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ARTICLE INFO ABSTRACT

Keywords: Asphalt binders are critical for asphalt pavement performance, and understanding their rheological behavior is
Multiscale modeling essential for designing durable roadways. The complex shear modulus (G*) and phase angle (§) are primary
Asphalt binder

parameters characterizing binder rheology. This study introduces a novel hybrid machine learning model
combining deep neural networks (DNN) and Gaussian process regression (GPR) to predict G* and 6 for bituminous
binders and binder-filler systems (mastics). DNN excel at capturing complex, nonlinear relationships among
eleven binder and thirteen mastic input parameters, including aging conditions, chemical and physical properties,
and test parameters. However, standalone DNN struggle with small datasets, common at the binder scale, and
lack inherent uncertainty quantification, limiting reliability in engineering applications. GPR improves DNN
by refining predictions through probabilistic modeling, while providing uncertainty estimates, and enhancing
accuracy with limited or noisy data. The hybrid model leverages DNN’s feature extraction capabilities and
GPR’s ability to smooth predictions, significantly improving performance over standalone DNN. The hybrid
model achieves high prediction accuracy, with R? values of 0.997 for G* and 0.947 for § for binders, and
0.993 for G* and 0.972 for 6 for mastics, reducing G* prediction error from 22.7% to 0.031% for fresh asphalt
binder compared to standalone DNN. Feature importance analysis using random forest and SHAP techniques
identifies test temperature, aging conditions, and penetration as key influencers of G* and §. This hybrid approach
enhances the characterization of complex asphalt materials, offering pavement engineers a robust, reliable tool
for predicting material behavior under diverse conditions.

Asphalt mastic
Machine learning
Neural networks
Gaussian process

1. Introduction hesion properties of asphalt binders create a resilient bond between the
binder and the aggregate, preventing issues such as raveling [2,3].

1.1. Fundamental aspects of asphalt binder: from composition to The viscoelastic properties of asphalt binder are typically charac-

performance terized by two key parameters: the complex shear modulus (G*) and

phase angle (6). These parameters are measured using the dynamic

shear rheometry test (DSR), which applies oscillatory shear stresses to a

thin film of asphalt binder sandwiched between two parallel plates [4].

Asphalt binder, also known as bitumen, plays a crucial role in pave-
ment construction. It acts as a viscoelastic adhesive, binding the ag-
gregate particles together. The unique characteristics of asphalt binder

allow it to behave both as a viscous fluid and an elastic solid, which is G” represents the total resistance of the binder to deformation when
essential to efficiently distribute stresses across the pavement surface. repeatedly sheared, while § indicates the lag between the applied shear
This capability helps prevent permanent deformations, such as rutting, stress and the resulting shear strain, reflecting the relative amounts
ensuring the durability of the pavement [1]. Additionally, the strong ad- of recoverable and non-recoverable deformation [5]. A lower 6 indi-

Abbreviations: ML, Machine Learning; ANN, Artificial Neural Network(s); DNN, Deep Neural Network(s); GPR, Gaussian Process Regression; FEM, Finite Element Model; DSR,
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cates more elastic (solid-like) behavior, while a higher 6 suggests more
viscous (liquid-like) behavior. These measurements are necessary for
predicting pavement performance under various loading and environ-
mental conditions.

The rheological properties of asphalt binders are not static and can
change over time due to various environmental factors. One of the most
significant processes affecting these properties is oxidative aging, which
occurs when asphalt binders are exposed to environmental conditions.
Oxidative aging can lead to cracking and other forms of distress that can
change the behavior of the pavement. Oxidative aging typically occurs
in two phases: short-term aging, which occurs during the mixing and
construction process, and long-term aging, which takes place over the
pavement’s service life [6]. To simulate these aging processes in labo-
ratory settings, researchers employ two standardized tests. The rolling
thin film oven test (RTFOT) replicates short-term aging by exposing the
binder to heat and air flow, mimicking the conditions during mixing
and paving [7]. For long-term aging simulation, the pressure aging ves-
sel (PAV) test subjects the RTFOT-aged binder to high temperature and
pressure for an extended period, representing years of in-service ag-
ing. These tests allow engineers to evaluate how the binder’s properties
evolve over time and predict long-term pavement performance.

From a chemical point of view, asphalt binder is characterized based
on polarity into saturates, aromatics, resins, and asphaltenes (often re-
ferred to as SARA fractions). The specific distribution and relative pro-
portions of these fractions within the binder play a crucial role in de-
termining the overall behavior and performance characteristics of the
binder. For instance, it has been indicated that asphaltenes enhance
the stiffness and elasticity of the asphalt binder, especially at high tem-
peratures, and increase the high performance grade temperature of the
binder by increasing the polar fraction content [8]. In addition, the im-
pact of the asphaltene content on the stiffness and viscoelastic properties
of asphalt binders has been analyzed, showing significant changes with
varying asphaltene levels [9].

1.2. Asphalt mastic: the interplay between binder and mineral

The complexity of the asphalt binder increases further when fillers
are introduced to form the mastic, which represents the next level of
composite material in asphalt mixtures. Mastic, a combination of as-
phalt binder and fine mineral particles, exhibits unique rheological and
mechanical properties that differ from those of pure binder. The interac-
tion between the binder and filler particles creates a complex system that
requires detailed investigation. It has been revealed that asphalt binder
aging is influenced by more than just the type of binder. Fillers can slow
the aging process of asphalt binder through two main mechanisms: the
physical presence of fillers blocks oxygen diffusion, and the chemically
active fillers can adsorb polar functional groups from binders, further
mitigating the aging effects [10-12]. Additionally, a framework study
was developed to examine the interactions between different filler mate-
rials and asphalt binder within asphalt mastic to investigate how these
interactions affect the stiffness of the mastic and the behavior under
shear stress [13]. Furthermore, it was highlighted how different filler
types and the rheological properties of asphalt mastics influence the
bonding between asphalt and aggregate. The findings suggest that filler
characteristics, such as pore volume and specific surface area, signifi-
cantly affect the rheological behavior of asphalt mastics [14].

