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Effective Crowdsourced Generation of Training Data
for Chatbots Natural Language Understanding

Rucha Bapat, Pavel Kucherbaev, and Alessandro Bozzon

Delft University of Technology
Van Mourik Broekmanweg 6, Delft, 2628 CD, Netherlands

Abstract. Chatbots are text-based conversational agents. Natural Language Un-
derstanding (NLU) models are used to extract meaning and intention from user
messages sent to chatbots. The user experience of chatbots largely depends on the
performance of the NLU model, which itself largely depends on the initial dataset
the model is trained with. The training data should cover the diversity of real user
requests the chatbot will receive. Obtaining such data is a challenging task even
for big corporations. We introduce a generic approach to generate training data
with the help of crowd workers, we discuss the approach workflow and the design
of crowdsourcing tasks assuring high quality. We evaluate the approach by running
an experiment collecting data for 9 different intents. We use the collected training
data to train a natural language understanding model. We analyse the performance
of the model under different training set sizes for each intent. We provide recom-
mendations on selecting an optimal confidence threshold for predicting intents,
based on the cost model of incorrect and unknown predictions.

Keywords: Conversational Agents, Natural Language Understanding, Crowdsourcing

1 Introduction

Messenger applications, such as Facebook Messenger, Telegram, Whatsapp and WeChat,
represent a popular medium of communication, which people use to interact with friends,
colleagues, and companies. In 2015 the total number of active users of such applications
surpassed the total number of users of conventional social network applications [12].
Chatbots, on the other hand, are computer programs living in messenger applications
and emulating a conversation with a human to provide a certain service [19].

To make chatbots understand their users, natural language understanding (NLU)
machine learning models process incoming messages and classify them according to
a list of supported intentions — intent recognition — such as "get weather forecast" or
"purchase a ticket", and identify associated information — entity or parameter extraction
— such as the city for weather forecast or the destination for ticket purchase. In a live
uncontrolled environment user phrasings are very diverse from lexical and syntactical
perspectives. Users’ messages might include grammatical mistakes, emojis, and ambigu-
ous abbreviations. NLU is a crucial part of a chatbot, as if it fails, not matter how good
other chatbot components (e.g. dialogue management, response generation) perform, the
chatbot execution will likely be incorrect.



To ensure robust performance from the NLU model, its training should be performed
upon a diverse high quality training data set, featuring a good coverage of messages the
chabot will receive in production from live users. Acquiring such training set is not a
an easy job, even for big companies. Such dataset should be labeled with intents and
entities, and the number of available could training data greatly vary across domains.

While crowdsourcing is a suitable solution, the acquisition of high quality training
data from open crowds is not trivial: brainstorming new request phrasings is a creative
task, where quality control is harder to implement with respect, for instance, to more de-
terministic tasks like image labelling. While different approaches for collecting training
data using crowdsourcing were introduced in the literature [14,2,16,20,21,28], we pro-
pose an end-to-end solution, which starts from an information need, a generic approach
to collect relevant labelled examples, a collection of ways to enrich the training dataset,
using this dataset to train an intent classifier, and a heuristic-based model suggesting an
optimal confidence threshold for this classifier in order to achieve business goals set for
the conversational agent. In this paper, we provide the following original contributions:

A domain-independent end-to-end approach to generate high quality training data
for chatbot’s NLU using the crowd, enriching this data, and training intent classifier;
A data collection experiment where we collect training data using a crowdsourcing
platform for 9 different intentions from 3 diverse domains and evaluate its quality;
An NLU model training experiment where we train a model with the collected data
and evaluate its performance with training sets of a different size;

An approach that supports the selection of an optimal confidence threshold for the
intent classifier, by means of a cost function that accounts of the costs caused by
incorrect and unknown classifications.

The remainder of the paper is organised as follows: Section 2 presents the end-to-end
pipeline that constitutes our domain independent approach. Section 3 details the data
generation step, and presents and discusses the results of a data collection experiment.
Section 4 studies the performance of an NLU model trained with the content generated in
the previous step, and discusses a cost function for the selection of an optimal confidence
threshold. Section 5 presents related work. Section 6 concludes.

