TUDelft

Efficient Video Action Recognition

How well does TriDet perform and generalize in a limited compute power and data setting?

Alexandru Damacus

Supervisors: Dr. Jan van Gemert', Ombretta Strafforello', Robert-Jan Bruintjes!, Attila
Lengyel'

'EEMCS, Delft University of Technology, The Netherlands

A Thesis Submitted to EEMCS Faculty Delft University of Technology,
In Partial Fulfilment of the Requirements
For the Bachelor of Computer Science and Engineering
June 25, 2023

Name of the student: Alexandru Damacus
Final project course: CSE3000 Research Project
Thesis committee: Dr. Jan van Gemert, Ombretta Strafforello, Robert-Jan Bruintjes, Attila Lengyel, Dr.-Ing. Petr Kellnhofer

An electronic version of this thesis is available at http://repository.tudelft.nl/.

Abstract

In temporal action localization, given an input video,
the goal is to predict the action that is present in the
video, along with its temporal boundaries. Several pow-
erful models have been proposed throughout the years, with
transformer-based models achieving state-of-the-art per-
formance in the recent months. Although novel models are
becoming more and more accurate, authors rarely study
how limited training data or computation power environ-
ments affect the performance of their model. This study is
carried out on TriDet, a transformer-based temporal ac-
tion localization model that achieves state-of-the-art per-
formance on two different benchmarks. It evaluates the
model’s behavior in a limited training data and computa-
tion power environment. It is found that TriDet achieves
close to state-of-the-art performance when only 60% of
the training data or approximately 90 action instances per
class are used. It is also notable that inference time, mem-
ory usage, multiply-accumulate operations and GPU uti-
lization scale linearly along with the length of the tensor
that is passed to the model. These findings, combined with
TriDet’s mean training time of 11 minutes on the THU-
MOS’14 dataset can be used to determine the model’s hy-
pothetical behavior when run in lower computation power
environments.

1. Introduction

Temporal action localization (TAL) refers to the pro-
cess of understanding actions that are happening in an input
video. TAL has two main parts, namely predicting the tem-
poral boundaries of the action, and recognizing the action
present in the interval denoted by those boundaries. It has
a large number of applications in action detection, surveil-
lance, video summarization, and more.

Temporal action localization has seen more and more
powerful models proposed for all of the popular bench-
marks [5, 7] in recent years, to some extent due to the ad-
vancements made in the field of deep learning [21,25]. Ever
since the emergence of the transformer architecture [18],
the state-of-the-art for those popular benchmarks seems to
be dominated by transformer-based TAL models. How-
ever, their power partly comes from the immense amounts
of training data and computational power that is needed to
train them.

This study aims at assessing the data and compute ef-
ficiency of popular TAL models. Although novel mod-
els achieving state-of-the-art performance are produced at a
very accelerated rate, only a few authors study their models
in terms of data and compute efficiency. These studies are
needed because new models require immense amounts of
training data and computation power, which are difficult to
obtain. Having sufficient knowledge in this direction could
help further researchers develop and test their models on
partial datasets or using limited computation power, and in-
fer their maximum potential from similar models’ learning

curves. This would also lead to an acceleration in the devel-
opment of new and more powerful methods, thus leading to
further advancements in the field of TAL.

The study is carried out in a group of five students, each
conducting the proposed experiments on a different TAL
model. In this paper I conduct a study on TriDet [16], a very
recent model that achieves state-of-the-art performance on
two of the most popular benchmarks, HACS [24] and EPIC-
KITCHEN 100 [3], while being more efficient compared to
other competing models [16].

2. Related Work

This section provides a description of my chosen model,
TriDet [16]. Several methods for computing data efficiency
of models in Computer Vision are described, along with an
overview of popular methods tailored specifically for TAL,
and the method that was chosen for this study. Addition-
ally, popular methods for computing a model’s compute ef-
ficiency are presented, along with the chosen methods for
this study.