1.3. Machine learning applications in asphalt research

As the complexity of asphalt binder and mastic behavior becomes in-
creasingly apparent, researchers are turning to advanced computational
methods to improve their understanding and predictive capabilities. Ma-
chine learning (ML), a subset of artificial intelligence, has emerged as a
powerful tool in this field by offering new ways to analyze data, identify
patterns, and make predictions that were previously challenging with
traditional methods [15,16]. ML algorithms process large amounts of
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data from various sources, including rheological measurements, com-
position analysis, and performance tests. They are capable of identify-
ing complex relationships between variables and predicting outcomes
with high accuracy. This approach is particularly valuable in asphalt
research, where multiple factors interact in complex ways to influence
material behavior [17].

Although most of the research has concentrated on mixture scales
due to data availability, some studies have explored the use of artificial
neural networks (ANNs), a widely recognized ML approach, at smaller
scales. Building on this foundation, deep neural networks (DNN), a more
advanced form of ANNs characterized by multiple hidden layers, have
emerged as powerful tools for modeling complex patterns. The depth of
these networks allows them to learn hierarchical representations of data,
making them particularly effective in scenarios where subtle, multi-scale
interactions are present [18]. In small-scale modeling, DNN can cap-
ture fine-grained spatial variability and temporal dynamics that simpler
models might overlook. DNN excel in capturing highly nonlinear and
multifaceted interactions among a large number of input parameters,
such as chemical compositions (SARA fractions), physical properties
(penetration, softening point), aging conditions, and test parameters.
The deep architecture of DNN enables superior feature extraction, au-
tomatically learning hierarchical representations of data without exten-
sive manual feature engineering.

For example, one study developed an ANN model that predicts as-
phalt binder recovery and nonrecoverable compliance at high stress
levels [19]. This model utilized five inputs: test temperature, frequency,
storage modulus, loss modulus, and viscosity. The highly accurate pre-
dictions indicate that these models could help design asphalt mixtures
that perform well under various conditions. Another study created an
ANN model to predict the performance of a geopolymer-modified as-
phalt binder [20]. This research tested various combinations of parame-
ter, algorithm, and network architectures, identifying the best perform-
ing model through statistical analysis. The results demonstrated both
the potential of ANN to predict complex material behaviors and the im-
portance of selecting the appropriate model architecture and training
algorithms for accuracy. Beyond the binder scale, research has shown
that ANN can predict the complex modulus (G*) of asphalt mastic sam-
ples using inputs, such as temperature, frequency and the filler-asphalt
ratio [21]. This investigation confirmed that ANN models can effectively
evaluate the properties of asphalt mastic.

However, the majority of ML models have been developed for larger
scales, such as asphalt mixtures and pavements. This trend is primarily
driven by the increased availability of comprehensive datasets on these
scales, which are often collected through routine quality control pro-
cesses and long-term pavement monitoring programs. Some studies have
developed ANN models to predict the effects of aging on the properties
of asphalt mixture, demonstrating the effectiveness of neural networks
in identifying complex nonlinear relationships between the mixture ag-
ing index (AMI) and various input factors [22]. Other research efforts
have used ANN with large datasets, utilizing mean square logarithmic
error as the loss function to predict the fatigue life of asphalt concrete
(AC), focusing on factors such as strain level, binder content, and air
void content [23].

Gaussian process regression (GPR) has emerged as another powerful
method in predictive modeling. As a probabilistic approach to regres-
sion, GPR models the relationship between inputs and outputs using
a Gaussian process, which provides a measure of uncertainty for pre-
dictions. This flexibility and ability to quantify uncertainty make GPR
highly effective in various fields [24-26]. For large datasets, such as
those encountered at the mastic scale, Sparse Gaussian Process (SGP)
models offer a computationally efficient alternative to full GPR by ap-
proximating the posterior distribution with a reduced set of inducing
points, maintaining predictive accuracy while significantly reducing
computational complexity [27]. Applications in pavement engineering
include automatic estimation of the resilient modulus of different pave-
ment materials, demonstrating the effectiveness of GPR in predicting
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Overview of key studies on machine learning applications in asphalt research.

Reference Study Summary

(Seitllari et al., 2019) [22]

Research Object: Asphalt mixture properties

Research Objective: Predict aging effects using artificial neural networks (ANNs)
Key Parameters: Asphaltene content as a primary indicator

(Houlik et al., 2024) [23]

Research Object: Asphalt concrete

Research Objective: Predict fatigue life using ANN models
Key Parameters: Strain level, binder content, air-void content

(Hamid et al., 2022) [19]

Research Object: Asphalt binder

Research Objective: Predict recovery and nonrecoverable compliance under high stress using ANN
Key Parameters: Test temperature, test frequency, storage modulus, loss modulus, viscosity

(Alas et al., 2019) [20]

Research Object: Geopolymer-modified asphalt binder

Research Objective: Develop accurate ANN models for performance prediction
Key Parameters: Various parameter combinations, algorithms, and network architectures

(Yan et al., 2014) [21]

Research Object: Asphalt mastic

Research Objective: Predict G* using ANN models
Key Parameters: Temperature, frequency, filler-asphalt ratio

(Ghanizadeh et al., 2021) [28]

Research Object: Pavement materials

Research Objective: Pavement materials (stabilized base materials)
Key Parameters: Wetting-drying cycles, free lime to silica ratio, alumina and iron oxide compounds
in additives, maximum dry density to optimum moisture content ratio, deviator stress, confining stress

pavement properties [28]. Table 1 summarizes recent studies on ML ap-
plications in asphalt research.