2 End-to-end pipeline

Our pipeline is designed to target chatbots serving information retrieval (e.g. "when is
the next train to the airport?") or transactional (e.g. "purchase a ticket for the next train.")
purposes, rather than ones aiming to sustain a generic conversation with users. As such,
the chatbot could be seen as a user interface for a Web service.

Lets assume the chatbot’s Web service for which we plan to generate training set is
REST API. Then API endpoints map with message intents, and API endpoint parameters
map with entities. Figure 1 depicts the pipeline, which consists from 3 main stages:

1. Dataset Generation
2. Dataset Enrichment
3. Model Training
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Fig. 1. Dataset generation pipeline for training chatbots natural language understanding models.

The goal of the first stage is to collect request examples from the crowd for given
intents. The goal of the second stage is to enlarge the dataset collected in stage i) using
various techniques. In the last stage we train an intent classifier and tune it to meet
business needs of the conversational agent being developed.

Below we extensively discuss stage 1 (Section 3) and stage 3 (Section 4). We skip
the enrichment stage due to space limit, which and refer the interested reader to existing
literature [14,21].

3 Dataset Generation

Let us assume the development of a chatbot to get weather forecast using some API. For
simplicity reasons, we let users get a forecast by two parameters: location and period.
Users of the chatbot can ask for a forecast with using different phrasing and mentioning
these parameters (not necessarily all of them) in any order. Valid request examples would
be: "How is it in San Francisco today?", "What is the weather next week?" (location is
missing).

As a result of extensive experiments with crowd workers, we consolidated the
following 5 steps approach to generate a dataset to train NLU model (Figure 1):

1. Generate N sequence combinations of P parameters. In the real world, users could
submit requests to the chatbot mentioning parameters in any order. Having this assump-
tion in mind, a reasonable strategy for training set generation would be to collect several
request examples for every possible sequence of parameters. For that we create a list of
possible parameter sequences, which we later use in the brainstorming task.



The number of possible sequences is calculated as:
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, where P is the number of parameters.

2. Brainstorm K new phrasings for each sequence. For each sequence from the pool
of sequence combinations we collect K examples from the crowd. As in live scenario
chatbot users will write their requests with high diversity of phrasing, we need to account
for such diversity in this step. The fact that we ask people from different countries
and with different background and demographics already injects some diversity in the
examples. To ensure the creation of reasonable amount of examples from the crowd, we
introduce the following quality control techniques (including validators as in Figure 2).

Your request (required) Your source (required)
We think this request is not in English. Rephrase it. The entity should be present in the request.
| Che song opzioni per andare di {Amsterdam] a {Paris}in {train]? | | {Boston} |
@ Look at the template, and the example. Please type vour destination, Qin(l}
source or mode of transport in { } (curly braces) and end your request
with'?2'or'.’
Your destination (required) Your mode of transport (required)
It seems you miss {} around. Make sure you do not Please do not use the entities from the example.
have other characters or spaces beyond curly braces.
| {Amsterdam | {train} |
Qinf} Qinf}

Fig. 2. An example of how validators work in the brainstorming task on CrowdFlower.

Instructions - a short instruction is given to workers, where we describe the expect
contribution;

Example - to give a feeling about the expected result we give an example of a request
example which fits the given sequence;

Language control - even though we ask workers to provide requests in a given language
(e.g. English), some workers might provide examples in other languages. To control
this, we use a third party service (https://detectlanguage.com) which we call using
JavaScript before the task form is submitted, and if the service predicts language different
than English we give feedback to the worker and ask to write it in English instead;

Sequence control - even though we ask workers to follow the requested sequence of
parameters, we need to assure it, so we validate the sequence before the task form is
submitted;

Uniqueness control - even thought we ask workers to come up with their own phrasing
and parameter values, some where copying our example and were adding a letter in the
end of the sentence. To address that we calculate Levenshtein distance of our example
and the one by the worker and see if they are far apart enough.


https://detectlanguage.com

3. Get Judgments for each phrasing example Despite the use of different valida-
tors. it is still possible to obtain low quality requests from crowd workers. To address
this problem we introduce another layer of quality control, where we launch another
crowdsourcing task and ask several workers to evaluate requests we collected from the
brainstorming task. To make sure workers understand well this validation task we have
some ground truth data and give real tasks only to people who pass the qualification
round of the task.