TriDet [16] is a one-stage framework for temporal ac-
tion detection, meaning that it predicts action boundaries
without explicitly generating temporal proposals or seg-
ments. It employs a transofmer-based architecture, con-
sisting of three main parts: a video feature backbone,
a Scalable-Granularity Perception (SGP) feature pyramid,
and a boundary-oriented Trident-head. A visualization of
the model’s architecture is presented in Figure I, taken
from [16]. First, the video features are extracted using a
pre-trained action classification network. Then, a SGP fea-
ture pyramid is built to handle actions with various tempo-
ral lengths. Each scale level is processed with a proposed
SGP layer to enhance the interaction between features with
different temporal scopes. Finally, the boundary-oriented
Trident-head models the action boundary via an estimated
relative probability distribution around the boundary to ad-
dress the imprecise boundary predictions problem. TriDet
[16] is the model chosen for conducting this study. It was
chosen due to its impressive performance on some of the
popular benchmarks, such as THUMOS’ 14 [7], HACS [24]
and EPIC-KITCHEN 100 [3], along with its improved ef-
ficiency compared to other transformer-based models that
achieve state-of-the-art performance.

Evaluating the data efficiency of a model in Computer
Vision involves assessing the model’s performance and ro-
bustness using limited training data. Several popular tech-
niques for studying a model’s data efficiency are used
in practice. One common approach is few-shot learning
[13,22], where models are trained on a small number of
samples per class. Few-shot learning tests the model’s abil-
ity to generalize from limited data. Additionally, zero-shot
learning [12] assesses the model’s ability to recognize un-
seen classes. By evaluating the model’s performance on un-
seen classes, one can grasp an understanding of the model’s
capabilities to generalize and infer information. Learning
curves show the model’s accuracy against the amount of
training data used. By observing the learning curve, one

Backbone

SGP Feature Pyramid

Detection Head

/d' 1 I SGP Layer J—+{ [[Classification Head]
. \ -
—; J—(Seriayer }——()} | ___ Tridenthead)
i {"stat | {" End
L € 1/14 — (sGPLayer J——{_)} Boundary ' | Boundary
s s
(/8 J—(_sGPlayer]——{")! \ I I
N i [Start][Center] End
. [1716 |—>(_SGP Layer ——{) i 1]|(Boundary) | Offset J (Boundary
! '|I I
- (i3 (_sGPLayer J——{"]) !
1
1
= o (SGP Layer) i
(1762 7 SGP Layer j——{") N Pyramid Feature
.

Figure 1. Overview of the architecture of TriDet, taken from [16].

can understand how the model’s performance changes as
more data is provided. Steep learning curves indicate that
the model benefits significantly from additional data, while
flat curves indicate the model’s maximum capacity on the
available data. Another common approach is transfer learn-
ing [6], which involves using pre-trained models on large
datasets and fine-tuning them for different datasets. By
assessing the model’s performance with varying amounts
of training data, one can evaluate how effectively the pre-
trained knowledge transfers to the new task and quantify
the data efficiency.

For this study, two methods of evaluating data efficiency
have been discussed among the research group; few-shot
learning and sampling percentages of the training data. Be-
cause of class imbalances and multiple classes appearing in
a single video in the chosen dataset, sampling percentages
of the training data was deemed as the appropriate proce-
dure to follow. Additionally, a few-shot learning approach
was deemed more difficult to produce in the given time-
frame of the project.

Evaluating the compute efficiency of a model involves
assessing how effectively it utilizes computational re-
sources. In practice, various methods of studying a model’s
compute efficiency are used. One of the common meth-
ods is measuring a model’s number of multiply—accumulate
operations (MACs) or floating-point operations per second
(FLOPs) [16,17,23]. Some other commonly used methods
include measuring the memory used by the model [&], the
training time [9] or the inference time [16, 17,23]. Both
TriDet [16] and ActionFormer [23] report the number of
MAC:s and the model’s run-time by passing a fixed length
video of 2304 samples (5 minutes) through the network.
However, it would be interesting to study how those met-
rics change when the video length varies.

The compute efficiency of TriDet [16] is studied using
several different methods. The fraining time is computed
over 25 different runs, each batch of five runs on a different
node on DelftBlue [4] to remove biases that might be caused
by different jobs running on the shared node. The number of
MAC:s is computed for 15 different tensor (video) lengths,

ranging from 200 to 3000 in increments of 200. We also
calculate the GPU utilization of TriDet [16] during infer-
ence. Finally, the memory consumption and the inference
time are computed 25 times for each of the 15 different ten-
sor lengths, each batch of five being run on a different node
on DelftBlue [4], in order the decrease the influence carried
by other jobs running at the same time as ours.