1.4. Objectives of this study

This study proposes an advanced hybrid approach that combines
DNN with GPR to predict G* and 6 of asphalt binders and mastics. The
integration of DNN and GPR draws on the strengths of both methods
to address their individual shortcomings. DNN are highly effective at
identifying complex, nonlinear patterns within high dimensional data,
making them ideal for modeling the detailed relationships between in-
put parameters such as aging conditions, chemical composition, test
parameters, and rheological outcomes. However, DNN can struggle with
small datasets, common at the binder scale, and they do not naturally
provide uncertainty estimates, which are important for dependable en-
gineering predictions. In contrast, GPR offers a probabilistic framework
that excels at quantifying uncertainty and refining predictions, particu-
larly with limited or noisy data. Yet, GPR can become computationally
impractical for large datasets, such as those at the mastic scale, and
may not easily handle strongly nonlinear relationships without exten-
sive tuning. This hybrid model utilizes the capacity of DNN to process
raw inputs and extract key features, which GPR refines to improve ac-
curacy and provide uncertainty estimates.

The binder and mastic models are hierarchically interconnected. The
binder model (11 inputs) predicts intrinsic binder properties, while the
mastic model (13 inputs, including filler percentage and stiffness) builds
on these, using binder data augmented by FEM to generate synthetic
mastic data. Both share the DNN-GPR methodology, enabling a multi-
scale analysis of binder to mastic behavior.

The study also applies model-independent techniques and model-
dependent methods to identify critical variables that influence asphalt
behavior, shedding light on the model decision making process. The
rest of this paper is structured as follows: Section 2 focuses on the
detailed methodology, including data collection, the development of hy-
brid model, and the integration of finite element modeling to simulate
mastic properties. Section 3 presents the results and discussion, evaluat-
ing the predictive performance of the hybrid model for the rheological
properties of binder and mastic, along with a comparative analysis of
feature importance and uncertainty contributions.

2. Methodology
2.1. Data mining

The selection of input parameters was guided by their expected im-
pact on the rheological properties of asphalt binder and asphalt mastic,
while also taking into account data availability. For instance, the viscos-
ity of asphalt binder is known to significantly influence the rheological
behavior and the overall performance of pavements. Binders with lower
viscosity, such as modified binders, tend to enhance rutting resistance
due to their improved flow characteristics and ability to distribute loads.
Conversely, highly viscous binders, like those found in reclaimed asphalt
pavement (RAP), may negatively affect fatigue performance, potentially
leading to premature cracking [29,30]. However, despite the recognized
importance of viscosity in asphalt binder behavior, it was not included as
an input parameter in this study. This decision was primarily due to in-
sufficient availability of data across the range of samples and conditions
required for a comprehensive analysis. The lack of consistent viscosity
measurements across the dataset would have limited the reliability and
applicability of any conclusions drawn from the inclusion of the viscos-
ity. As a result, the focus was placed on other influential parameters for
which more complete and reliable data were available.

In light of these considerations, input parameters representing var-
ious aspects of asphalt binder and mastic behavior were considered,
including physical properties and test parameters, chemical composi-
tions, aging conditions, and filler properties:

- Aging conditions: These were represented as categorical variables
corresponding to distinct aging states that represent fresh (un-
aged), short-term (simulated by RTFOT) and long-term (simulated
by PAV) rather than continuous values of aging time, pressure, or
temperature. This categorical approach reflects the standardized
nature of aging tests that ensures the model captures the rheological
responses for each state, which are critical for understanding binder
property evolution under different environmental conditions.
Physical properties: Softening point and penetration were included
as key indicators of binder consistency. The softening point indi-
cates the temperature at which the binder begins to soften, while
penetration measures the binder’s hardness at a standard tempera-
ture.



M. Khadijeh, C. Kasbergen, S. Erkens et al.

1.0

Results in Engineering 26 (2025) 105629

0.5

- 0.09 041 046 0.07 -

0.11  -0.09 -Penetration [dmm]

--- 0.50 0.1 0.50 -0.01 - Test Temprature [°C]
--- 050 -0.18 -0.23  -0.47 -0.50 -0.50 -0.47 -0.08 -- Phase Angle [degree]
-0.17 | -0.47 -0.33 - 0.07 -0.25 - Saturates %
-0.08 -0.10 -0.04 - 0.07 -0.20 -Resins %
-0.18 - 0.32 - 047 023 0.07 -0.08 -0.10 -Aging Temprature [°C]
-0.12  -0.23 -0.08 = 0.32 ---- -0.33 0.02 0.05 -Asphaltene %
-0.14 | -0.47 -0.47 -0.02 -0.08 0.08 - Softening Point [°C]
-0.22 | -0.50 | -0.33 -0.04 -0.14 -0.05 0.14 -Aging Time [h]
-0.28 | 0.50 | 030 0.01 023 -0.18 -0.03 0.19 -Aging Pressure [MPa]
-0.05 | -0.50 -0.47 -0.33 -0.02 -0.14 -0.18 - -0.08 0.20 - Napthene Aromatics %
{ 0.11 -0.01 -0.08 0.07 0.07 -0.08 0.02 -0.08 -0.05 -0.03 -0.08 - 0.27 - Test Frequency [rad/s]
-0.09 -- -0.25 -0.20 -0.10 0.05 0.08 0.14 019 0.20 0.27 -- Complex Shear Modulus [Pa]
= o o B B 5} B 5} = © X @ o
E S 5 8 ¢z T g % o2 5 8 B %
h=A [} @ = G [ [} € £ = = = 2
c ] KeA 5 2 2 S ? = 2 g o) 3
S ® © 2 © © < o o 2 s 2 3
5 5 ) UJ g o) 2 ) 2 < 3 =
ko] g 53 5 < c < = © = =
c A [0] o c 9] ©
P = & 1) = o o IC 9}
o ? © c 3 £ < — &
& £ ? 2 5 ¢
< < =z = 3
a
£
3
o

Fig. 1. Hierarchically clustered correlation heatmap for asphalt binder.