4. Keep phrasings positively judged by T x J crowd workers For each request from
the brainstorming task we have several judgments about its fitness to the specified intent.
Depending on the specified requirement, we define some agreement threshold, which is
used to use this request to train NLU model or not:

. T,
1’ lf positive 2 T;zcce
itive Hnegative pt
A= { 0. i Jpomf; e negarive a]acceplance S [0, 1]

positive
) accept

Jpositive +Jnegarive

5. Enrich phrasings More training examples could be automatically generated by: 1)
sentence paraphrasing [14,21], ii) adding some extensions (e.g. "what is the weather
today?" — "hey chatbot, what is the weather today?"), iii) replacing parameter values
with others (e.g. "what is the weather foday?" — "what is the weather romorrow?"),
iv) generating big pools of parameter values from open data sources (e.g. thousands
of location options could be generated from Google Maps API), v) swapping two or
more consecutive letters to account for possible misspellings (e.g. "what is the waether
today?"). These and many other strategies can help to increase the size of the training set
and make the NLU model more robust.

3.1 Experiment setup

To test the effectiveness of our approach we conduct an experiment, where we collect data
for 9 intents (Table 1) in 3 different domains: travel information (which is popular among
chatbots selling tickets and providing timetable), meeting scheduling (multiple chatbots,
such as X.ai and Calendar.help [6], work in the same domain), and software development
(to challenge our approach, as it is generally perceived that it is only possible to perform
tasks on crowdsourcing platforms not requiring a specific knowledge). In each domain we
test the approach with 3 types of intents: /) read - where users retrieve some information,
2) create - where users intend to perform a new transaction, 3) update - where users
intent to edit information.For intents with 3 parameters (15 sequence combinations)
we requested examples from 7 workers, for intents with 4 parameters (64 sequence
combinations) — from 4 workers. Later each request is judged by 3 workers in the
validation task.

As the main focus of this work is on getting high quality results from crowd workers,
we test only the first 4 steps of our approach, considering that the data enrichment step
is a topic on its own, requiring a separate extensive analysis. We launch all tasks on
CrowdFlower not concurrently, at different working days at the same time span. To make
sure the results we collect are representative we repeat all tasks 3 times.



Table 1. We collect training data for 9 intents of 3 types (read, create, update) from 3 domains
(travel information, scheduling meetings, software development).

TRAVEL MEETING SOFTWARE
Intent Ask for navigation Availability check "How to" questions
READ )
source, destination, R progr. language, OS,
Parameters time, alternative time, place
mode of transport package/tool
Intent Purchase a ticket Create a meeting Deploy software
CREATE : . . )
source, destination, time, participants, action, OS,
Parameters - ;
trip purpose, date place, duration memory requirement
Intent Modify a ticket Modify a meeting Modify software
UPDATE | 08
Parameters source, destination, date time, participants, place, duration efror, progr. language, !
package/tool

3.2 Metrics

We first manually check all the results coming from the brainstorming step of the pipeline.
To evaluate the effectiveness of our approach we use the following formulas to calculate
accuracy before validation step (A, ), accuracy after the validation step (Agy):

A N, correct A N, correctNaccepted
by = y av =
N, correct + N incorrect N, accepted