3. Methodology

This section discusses the methodology followed for car-
rying out the study, both for data efficiency and compute
efficiency. For both studies, each subsection presents the
algorithm and the metrics that were used.

3.1. Data efficiency

The pseudocode describing the algorithm used for
evaluating TriDet’s [16] data efficiency can be found
in Algorithm 1. The model is trained on subsets
of Dyain and it is evaluated on Dy, which repre-
sents the original training/evaluation split for the THU-
MOS’ 14 dataset as proposed in [7]. The model is trained
on different percentages p of the dataset, with p €
{10%, 20%, 40%, 60%, 80%, 100%}. For each p, the train-
ing and evaluation loop is executed 5 times to remove
most of the randomness that may occur. For each train-
ing/evaluation loop and each p, Dy, is sampled according
to the value of p, such that each class in the THUMOS’ 14
dataset [7] is represented at least once in the sampled dataset
Ds. The model is then trained on the sampled dataset D and
evaluated on the original Dies. The metric computed during
the evaluation step is mean average precision (mAP), cal-
culated for five different temporal intersection-over-union
(tloU) thresholds tToU € {0.3,0.4,0.5,0.6,0.7}. We re-
port the average mAP, along with the standard deviation for
each percentage of the dataset p.

To facilitate extrapolating our results on different
datasets, we also report the average number of action in-
stances for each percentage of the dataset p. Given a train-
ing set Dy.in, having C' distinct classes, N samples and M

Algorithm 1 Data efficiency procedure

Algorithm 3 Inference performance procedure

D={(Viy,yi)}}¥, > D is the whole dataset
rainy Dlest > Splits taken from THUMOS’ 14
for p = 10%, ...,100% do
mAPs < empty list
fori=1,...,5do
D, + sample(Dyain, p)

Dy
D+ 100% = p

Train on D;

mAP + calculate-mAP(Dyy) > Calculate
mAP@tIoU[0.3:0.1:0.7]

Append mAP to mAPs
Report avg(mAPs) and std(mAPs)

> Samples s.t.

Algorithm 2 Training performance procedure

Drrains Drest > Splits taken from THUMOS’ 14
times <— empty list
mAPs < empty list
fori=1,...,5do
fori=1,...,5do
time < Train on Dy,
mAP + Evaluate on Diey
Append time to times
Append mAP to mAPs
Report avg(times), std(times),
avg(mAPs), std(mAPs)

> Each iteration is a separate job

total action instances, we estimate the number of instances
per class for each percentage p as shown in Equation 1.

P M

#/class = 22
S =100% ©

ey

We report an estimated number of features per class be-
cause the exact number would be influenced strongly by
the specific splits D used during the data efficiency exper-
iment.

3.2. Compute efficiency

To study the compute efficiency of TriDet [16], we mea-
sure both the training performance and the inference perfor-
mance, which are presented in separate subsubsections.

3.2.1 Training performance

The pseudocode describing the algorithm used for measur-
ing TriDet’s [16] training time can be found in Algorithm 2.
We run five separate jobs on DelftBlue [4], each job training
and evaluating the model on the THUMOS’ 14 [7] dataset
five times. Each job is run at a different time of the day on a
different node to account for all possible utilization patterns
on the cluster. Thus, one job was run in the morning, one in
the evening and three in the afternoon.

M AC's + empty list
inf_times < empty list
memory < empty list
for [= [200 : 200 : 3000] do
video < random tensor with length 1
macs_current < Compute M AC's for video
Append macs_current to M AC's
for iter =1,...,5 do
for repetition = 1,...,5 do
for I = [200 : 200 : 3000] do
time + inference_time(l)
Append time to in f _times
current_memory < calcmemory(l)
Append current_memory to memory
Report M AC's for each tensor length
Report avg(inf_times), std(inf _times),
avg(memory), std(memory) for each tensor length

3.2.2 Inference performance

The pseudocode describing the algorithm used for measur-
ing TriDet’s [16] inference performance can be found in Al-
gorithm 3. We run one job on DelftBlue [4] for measuring
GMAC:s, and one job for each iteration of the outer for loop
for measuring inference time and memory usage. Addition-
ally, TriDet’s [16] GPU utilization during inference is mea-
sured.