» DSR test parameters: Raw experimental measurements of G* and
6 were obtained for each combination of test temperature and fre-
quency using the DSR test. These measurements reflect the direct
rheological response of the binder at each temperature-frequency
combination, without the use of master curve derivations or pre-
dictive modeling.

Chemical composition: This was represented by the volume per-
centages of asphaltenes, saturates, resins, and aromatics (SARA
fractions). These components significantly influence the rheologi-
cal properties and aging characteristics of asphalt binders.

For asphalt mastic, similar inputs were considered with the addition
of filler percentage and filler stiffness in the binder matrix. These
parameters account for the influence of mineral fillers on the overall
performance of the mastic, including its stiffening effect and impact
on rheological properties.

The analysis yielded 11 input variables for the binder scale and 13
for the mastic scale. This approach provided a thorough understanding
of these levels and showed how fillers influence and interact with the
binder’s characteristics. To further investigate the relationships between
the selected input parameters, a correlation analysis was performed, vi-
sualized through a heatmap (Fig. 1).

This analysis revealed interrelationships among the chosen param-
eters, providing valuable insights into the complex nature of asphalt
binder and mastic behavior. The hierarchical clustering approach reor-
ganized the correlation matrix to group variables with similar correla-
tion patterns together, creating distinct clusters that reveal the under-
lying structure of relationships within the dataset. This methodology
transforms the traditional correlation matrix into a more interpretable
format where related variables appear adjacent to each other, forming

coherent blocks that represent natural groupings of aging parameters,
chemical composition variables, and testing conditions. The following
key observations from the correlation heatmap were observed:

1- Strong negative correlations were observed between penetration
and aging conditions (-0.53, -0.71, -0.64 for aging temperature,
time, and pressure, respectively). These relationships underscore
the interconnected nature of the physical properties and environ-
mental conditions in asphalt materials.

2- The SARA fractions (saturates, aromatics, resins, and asphaltenes)
showed varying degrees of correlation with physical properties, em-
phasizing the importance of chemical composition in determining
overall binder behavior.

3- The DSR test parameters (temperature and frequency) demon-
strated moderate correlations with several other variables, indicat-
ing their broad influence on measured rheological properties.

The presence of strong correlations between certain input parame-
ters indicates a degree of multicollinearity in the dataset. In traditional
statistical modeling, this might be a concern. However, given the com-
plex, nonlinear nature of asphalt behavior and the capabilities of neural
networks in handling such data, we chose to retain all parameters for
our analysis. This decision was supported by the subsequent high per-
formance of our hybrid model, which achieved high R? values and low
mean squared error (MSE).

2.2. Data collection

The model’s development relied on data from three carefully selected
sources, chosen to ensure a comprehensive, high-quality, and represen-
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Summary of the statistical data used to develop the models.

Stan

Table 2

Input Parameters Mean
Aging Conditions -
Asphaltenes [%] 15.17
Aromatics [%] 45.98
Resins [%] 4.96
Saturates [%] 33.88
Penetration [dmm] 73.57
Softening Point [*C] 52.15
Test Temperature [°C] 19.40
Test Frequency [rad/s] 17.52
Fillers [%] 18.2
Fillers Stiffness [GPa] 34.5

3.23
7.56
2.76
5.15
27.4
4.64
18.0:
28.3
7.2

70.7

dard Deviation Min Max
4 26.1
24.3 53.3
1.9 13.2
24.12 54.9

3 36.26 160
42.78 58.16

3 -10.54 60

6 0.1 100
8 28
30 140

“ Aging Conditions were modeled as categorical variables representing
standardized test states: Fresh (no aging, O hours, 0 MPa), Short-Term
(RTFOT, 5 hours at 163°C, 0 MPa), and Long-Term (PAV, 20 hours at
100°C, 2.1 MPa). These reflect discrete experimental conditions rather

than a continuous range.

tative dataset to predict the rheological properties of asphalt binders
and mastics. These sources were selected based on their informativeness
(the depth and relevance of measured parameters), representativeness
(coverage of diverse binder types, aging conditions, and test scenar-
ios), and adherence to standardized testing protocols, which enable
robust model training and validation. The first source, experimental
data from Delft University of Technology, provides high-quality mea-
surements from standardized tests, capturing a wide range of binder
behaviors [31]. The second source, experiments from the University of
Antwerp, augments the data of the first source by adding variability in
binder compositions and aging states [32]. The third source, the SHRP
Materials Reference Library, offers a well-established, industry standard
dataset for benchmarking and enhancing dataset diversity. Together,
these sources ensure that the dataset reflects the complex interplay of
chemical, physical, and environmental factors that influence the behav-
ior of asphalt material [33]. To ensure consistency across all sources,
the SARA fractions for the majority of samples were determined using
the same method: Thin-Layer Chromatography with Flame Ionization
Detection (TLC-FID), following the IP 469 (2001) standard [34].

To address the scarcity of experimental mastic data, FEM simulations
were employed to generate synthetic data for the mastic scale, resulting
in a dataset of 5000 data points compared to 400 for the binder scale.
The FEM simulations were conducted using ABAQUS by employing a
Maxwell viscoelasticity model with Prony series parameters to represent
the time-dependent behavior of asphalt mastics. The models incorpo-
rated binder properties from the aforementioned experimental datasets,
augmented with filler characteristics (percentage: 8-28%, stiffness: 30
— 140 GPa), and were tested in a range of frequencies (0.1-100 rad/s)
and temperatures (-10.54 to 60 °C).