3.3 Results

The results! of the experiment are summarized in Table 2. The mean accuracy of the
brainstorming task before the validation task is 88.66% (standard deviation = 5.72).
Varying the threshold of acceptance Tjcc.pr We got the following accuracies: 93.57% (for
Tuccepr = 0.33),96.37% (for Tyccepr = 0.33), and 98.21% (for Tyccepr = 1). The higher the
threshold of acceptance, the higher the mean accuracy and lower its standard deviation.
The lowest accuracy (86.53%) is for modify ticket in travel domain with acceptance
threshold = 0.33. The highest accuracy (99.85%) is for creating meeting intent with
acceptance threshold = 1. From the diversity perspective 99.8% of collected examples are
different. If we fill up parameters (slots) with the same values, then 77% of requests are
different (meaning that the rest have the same phrasing but different parameter values).
Here are some request examples collected from the crowd:

— Valid example: What is the best route to go by {car} to {CN Tower} from {Yonge
Station}

— Invalid example, caught in review task: go to {vegas} to {boise}

— Invalid example, not caught in review task: How to go to {public transport} from
{Dasmarinas City}?

! The sequences of parameters for each intent, examples collected in brainstorming task, and judg-
ments from the validation task are available here https://github.com/HumanAidedBots/
NLU
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Table 2. Training data generation pipeline results. All results are averaged over 3 repetitions.

BRAINSTORMING VALIDATION

Read 90,15 97,57 98,92 99,58

TRAVEL Create 94,39 97,14 98,7 99,63
Update 79,36 86,53 90,31 94,87

Read 88,25 91,47 96,46 97,78

MEETING Create 98,82 99,47 99,73 99,85
Update 81,85 92,46 95,87 99,2

Read 89,83 93,71 97,09 98,21
SOFTWARE Create 90,79 94,17 96,49 97,16
Update 84,5 89,59 93,72 97,63

| Mean 88,66 93,57 96,37 98,21

3.4 Discussion

Crowd workers brainstormed examples for read and create intents very well, but shown
problems with update intents. Further analysis shown that crowd workers considered
update intent tasks more confusing, which also explains the poor performance in the
validation step. This suggests the need for improved user interface and instructions for
such tasks, to enable the generation of better content.

The fact that we achieve 97% accuracy for read and create intents, suggests that the
method can already be used for acquiring large corpus of training data, as such level of
accuracy was achieved for all 3 domains.

For parameters most of the workers provided very short examples (e.g. not full
addresses, company names). Several request examples contain grammar mistakes (e.g.
"How to go from faro by plain?" all workers in the validation task accepted, while "w
would 1 go from Lima by train to Ica?" all workers rejected). This is an interesting
observation, that shows how crowd workers are likely to have mistakes and typos while
interacting with a chatbot as well.

In our work we do not focus a lot on enforcing diversity, apart from the fact that we
collect examples from a diverse group of people from different countries and we double
check that they provide examples which are significantly different (using Levenshtein
distance) than the example we give them.

There are multiple methods could be applied to assure diversity (e.g. GWAP style
game where workers need to come up with phrasings never used by other workers, but at
the same time rated as highly relevant). We discuss such approach as future work.



4 NLU Model

To provide a measure of the quality of the collected sentences, we study how the
performance of NLU model trained with the content generated in the data collection
experiment varies for different training data sizes and different intents. It is often not
reasonable to blindly trust predictions given by the model. Therefore, we as well study
how the NLU model prediction combined with a parametric threshold level can be used
to trade off between incorrect and unknown predictions (those which have confidences
below the threshold).

We acknowledge that testing the performance of the NLU model trained with data
generated using the same approach can lead to over fitting, and that an evaluation
performed with test data coming from a different source (ideally from a live chatbot
with real users) would be more appropriate. As we lack access to such data, the goal of
our experiment is to explore how the performance of the trained NLU model vary with
alternative training data sizes and confidence thresholds.

4.1 Experiment setup

In our experiments we used the popular open-source platform Rasa NLU2. This platform
allows to train intent classifier and use this classifier locally with no need to have internet
connection and send data to third-party services. Rasa NLU intent classifier is based
on support vector machines (SVM). Further we only discuss the performance of the
intent classifier (not the entity recognition) with a training data collected in the previous
section.