We make use of the fvcore [15] library’s FlopCount-
Analysis to measure GMACSs. The inference time is mea-
sured using Python’s time.time function, subtracting the
starting time from the end time when passing a random
tensor to the model. The memory consumption is com-
puted using PyTorch’s max_memory_allocated function,
which returns the maximum memory allocated since start-
ing the program until the call to max_memory_allocated.
Because of this behavior, the counter needs to be reset
using reset_peak_memory_stats after each measurement
is taken to achieve reliable results. The GPU utilization
is measured by calculating its GMACs/s and divinding
it by NVIDIA VI100S 32GB’s official performance of 8.2
TMACs/s [2].

4. Experiments

This section presents and discusses the results obtained
from the experiments for both data and compute efficiency.

The experiments for this study, as well as my research
group’s studies, are carried out on the THUMOS’ 14 dataset
[7], by making use of pre-processed I3D [1] features. All of
the experiments are carried out on TU Delft’s HPC cluster
DelftBlue [4], on a single NVIDIA Tesla V100S GPU.

4.1. Data efficiency

The experimental findings are illustrated in Figure 2 and
Figure 3. In Figure 3, it is evident that consistent patterns

Average mAP for tloU = average

100 — 1 [— T
—x— mAP @ tloU = average
80 - *
S
D 60 [-
=
s
% 40 *
g
20 + y
0 | L 1 s | 1 1 s | 1
0 20 40 60 80 100 p [%]
0 30.1 60.1 90.2 1203 150.4 #/class
Figure 2. Data efficiency results obtained by TriDet [16] on the
THUMOS’ 14 dataset [7], reported at average tloU.
Average mAP for tloU =[0.3..0.7]
100 T T T T T
80| S
S
o 60 - *
2
s
2 “doU=03 ||
g tloU = 0.4
201 tloU=0.5 | |
-tloU = 0.6
-tloU=0.7
0 L 1 s | 1 1 I | il
0 20 40 60 80 100 p [%]
0 30.1 60.1 90.2 120.3 150.4 #/class
Figure 3. Data efficiency results obtained by TriDet [16] on the

THUMOS’ 14 dataset [7], reported at each tloU threshold from
[0.3..0.7].

emerge across all tloU values. Notably, these results indi-
cate a decrease in the learning rate when training the model
on approximately 60% of the dataset. Moreover, the out-
comes suggest the potential for fitting a curve, as detailed
in [19], which could facilitate and expedite further research
in the field of TAL.

A comparison between the results obtained by our re-
search group can be visualized in Figure 4. Notably, both
TriDet [16] and ActionFormer [23] exhibit remarkably sim-
ilar patterns. TadTR [10] shows a more unique learning pat-

Comparison between different models’ performance on THUMOS’ 14

100 — T T T
—x— TriDet
—»— ActionFormer
80 - TadTR i
—_ —— TemporalMaxer
IS
D 60 [1
S
g
Z 40 + n
g
20 - 8
0 | | 1 I | | 1 | | 1
0 20 40 60 80 100 p [%]
0 30.1 60.1 90.2 120.3 150.4 #/class

Figure 4. Data efficiency results obtained by the research group’s
chosen models on the THUMOS’ 14 dataset [7], reported at aver-
age tloU [11, 14,20]. Plot taken from [20].

tern, which originates from the model’s preprocessing and
its ability to use video segments in the training process. This
unique approach allows TadTR [10] to achieve results that
closely resemble those obtained when utilizing the entire
dataset for training, even when employing just 20% of the
available training data.

4.2. Compute efficiency

This subsection discusses the results obtained from run-
ning the experiments outlined in Algorithm 2 and Algo-
rithm 3. The experimental findings for both training perfor-
mance and inference performance are discussed in separate
subsubsections.

