbolic tangent, which squashes the input to a range between -1 and 1.
Equation 5.5 shows the definition.

f(x) = tanh(x) =
ex − e−x

ex + e−x
(5.5)

Swish is a smooth, non-monotonic activation function which has shown significant improve-
ments compared to ReLu [56].

f(x) = x · σ(x) = 1

1 + e−x
(5.6)

The kernel initialisers tested are HeNormal, GlorotUniform and Orthogonal, which are
used to initialise the weights of the LSTM network. HeNormal aims to maintain proper variance
across layers [57]. GlorotUniform balances variance across layers for sigmoid and tanh acti-
vations [58]. Orthogonal initialises the weights as an orthogonal matrix by using singular value
decomposition [59].

The three optimisers tested for are Adam, RMSprop and Adamw. Adam uses the mean of
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gradients and the variance of gradients to adaptively update the model’s weights and Adamw
updates the weights outside the gradient update [60]. RMSprop keeps track of a moving average
of square gradients to update the weights.

Table 5.15 shows the optimal hyperparameters found by the BayesianOptimization. This
has been optimised for the same selected lines as in the analysis of the network structure in
Section 5.5.2. These lines were selected, because they contained the most journeys in the case
study dataset. No additional lines or directions were selected due to the high computational cost
of running the BayesianOptimization.

Table 5.15 – Optimised hyperparameters for the three lines with the most data points. The last
row shows the MAE results of the optimal network on the test dataset.

Parameter name g501,1 g501,2 g504,1

LSTM units 1 256 256 384

LSTM units 2 192 192 128

LSTM units 3 64 96 128

Dropout 1 0.5 0.3 0.3

Dropout 2 0.1 0.1 0.3

Activation 1 tanh tanh tanh

Activation 2 tanh swish tanh

Kernel iniatilisator HeNormal GlorotUniform HeNormal

Optimiser adam adamw adamw

Learning rate 0.00327 0.00138 0.00561

MAE 6.776 7.025 7.326

In Table 5.15, it can be observed that the LSTM units are quite similar for both directions
of line g501. The first layer of g504 has more LSTM units. This may be caused by the higher
number of stops of line g504 and therefore more features to predict. An LSTM layer with more
units could be beneficial in effectively capturing all the patterns in the data.

The most selected activation function is tanh. This activation function can be susceptible
to the vanishing gradient problem. However, this doesn’t seem problematic for our data and
network setup, because tanh is found to be optimal.

Bayesian optimisation is inherently a stochastic process. When the algorithm is initialised, it
begins with a set of initial hyperparameters to start the exploration. Consequently, each run of
the model may yield different results. It is essential to run the model multiple times, to ensure re-
liable results. However, for the hyperparameters in Table 5.15, the algorithm was only executed
once due to computational constraints. This could also be fixed by setting a good set of initial
hyperparameters, based on domain knowledge or earlier exploration of the model and dataset.

5.5.4 Evaluation

With the optimised hyperparameter for the three directions, there was a good indication of which
hyperparameter worked well for the historical travel and dwell time data. A combination of these
hyperparameters presented in Table 5.15 was used with the optimised network structure to train
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on the data of each line and direction. The combination of hyperparameters was based on the
optimal hyperparameters found by the BayesianOptimization and trial-and-error testing. This
means that identical models were used for all lines and directions. Table 5.16 presents the MAE
results for the 6 lines in Groningen, when tested against the test dataset.

Table 5.16 – MAE results of LSTM network on the test dataset.

Direction MAE

g501, 1 6.743

g501, 2 7.034

g502, 1 9.485

g502, 2 10.435

g503, 1 8.818

g503, 2 9.086

g504, 1 7.276

g504, 2 8.422

g505, 1 11.054

g505, 2 11.332

g506, 1 7.729

g506, 2 7.961

These MAE values are the lowest MAE values found of all prediction models for 10 out of
the 12 lines and directions. Only for line g505 in direction 2 and line g506 in direction 1 does the
RF model perform better.

5.5.5 Overfitting analysis

For the 12 trained LSTM prediction models in Section 5.5.4, the training and validation loss func-
tions have been plotted. This section outlines some of the well-trained models and problematic
models. Figure 5.19 illustrates the model’s training process, showing a consistent decrease in
both training and validation loss. By the end of training at epoch 52, the losses converge closely,
indicating that the model has not overfitted on the training data.
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Figure 5.19 – Training set loss and validation set loss plotted during model training for each
epoch. This is shown for the LSTM model of line g501 in direction 1.

Figure 5.20 illustrates the training process of the LSTM model on the data of line g504 in
direction 1. At the end of training, there is a significant difference between the loss functions,
which indicates overfitting. Additionally, the loss of the validation dataset stayed relatively con-
stant during training. This means that the model did not pick up on any patterns, and it could not
improve considerably from initial guesses. This same behaviour was observed for g501 in direc-
tion 2, g503 in both directions and g506 in direction 1. This suggests the model’s performance
is suboptimal, and its predictive accuracy on unseen data might be limited.
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Figure 5.20 – Training set loss and validation set loss plotted during model training for each
epoch. Training set accuracy and validation set accuracy during model training for each epoch.
This is shown for the LSTM model of line g504 in direction 1.

This training behaviour indicates that there are potential issues in the travel and dwell time
training data. The data might lack strong sequential dependencies and little correlation over
timesteps. This is suggested by the validation loss, which plateaus for some lines and direc-
tions. Another problem can be that there is a high noise-to-signal ratio in the dataset. This
causes the model to be unable to extract useful features.

The loss analysis figures for the other lines and directions can be found in Appendix B.3.

5.5.6 Summary of Long Short-Term Memory deep neural network

In this section, the optimal network structure was identified as having three layers of LSTM units,
with hyperparameters optimised for this configuration using BayesianOptimization. The pre-
dictive performance was notably accurate. This was shown by the lowest MAE among the four
prediction models. However, an analysis of the loss and accuracy plots revealed issues with the
learning process, indicating the lack of strong predictive patterns in the data.

The hyperparameter tuning process could be enhanced by testing a broader range of con-
figurations and conducting multiple BayesianOptimization runs. This approach may lead to
improved performance on the dataset. Additionally, utilising a setup with higher computational
speed would produce faster results.

5.6 Comparison of prediction models

Sections 5.2-5.5 presented the performance and training of the four prediction models selected
in this research. In these sections, the strengths and shortcomings of the prediction models
have been evaluated. However, more importantly, a better understanding of the nature of the
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data has been developed. This summary section aims to unify the outcomes of the four models
and will answer RQ3.

5.6.1 MAE evaluation

For all four prediction models, the MAE on the test dataset was calculated. An overview of the
MAE results is shown in Table 5.17.

Table 5.17 – Complete overview of MAE results of the HA, VAR, RF and LSTM prediction
models. The lowest MAE for each line and direction is in bold.

Direction 30 min HA VAR RF LSTM

g501, 1 10.177 8.040 7.572 6.743

g501, 2 10.467 8.387 7.872 7.034

g502, 1 12.432 55.485 9.991 9.485

g502, 2 12.778 65.516 11.287 10.435

g503, 1 10.781 43.755 9.726 8.818

g503, 2 10.928 20.089 9.122 9.086

g504, 1 10.746 17.508 7.997 7.276

g504, 2 15.492 9.902 13.340 8.422

g505, 1 14.102 11.057 11.183 11.054

g505, 2 12.329 12.172 9.391 11.332

g506, 1 9.652 12.958 8.726 7.729

g506, 2 9.989 12.667 8.961 7.961

The baseline HA model demonstrated solid predictions for travel and dwell times, with MAE
values consistently ranging between 9.652 and 14.102 across all directions. In contrast, the
VAR models performed poorly on the test dataset for lines g502, g503, and g504 in direction
1, failing to outperform the baseline model. Notably, the MAE for line g502 in direction 2 rose
to 65.516, indicating that a short-term linear approach to predicting travel and dwell times is
insufficient.

From Table 5.17, it is evident that complex models are more effective for predicting travel and
dwell times. The LSTM model achieved the best results for all lines and directions, except g505
in direction 2 and g506 in direction 1. The deep learning model significantly improves upon the
baseline HA model. This suggests that the relationship between travel and dwell times and their
past values is non-linear.

The complex ML models can capture details but are also prone to overfitting, especially with
smaller datasets, as observed in some LSTM models. This means these models fixate more
on the noise or random fluctuations in the travel and dwell times rather than the underlying pat-
terns. Another drawback of the well-performing RF and LSTM models is model interpretability.
Understanding the inner workings of these ML models is challenging. While feature importance
analysis of the RF model provides some insights, it remains difficult to diagnose the decisive
patterns for travel and dwell times.
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5.6.2 Time features

The time of day was already exploited by the time-dependent HA model, for which the prediction
results improved considerably compared to the ordinary HA model. With the available historical
time travel and dwell time data, time features were the most apparent to create, providing the
more complex prediction models with additional context. These were designed as sinusoidal
patterns to reflect the cyclical nature of daily and weekly rhythms accurately. The feature impor-
tance analysis of the RF model indicated that the hourly features were particularly predictive.
Also, the complex LSTM model achieved good results incorporating the time features. Only the
VAR model did not benefit from the time features being added as exogenous features, and the
model’s predictions were worse than those of the ordinary VAR model.

5.6.3 Noisy data

As suggested in the EDA, the data contains a considerable amount of noise. The prediction
models set out to investigate whether meaningful patterns could be found despite this noise.
Even though the MAE results on the test dataset have improved with the complex ML models, it
is difficult to draw conclusions about the presence of reliable patterns. The feature importance
analysis of the RF model and the loss analysis of the LSTM model indicate that the data presents
a diverse range of patterns. This is further highlighted by the dynamic nature observed in the
analysis of individual travel and dwell times of the VAR model.

5.7 Reachability analysis

Sections 5.2-5.6 present the results of the travel and dwell time prediction of four models. The
predicted travel and dwell times can now be leveraged to analyse reachability. Reachability
refers to how fast destinations can be reached from a certain starting point. This section will fo-
cus on the reachability influenced by the six lines predicted in the case study of the bus network
of Groningen. This section aims to present several examples of reachability issues caused by
the travel and dwell time predictions. This will not be an exhaustive list of all the abnormalities
which can be found in the case study dataset.