We divide 4158 request examples we collected from the crowd into 90% (3742)
training set and 10% (416) test set. We vary training size from 15 to 3742 request
examples (approximately doubling it every time, so we have 10 possible sizes). We keep
our training sets and the test set balanced with respect to the number of requests from
each intent. We performed an N-fold validation, where having multiple training sets for
each training size (e.g. 5 sets, for 15, 30, 59, 117, 234, and 468; 3 sets 936, and 1 set
for 2700 and 3742 dataset sizes) are used for training, and the resulting performance
averaged.

4.2 Results

Figure 3 reports the performance of NLU model trained with different dataset sizes. For
each setting we show 9 stacked bars corresponding to the number of correct predictions
(green), incorrect predictions (red) and unknowns (grey) - predictions with prediction
confidence less than the confidence threshold (which we vary from 0.1 to 0.9 with a step
of 0.1). The performance for different intents is not consistent, such with a very small
training data set of just 30 training examples the performance of Travel Read is over
90%, while Software Create is below 10%. For intent Meeting Create with training size
3742 all test requests were classified correctly.

Zhttps://rasa.ai
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Fig. 3. Performance comparison of NLU models trained with data of a different size. In the top-left
— combined performance across all intents, other 3 quadrants — detailed results for each intent for a
given training set size.

Looking at the combined performance (the bottom part of the figure) with the training
data of less than 117 request examples the model has very low performance (less than
90%). Increasing the training data 16 times helps to reach 95% accuracy level. Further
dataset size increase gives only slow improvement in its performance. Interesting to
notice, that the model with training set 117 and confidence threshold 0.5 gives the same
number of incorrect predictions as the model with training set 3742 and confidence
threshold 0.1.
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4.3 Discussion

Different intents assume different level of diversity of user requests, such questions about
navigation information (Travel Read) or purchasing a ticket (Travel Create) are quite
standard and typical, while questions about meeting scheduling or software development
vary greatly, therefore requiring more training examples to reach reasonable performance.
Still with training sets of several thousands (e.g. 3742) the performance across different
intents is quite consistent.

4.4 Define Confidence Threshold

Changing the confidence threshold leads to different number of incorrect and unknown
classifications (Figure 3). Conversational agents are often built to solve business tasks,
such as selling airplane tickets or hotel reservations. To pick the optimal confidence
threshold the system designer needs to identify a potential cost of incorrect classification
and a cost of unknown classification. This cost can be defined in time, money, or a
number of interactions users have to go through to reach their goal. Further we give an
example, how to come up with a cost model and what is the optimal confidence threshold
in different cost models.

Let’s say that it is possible to earn 10 USD with each flight ticket reservation. Look-
ing at hypothetical historical data, we might say that an incorrect intent classification
drops the probability of the user to make reservation in half. Such, the cost of incor-
rect classification is 5 USD. Unknown intent classifications lead to extra clarification
questions, which lead to the drop of the booking probability by 10%. Such, the cost of
unknown classification is 1 USD.

In Figure 4 we show optimal confidence thresholds for 3 different cost models: i)
incorrect — 5 USD, unknown — 1 USD, ii) incorrect — 1 USD, unknown — 5 USD, iii)



incorrect — 5 USD, unknown — 5 USD. We came up with this figure based on the data
given in the top-left quadrant of Figure 3, using the following cost function:

TotalCost = Nincorrect % Cincorrect + Nunknown X Cunknown

, where N is the number of classifications, and C is the cost of correct or incorrect
classifications. Such, if unknowns are more expensive (green line), then it makes sense
to define the confidence threshold as very small, introducing some incorrects, because
unknowns are anyway more expensive. If the cost of incorrects and unknowns are the
same (blue), then we just need to minimize their total number, maximizing the number
of correct classifications. The most common case, is when incorrect classification is
more expensive than an unknown one (red). In this case with smaller training sets the
optimal threshold is 0.4, and as we grow the training set the optimal threshold grows
towards 0.8.