4.2.1 Training performance

Table 1. Training performance of TriDet and other compared mod-
els on the THUMOS’14 dataset [7]. Both average training time
and obtained average mAP@tloU=average are reported.

Model Time [s] Avg. mAP [%]
TriDet [16] 646.17 + 26.12 68.07 £ 0.42
ActionFormer [23] 866.22 4+ 26.97 66.5 + 0.31
TadTR [10] 425.72 + 3.469 55.3+0.63
TemporalMaxer [17] | 2955.64 4+ 1659.98 66.96 £+ 0.37

The results obtained after running the experiment out-
lined in Algorithm 2 are presented in Table 1. TriDet [16] is

compared with ActionFormer [20),

TemporalMaxer [

TriDet [

], ActionFormer [

], TadTR [10,

] and

, 17], achieving the highest mAP, with a
mean training time of roughly 11 minutes.

] and TemporalMaxer

[17] were trained and evaluated 25 times, in batches of five,

GMACs and GPU Utilization results

T T T T T
—— GMACs
GPU Utilization

100 18
o TS 6 =
Z g
S 3
O s0f 4 =
=)

25+ 2

0 I | L L | I I | I 0

0 800 1600 2400
Tensor length

Figure 5. TriDet’s [16] number of GMACsS produced by running
the experiment from Algorithm 3 over random tensors with lengths
from 200 to 3000 in increments of 200. Additionally, TriDet’s [16]
GPU utilization during inference is presented.

each batch in a different job submitted on TU Delft’s HPC
cluster DelftBlue [4], while TadTR [10] was studied on a
different GPU, namely an NVIDIA A10. When running the
experiment for TriDet [16], the five batches of jobs were
run at different times of the day, in order to account for all
usage patterns on DelftBlue [4]. One of the batches was
run in the morning, one slightly past midnight, and 3 in
the afternoon, all in the same day. Additionally, the nodes
that they were running on were under different loads, with
different jobs running at the same time. It is notable that
none of these measures had an influence on the training time
for TriDet [16], this being roughly eleven minutes at most
times.

It is important to note that while TadTR [10] achieved
the lowest mean training time, along with an impressive
standard deviation of only 3.4s accross 25 runs in differ-
ent times and GPU loads [1], the experiments for it were
carried out on a different GPU, namely an NVIDIA A10.
In practice, in settings where the training time takes priority
over acccuracy, TadTR [10] would be the suitable model to
use. When the model’s accuracy is important, TriDet [16] is
the obvious choice, achieving state-of-the-art performance
at only slightly higher training times.

4.2.2 Inference performance

The results obtained after carrying out the experiment pre-
sented in Algorithm 3 are presented in Figure 5 (MACsS),
Figure 6 (inference time) and Figure 7 (memory usage).
TriDet [16] originally uses a max_seq_len of 2304,
which pads all tensors passed to the model to 2304 units

Inference time results

I T T
100 |-| —< Inference time i
75 - .
g
£ 50| .
&
25 - .
0 \ \ \ !
0 800 1,600 2,400 3,000

Tensor length

Figure 6. TriDet’s [16] inference time when run on random tensors
with lengths from 200 to 3000 in increments of 200.

Memory usage results

900 \ T T
—— VRAM Usage
E X
S 600| .
;D e el
2 W
~ 300 % .
>
0 | | | |
0 800 1,600 2,400 3,000

Tensor length

Figure 7. TriDet’s [1 6] memory usage when run on random tensors
with lengths from 200 to 3000 in increments of 200.

of length. Due to this, running the inference experiments
would result in mostly constant scores. The minimum al-
lowed max_seq_len was found to be 576, and the experi-
ments were instead run with this small change to the origi-
nal model.

With this change, TriDet’s [16] GMACs, memory usage,
inference time and GPU utilization results are increasing
linearly along with increasing tensor lengths passed to the
model. An exception to this linear trend is the memory us-
age for tensor lengths between 600 and 1000, which show
an abrupt increase in VRAM usage, followed by a decrease

for tensors of length 1200 and a continuation of the linear
trend for higher tensor lengths.