Section 5.7.1 compares the MAE of the predicted values with the original schedule. This is
followed by Section 5.7.2, which details the setup of scenarios in Conveyal. Subsequent sections
provide examples of the enhanced reachability analysis, discussing the following instances:
equal reachability (5.7.3), increased reachability (5.7.4), decreased reachability (5.7.5), missed
transfers (5.7.6), and rush hours (5.7.7). Finally, Section 5.7.8 offers concluding remarks and
recommendations.

5.7.1 Comperative analysis: Schedule vs. LSTM

A common practice, and in the case of the Conveyal, is to compute reachability based on the
planned schedule. This is done by uploading a GTFS schedule of the PT network to the tool,
which will be used to compute travel times of the transportation network. These GTFS schedules
can also be tested against the test dataset in the same manner as the predictions models are
tested following the methodology presented in Section 3.9. The MAE results of this analysis are
displayed in Table 5.18. Also, this table shows the MAE results of the LSTM prediction model.
This prediction model is chosen, because it achieved the best prediction results.
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Table 5.18 – MAE evaluation of the GTFS dataset tested against the test dataset of the case
study. The LSTM results are also shown in this table. The MAE of the LSTM prediction model
are significantly lower than the MAE of the schedule.

Direction Schedule MAE LSTM MAE

g501, 1 30.233 6.743

g501, 2 30.710 7.034

g502, 1 31.329 9.485

g502, 2 28.455 10.435

g503, 1 27.876 8.818

g503, 2 26.733 9.086

g504, 1 27.390 7.276

g504, 2 29.940 8.422

g505, 1 26.953 11.054

g505, 2 26.152 11.332

g506, 1 20.017 7.729

g506, 2 21.492 7.961

In Table 5.18, it can be observed that for all lines in both directions, the MAE of the LSTM
prediction model is significantly lower than the schedule. This means that the LSTM prediction
offers a better representation of the real-world performance of the transportation network than
the schedule does. This will be beneficial for analysing reachability. An important note is that the
baseline time-dependent HA and RF models also achieve lower MAE values than the original
schedule.

The high MAE of the GTFS schedule are likely caused by the fact that all arrival and depar-
ture times are rounded off to whole minutes. This rounding causes precision loss, leading to
differences between the scheduled travel and dwell times and the actual travel and dwell times.

5.7.2 Conveyal

The reachability analysis will be conducted in Conveyal [52]. This is a tool which visualises the
reachability of isochrones. The tool will calculate how long it will take to reach certain destina-
tions. This section explains the settings for running a reachability analysis.

As explained in Section 4.4, Conveyal takes a GTFS schedule as input to calculate travel
times. For the analysis in this section, two versions of the GTFS schedule are uploaded: the
original and the LSTM predictions. The process of overwriting of the GTFS dataset with the
predictions is outlined broadly in Section 4.5 and explained in detail in Section 4.6.12.

An analysis run in Conveyal must typically compare two scenarios with each other. Four
scenarios have been configured, based on the two uploaded GTFS schedules. These scenarios
are shown in Table 5.19.
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Table 5.19 – Scenarios that are defined in the Conveyal tool. The column ’6 lines’ displays
whether, in a scenario, the original schedule is used or the predicted schedule. The six lines for
our research are g501, g502, g503, g504, g505 and g506. ’Rest of network’ column displays
whether other lines, besides the six lines, are included in that scenario.

Scenario 6 lines Rest of network

Whole original Original ✓

6 line original Original

Whole predicted Predicted ✓

6 line predicted Predicted

The four scenarios displayed in Table 5.19 allow for a comprehensive analysis of the im-
pact of the LSTM predictions on reachability. The original schedule means the original planned
schedule of QBuzz will be used to calculate travel times. The predicted schedule means that
the LSTM predictions are used to calculate travel times. Besides these distinctions, there is also
a distinction made between whether, in a scenario, the rest of the PT network is included. This
would entail the original schedule of buses, trams and trains, which are not line g501, g502,
g503, g504, g505 or g506. Including these other modes of transport in a scenario would mean
that transfers from or to the six analysed lines are possible.

Besides setting up the scenarios, the following things must be defined for each analysis in
Conveyal:

• Travel time cutoff: The edge of the displayed isochrone.

• Time percentile: How reliably people can reach destinations during a departure time
window.

• Departure time window: Time interval during the journey from the starting point during
which the journey should depart.

• Day: Day of the analysed journeys.

• Starting point: Starting point of the analysed journeys.

• Region of analysis: Region around the starting point for which the travel time is calcu-
lated.

• Acces mode: Mode (walking, cycling or by car) of transfer the starting point is being
departed from.

• Transit modes: Modes (car, bus, tram, train and metro) are used in the journeys.

• Egress mode: Mode (walking, cycling or by car) of transfer to reach the destination.

• Max # of transfers: Maximum number of transfers between vehicles or modes within a
journey.

When the scenarios and settings are defined for the analysis, Conveyal will calculate the
travel times based on the road and PT network. It will display coloured isochrones on the map,
indicating the percentile of passengers reaching that destination within the time cutoff. The
isochrones are coloured red or blue depending on the selected scenario. When they overlap,
they are coloured purple, indicating that a destination can be reached in both scenarios.
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5.7.3 Equal reachability

The first analysis is when the original and predicted schedules display the same reachability.
When comparing the original schedule with the predicted schedule, it is expected that there will
be significant overlap for the majority of destinations. This is because the primary goal of a
bus is to adhere to its schedule as closely as possible, and prediction models are designed to
forecast these times accurately.

An investigation of multiple reachability analyses confirmed this expectation. For example,
Figure 5.21 presents two figures from the same reachability analysis with different cutoff times.
This analysis was run for a Saturday from Groningen Station. Figure 5.21a is cut off at 40
minutes, while Figure 5.21b is cut off at 80 minutes. The purple isochrones in both figures
represent the overlapping isochrones, indicating similar reachability performance for the original
schedule and the predicted schedule.

(a) Cutoff time 40 minutes. (b) Cutoff time 80 minutes.

Figure 5.21 – Reachability analysis that shows equal isochrones for both the original schedule
and predicted schedule. The starting point is Groningen Station on a Saturday between 12:00
and 14:00.

5.7.4 Increased reachability

The prediction model can predict that a journey will be travelled faster than the schedule expects.
This can, for example, be seen in the reachability analysis run on Wednesday, which departed
from Groningen Station between 15:00 and 16:00. Figure 5.22 shows the increased reachability
caused by the shorter travel and dwell times. The red isochrone is the reachability according to
the predicted schedule, which is larger than the purple isochrone of the original schedule. This
difference in reachability is caused by the g502 line towards Zuidhorn, which was predicted to
travel faster.
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Figure 5.22 – Increased reachability example for an analysis run on a Wednesday with a starting
point Groningen station between 15:00 and 16:00. Here, the larger red region is the predicted
schedule by the LSTM model.

To validate the analysis in Figure 5.22, Table 5.20 displays the schedule of the corresponding
bus journey for this reachability analysis. It can be observed that the journey g502, which left
Groningen Station at 14:41:00, is predicted to arrive more than 6 minutes and 6 seconds earlier
than the original schedule expects. This is the cause of the increased reachability area displayed
in red.

Table 5.20 – The scheduled and predicted times of bus line g502 towards Zuidhorn. This journey
departed from Groningen Station at 14:41:00. The predicted journey is ahead of the original
schedule.

Stop Original ar-
rival time

Original de-
parture time

Predicted
arrival time

Predicted
departure
time

...
...

...
...

...

Slaperstil, Zijlvesterweg 15:12:00 15:12:00 15:10:50 15:10:52

Aduard, Aduarderweg 15:15:00 15:15:00 15:13:17 15:13:29

Zuidhorn, Spanjaardsdijk Zuid 15:17:00 15:17:00 15:14:46 15:14:47

Zuidhorn, Station (Perron) 15:25:00 15:25:00 15:18:54 15:18:54

5.7.5 Decreased reachability

When the prediction model predicts that a journey will be slower than the schedule, the reach-
ability of that journey will decrease. An example of such behaviour can be seen in Figure 5.23,
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where line g505 towards Scharmer is predicted to be slower. This analysis is run on a Tuesday
between 10:00 and 12:00. In this figure, the blue isochrone is the expected reachability accord-
ing to the original schedule. The purple isochrone is what the predicted schedule expects to
happen. The slower predicted bus journey causes the purple isochrone to be smaller.

Figure 5.23 – Example of decreased reachability for an analysis run for a Tuesday from Gronin-
gen’s station, which departed between 10:00 and 12:00. The blue isochrone is the reachability
that the original schedule expects. The LSTM model predicts the reachability region to be the
smaller purple isochrone.

To validate the analysis shown in Figure 5.23, Table 5.21 displays the original schedule and
predicted schedule of the g505 journey towards Scharmer that causes this decreased reacha-
bility. This table shows that the LSTM model predicts a later arrival and departure time for the
stops from Sportveld to Hoofdlaan. This means there is a decreased reachability for all stops of
the town of Harkstede serviced by this journey.
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Table 5.21 – The scheduled and predicted times of bus line g505 towards Scharmer. This
journey departed from P+R Haren A28 at 10:05:00. The original schedule is ahead of the
predicted schedule.

Stop Original ar-
rival time

Original de-
parture time

Predicted
arrival time

Predicted
departure
time

...
...

...
...

...

Engelbert, Sportveld 10:38:00 10:38:00 10:39:58 10:40:04

Harkstede, Grunostrand 10:39:00 10:39:00 10:42:01 10:42:07

Harkstede, Veldzicht 10:40:00 10:40:00 10:42:39 10:42:40

Harkstede, Hoofdlaan 10:41:00 10:41:00 10:42:31 10:43:33

Harkstede, Pilotenweg 10:42:00 10:42:00 10:44:17 10:44:20

Harkstede, Dorpshuisweg 10:42:00 10:42:00 10:44:46 10:44:54

Harkstede, Hamweg 10:43:00 10:43:00 10:45:40 10:45:51

Harkstede, Hoofdlaan 10:44:00 10:44:00 10:46:24 10:46:28
...

...
...

...
...

5.7.6 Missed transfers

The previous examples only demonstrated the effect of the six bus lines in the case study. This
analysis also includes other PT lines based on the original schedule. Slower predicted buses
may cause missed transfers to other buses. This issue was observed in the reachability analysis
conducted on Monday between 07:00 and 09:00, starting from Groningen station.