The FEM assumed a random distribution of filler particles within
a homogeneous binder matrix, neglecting particle agglomeration to
simplify computational complexity. The Maxwell model captured vis-
coelastic responses but assumed linear viscoelasticity, which may not
fully represent nonlinear behaviors under extreme conditions (Sec-
tion 2.4). Filler-binder interactions were modeled based on physico-
chemical bonding, with stiffness values derived from typical mineral
fillers used in asphalt mastics. The FEM-generated data were validated
against both analytical and experimental benchmarks to ensure reliabil-
ity (Appendix A).

Due to the comprehensive nature of the mastic testing, the resulting
dataset was significantly larger than of the asphalt binder model. Specifi-
cally, the mastic model incorporated 5000 data points, while the asphalt
binder model utilized 400 data points. This substantial difference in
dataset size reflects the complexity and expanded testing requirements
associated with the mastic level. 80% of the collected data was allo-
cated to the training set, with the remaining 20% reserved for the testing
set. This division ensures robust model training while providing a rep-

resentative sample for model validation and testing. Summary of the
statistical data used to develop the models is listed in Table 2.

2.3. Hybrid model development

2.3.1. Deep neural network (DNN) component

The DNN were developed using the TensorFlow library based on
feedforward backpropagation [35]. These networks process input fea-
tures through multiple hidden layers of neurons, enabling the learning
of complex patterns. The output of each neuron is computed as follows:

y=f<iwix,-+b>
i=1

where x; are inputs, w; are weights, b is the bias, and f is the activation
function. The overall network function, F, representing the feedforward
operation through multiple layers, is then given by:

@

F(x)=fO (£ED (L D)) )

where L denotes the layer and f(I) is the activation function applied
at the /-th layer. The weights are updated through backpropagation to
minimize prediction errors and allow the model to generalize from data
[36].

A five-fold cross-validation method was used to determine optimal
architecture and prevent overfitting [37]. It was found that a network
with three hidden layers (64, 32, and 16 neurons, respectively) provided
optimal performance, balancing model complexity and performance.
Activation functions introduce nonlinear properties to the network.
Without activation functions, a DNN, regardless of its depth, would be-
have just like a single-layer perceptron because summing these layers
would still result in linear operations. In this study, the Rectified Lin-
ear Unit (ReLU) function was chosen as the activation function. ReLU is
defined as f(x) = max(0, x), which simply outputs the input if it is pos-
itive and zero otherwise. This simplicity makes ReLU computationally
efficient and less prone to vanishing gradient problems during training,
where gradients can become too small for effective learning. Thus, the
use of ReLU contributes to faster convergence during training and im-
proved overall performance of the deep neural network [38].

The Adam optimizer was used with a learning rate of 0.001 for sta-
ble and adaptive gradient updates [39]. A batch size of 128 balanced
convergence stability with memory efficiency. To improve the robust-
ness and generalization of the model, early stopping (patience = 50),
L, regularization (0.01), and dropout (rate = 0.2) were applied.

Two scaling techniques were used to prepare the data for neural net-
work modeling. First, a logarithmic transformation was applied to the
target variables (G* and 6) to stabilize the variance and normalize their
distribution, addressing the issue of skewed data (observed at the binder
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Fig. 2. Schematic representation of the final DNN models used for the first predictions.

scale) with a wide range of values. This ensures more meaningful model
error metrics and better generalization. Secondly, standard scaling was
used for both features and targets to center the data with a mean of zero
and a standard deviation of one, making the learning process more effi-
cient and preventing any single feature from dominating due to its scale.
Details of the hyperparameters and the final DNN models are provided
in Table 3 and Fig. 2, respectively.

2.3.2. Gaussian process regression (GPR) model

The GPR model was developed using the GPy library [40]. GPR mod-
els are nonparametric probabilistic models that are particularly suited
for regression tasks. They provide not only predictions, but also asso-
ciated uncertainty estimation, which is advantageous in assessing the
reliability of the predictions.

Given a set of input features X and corresponding target values y,
the GPR model assumes a prior distribution over functions and is given
by:

y=GP(m(x), k(x,x")) 3)

where m(x) is the mean function, often assumed to be zero, and k(x, x")
is the covariance function or kernel, such as the Radial Basis Function

(RBF) used here. The GPR predictive distribution at a new input x* is
then normally distributed, given by:

VX Xy~ N (u(x), 62 (x*)) @

where pu(x*) and o2(x*) are the mean and variance of the predictive
distribution, respectively.

The Radial Basis Function (RBF) kernel was chosen for the GPR
model. This kernel is a popular choice for GPR models due to its flexi-
bility and capability to handle nonlinear relationships in the data. The
kernel parameters (variance and lengthscale) were initialized as 0.5 and
1, respectively. The GPR optimization process adjusts the kernel param-
eters to best capture the underlying patterns in the data.

For the mastic-scale model, which comprises 5,000 data points due
to the inclusion of filler properties and varied test conditions, a Sparse
Gaussian Process (SGP) model was employed to enhance computational
efficiency. Full GPR has a computational complexity of O(n?), which,
for 5,000 data points, led to significant training times during our exper-
iments, particularly when optimizing kernel parameters. By contrast,
SGP reduces this complexity to O(nm?), where m = 200 inducing points
were used [41].
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Table 3

Results of hyperparameter tuning and validation for DNN models.
Hyperparameter Value
No. of Inputs 117 - 13>

No. of Hidden Layers 3.0

No. of Hidden Neurons 64 | 32| 16
Activation Function ReLU | ReLU
Optimizer Adam
Learning Rate 0.001
Dropout Rate 0.2

L, Regularization 0.01

Batch Size 128

Epoch 1000¢

Validation Results for Hidden Layer Configurations (Binder - Average)

No. of Layers Training MSE Testing MSE R?