The experiment was run several times, using a
max_seq_len of 576 and 1152, and this memory usage pat-
tern for tensor lengths between 600 and 1000 was consis-
tently observed. We then thought that the pattern could
be produced by inconsistencies in GPU memory alloca-
tion and deallocation, and the experiment was rerun using
torch.cuda.synchronize(), which adds memory synchro-
nization points in the execution of the proposed experiment.
Using this, we can make sure that all past operations finish
and all of the used memory is deallocated before starting our
next VRAM usage measurement. This, however, showed
minimal improvements in VRAM usage, and the unnatural
pattern was still appearing.

The next step that should be pursued in identifying the
cause of the pattern is to use PyTorch’s profiler, to see
exactly which parts of the model are using the memory. We
do not further pursue this problem in this study, due to the
time constraints for our project.

The results from Figure 5, 6 and 7 show stable results
across different runs, with very little standard deviations.
Due to this, the results that we obtained can be used to im-
pose a minimum requirement on the hardware needed for
running TriDet [16].

When compared with ActionFormer [20,23], TriDet [16]
achieves lower scores in all metrics, which confirms the
original authors’ claim, stating that the model is more ef-
ficient than its competitors. TemporalMaxer [14, 1 7], how-
ever, proves to be even more lightweight than TriDet [16],
with only slightly worse performance. Both the results
obtained by ActionFormer [20, 23] and TemporalMaxer
[14,17] show a linear increase along with increasing tensor
lengths, with ActionFormer [23] showing increases in steps
for GMACs, VRAM usage and GPU utilization [20]. This
specific pattern occurs due to the model padding tensors to
the most suitable multiple of the chosen max_seq_len.

5. Responsible Research

This section discusses the ethical implications of TAL
and of this study, along with the steps taken to ensure repro-
ducibility and transparency throughout our study.

Temporal action localization, while offering significant
advancements in video analysis and understanding, brings
important ethical implications that must be taken into con-
sideration. The deployment of TAL systems in public
spaces can raise concerns about surveillance and the poten-
tial for misuse or abuse. Safeguards, regulations, and clear
guidelines are essential to achieve a balance between the
benefits and risks, promoting transparency and accountabil-
ity in the use of such technology.

This study was conducted with the mentioned implica-
tions in mind. TriDet [16] was trained on pre-trained 13D
[1] features from the THUMOS’ 14 [7] dataset. This en-
sures that the videos and the annotations were not tampered
with in any way. Additionally, to ensure reproducibility and
transparency, all of the files, code, and results are made

available at TUDelft’s GitLab server. The folder named
datasets_for_training contains all of the sampled datasets
that were used to extract the presented results. Addition-
ally, the folder named results_data contains the raw results
for the data efficiency studies, as returned by the original au-
thors’ evaluation script, for each training procedure in this
study. The results obtained by running the compute effi-
ciency experiments can be found in the results_data folder.
The scripts used for running the experiments are also avail-
able, with data_efficiency.py being the python script used,
and data_ef_thumos.sh being the bash script used to run the
data efficiency experiment on TU Delft’s HPC Cluster [4].
For compute efficiency, measure_training.sh is the script
used for measuring training time, script_macs.sh is used for
counting GMACs, and script_-memory_inftime.sh runs the
five different jobs calculating memory usage and inference
time.

6. Conclusion

In temporal action localization, the goal is to derive the
action that is present in an input video, along with its tempo-
ral boundaries. Throughout the years, several methods have
been proposed for this task, with the state-of-the-art being
dominated by deep learning models in the recent years.

Although their performance is impressive, these mod-
els often require large datasets or immense computational
power to achieve their presented performance. Nowadays,
authors rarely study their models’ behavior under more lim-
ited environments, in terms of the available training data or
computation power.

This study was carried out on TriDet, a novel temporal
action localization model that achieves state-of-the-art per-
formance on two popular benchmarks, while being more
efficient than its competitors. This paper aimed at study-
ing TriDet’s behavior under limited data and computation
power settings.

In terms of limited training data behavior, results show
that TriDet achieves close to state-of-the-art performance
on the THUMOS’ 14 dataset, when using merely 60% of
the training data available. It is also notable that TriDet was
trained on multiple subsets of the data available, and the
accuracies obtained after evaluation form a distinguishable
curve. These results can be further studied upon, and using
this curve, researchers could infer the maximum potential
of their models from training only on a few subsets of the
training data.