In Figure 5.24, a reachability difference between the schedule and the LSTM prediction can
be observed towards the northwest of the City of Groningen. This area, serviced by line 564,
was not included in the travel and dwell time prediction, meaning its data is based on the original
schedule. The larger blue portion indicates that the original schedule suggests you can travel
farther in the same amount of time compared to the predicted schedule.
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Figure 5.24 – Reachability difference caused by a missed transfer from line g506 to 564. This
analysis was run on a Monday between 07:00 and 09:00 with a starting point of Groningen’s
station. The blue isochrone is the original schedule, and the smaller purple isochrone is the
predicted schedule.

Further investigation shows that a transfer in the village of Ten Boer cannot be achieved
due to the slower predicted line g506 towards Delfzijl. Table 5.22 shows the specific predicted
timetable. This table indicates that a 52-second delay is already predicted at the stops before
Ten Boer. In Ten Boer, this delay is expected to increase to 1 minute and 37 seconds. Conse-
quently, the slower g506 bus reduces the reachability of the 564 bus.

Table 5.22 – The scheduled and predicted times of bus line g506 towards Delfzijl. This journey
departed from Groningen station at 6:52:00. The journey is predicted to be slightly delayed
throughout the town of Ten Boer.

Stop Original ar-
rival time

Original de-
parture time

Predicted
arrival time

Predicted
departure
time

...
...

...
...

...

Ten Boer, Bovenrijgeweg 07:09:00 07:09:00 07:09:52 07:09:53

Ten Boer, Groene Zoom 07:10:00 07:10:00 07:11:05 07:11:08

Ten Boer, Centrum 07:11:00 07:11:00 07:11:48 07:12:10

Ten Boer, Dijkshoorn 07:12:00 07:12:00 07:13:08 07:13:13

Ten Post, Rijksweg 113 07:13:00 07:13:00 07:14:37 07:14:38
...

...
...

...
...
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5.7.7 Rush hours

The preceding sections compared the original schedule with the predicted schedule. This sec-
tion sets out to predict two predicted schedules at different times of the day. EDA section 5.1.1
found that the bus travel and dwell times are influenced when the bus journey takes place. Dur-
ing the day, especially during rush hour, journeys tend to take longer. This can also be seen in
the reachability analysis.

Figure 5.25 is an example of this kind of reachability analysis. This analysis was run on a
Thursday from Groningen station. The red isochrone is the analysis between 14:00 and 15:00
and the blue isochrone is between 07:00 and 08:00. It can be observed that the red isochrone
is larger, indicating that the reachability in the afternoon is higher. This is caused by the buses
travelling faster than the buses in the rush hours between 07:00 and 08:00.

Figure 5.25 – Reachability analysis for Thursday with starting point Groningen Station. The red
region is the analysis between 14:00 and 15:00 and the blue region is between 07:00 and 08:00.

These kinds of reachability analyses are of great value for PT engineers and are more accu-
rate due to incorporating real-world bus travel data.

5.7.8 Summary of reachability analysis

This section demonstrates the improvement that the prediction models can offer compared to the
original schedule. After this, the analyses in Conveyal are explained in four different scenarios.
This section presents several examples illustrating the impact of predicted travel and dwell times
on reachability analysis. In most analyses, the comparison between the original and predicted
schedules shows an overlap, represented by a purple region in the figures. However, some
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specific analyses reveal differences due to the predicted travel and dwell times, which can either
increase or decrease reachability. Besides, these analyses between the original and predicted
schedules, Section 5.7.7 presented an example of how the rush hours tend to influence the
reachability.
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6 Discussion

This thesis set out to develop prediction models that predict bus travel and dwell times to improve
reachability analysis. Firstly, the state-of-the-art of bus travel time prediction was formulated,
which led to the selection of the four developed prediction models: HA, VAR, RF and LSTM.
These prediction models range from simple to complex in the patterns that they can uncover in
the data. To test these prediction models, the case study of the bus network of Groningen was
set up, which provided the KV6 and GTFS datasets necessary as training data for the prediction
models. The development of the four prediction models gave insight into the patterns in the
training data and the prediction results of future journeys. The predicted travel and dwell times
of the best-performing prediction models were integrated into a reachability analysis of the same
region.

This section discusses the results presented in Section 5. It begins with Section 6.1, which
summarises and interprets the acquired results. Next, Section 6.2 highlights the broader rel-
evance and implications of these findings. Section 6.3 then outlines several limitations of the
results. Finally, Section 6.4 provides suggestions for future research and Section 6.5 provides
practical recommendations for PT engineers.

6.1 Results and interpretations

This section summarises and interprets the results presented in Section 5, which described
the development of the prediction models and the reachability analysis. Answering RQ3 and
RQ4 was the primary focus of the results section. Prior to the results section, Sections 2 and
4 addressed RQ1 and RQ2, respectively. Key takeaways are mentioned in this section for
completeness; however, a comprehensive analysis of these research questions can be found in
their respective sections.

6.1.1 State-of-the-art

To answer RQ1, the state-of-the-art in travel time prediction and reachability analysis was in-
vestigated through a review of relevant literature. The key findings from the literature review in
Section 2 are summarised below.

• In contrast with existing methods, this thesis focused on travel time prediction using solely
historical travel time data.

• This thesis focuses on predicting the travel and dwell times of future bus journeys, rather
than those in operation. These predictions are integrated into reachability analysis.

• The study compares different prediction models, including HA models, time series models,
and more complex ML and deep learning approaches. The technical methodology is built
on this foundation.

6.1.2 Case study

To address 2.3.1, a real-world case study was formulated to contextualise the prediction models
and reachability analysis. This case study also provided the necessary historical travel time
data. The key aspects of the case study in Section 4 are outlined below.
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• A case study was conducted on the bus network in Groningen, focusing on lines g501,
g502, g503, g504, g505, and g506.

• Historical travel time data was sourced from the KV6 dataset, while the GTFS schedule
provided the preplanned bus line schedules.

• A data framework was developed to overwrite GTFS schedules with the output of predic-
tion models, using them as input for Conveyal, a reachability tool.

• Extensive preprocessing steps were performed, including imputing messages, handling
duplicates, and checking schedule adherence, to convert KV6 messages into a travel and
dwell time dataset.

• Model-specific preprocessing steps were applied to the travel and dwell time dataset to
prepare it for the prediction models.

6.1.3 Prediction models

To answer RQ3, the study aimed to test four prediction models and investigate which of the
selected prediction models was most suitable for predicting travel and dwell times of future
journeys. Besides analysing predictive performance, this model development phase also aimed
to gain insight into the factors influencing travel and dwell times of future journeys based on the
historical travel time data. The research has led to the formulation of the following key findings,
which are discussed in more detail below.

• The baseline time-dependent HA model provides reliable and insightful prediction results.

• The predictive performance improves with increased model complexity.

• Travel and dwell times are significantly affected by the departure time of the journey.

• The historical travel time data is noisy, which makes it challenging to predict individual
journeys.

Baseline HA model

The baseline HA model, particularly the time-dependent version, demonstrated reliable results
when analysing its MAE outcomes. Unlike a VAR model, its predictions are not able to diverge,
as evidenced by the stable MAE values across all directions and lines. However, the HA model
struggles with dwell time predictions that contain zero values. This issue can be addressed by
using either the median as a prediction or a zero-inflated probability distribution.

This model is straightforward to interpret, making it easy to understand how the outputs are
generated. Any anomalies in the predicted travel and dwell times can be identified and explained
by examining historical travel times. This characteristic makes the model an excellent baseline
and a valuable tool for initial analysis of travel time data.

Additionally, the time-dependent model offers a significant improvement over the original
schedule in the context of reachability analysis. This is supported by the MAE results of the
original schedule presented in Table 5.18, which are significantly higher for all lines and direc-
tions. The combination of improved accuracy and good interpretability provides urban planners
or PT engineers with a practical starting point for conducting reachability analysis.
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Model complexity

When analysing the MAE results of the four prediction models, it is evident that the more com-
plex ML models achieve the lowest MAE when predicting the test dataset. While this does not
necessarily indicate that RF and LSTM models are the most suitable for the task, it provides
insight into the model complexity level required for accurate travel time prediction. The literature
review also suggested that RF [28][30] or LSTM [13][32][33][34] would be suitable models for
these complex time series forecasting tasks. RF’s ability to handle non-linear relationships and
LSTM’s proficiency in capturing long-term dependencies are strengths that are particularly use-
ful for travel time prediction.

It is challenging to manually dissect how historical travel and dwell times are predictive of
future journeys. These complex ML models have learned significant patterns and improved on
the baseline HA model. This indicates that there are meaningful patterns further back in the
past than just the previous bus journey that can be indicative of the performance of future bus
journeys. The divergence of VAR for some lines and directions and the well-performing RF and
LSTM models suggest that relationships in the historical travel time data are likely non-linear.

For RF and LSTM, overfitting might occur. For example, the LSTM learning process was not
optimal for some lines and directions, as evidenced by the plateauing behaviour of the validation
loss plots. Nevertheless, both these models provide mechanisms to control overfitting. RF
does this naturally by fitting a large number of decision trees, and it can also be controlled
by setting hyperparameters such as max_depth, min_samples_split, or min_samples_leaf.
Incorporating Dropout layers in the LSTM deep neural network also helps control overfitting.

Time-dependent travel times

An analysis of the departure times’ impact on travel and dwell times in the EDA has already high-
lighted its significance. This highlighted that journeys during the daytime are relatively slower
than in the early morning and evening. During the prediction model development, this was first
confirmed by the improved MAE results achieved by the time-dependent HA model compared
to the ordinary HA model. Secondly, the feature importance analysis of the RF models showed
that the hour_sin and hour_cos time features were decisive for many directions and lines.
Lastly, the LSTM model provided the best prediction while incorporating this additional data.

Bus performance is highly dependent on the environment in which they operate. The level of
traffic and congestion differs throughout the day, which will also impact buses. Observing these
patterns in the data aligns with expectations, and leveraging this knowledge for more accurate
predictions is particularly useful.

Noisy data

Upon closely observing travel and dwell times, it became evident that they are relatively noisy.
This conclusion is supported by the VAR patterns in Figures 5.13 and 5.14. Consequently,
predicting an individual journey is challenging and unreliable. The prediction models offer reli-
able insights when considering multiple predicted journeys, which aligns with the consensus of
leveraging ML for these tasks. However, an urban planner or PT engineer might want to investi-
gate the reachability and performance of a specific journey. Ensuring that the prediction models
provide reliable predictions that closely represent the real world is challenging.

6.1.4 Reachability analysis

To answer RQ4, the predictions of the best-performing model, LSTM, were used as input to the
reachability tool Conveyal. In this tool, the predicted schedule was analysed together with the
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original schedule. This research has led to the formulation of the following key findings, which
are discussed in more detail below.