1 Layer 0.35 0.68 0.85
2 Layers 0.22 0.55 0.88
3 Layers! 0.08 0.32 > 0.9
4 Layers 0.08 0.38 0.9

Validation Results for Hidden Layer Configurations (Mastic - Average)

No. of Layers Training MSE Testing MSE R?

1 Layer 0.40 0.70 0.84
2 Layers 0.25 0.58 0.87
3 Layers® 0.10 0.10 > 0.9
4 Layers 0.10 0.15 0.9

@ Asphalt binder model.

b Asphalt mastic model.

: Early stopping with a patience of 50 epochs.

Selected configuration for the binder and mastic models due to
lowest testing MSE and highest R?, balancing performance and com-
plexity.

¢ Selected configuration for the mastic model due to lowest testing
MSE and highest R?, balancing performance and complexity.

Table 4
Results of the hyperparameter tuning
for the GPR models.

Hyperparameter Value
No. of Inputs 5.0
Kernel Type RBF
Initial Variance 0.5
Initial Lengthscale 1.0

Number of Inducing Points ~ 200*

2 Only in the mastic model.

These inducing points help approximate the posterior distribution
of the GPR, making the model computationally efficient without signif-
icantly sacrificing accuracy. For the SGP model, the same RBF kernel
was used, and the number of inducing points m was chosen based on
a trade-off between computational efficiency and prediction accuracy.
The inducing points were initialized using a subset of the training data,
and the optimization process adjusted their positions to best represent
the underlying data distribution. Table 4 lists the hyperparameter used
to train the GPR models.

2.3.3. Hybrid modeling: integrating DNN and GPR for improved accuracy
and uncertainty assessment

To develop the hybrid DNN-GPR model, five-fold cross-validation
was employed to determine the optimal DNN architecture, specifically
the number of hidden layers and neurons. This process identified a con-
figuration with three hidden layers (64, 32, and 16 neurons) as optimal,
balancing performance and complexity (Table 3). Subsequently, five
DNN were independently trained using this fixed architecture and iden-
tical hyperparameters. The random seed was not fixed, allowing each
DNN to start with different initial weights and experience variations in
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Cross Validation
(Determine Optimal number of
hidden layers and neurons)

Train 5 DNNs (Same architecture and hyperparameters (no
fixed seed))

) Train GPR

>

DNN Model 1

!
i
v

Combine
Prediction

DNN Model 2

Input
Data
Points

;}%

Evaluate
Accuracy and
Uncertainty

DNN Model 3

v
i
v

DNN Model 4

v
i
v

DNN Model 5

Fig. 3. Schematic representation of the hybrid approach combining five DNN
and GPR for asphalt binder and asphalt mastic predictions.

batch sampling during training. This approach ensures that the five DNN
are neither cross-validation folds nor models with different hyperparam-
eter configurations but rather instances of the same model with varying
weight initializations due to random initialization and stochastic train-
ing processes.

The predictions of the five independently trained DNN, denoted as
D1, D2 --- - D5, are generated for the entire dataset and aggregated to serve
as inputs for the GPR model. Each DNN produces predictions for G*
and 6, capturing variability due to random weight initialization and
batch sampling. To form the GPR input, these predictions are concate-
nated into a 5-dimensional feature vector, [p;,p,,p3,P4,P5], Without
additional weighting or transformation, preserving the raw predictive
information. The GPR model, implemented with an RBF kernel, refines
these predictions and quantifies their uncertainty:

V' =GP (py,p3s---»Ds) )

This methodology aims to use the robust feature extraction capabil-
ities of DNN and the probabilistic strength of GPR to improve accuracy
and reliability of the prediction [42]. Fig. 3 shows a schematic rep-
resentation of the combined modeling approach using DNN and GPR,
detailing the process flow from initial data input to the integration of
predictions and assessment of model accuracy.

2.4. Finite element model: incorporating mastic properties

Studying the mastic level is essential for several reasons. When fillers
are mixed with asphalt binder to create mastic, they alter the physical
and chemical properties of binders, which in turn affects pavement per-
formance [10]. These fillers can also modify the binder’s viscosity and
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Fig. 4. Schematic of the Maxwell Model for viscoelastic materials, showing E,;
and E, as springs and #; and #, as dashpots.

stiffness, influencing the pavement’s ability to resist deformation and
cracking. However, data at the mastic scale is scarce and often unavail-
able. Even when such data exists, it is challenging to find datasets that
comprehensively cover chemical and physical properties along with var-
ious aging conditions. This scarcity can be attributed to the complexity
of mastic-level testing, the high costs and time requirements for com-
prehensive analysis. Additionally, proprietary concerns often limit the
sharing of detailed formulation data.

The primary objective of the FEM is to generate synthetic training
data at the mastic scale. This synthetic data will then be used to train the
hybrid model. To simulate the mastic level, the Maxwell model avail-
able in ABAQUS, a widely-used FEM software, was employed [43]. The
Maxwell model is a viscoelastic model that represents material behav-
ior as a combination of elastic and viscous components, consisting of a
spring and a dashpot connected in series (Fig. 4). The basic equation for
the Maxwell model is:

o(t) = E * e(t) % exp (—5) (6)

where o (?) is stress, E is the elastic modulus, e(¢) is strain, 7 is time, and =
is the relaxation time, which represents the characteristic time scale over
which stress decays in a viscoelastic material under constant strain. In
ABAQUS, this model is implemented using the parameters of the Prony
series, which allow for the representation of multiple relaxation times to
more accurately capture complex viscoelastic behavior [44]. The Prony
series expresses the relaxation modulus as a sum of exponential terms:

E(t):Em+Z<Ei*exp (—%)) @

1

where E is the long-term modulus, E; are relaxation strengths, and z;
are relaxation times. This formulation enables a more detailed represen-
tation of the material’s time-dependent response.