For TriDet’s compute efficiency, its training time was
found to be at around eleven minutes. The model’s
inference performance was measured using inference
time, multiply-accumulate operations and memory usage,
when random tensors of different set lengths between
[200:200:3000] were passed to the model. The model’s
GPU utilization during inference is also reported. Results
show that all those metrics scale linearly along with the
length of the tensors. These results, combined with my re-
search group’s results can later be used to set a hypothetical
boundary on the hardware necessary to run novel models.

https://gitlab.tudelft.nl/robertjanbruin/bsc-efficient-action-recognition/-/tree/tridet

Although the results that were obtained by the research
group are impressive, several other metrics for data effi-
ciency and compute efficiency can be further studied to ce-
ment our findings. For data efficiency, studies on transfer
learning and few-shot learning capabilities of popular mod-
els would provide interesting insights. In terms of compute
efficiency, evaluating metrics such as model size, energy
consumption and latency could provide interesting results.

Acknowledgments

I would like to express my gratitude to our responsible
professor, Dr. Jan van Gemert, and our supervisors, Om-
bretta Strafforello, Robert-Jan Bruintjes and Attila Lengyel
for their support, guidance and valuable feedback through-
out the course of the past 10 weeks, which have been instru-
mental in shaping this project. I would also like to thank
my colleagues, Jan, Teo, Paul and Yunhan, for the inter-
esting and insightful discussions we’ve had throughout the
project, and for their constructive feedback. I am extremely
grateful for the opportunity to collaborate with all of those
mentioned, and they hold an important stake in the success-
ful completion of this project.

References

[1] Joao Carreira and Andrew Zisserman. Quo vadis, action
recognition? a new model and the kinetics dataset, 2018.
3,6

[2] NVIDIA Corporation. Nvida v100 tensor core gpu.
https : / / images . nvidia . com / content /
technologies / volta / pdf / volta — v100 —
datasheet — update — us — 1165301 - r5 . pdf,
2020. (Accessed on 23/06/2023). 3

[3] Dima Damen, Hazel Doughty, Giovanni Maria Farinella,
Sanja Fidler, Antonino Furnari, Evangelos Kazakos, Davide
Modltisanti, Jonathan Munro, Toby Perrett, Will Price, and
Michael Wray. The epic-kitchens dataset: Collection, chal-
lenges and baselines. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 43(11):4125-4141, 2021. 1

[4] Delft High Performance Computing Centre (DHPC).
DelftBlue Supercomputer (Phase 1). https :
/ / www . tudelft . nl / dhpc / ark : /44463 /
DelftBluePhasel, 2022. 2,3,5,6

[5] Bernard Ghanem Fabian Caba Heilbron, Victor Escorcia and
Juan Carlos Niebles. Activitynet: A large-scale video bench-
mark for human activity understanding. In Proceedings
of the IEEE Conference on Computer Vision and Pattern
Recognition, pages 961-970, 2015. 1

[6] Ahsan Igbal, Alexander Richard, and Juergen Gall. Enhanc-
ing temporal action localization with transfer learning from
action recognition. In 2019 IEEE/CVF International Confer-
ence on Computer Vision Workshop (ICCVW), pages 1533—
1540, 2019. 2

[7]1 Y.-G. Jiang, J. Liu, A. Roshan Zamir, G. Toderici, I. Laptev,
M. Shah, and R. Sukthankar. THUMOS challenge: Ac-
tion recognition with a large number of classes. http:
//crcv.ucf.edu/THUMOS14/,2014. 1,2,3,4,6

[8] Nikita Kitaev, Lukasz Kaiser, and Anselm Levskaya. Re-
former: The efficient transformer, 2020. 2

(9]

(10]

(11]

[12]

(13]

(14]

[15]

[16]

(17]

(18]

(19]

(20]

(21]

(22]

(23]

(24]

(25]