• Leveraging historical travel time data improves reachability analysis by providing a more
accurate representation of the real world.

• Discrepancies between the original and predicted schedule manifest as increased reach-
ability, decreased reachability and missed transfers.

• The differences in reachability calculated using the original versus the predicted schedule
are relatively minor.

• Reachability analysis reveals distinct time-of-day patterns.

Accurate real-word representation

It was investigated whether the travel and dwell times based on the original schedule are com-
parable to those in the test dataset. This experiment shows whether it represents the real world;
this is similar to how the prediction models’ output is tested. In Table 5.18, the MAE values of
the best-performing model, LSTM, are significantly lower than the MAE values of the original
schedule. This indicates that the predicted travel and dwell times more closely represent the
real world because they incorporate historical travel times.

This result was expected, as the thesis’s aim was to provide an improvement compared to
calculating travel and dwell times based on the original schedule. The original schedule is also
rounded to whole minutes, which is done for straightforward interpretation for passengers. This
practical loss of precision is influential when utilising the schedule for other purposes, such as
travel time calculations for reachability analysis.

Discrepancies between predicted and original

Figure 5.21 illustrates that the reachability regions calculated based on the original and pre-
dicted schedules often overlap. This is expected as the original schedule attempts to represent
real-world bus operations closely. This overlap also validates that predictions are not extremely
unrealistic.

What is of more interest for PT engineers and urban planners is where the original and pre-
dicted reachability are different. It was shown that for some specific times the predicted reach-
ability isochrone could be larger (5.7.4) or smaller (5.7.5) than the original schedule isochrone.
This means that either more or fewer destinations can be reached within a certain time. Section
5.7.6 also showed that a predicted delayed bus could result in missed transfers to other modes
of transport. This also negatively impacts the destinations that the specific journey can reach.
These examples are of great value for network design and illustrate the importance of leveraging
historical travel time data in decision-making.

These individual predicted journeys will probably not lead to changes in the network design,
scheduling, or policy. However, many of these observed discrepancies will be important to PT
agencies. Proving the existence of these discrepancies was the scope of RQ4. For future
research, the outcomes of this thesis can be utilised to explore whether systemic patterns in the
discrepancies can be observed.

Small differences

While incorporating dwell and travel time prediction enhances the accuracy of reachability anal-
ysis and it was observed that there are discrepancies between the original and predicted sched-
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ules. The size differences between the isochrones in Figures 5.22, 5.23 and 5.24 are relatively
small. This means that the reachability does not change considerably for some cases. The real-
world isochrone difference ranges from approximately 200 to 1000 metres. This corresponds to
1 to 5 minutes of walking on a total journey time of 60 minutes.

This observation was discussed with a PT engineer who specialises in reachability analysis
using Conveyal. He stated that these differences are significant enough to impact the efficiency
of the analysed PT network. Understanding the actual predicted reachability is of great value
when consulting on scheduling and routing to PT agencies.

Time-of-day patterns

In the EDA and prediction model development, it was concluded that the departure time from
the first stop significantly impacts the travel and dwell times of that journey. This pattern could
also be observed in the reachability analysis in Section 5.7.7. Here, the same pattern is that a
journey in the morning rush hour between 07:00-08:00 takes longer than a journey departing
between 14:00 and 15:00. This led to a decreased reachability of the journey in the morning of
the day. It is significant for PT research that these patterns are also apparent when visualising
the reachability.

6.2 Implications

This section describes the relevance and implications of the results in a broader context. First,
the implications of predicting travel and dwell times of future journeys are explained. Second,
the implications of enhanced reachability analysis are outlined.

6.2.1 Predicted travel times

Accurate travel and dwell time predictions can be used outside the context of reachability anal-
ysis. This information can provide PT agencies with valuable insights into travel patterns and
operational inefficiencies. This information enables the agency to optimise routes, allocate re-
sources and improve the passenger experience.

Trip-planning apps that passengers use can also leverage accurately predicted travel and
dwell time. Solely using the schedule to compute travel time can be relatively misleading about
what is actually happening in the real world. This is caused by the schedule, which is rounded
to whole minutes. Adjusting for ongoing journeys that are already delayed is relatively easy
and already happens in the trip-planning apps. However, it is also helpful to be aware of the
expected performance of a passenger’s journey in the future.

6.2.2 Realistic reachability

Reachability analysis is a powerful tool. The results showed significant differences when calcu-
lating travel time using the original schedule compared to predicted travel and dwell times. This
approach provides a more realistic depiction of the actual achievable reachability of a region.
This section will highlight three examples where this improved reachability analysis will impact
designing networks and formulating policies.

Reachability analysis helps identify areas with large accessibility, indicating that the PT net-
work effectively covers these regions. Conversely, areas with small reachability may highlight
gaps in the network that need improvement. These gaps can also happen where it may seem
the PT network is efficient, but bottlenecks or frequent delays negatively impact reachability.
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This information is crucial for urban planners and PT engineers to optimise routes and sched-
ules.

Besides analysing the regional coverage, examining the number of people efficiently served
by the transportation network is essential. This means incorporating demographic data to better
understand which segments of the population rely most on PT. Such insights can guide deci-
sions on expanding services to underserved communities.

The next step is not only analysing the places where people live, but also taking into account
the potential destinations of the population [39]. This reveals the economic and social benefits of
the PT network. Measuring reachability is often done by analysing access to intermediate points
(e.g. the nearest bus stop) rather than people’s true destination. Jobs, businesses and services
that can be reached in a certain amount of time will differ when the schedule or predicted travel
and dwell times are used as input. Changing policies based on this analysis will improve social
and economic inclusion by providing mobility options to disadvantaged groups.

In these increasingly elaborate reachability analysis examples, urban planners and PT en-
gineers incorporate more factors for decision-making. A reachability tool that accurately repre-
sents the PT network is key for this. Interventions in policy and planning become more precise
when real-world data is incorporated, rather than relying solely on schedules provided by public
transportation companies.

6.3 Limitations

This section discusses four limitations of the results in this thesis. Firstly, the strict preprocessing
approach is discussed. Secondly, the assumption of the same departure times as scheduled for
overwriting the GTFS schedules is outlined. Lastly, the practical shortcomings of writing to the
GTFS schedule is discussed.

6.3.1 Strict preprocessing

A strict preprocessing approach was used in the case study, where every journey in the historical
travel time dataset had to adhere strictly to the schedule. This means the prediction models’
training data did not consider defective journeys. Several of these journeys had no meaningful
arrival and departure time data and were rightfully removed. However, there were also many
journeys where only the stop order was incorrect, or a single stop would be missing. These
journeys could be insightful as they most likely significantly influence reachability. For example,
patterns in aborted bus journeys would be indicative of the predicted reachability. Devising more
precise preprocessing algorithms that can handle a broad spectrum of anomalies in historical
travel data would be a significant next step. However, for this thesis, only utilising fully completed
bus journeys is insightful for analysing reachability.

6.3.2 First stop departure time

In this thesis, the assumption was made that for overwriting the original schedule with the predic-
tions, the departure time from the first stop would be the same as the schedule. From here, the
predicted travel and dwell times are cumulatively added to create the new schedule. However,
in reality, buses may depart early or late, affecting the ability to make transfers and consequently
impacting reachability. This does not necessarily mean that the bus drives slowly. This means
that at each stop, there is a similar delay in the arrival and departure times caused by the late
departure from the first stop, which impacts reachability.
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The behaviour of a bus being delayed from the first stop departure is not currently captured
in how the prediction models and the case study’s data framework are set up. Solely predicting
the travel and dwell times of the bus journeys still provides a more realistic reachability analysis
and, therefore, answers the main research question. However, not modelling this behaviour
means it does not entirely depict the real world.

6.3.3 Overwriting a GTFS schedule

A practical shortcoming involves writing the predicted travel and dwell times to a GTFS dataset
not optimised for this specific usage. The issue arises because the same stop times correspond-
ing to a single trip_id are used on different days, differentiated by their service_id. When
writing the predicted travel and dwell times for journeys corresponding to this single trip in the
GTFS dataset, it is impossible to have different predictions for these journeys on different days.

For example, two trips from g501 leaving Groningen station at 15:55 are defined by the same
GTFS schedule, one on Wednesday and one on Thursday. A prediction model, such as RF or
LSTM, will have different predictions for the Wednesday trip than the Thursday trip because
it includes day-of-the-week features. Only one of the predictions can be written to the GTFS
dataset, meaning a choice must be made regarding which prediction to implement. This issue
can be resolved by creating the GTFS dataset from scratch with custom trip_ids, ensuring
that no journeys on different days refer to the same stop times in stop_times.txt. However,
this is a cumbersome task as the schedule is sourced from OVapi.nl and is set up this way.

6.4 Future research

This section provides several recommendations for future scientific research. Section 6.5 pro-
vides a more practical approach to how the results can be leveraged by, for example, a PT
engineer or urban planner.

6.4.1 Delayed departure prediction

In Section 6.3.2, the limitation of taking the departure time of the first and cumulatively adding
the predicted travel and dwell times was discussed. For future research, it is beneficial to con-
sider delayed departures from the first stop, as it affects reachability. This could be altered by
predicting the departure delay from the first stop compared to the schedule.

Practically, this could be done by adding a feature to every journey in the dataset: the delay
between the scheduled departure from the first stop and the actual departure in the historical
travel time dataset. This feature will also be predicted for future journeys. This will make the
reachability analysis more realistic and provide the prediction model with extra information. For
example, a journey with a delayed departure might demonstrate certain patterns in the travel
and dwell times, which a complex model such as LSTM might pick up on.

6.4.2 Prediction models

This thesis offers an initial insight into the requirements for a prediction model to forecast future
journeys based on historical travel times. It suggests that complex models, such as RF and
LSTM, possess the necessary complexity for this task. The approaches in this thesis are rela-
tively simple. More advanced deep learning models, such as ensemble models, gated recurring
units and transformer-based models, could be essential to unveil the true patterns of the histor-
ical travel time data.

101



Enhancing the training dataset is crucial for the future development of prediction models,
ensuring that true patterns are accurately identified. Below are several suggestions for improving
the training dataset:

• Incorporate additional datasets such as weather, traffic, ticketing or exact GPS data.

• Collect a historical travel time dataset that spans a longer time interval than the dataset
considered in this thesis’s case study (>2 months).

• Include journeys that do not strictly adhere to the schedule, which involves enhancing the
preprocessing algorithms used for historical travel time data.