For these simulations, binder-level data collected from available
sources served as a starting point. To generate data at the mastic level,
fillers were incorporated into the model and treated as elastic materials.
This approach allowed for the simulation of the composite behavior of
the mastic, accounting for both the viscoelastic properties of the binder
and the elastic properties of the fillers.

In the FE model, the top and bottom plates were designed as rigid
bodies. A cohesive stiffness interaction was established between the
mastic sample and these plates. While the bottom plate remained sta-
tionary, the upper plate was considered to oscillate in a logarithmic
sine sweep pattern, replicating the conditions of a laboratory test. The
fillers were randomly distributed throughout the asphalt binder, with tie
contacts assigned between the fillers and the binder to represent their
interaction. The mesh size was carefully chosen to be sufficiently small,
balancing computational efficiency with precision in representing the
mastic’s structure and behavior. Fig. 5 shows the process of integrating
asphalt binder and fillers to generate new datasets using the FEM model.
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2.5. Feature importance analysis

2.5.1. Pre-modeling feature selection techniques

Pre-Modeling feature selection uses statistical and machine learning
methods as preliminary steps before constructing the final model. These
preliminary techniques assist in selecting relevant features, conducting
significance tests, and generating initial predictions about the most im-
portant features. In this study, three methods were employed including
the Chi-Squared test, ANOVA test, Random forest.

Chi-Squared method. The Chi-Squared method is used to test the in-
dependence between variables. In the context of feature selection for
machine learning, the Chi-Squared test can be applied to identify fea-
tures that are most relevant to the target variable [45]. The Chi-Squared
statistic is calculated as follows:

» o (0, - E)
x = Z E. 8

]
where O; is the observed frequency for category i, E; is the expected
frequency for category i. The expected frequency E; is calculated as:
E = (row total) X (column total)
" grand total

)]

ANOVA test. The Analysis of Variance (ANOVA) test is a statistical
method used to compare the means of three or more samples to un-
derstand if at least one sample mean is significantly different from the
others. In machine learning, ANOVA is useful for feature selection by
identifying features that contribute significantly to the variance in the
target variable [46]. The F-statistic used in ANOVA is calculated as fol-
lows:

_ Mean Square Between Groups (MSB)
~ Mean Square Within Groups (MSW)
where MSB (Mean Square Between Groups) is the variance between the

group means, MSW (Mean Square Within Groups) is the variance within
the groups. The formulas for MSB and MSW are:

(10)

z,l-(=1 ni(yi - y)2

MSB = B E— 11
k i Y
pIp Z:=1(Xij - X,
MSW = N_% (12)

where k is the number of groups, n; is the number of observations in
group i, X; is the mean of group i, X is the overall mean, N is the total
number of observations.

Random forest. Random forest is a powerful ensemble learning tech-
nique that builds multiple decision trees and merges their outputs to
improve predictive accuracy and control overfitting [47]. Each tree in
the Random forest is trained on a different subset of the data, and the
final prediction is made by averaging the predictions of all trees (for re-
gression) or by majority vote (for classification) [48]. This method is
particularly effective for feature selection as it provides feature impor-
tance scores based on the contribution of each feature to the model’s
accuracy. The importance score for feature f is:

N,
1=, di(f) a3
teT
where T is the set of all trees in the forest, N, is the number of samples
reaching node ¢, N is the total number of samples, Ai,(f) is the decrease
in impurity at node ¢ when split by feature f.

2.5.2. Post-modeling feature importance evaluation

Post-modeling feature importance approach involves techniques that
are applied after the machine learning models have been trained. These
methods use the outputs of the models to understand the importance of
different features.
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Fig. 5. Integrating asphalt binder and fillers to generate new datasets using the FEM model.

SHAP (SHapley Additive exPlanations) method. SHAP is a unified frame-
work for interpreting machine learning models by assigning each feature
an importance value for a particular prediction [49,50]. Based on co-
operative game theory, SHAP values provide a way to fairly distribute
the prediction among the features according to their contribution. This
method can help in understanding the impact of each feature on the pre-
dictions and identify which features are driving the model’s decisions
[51,52].

[SIAFI - 1S1= D!

= G

SCF\{i}

[fsugiy(xsupy) — fs(xs)] a4

where F is the set of all features, .S is a subset of features that does not
include j, F(S) is the model prediction for the subset S, |.S| is the size
of subset S. This equation sums the marginal contributions of feature j
across all possible subsets .S of the feature set F.

3. Results and discussion
3.1. Prediction of binder rheological properties

Figs. 6 to 9 illustrate the performance of five DNN models in predict-
ing the complex modulus G* and phase angle § of asphalt binder, as well
as the performance of the GPR model using the predicted results from
the DNN. The training set predictions versus true values for G* show a
high R? value ranging from 0.89 to 0.96, indicating strong model per-
formance. Similarly, for &, the R? values are consistently high, around
0.97, demonstrating that the DNN models have effectively captured the
relationship in the training data. In the testing set, the performance for
G* remains robust, with R? values between 0.92 and 0.96. However,
the scatter plots indicate some deviations from the ideal fit, pointing
to potential uncertainties. For &, the R? values are lower, around 0.83
to 0.84, suggesting higher uncertainty and less precise predictions com-
pared to the training set.