5 Related Work

Crowdsourcing and human computation are widely used to allow conversational agents
and chatbots to understand their users. Chorus is a conversational agent, where all users
requests are processed by multiple crowdworkers [18,11]. Guardian is a conversational
agent where crowd workers ask questions to the users to derive parameters and their
values to run a request with an underlying API [8]. In InstructableCrowd, users converse
with crowd workers to create if-then rules for their smartphones to perform various
actions [9]. While in all previous systems every user request was processed solely by
crowdworkers, the CRQA question and answering system make automatic algorithm and
crowd workers work in parallel to suggest answers to user requests, with crowd workers
voting for the best answer [23]. Huang et. al. introduce an approach to perform real-
time entity extraction with the crowd in chatbot systems [10]. Vtyurina et. al. compare
satisfaction and human behaviour of users interacting with a human expert and a system
perceived to be automatic, but backed by a human worker [27].

While there are many examples of conversational agents where the crowd is involved
in processing every request this is not scalable (at least financially). In Calendar.help, an
email-based conversational agent helping people to arrange meetings, multiple tiers aim
to understand text of emails: automatic natural language understanding model, crowd
micro-tasks (e.g. to identify meeting location), and crowd macro-tasks (e.g. in case
other tiers fail, to understand how to proceed with the email and write another email to
reply with) [6]. While such approach seems to be more scalable, the natural language
understanding model requires a dataset to be trained upon.

The importance of rich and diverse dataset for training dialogue systems is discussed
in [25]. There is some research has been done about using the crowd to collect training
data for conversational agents. Most of this research address spoken language collection
(e.g. via Amazon Mechanical TURK [15]), and transcription and annotation of speech
corpora [7]. Rothwell et. al. discuss collection and annotation of named entity recognition
data using unmanaged crowds [22].

Human computation was historically used a lot for processing or generating textual
information, be it Soylent Word plugin for improving text and proofreading [1], image



caption generation [3] using computer games [26], text simplification [17], translation
quality evaluation [5], and evaluation of other natural language tasks [24]. Jha et. al.
introduce an approach to curate prepositional phrase attachment corpus by having
automated point prediction system and crowd workers from MTURK working together
[13].

Crowdsourcing could be considered as a way to help expert annotators to come up
with training examples for dialogue systems [20]. Lasecki et. al. [16] propose to acquire
dialogue training data by crowdsourcing conversations between pairs of crowdworkers
towards defined goals. In [28] the authors propose several methods using crowdsourcing
to collect training sentences matching given semantic forms. Sentence paraphrasing
using crowdsourcing [14,21] is a way to increase training dataset.

6 Conclusion and Future Work

We introduced an end-to-end pipeline to generate training data for conversational agents
and training natural language understanding models. In this pipeline we introduced new
approaches, such as validation techniques in task user interface, but also refer to concepts
from the literature (e.g. going over combinations of intents and parameters, and using
paraphrasing for data enrichment).

We conducted an experiment collecting training data for 9 different intents from 3
different domains and on average with the most strict validation policy we collected
request examples with 98.21% accuracy. Later we trained NLU model with the data
we have collected using our approach and reported how the performance differ with
training set size and intent. In addition we introduced various cost models for incorrect
and unknown classifications, and reported how different confidence thresholds could be
used to meet business goals.

In the current work we evaluated the performance of the NLU model splitting the
dataset collected from the crowd into training and testing sets. Even thought it provides
some intuition on the performance of the model in real life scenario, the first thing
we plan to do in the future is to test the model with requests collected from an online
chatbot running with real users. In addition we plan to improve the diversity of requests
we generate with the approach, by allowing crowd workers to submit only new unique
phrasings for a given intent (similar to image tagging in games with a purpose [4]). We
plan to investigate different techniques of phrasing enrichment (e.g. auto-generating
parameter values, adding extra noisy attachments to requests) to improve the performance
of the NLU model.
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