• Engineer statistical and aggregated features, such as mean, median, or variance, over a
rolling window.

Besides making the prediction models more elaborate, it would also be insightful if a more
generalised approach could serve as a good input for reachability analysis. This could, for
example, be done by predicting the same travel times for all journeys within a certain time
window. Another example is to divide the journeys into larger segments comprising multiple
stops, instead of dividing them into individual stops. A final example would be predicting the
total time the journey takes from beginning to end and dividing this proportionally over all stops
and links. These examples would decrease the detail level, but could still be useful and reliable
as input for reachability analysis.

6.5 Practical recommendations

This section provides a PT engineer with practical and straightforward methods for assessing
reachability using predicted bus travel times. These techniques can be efficiently applied to
analyse new PT networks. The engineer does not need the comprehensive research depth of
this thesis for their city’s assessment. Below are four pointers for the initial setup of the research:

• Analyse the historical travel times: Carefully examine the AVL dataset’s messages to
decide on appropriate preprocessing techniques. Identifying historical travel time data
anomalies is crucial, including handling defective, rerouted, and cancelled journeys.

• Baseline prediction model: Start with a simple, interpretable model like a time-dependent
HA model. This model is easy to implement and provides a solid foundation.

• Sufficient training data: Ensure the training dataset is large enough, ideally encompass-
ing up to a year of representative data.

• Use analysis tools: Utilise tools like Conveyal to display and analyse isochrones. Devel-
oping a program from scratch is time-intensive, whereas tools like Conveyal offer efficient
analysis features. Overwriting the GTFS schedule with predictions is relatively straightfor-
ward.

These points provide a solid starting point for a comprehensive reachability analysis. The
most critical step is analysing historical travel time data, which will reveal many patterns and
insights. After this, consider the following advanced steps:

• Advanced prediction models: Implement more sophisticated models like RF or LSTM
to enhance travel and dwell time predictions.

• Delayed departure prediction: Include the variable delayed departures from the first
stop to represent real-world operations better.
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• Population-specific analysis: Expand the analysis to assess the specific parts of the
population served by the PT network. Investigate destinations of interest, such as jobs,
schools, and medical facilities, within the reachability isochrone.
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7 Conclusion

This thesis set out to enhance reachability analysis by providing a more realistic representa-
tion of the performance of the bus. This representation was achieved by predicting travel and
dwell times of future journeys using the historical travel time data. The comparison between four
prediction models indicated that the LSTM deep learning model had the best accuracy for this
task. This model’s predicted travel and dwell times better represented real-world bus reachability
than the schedule could. This leads to cases of increased reachability, decreased reachability,
or missed transfers.

Firstly, the literature research gave rise to the four prediction models that would be investi-
gated for the task of travel time prediction. HA, VAR, RF and LSTM proved to be an insightful
selection of prediction models during the model development phase. Each model improved the
understanding of the patterns in the travel time data. Additionally, the effective case study data
framework enabled the manipulation of the KV6 dataset and the GTFS dataset to be the input
of Conveyal. This process was highly efficient and successfully facilitated the reachability analy-
sis. In this reachability analysis, the expected discrepancies between the original and predicted
schedule were found.

For future research, incorporating delayed departure prediction into the prediction models
will be beneficial for a complete representation of the real-world operations. Additionally, em-
ploying more different prediction models, such as ensemble models, gated recurring units and
transformer-based models can improve prediction accuracy. These models could also be com-
bined with a more elaborate dataset, which, for example, combines weather data, traffic data
and improved preprocessing of defective journeys.

Predicting future journeys provides valuable insights into the optimal design of the PT net-
work. This can be achieved solely using historical travel time data. Besides, the primary goal
of a transportation network is to achieve good reachability. It strives to connect people to their
desired destinations quickly and conveniently. This thesis offers travel time prediction models
that improve reachability analysis, which is invaluable to improve the sustainable and efficient
PT networks of the future.
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Realistic prediction of public transport travel times for accurate
representation of multi-modal reachability

Siewe Knook
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Abstract

This paper uses historical bus travel time data to predict future
travel times, aiming to improve public transportation network
reachability. Four prediction models were evaluated: Histori-
cal Average, Vector AutoRegression, Random Forest, and Long
Short-Term Memory (LSTM) deep neural network. A case study
with six bus lines in Groningen used KoppelVlak 6 and GTFS
schedule datasets. The analysis found that complex models like
Random Forest and LSTM provided the most accurate predic-
tions, with the time of day being a key factor. Integrating these
predictions into reachability analysis showed changes in reach-
ability and missed transfers compared to the original sched-
ule. The findings highlight that accurate travel time predictions
can enhance reachability analysis and help identify and address
systemic issues in public transportation networks.

1 Introduction

High-quality Public Transport (PT) services improve the lives of
citizens considerably. It can reduce traffic congestion and im-
prove air quality by reducing carbon emissions [1]. Also, im-
plementing efficient and well-managed public transport (PT) will
make a city more sustainable [2]. A key part of efficient PT is
providing passengers and engineers with accurate information
on the arrival and departure times of PT services. For PT en-
gineers, accurate predictions are transformative tools in the de-
sign and optimisation of services. The schedule often does not
reflect the actual daily operation of the PT network well. Utilising
accurate historical information on arrival times and departure
times is beneficial when designing routes, schedules or vehicle
allocation for a PT network. Engineers rely on predictive data
to analyse a PT system. These insights enable better schedul-
ing, bottleneck identification and infrastructure planning [3]. By
integrating real-time data into design processes, engineers can
create networks that minimise delays and enhance passenger
satisfaction.

The need for the incorporation of this data is because PT jour-
neys will often deviate from the schedule. PT is operating in an
urban environment where disturbances are likely. This means
that it is difficult to maintain a deterministic travel time because
traffic and weather conditions can vary greatly. There has been
a great development in collecting data on the GPS location of
PT vehicles. This means that for almost all PT journeys in the
Netherlands, there is historical data on arrival and departure
times at stops along the route [4]. There has been significant re-
search in the 20th century to leverage this kind of data to make
accurate decisions on the travel time of PT [5][6][7][8].

The research of this paper will focus on the prediction of travel
and dwell times of bus journeys. Travel time can be defined as
the time to reach a destination or cross a link of the public trans-
port network. Travel time prediction refers to the prediction of
current or future travel times. Dwell time is the time that a bus
is stationary at a stop, meaning the difference between the ar-
rival and departure time at the stop. Four prediction models
will be developed in this thesis: a baseline Historical Average
(HA) prediction model, a Vector Auto-Regression (VAR) predic-
tion model, a Random Forest (RF) prediction model and a deep
learning Long Short-Term Memory (LSTM) neural network pre-
diction model.

The second focus point of this paper is insightful reachabil-
ity information, which is an important part of high-quality PT.
Reachability, in the context of public transport, refers to the abil-
ity to reach a certain destination in a certain amount of time.
Visual representation, such as an isochrone map or graph, is a
key method to convey reachability information. Interactive soft-
ware tools which generate and evaluate these visualisations are
of great value to PT engineers. One of those tools is Conveyal,
which utilises pre-planned schedules to present the travel times
for PT. This paper aims to predict more accurate travel and dwell
times using historical travel time data to implement in this reach-
ability tool.

The contributions of this research can be summarised in two
points. Firstly, the developed models will predict future journeys
using solely historical travel time data. This data will be engi-
neered accordingly to create time features, such as hour of the
day, day of the week, and lagged variables. Secondly, this paper
aims to showcase the benefits of incorporating these travel and
dwell time predictions into reachability analysis.

The research is organised as follows: Section 2 presents
the literature review. The insights gained from this section will
be used to set up the methodology (3), which outlines the Ex-
ploratory Data Analysis (EDA), the prediction models develop-
ment and reachability analysis. Section 4 provides a description
of the case study of Groningen and the datasets. Afterwards,
Section 5 presents the results of the EDA, prediction models
and reachability analysis. Finally, Section 6 offers concluding
remarks and discusses the implications of the research.

2 Literature review

The widespread implementation of AVL provides large amounts
of data on the operation of PT. Agencies and researchers can
use this data to observe, collect and analyse location informa-
tion about a vehicle. Ultimately, this data can be used to make
informed decisions on network planning and improving passen-
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gers’ experience [9]. Modern AVL systems rely on GPS systems
to receive the longitude and latitude of the bus in real-time. This
data is often enriched with arrivals and departures at stops dur-
ing the PT journey [10].

This data has been applied to a wide variety of tasks. Per-
formance analysis of the PT bus network, for example, is useful
for the operators. Yan et al. [11] utilised AVL data in statistical
analysis to assess spatial and temporal patterns during various
route segments and time-of-day intervals. D’Acierno et al. [12]
propose a method to estimate the urban traffic conditions based
on the AVL data of the buses in the city. The method was able
to accurately monitor traffic conditions not only in the bus lane
but throughout the entire road network. The application of AVL
data that his thesis focuses on is travel time prediction.

The most popular parametric models are time series models
and regression models. With time series models, the assump-
tion is made that there exists a pattern between historically ob-
served data and future travel time patterns. Popular methods
that fall under this category are Moving Average (MA) [13][5],
AutoRegressive (AR) and AutoRegressive Integrated Moving
Average (ARIMA) [14]. The main advantage of these methods
is their fast computational speed and ease of implementation.
Chung and Shalaby [5] propose an estimated arrival time model
which incorporates data on the last five days of operations and
the present day’s operational conditions. Maiti et al. [13] pro-
pose a historical data model which considers vehicle trajectory
and timestamps as input features. A more advanced ARIMA
model is proposed by Suwardo et al. [14] for predicting bus
travel time solely based on past observations. The most com-
plex would be Ma et al. [6], who developed a model that cap-
tures correlations among link travel times conditional on the un-
derlying traffic states. The simplicity of HA and ARIMA in imple-
mentation and ease of interpretation make them valuable tools
for initial forecasting results. A limitation of parametric models,
such as AR or MA, is their reliance on the last n previous obser-
vations. While this is often sufficient for short-term linear pre-
diction, it can overlook important indicators from further in the
past.

More advanced are Machine Learning (ML) models. Yu et al.
[15] propose a hybridization approach of a RF model based on a
near neighbours model. García-Mauriño et al. [8] also proposes
a RF model which predicts travel times based on historical data.
Ma et al. [16] proposes a segment-based bus route graph with
two independent prediction models, which predict transit time
and dwelling time, respectively. Chondrodima et al. [17] pro-
pose a method to use GTFS data in a framework for predicting
PT arrival time. This framework combines a GTFS schedule
with a real-time GTFS feed. Several machine learning algo-
rithms are tested on this framework, and an ANN had the best
performance. ML excels at handling non-linear patterns, which
are frequently encountered in PT datasets. For instance, Chon-
drodima et al. [17] found that in their dataset, the most complex
model, an artificial neural network (ANN), yielded the best pre-
diction results.