Zhuohan Li, Eric Wallace, Sheng Shen, Kevin Lin, Kurt
Keutzer, Dan Klein, and Joseph E. Gonzalez. Train large,
then compress: Rethinking model size for efficient training
and inference of transformers, 2020. 2

Xiaolong Liu, Qimeng Wang, Yao Hu, Xu Tang, Shiwei
Zhang, Song Bai, and Xiang Bai. End-to-end temporal ac-
tion detection with transformer. IEEE Transactions on Image
Processing, 31:5427-5441, 2022. 4, 5

Paul Misterka. Efficient Temporal Action Localization model
development practices. Bachelor’s thesis, Delft University
of Technology, 2023. 4, 5

Sauradip Nag, Xiatian Zhu, Yi-Zhe Song, and Tao Xi-
ang. Zero-shot temporal action detection via vision-language
prompting, 2022. 1

Sauradip Nag, Xiatian Zhu, and Tao Xiang. Few-shot tempo-
ral action localization with query adaptive transformer, 2021.
1

Teodor Oprescu. TemporalMaxer Performance in the Face of
Constraint: A Study in Temporal Action Localization. Bach-
elor’s thesis, Delft University of Technology, 2023. 4, 6

Facebook Research. fvcore. https://github.com/
facebookresearch/fvcore, 2023. 3

Dingfeng Shi, Yujie Zhong, Qiong Cao, Lin Ma, Jia Li, and
Dacheng Tao. Tridet: Temporal action detection with relative
boundary modeling, 2023. 1, 2, 3,4, 5,6

Tuan N. Tang, Kwonyoung Kim, and Kwanghoon Sohn.
Temporalmaxer: Maximize temporal context with only max
pooling for temporal action localization, 2023. 2, 4, 6

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszko-
reit, Llion Jones, Aidan N. Gomez, Lukasz Kaiser, and Illia
Polosukhin. Attention is all you need, 2017. 1

Tom Viering and Marco Loog. The shape of learning curves:
areview, 2022. 4

Jan Warchocki. Benchmarking Data and Computational Ef-
ficiency of ActionFormer on Temporal Action Localization
Tasks. Bachelor’s thesis, Delft University of Technology,
2023. 4,6

Huifen Xia and Yongzhao Zhan. A survey on temporal action
localization. IEEE Access, 8:70477-70487, 2020. 1

Pengwan Yang, Vincent Tao Hu, Pascal Mettes, and Cees
G. M. Snoek. Localizing the common action among a few
videos, 2020. 1

Chenlin Zhang, Jianxin Wu, and Yin Li. Actionformer: Lo-
calizing moments of actions with transformers, 2022. 2, 4,
6

Hang Zhao, Antonio Torralba, Lorenzo Torresani, and
Zhicheng Yan. Hacs: Human action clips and segments
dataset for recognition and temporal localization, 2019. 1

Yi Zhu, Xinyu Li, Chunhui Liu, Mohammadreza Zolfaghari,
Yuanjun Xiong, Chongruo Wu, Zhi Zhang, Joseph Tighe, R.
Manmatha, and Mu Li. A comprehensive study of deep video
action recognition, 2020. 1

https://images.nvidia.com/content/technologies/volta/pdf/volta-v100-datasheet-update-us-1165301-r5.pdf
https://images.nvidia.com/content/technologies/volta/pdf/volta-v100-datasheet-update-us-1165301-r5.pdf
https://images.nvidia.com/content/technologies/volta/pdf/volta-v100-datasheet-update-us-1165301-r5.pdf
https://www.tudelft.nl/dhpc/ark:/44463/DelftBluePhase1
https://www.tudelft.nl/dhpc/ark:/44463/DelftBluePhase1
https://www.tudelft.nl/dhpc/ark:/44463/DelftBluePhase1
http://crcv.ucf.edu/THUMOS14/
http://crcv.ucf.edu/THUMOS14/
https://github.com/facebookresearch/fvcore
https://github.com/facebookresearch/fvcore

	. Introduction
	. Related Work
	. Methodology
	. Data efficiency
	. Compute efficiency
	Training performance
	Inference performance

	. Experiments
	. Data efficiency
	. Compute efficiency
	Training performance
	Inference performance

	. Responsible Research
	. Conclusion