Deep learning models are considered the state-of-the-art for
public transport travel time prediction. These techniques in-
clude LSTM neural networks, Recurrent Neural Networks (RNN)
and convolutional neural networks (CNN). These techniques are
widely used for time-series forecasting problems. Pang et al.
[18] deploy an RNN with an LSTM block to correct for the pass-
ing of the earlier bus stops. He et al. [19] predict bus journey

time for an individual passenger by separately predicting riding
and waiting time. Liu et al. [20] propose a hybrid model of LSTM
and ANN based on a spatio-temporal feature vector. Alam et
al. [21] and Han et al. [22] propose an LSTM model which is
trained on GPS coordinates of transit buses. In general, deep
learning methods have demonstrated superior predictive per-
formance compared to traditional models such as HA, ARIMA
and KF. These conventional models often struggle to capture
the temporal dependencies and nonlinear relationships present
in real-world bus data.

Reachability refers to the time that it takes a passenger to
reach certain destinations. It is a crucial factor in urban planning
and mobility, as it affects economic activity, social inclusion and
overall quality of life. Some factors which influence the reach-
ability are: coverage and network density, service frequency,
availability, connectivity, speed.

As mentioned in the introduction in Section 1, the existing lit-
erature often focuses on the arrival time prediction of a bus that
is currently in operation [22]. In these approaches, the predic-
tion models consider real-time traffic and weather conditions,
and the model can also use the arrival and departure times of
the current bus trip. This paper will focus on the prediction of
arrival time for future bus trips. He et al. [19] does consider pas-
senger journeys in the future, but not the prediction of the future
bus schedule. Short-term future prediction is applied by Zhang
et al. [23].

Another aspect of the research gap is that these future predic-
tions will be incorporated into a reachability analysis. Patterns
in travel and dwell times will influence the speed of the bus net-
work and, therefore, reachability. This temporal factor will be
expressed more realistically. Current literature mainly utilises
travel time prediction to provide passengers with arrival time in-
formation of an ongoing bus journey, not to enhance reachability
analysis.

3 Methodology

Four prediction models are selected for analysis, increasing in
complexity from a simple baseline model. The goal is for each
model to capture the underlying patterns of travel and dwell
times better, thereby increasing prediction accuracy and effec-
tively handling the numerous variables involved in bus travel
time prediction. The baseline model will be an HA model, cho-
sen for its simplicity as it doesn’t require complex models or
assumptions. Maiti et al. [13] demonstrated the effectiveness of
using average travel times for predictions. They also suggested
making these averages dependent on the time of day, an ap-
proach that will be developed in this thesis. The second model
will be a VAR model. Although ARIMA has been shown to ef-
fectively forecast public transport travel times [14], it is applied
to a single variable and does not account for interdependen-
cies between variables. The third model, RF, is the first ma-
chine learning model selected due to its ensemble-based na-
ture, which combines multiple decision trees to reduce variance
and enhance generalisation [15]. The most complex model will
be an LSTM neural network. LSTM, in particular, is advanced
in predicting time-series data and can easily incorporate other
variables such as weather or traffic information [21][22]. The list
of symbols can be found in Appendix A.
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3.1 Dataset creation and analysis

Two data types are necessary for accurate bus travel and dwell
time prediction, namely the schedule and the historical travel
and dwell times. For the historical data, the source data can
be in the form of arrival and departure times at certain stops
along the bus routes or the dwell and travel times of the bus
journey. This dataset should be represented as shown in Table
3 in Appendix B. Each row of this dataset is a journey along
a certain bus route, and the columns are the travel and dwell
times of that journey. This dataset should be presented as a
time series indexed by the departure time from the first stop of
the bus journey. Using this information the arrival and departure
time data, the Equations 1 and 2 calculate dwell time yk,j and
travel time yl,j , which form the columns of the dataset.

yk,j = dtk,j − atk,j (1)

Where yk,j is the dwell time at stop k for journey j, which is
calculated by taking the difference between the arrival time atk,j
and departure time dtk,j at stop k for journey j.

yl,j = atk,j − dtk−1,j (2)

Where yl,j is the travel time for link l for journey j which spans
between stop k and the preceding stop k− 1. Travel time yl,j is
calculated by taking the difference between the departure time
dtk−1,j from stop k − 1 and the arrival time atk,j at stop k for
journey j.

Table 3 should not have any missing values. This means that
preprocessing steps such as imputation, duplicate handling and
checking schedule adherence might be necessary steps to ac-
quire this data. Summarising, visualising and interpreting the
created dataset of travel and dwell times.

3.2 Historical Average

The predictions for a certain route, such that the stop vector kj

and lj are identical for all journeys considered, are the averages
of travel times of the specific links and dwell times of specific
stops. Equation 3 is used to calculate the average travel time ŷl
for a link l.

ŷl =
1

N

N∑

j=1

yl,j (3)

In Equation 3, link l has been travelled N times in journeys in
the selected dataset. yl,j is the travel time of a certain link l for
a journey j. The average is taken over all the instances N that
the link l has been travelled {yl,1, yl,2, ...yl,N}. This will give the
prediction for the travel time ŷl for a link l.

Similar to predicting travel times, Equation 4 is used to predict
the dwell time ŷk at a stop k.

ŷk =
1

N

N∑

j=1

yk,j (4)

In this equation, the predicted dwell time ŷk at stop k ŷk is
calculated by taking the average of all the dwell times at this
stop for all journeys in the dataset. The average is taken over
all the instances that this stop has been used in a certain route
{yk,1, yk,2, ...yk,N}.

Applying Equations 3 and 4 to all links in l and stops
in k, respectively, will yield predicted travel and dwell times
for the complete route. The predicted vector travel times
ŷl = {ŷl1 , ŷl2 , ..., ŷln−1

} and predicted vector dwell times ŷk =
{ŷk1 , ŷk2 , ..., ŷkn} can be used as for the reachability analysis.

The Equations 3 and 4 are adjusted to Equations 5 and 6.
In these equations, t relates to a specific similar-sized interval
⟨t, t + dt⟩, the day is divided into. This means that yl,t,j and
yk,t,j refer to the past travel and dwell times, respectively. Fur-
thermore, ŷl,t and ŷk,t are the predicted travel and dwell times,
respectively. This is similar to the equations presented in the
previous Section 3.2.

ŷl,t =
1

N

N∑

j=1

yl,t,j (5)

ŷk,t =
1

N

N∑

j=1

yk,t,j (6)

3.3 Vector AutoRegression

The basic p-lag VAR model (denoted as VAR(p)) has the form
as displayed in Equation 7 [24].

Yt = A1Yt−1 +A2Yt−2 + · · ·+ApYt−p + ut (7)
where:

• n means that (2n−1) is the number of variables, travel and
dwell times of a journey in the VAR model.

• Yt is a (2n − 1)-dimensional vector of dwell times
yk and travel times yl at time step t, s.t. Yt =
{yk1

, yl1 , . . . , yln−1
, ykn

}.

• Ai (1, . . . , p) are (2n− 1)× (2n− 1) coefficient matrices.

• ut ∼ N (0,Σu) is a white noise error term with zero mean
and covariance matrix Σu.

Firstly, when training the VAR model, residual tests, such as
checking for autocorrelation and normality, are conducted to en-
sure model adequacy. Next, the estimation procedure is per-
formed on the training data. The parameters Ai are estimated
using Ordinary Least Squares (OLS). Âi = (X ′X)−1X ′Yi

where for each time series i the estimated Âi are calculated
using this equation. Where X is the matrix of the lagged vari-
ables. Yi is the vector of current values of the i-th time series.

The optimal lag order p is determined using the criteria Akaike
Information Criterion (AIC). AIC is a statistical measure used to
compare models by balancing the quality of the fit with model
complexity. A lower AIC value indicates a better trade-off be-
tween model accuracy and complexity. When using it to com-
pare VAR models, it ensures that the model is neither underfit-
ting nor overfitting. After attaining an estimated VAR(p) model
with an optimal lag value, the future dwell and travel times can
be forecasted iteratively.

3.4 Random Forest regression

A decision tree is a flowchart-like structure where each internal
node represents a decision based on a feature. The features in
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this case are travel and dwell times. Decisions typically involve
whether a certain feature is higher or lower than a certain value.
Depending on the outcome, the sample is led to another branch
of the decision tree. The structure of the decision tree is as
follows: it contains root nodes (topmost), internal nodes and
leaf nodes (terminal).

When creating the decision tree, the algorithm selects the fea-
ture that provides the best split based on the criterion. The cri-
terion for splitting is mean squared, which is equal to variance
reduction as a feature selection criterion and minimises the L2
loss using the mean of each leaf node. The dataset is split
based on the selected feature and the process is repeated re-
cursively. This stops when a stopping condition is met, such as
maximum depth, minimum samples per leaf or no further infor-
mation gain.

An RF algorithm fits many decision tree regressors on sub-
samples of the training dataset and uses averaging to improve
the predictive accuracy. The first step of the process is bootstrap
sampling, where random rows of the training data are selected.
After feature sampling, only a random subset of features is used
for each decision tree. This means a selection of travel times.
This ensures the diversity of the decision trees and avoids over-
fitting.

The features that the model will train on are the travel times
yl and dwell times yk. The model is implemented using
scikit-learn library, namely the RandomForestRegressor
class is used.

RF is not inherently a time series forecasting model. This
means that lagged features must be created to enable the model
to predict the time series based on historic travel and dwell
times. The number of journeys that are considered for the
lagged variables is defined by the hyperparameter nlags. This
means that the nlags previous journeys’ travel and dwell times
are the features of the RF algorithm, and the corresponding cur-
rent journey travel and dwell times are the target variable. This
model will also be enriched with time of day and day of the week
variables, constructed as sinusoidal waves [25].

After training the model, it is imperative to optimise its hy-
perparameters. The following hyperparameters are impor-
tant to train for an RF model, n_estimators, max_depth,
min_samples_split, min_samples_leaf, max_features and
bootstrap.

When the RF is trained, there will be prediction decisions
made on certain training features, these features can be anal-
ysed through feature importance evaluation. The goal is to in-
vestigate which features are determinative for the regression
output of the RF model. This is done by analysing the Mean De-
crease in Impurity (MDI) evaluation. By combining both these
methods, the risk of wrongly evaluating correlated features is
mitigated.

3.5 Long Short-Term Memory neural network

An LSTM unit is a type of recurrent neural network, designed to
overcome the vanishing gradient problem. This unit is designed
to handle sequential data and long-range dependencies more
effectively than standard RNNs. This is done by incorporating
memory cells and gating mechanisms that regulate the flow of
information. The key feature is their ability to selectively remem-
ber and forget information through a set of gating mechanisms
[26].

An LSTM unit has a memory cell regulated by three gates.
The forget gate decides which past information to discard, the
input gate determines which new information to store, and the
output gate decides what information to pass to the next time
step as the hidden state. These gates work together to manage
the flow of information within the LSTM unit.

These gates allow LSTM networks to selectively retain or dis-
card information. This behaviour enables the network to learn
long-term dependencies. A deep neural is built up from different
layers that propagate data through them. Each layer extracts
and refines features from the data, gradually building up more
abstract and high-level representations.

A neural network for sequential data typically includes several
key layers. The input layer receives raw data, with each neuron
representing a feature. LSTM layers capture long-term sequen-
tial patterns, while the dense layer transforms hidden states into
suitable predictions, capturing non-linear relationships. Finally,
the reshape/output layer produces the final prediction, with neu-
rons corresponding to the target variables.

By varying the number of LSTM layers and evaluating the
MAE results on the test dataset. The optimal number of LSTM
layers can be found for the complexity of the data patterns. By
testing multiple lines, a good structure can be found. It is also
important to investigate whether the models are overfitting or
underfitting.

When the optimal structure of the LSTM deep learning net-
work is determined, the hyperparameters # of LSTM units,
learning rate, # of epochs, optimiser, activation function, dropout
rate and kernel initialiser are trained. It is also important to in-
vestigate the loss of the validation set and the training dataset
during the training process. The loss function measures how
well the model’s predictions match the validation dataset. The
loss function is the mean squared error.

3.6 Prediction model evaluation

MAE was selected because it is intuitive and robust for outliers.
The actual travel time of a link yl and the predicted travel time
of the link ŷl. The MAE for link l is calculated using Equation
8, which is travelled N times in the test dataset. Equation 9,
is the MAE for dwell time at stop k when travelled in a certain
direction.

MAEl =
N∑

i=1

∣∣∣∣
yl,i − ŷl,i

N

∣∣∣∣ (8)

MAEk =
N∑

i=1

∣∣∣∣
yk,i − ŷk,i

N

∣∣∣∣ (9)

3.7 Reachability analysis

Reachability is defined as the ability to access a set of destina-
tions within a given time frame from a specific starting point.

Let:

• S be the set of all possible starting points (e.g., bus stops).

• D be the set of all possible destinations.

• T (s, d) be the travel time function, which gives the travel
time from starting point s ∈ S to destination d ∈ D
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The reachability set R(s, t) from a starting point s within a
time threshold t is defined as:

R(s, t) = {d ∈ D | T (s, d) ≤ t} (10)
This set R(s, t) includes all destinations d that can be reached

from s within time t. Another set that can be defined is the is-
chrone I(s, t), which is a contour that represents the bound-
aries of the reachability set. For a given starting point s and
time threshold t, the isochrone I(s, t) is the set of points that
are exactly t units of away from s, defined in Equation 11

I(s, t) = {d ∈ D | T (s, d) = t} (11)
The travel time function T estimates the time required to travel

between two points in a transportation network. This function
will be influenced by the predicted travel times ŷl and dwell times
ŷk. This mathematical framework helps to visualise and analyse
how accessible different parts of an urban PT network are.

Plotting the isochrones on a map will visualise the areas that
are reachable within specific time thresholds. This is part of
the spatial analysis of reachability. Analysing the variation in
travel and dwell times during the day will help to understand
how reachability changes throughout the day. This would be
temporal analysis.

4 Case study

To validate the proposed methodology, a case study is con-
ducted, focusing on the bus network of Groningen. In this paper,
Groningen’s bus network will be analysed. Since 2019, the bus
network in Groningen has been operated by QBUZZ. For this
analysis, lines 1, 2, 3, 4, 5, and 6 are selected. This ensures
comprehensive coverage of most directions. These lines are re-
ferred to in the data and official documentation as g501, g502,
g503, g504, g505, and g506, respectively. Table 4 in Appendix
C contains the details of the lines.

Figure 1 – The six bus lines in Groningen that are used in the
case study.

Conveyal enables the visualisation of multi-modal transporta-

tion networks [27]. This will be used to assess the reachabil-
ity of the Groningen network based on the predicted travel and
dwell times. The datasets used for this are the KV6 dataset and
the GTFS schedule sourced from the NDOV website [4]. The
KV6 dataset provides the travel and dwell times of 19344 bus
journeys that took place between September 1 and October 12,
2024. The GTFS schedule provides the schedule correspond-
ing to these journeys.

5 Results

This section presents the results of the EDA (5.1), prediction
models (5.2 and reachability analysis (5.3).

5.1 Exploratory data analysis

Figure 2 illustrates the average z-score of travel and dwell
times for each hour of the day. A high z-score indicates slower
journeys, while a low z-score indicates faster journeys. The
distribution of these averages is represented by boxplots, which
are displayed side-by-side in Figure 2.

Figure 2 – Boxplots per hour of the average Z-score of the travel
and dwell times of line g501 in direction 1.

Figure 2 visualises the travel and dwell times for line g501 in
direction 1. The boxplots show that daytime values are generally
higher than those for the evening and early morning, likely due
to increased traffic during the day. Notably, the boxplot for 8:00
is higher than the others, indicating that the slowest journeys
occur during this time. However, a similar peak is not observed
for the afternoon rush hour, suggesting that journeys throughout
the day are consistently slow. The fastest journeys seem to
occur in the time interval of 6:00.

In the same manner as Figure 2, the impact of the day of the
week is analysed. This can be seen for line g501 in direction 2 in
Figure 3. Figure 3 shows that the boxplots for Monday through
Thursday are quite similar. Friday’s boxplot is higher, indicating
that the slowest journeys of the week occur on that day. Sat-
urday’s boxplot is more stretched, suggesting that bus journeys
can be either fast or quite slow. The boxplot for Sunday has the
lowest z-score distribution, indicating that the fastest journeys
of the week occur on that day, likely due to decreased ridership
during the weekend.
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Figure 3 – Boxplots per weekday of the average Z-score of the
travel and dwell times of line g501 in direction 1.

5.2 Prediction models

The four prediction models (HA, VAR, RF and LSTM) were
trained. The predictions were tested against the test dataset
and Table 1 presents the MAE results. The baseline HA model
provided solid predictions for travel and dwell times, while the
VAR models underperformed, especially for certain lines and
directions. Complex models like RF and LSTM showed superior
results, indicating that the relationship between travel and dwell
times is non-linear. However, these models can overfit, partic-
ularly with smaller datasets, and their interpretability remains a
challenge despite insights from feature importance analysis.

Table 1 – Complete overview of MAE results of the HA, VAR,
RF and LSTM prediction models. The lowest MAE for each line
and direction is in bold.

Direction 30 min HA VAR RF LSTM

g501, 1 10.177 8.040 7.572 6.743

g501, 2 10.467 8.387 7.872 7.034

g502, 1 12.432 55.485 9.991 9.485

g502, 2 12.778 65.516 11.287 10.435

g503, 1 10.781 43.755 9.726 8.818

g503, 2 10.928 20.089 9.122 9.086

g504, 1 10.746 17.508 7.997 7.276

g504, 2 15.492 9.902 13.340 8.422

g505, 1 14.102 11.057 11.183 11.054

g505, 2 12.329 12.172 9.391 11.332

g506, 1 9.652 12.958 8.726 7.729

g506, 2 9.989 12.667 8.961 7.961

When plotting the MAE of the travel times on a map in Gronin-
gen of the HA model, it can be observed that the links in the city
centre have the highest MAE. This means that taking the av-
erage for links in these dense urban regions is less predictive
than for regions outside of the city. This can be seen for line 1
in Figure 4. This can mean that these busy links have a high
variability of travel times.

Figure 4 – MAE of travel time of different links along the g501
bus route. This figure displays that the most difficult regions
to predict in urban areas are the busy regions around the city
centre.

The MDI has been analysed for all 12 directional RF models.
Notably, in 5 out of the 12 models, a time feature emerged as
one of the most influential features. This suggests that while the
travel and dwell times of past journeys are important, the jour-
ney departure time of the predicted journey is even more critical.
For these 5 lines and directions, an hourly time feature consis-
tently played a prominent role in decision-making. This aligns
with the findings in the EDA, which indicate that the time of day
significantly impacts the length of travel and dwell times. Figure
5 illustrates this, showing the high influence of time features in
these RF models.

Figure 5 – Feature importance analysis of line g502, direction
1. The time feature hour_sin is influential for the prediction of
future travel and dwell times.

For the LSTM model, Figure 6 illustrates the training process
of the LSTM model on the data of line g504 in direction 1. At the
end of training, there is a significant difference between the loss
functions, which indicates overfitting. Additionally, the accuracy
of the validation dataset stayed constant during training. This
means that the model did not pick up on any patterns and it
could not improve its initial guess. This same behaviour was
observed for g501 in direction 2, g503 in both directions and
g506 in direction 1. This suggests that the model’s performance
is suboptimal, and its predictive accuracy on unseen data might
be limited.

6



Figure 6 – Training set loss and validation set loss plotted dur-
ing model training for each epoch. Training set accuracy and
validation set accuracy during model training for each epoch.
This is shown for the LSTM model of line g504 in direction 1.

The baseline HA model demonstrated solid predictions for
travel and dwell times, with MAE values consistently ranging
between 9.652 and 14.102 across all directions. In contrast,
the VAR models performed poorly on the test dataset for lines
g502, g503, and g504, failing to outperform the baseline model.
Notably, the MAE for line g502 in direction 2 rose to 65.516, indi-
cating that a short-term linear approach to predicting travel and
dwell times is insufficient.

From Table 1, it is evident that complex models are more ef-
fective for predicting travel and dwell times. The LSTM model
achieved the best results for all lines and directions, significantly
improving upon the baseline HA model. This suggests that the
relationship between travel and dwell times and their past val-
ues is non-linear. The time-dependent HA model significantly
improved prediction results by incorporating time features, re-
flecting daily and weekly cycles. These features provided ad-
ditional context for complex models like RF and LSTM, which
showed good results, particularly with hourly features.

The complex ML models can capture details but are also
prone to overfitting, especially with smaller datasets, as ob-
served in some LSTM models. This means these models fixate
more on the noise or random fluctuations in the travel and dwell
times rather than the underlying patterns. Another drawback of
the well-performing RF and LSTM models is model interpretabil-
ity. Understanding the inner workings of these ML models is
challenging. While feature importance analysis of the RF model
provides some insights, it remains difficult to diagnose the deci-
sive patterns for travel and dwell times.

As concluded in the EDA, the data contains a lot of noise.
The prediction models set out to investigate whether meaning-
ful patterns could be found. Even though the MAE results on the
test dataset seem to have improved. The indecisive feature im-
portance analysis of RF and the overfitting of the LSTM model
suggest that the data does not contain strong patterns. The er-
raticness shown by the analysis of individual travel and dwell
times of the VAR model does not show any convincing patterns
that could be predicted.

5.3 Reachability analysis

Figure 7 show two figures for the same reachability analysis with
different cutoff times. Figure 7a is cutoff at 40 minutes and Fig-

ure 7b is cutoff at 80 minutes.

(a) Cutoff time 40 minutes. (b) Cutoff time 80 minutes.

Figure 7 – Reachability analysis. Starting point: Groningen Sta-
tion. Saturday between 12:00 and 14:00. In these figures, the
purple isochrone indicates that the predicted and original sched-
ules overlap.

Based on the predicted travel and dwell times of the six bus
lines, slower buses may cause missed transfers to other buses.
This issue was observed in the reachability analysis conducted
for Monday, October 24, 2024, between 07:00 and 09:00, start-
ing from Groningen station.

In Figure 8, a reachability difference between the schedule
and the LSTM prediction can be observed towards the north-
west of the City of Groningen. This area, serviced by line 564,
was not included in the travel and dwell time prediction, meaning
its data is based on the ordinary schedule. The larger blue por-
tion indicates that the ordinary schedule suggests you can travel
farther in the same amount of time compared to the predicted
schedule.

Figure 8 – Reachability difference caused by a missed transfer
from line g506 to 564. The blue isochrone is the original sched-
ule, and the purple isochrone is the predicted schedule.

Another example is shown in Figure 9, which shows that the
predicted schedule is faster than the original schedule, lead-
ing to increased reachability. It can be seen that the red pre-
dicted isochrone around Zuidhorn is larger than the purple orig-
inal schedule isochrone, due to bus g502 being predicted to be
faster.
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Figure 9 – Increased reachability example for an analysis run on
a Wednesday with a starting point Groningen station between
15:00 and 16:00. Here, the larger red region is the predicted
schedule by the LSTM model.

While incorporating dwell and travel time prediction enhances
the accuracy of reachability analysis, its practical implications
for PT engineers may be limited. Figure 8 shows that the dif-
ference in reachability regions is relatively small, ranging from
approximately 200 to 1000 metres. This corresponds to 1 to 5
minutes of walking. This research proposes a more accurate
representation but does not assess its practical applications for
PT engineers.

For writing to the GTFS schedule the assumption is made
that every bus journey leaves the first stop according to sched-
ule. The predicted travel and dwell times are calculated from
this. However, in real life, a bus may leave early or late. A con-
sequence of this is that transfers can not be made, impacting
the reachability. This behaviour is not currently captured by the
implemented reachability analysis in Conveyal.

6 Conclusion

This paper aimed to enhance reachability analysis by predict-
ing travel and dwell times using historical travel time data.
Among the four models tested (HA, VAR, RF, and LSTM), the
LSTM deep learning model showed the best accuracy, provid-
ing a more realistic representation of bus performance than the
schedule. This led to variations in reachability and missed trans-
fers.

The literature review identified the four prediction models,
which improved understanding of travel time patterns. The case
study framework efficiently manipulated the KV6 and GTFS
datasets for reachability analysis, revealing expected discrep-
ancies between original and predicted schedules.

Future research should include delayed departure predic-
tions and advanced models like ensemble, gated recurring units,
and transformer-based models, combined with comprehensive
datasets (e.g., weather and traffic data). These improvements
will enhance the design of sustainable and efficient public trans-
portation networks, ultimately improving reachability.
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A List of symbols

Table 2 – Symbol definitions used in the methodology.

Symbol Definition Unit

j Index for journey in the dataset -

k Index for stop in a certain journey -

l Index for link in a certain journey -

kj Vector of stops in journey j -

lj Vector of links in journey j -

nj Number of stops in journey j -

N Number of journeys in dataset -

atk Arrival time at stop k (yyyy/mm/dd: hh/mm/ss)

dtk Departure time from stop k (yyyy/mm/dd: hh/mm/ss)

yk Dwell time at stop k s

yl Travel time of link l s

yk,j Vector of dwell times of journey j s

yl,j Vector of travel times of journey j s

ŷk Predicted dwell time at stop k s

ŷl Predicted travel time of link l s

ŷk,j Vector of predicted dwell times in journey j s

ŷl,j Vector of predicted travel times in journey j s

B Data format example

Table 3 – This is an example of one direction of a single bus line presented in a tabular format. Dwell time yk1 is the difference
between the arrival time atk1 at the first stop and the departure time dtk1 from the first stop. This is done for all the stops in kj in a
journey j. Travel time yl1 is the difference between the departure time dtk1 at the first stop and the arrival time atk2 at the second
stop. This is, also, done for all links in lj in a journey j. The table is indexed by the departure time dtk1 from the first stop.

Journey Index yk1 yl1 yk2 yl2 · · · yln−1 ykn

j = 1 t0(1) 30 80 0 65 · · · 125 20

j = 2 t0(2) 45 70 50 90 · · · 135 10

j = 3 t0(3) 0 95 40 85 · · · 140 15

j = 4 t0(4) 45 75 0 75 · · · 130 0
...

...
...

...
...

...
. . .

...
...

j = N t0(N) 35 90 0 70 · · · 140 0

C Bus network of Groningen overview
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Table 4 – QBUZZ lines in Groningen. Outer stop 1 to outer stop 2 is indicated as direction 1 and outer stop 2 to outer stop 1 is
indicated as direction 2.

Line Outer stop 1 Outer stop 2 # of stops Length (km)

g501 Groningen, P+R Reitdiep Groningen, Hoofdstation 19 7.73

g502 Zuidhorn, Station Groningen, Station Europapark 26 17.90

g503 Groningen, Ruischerbrug Leek, Oostindie 39 29.64

g504 Groningen, Wibenaheerd Roden, Kastelenlaan 39 26.70

g505 Annen, Zuid Scharmer, Goldberweg 33 33.80

g506 Delfzijl, Station Groningen, Hoofdstation 48 36.65
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B Additional figures

This appendix contains figures of lines and directions which are not presented in the main body
of the report.

B.1 Historical Average travel time evaluation maps

Figure B.1 – MAE of travel times of HA model of line g501 in direction 1.
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Figure B.2 – MAE of travel times of HA model of line g501 in direction 2.

Figure B.3 – MAE of travel times of HA model of line g502 in direction 1.
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Figure B.4 – MAE of travel times of HA model of line g502 in direction 2.

Figure B.5 – MAE of travel times of HA model of line g503 in direction 1.

Figure B.6 – MAE of travel times of HA model of line g503 in direction 2.
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Figure B.7 – MAE of travel times of HA model of line g504 in direction 1.

Figure B.8 – MAE of travel times of HA model of line g504 in direction 2.
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Figure B.9 – MAE of travel times of HA model of line g505 in direction 1.
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Figure B.10 – MAE of travel times of HA model of line g505 in direction 2.

Figure B.11 – MAE of travel times of HA model of line g506 in direction 1.
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Figure B.12 – MAE of travel times of HA model of line g506 in direction 2.

B.2 Random Forest feature importance evaluation

Figure B.13 – Feature importance evaluation of RF model for line g501 in direction 1.

Figure B.14 – Feature importance evaluation of RF model for line g501 in direction 2.
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Figure B.15 – Feature importance evaluation of RF model for line g502 in direction 1.

Figure B.16 – Feature importance evaluation of RF model for line g502 in direction 2.

Figure B.17 – Feature importance evaluation of RF model for line g503 in direction 1.
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Figure B.18 – Feature importance evaluation of RF model for line g503 in direction 2.

Figure B.19 – Feature importance evaluation of RF model for line g504 in direction 1.

Figure B.20 – Feature importance evaluation of RF model for line g504 in direction 2.

130



Figure B.21 – Feature importance evaluation of RF model for line g505 in direction 1.

Figure B.22 – Feature importance evaluation of RF model for line g505 in direction 2.

Figure B.23 – Feature importance evaluation of RF model for line g506 in direction 1.
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Figure B.24 – Feature importance evaluation of RF model for line g506 in direction 2.

B.3 Long Short-Term Memory loss analysis

Figure B.25 – Validation dataset and training dataset loss during training of LSTM model for line
g501 in direction 1. The x-axis displays epochs.
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Figure B.26 – Validation dataset and training dataset loss during training of LSTM model for line
g501 in direction 2. The x-axis displays epochs.

Figure B.27 – Validation dataset and training dataset loss during training of LSTM model for line
g502 in direction 1. The x-axis displays epochs.
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Figure B.28 – Validation dataset and training dataset loss during training of LSTM model for line
g502 in direction 2. The x-axis displays epochs.

Figure B.29 – Validation dataset and training dataset loss during training of LSTM model for line
g503 in direction 1. The x-axis displays epochs.
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Figure B.30 – Validation dataset and training dataset loss during training of LSTM model for line
g503 in direction 2. The x-axis displays epochs.

Figure B.31 – Validation dataset and training dataset loss during training of LSTM model for line
g504 in direction 1. The x-axis displays epochs.
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Figure B.32 – Validation dataset and training dataset loss during training of LSTM model for line
g504 in direction 2. The x-axis displays epochs.

Figure B.33 – Validation dataset and training dataset loss during training of LSTM model for line
g505 in direction 1. The x-axis displays epochs.
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Figure B.34 – Validation dataset and training dataset loss during training of LSTM model for line
g505 in direction 2. The x-axis displays epochs.

Figure B.35 – Validation dataset and training dataset loss during training of LSTM model for line
g506 in direction 1. The x-axis displays epochs.
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Figure B.36 – Validation dataset and training dataset loss during training of LSTM model for line
g506 in direction 2. The x-axis displays epochs.
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