The MSE plots for both training and testing datasets show a decreas-
ing trend with increasing epochs, indicating that the models are learning
and improving their predictions over time (Fig. 10). The uncertainties in
the DNN models can be attributed to the complex relationship between
the input features and the targets. DNN, despite their power, may not
always capture these complex relationships perfectly. The low number

of the dataset at the binder scale might also lead to higher uncertainty
in the predictions.

The GPR model, using the DNN predicted results, shows an improve-
ment in precision with an R? value of 0.997 for G* and 0.9471 for &
(Fig. 11). The GPR model also provides a range of uncertainty (+ 20
range), clearly visible in the shaded areas around the predictive mean.
This range helps in quantifying the confidence in the predictions, which
was not provided by the DNN models alone.

However, for §, the uncertainty range is notably wider, particularly
at lower values. For instance, at a predicted 6 of 20°, the +2¢ range
spans approximately +10°, representing a relative uncertainty of about
50%. This level of uncertainty can be significant in practical asphalt
applications, where precise phase angle measurements are critical for
assessing the viscoelastic behavior of binders, such as distinguishing
between elastic and viscous responses under varying environmental con-
ditions. The wider uncertainty in 6 predictions is likely influenced by the
limited binder-scale dataset, which may not fully capture the complex,
nonlinear relationships between input features (e.g., aging conditions,
test temperature, and frequency) and 6.

Additionally, 6 is highly sensitive to aging conditions (e.g., long-
term PAV aging), which introduces greater variability in the predictions,
especially in regions with sparse data.

Section 3.4 provides more examples to further illustrate the benefits
of combining GPR and DNN models for asphalt binder property predic-
tion.

3.2. Prediction of mastic rheological properties

At the mastic level, five DNN were also developed, each taking 13
input parameters that represent properties of both the binder and filler.
The training results show high R? values for both G* and &, with &
showing slightly lower values compared to G* (Fig. 12 and Fig. 13). The
testing phase demonstrates similar trends, with R? values of 0.97 for
G* and 0.95 to 0.96 for 6 (Fig. 14 and Fig. 15). Fig. 16 shows that both
the training and testing MSEs stabilize towards the end of the training
process, suggesting the convergence of the model without overfitting.
However, prediction uncertainty is observed in both training and testing
phases, indicating a need for further investigation and management of
this uncertainty.
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Fig. 6. Training performance of five DNN models in predicting G* (a-e) of asphalt binder. The true values correspond to experimentally measured data.
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Fig. 10. Comparative view of training and testing MSE across epochs for five deep neural networks used for predicting asphalt binder rheological properties. Subfigures
(a) to (e) show training MSE (blue) and testing MSE (orange) curves for each network.

For the GPR model, G* shows a high R? value of 0.9930, indicat-
ing excellent predictive performance with well-quantified uncertainty
(Fig. 17). The model for § performs slightly less well, with an R? value
of 0.9726. The narrow uncertainty bands around the predictions for both
models suggest a high level of confidence in the results.

3.3. Key influential properties

3.3.1. Comparative analysis of feature importance

The selection of statistical approaches can significantly affect conclu-
sions about which features have the greatest impact. This highlights the
importance of carefully choosing methods that suit both the characteris-
tics of the dataset and align with current understanding and expectations
in the field of study. Fig. 18 illustrates the normalized percentage con-
tributions of various features to the outputs G* (left) and 6 (right)
analyzed via three different approaches: ANOVA, Random forest, and
Chi-squared.

Multiple methods indicate varying feature importance for G*. Key
factors such as test temperature and penetration consistently emerge as
significant, alongside the categorical aging state, highlighting its role in
determining G*. For &, the aging state particularly the long-term PAV
condition stands out as a consistently important feature across all meth-
ods, with aging pressure showing a pronounced effect in the random
forest model.

However, while ANOVA, Chi-squared, and random forest methods
provide valuable insights, they also have limitations. ANOVA assumes
normally distributed data and equal variances, which may not always
be true. Chi-square tests require categorical data and may not capture
complex interactions between features. Random forest, although flexi-
ble, can be computationally intensive for large datasets and may overfit
without careful tuning [53,54].

When dealing with large datasets, these traditional methods can
struggle with scalability and may not efficiently handle high-dimensional
data. They often fail to account for feature interactions adequately, lead-
ing to potentially misleading conclusions [55].

3.3.2. SHAP analysis for feature importance analysis

The SHAP method uses the outputs of the ML models to accurately
identify the most important features, providing a more robust and scal-
able approach to feature selection. In this study, SHAP analysis was
performed using the predictions from the five DNN models, which form
the core of the hybrid DNN-GPR framework. This choice aligns with the
primary modeling approach of the study. SHAP was used to classify the
most important features that impact G* and 6 on both the binder and
the mastic scales, effectively handling larger datasets specifically at the
mastic scale and offering detailed information on the significance of the
features on different scales [56].

Fig. 19 presents bar charts that compare the importance of features
for the binder scale and mastic scale using mean absolute SHAP val-
ues. A mechanistic interpretation of the key variables highlights their
physical influence on asphalt rheology. Test temperature and aging tem-
perature emerge as dominant factors for both G* and 6 on both scales.
Elevated test temperatures increase molecular mobility, reducing G* by
transitioning the asphalt toward a more viscous state, which in turn
increases 6 as the material exhibits greater lag in strain response. Con-
versely, aging temperature, particularly during long-term aging such as
PAV at 100 °C, accelerates oxidative aging by forming polar functional
groups like ketones and sulfoxides. This process increases binder stiff-
ness, elevating G* and reducing 6 by enhancing elastic recovery, which
is crucial for resisting permanent deformation such as rutting in pave-
ments [57,58].

Penetration significantly influences G*. Lower penetration values,
indicative of harder binders, correspond to higher G* due to increased
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Fig. 11. Gaussian process model performance in predicting (G*) and (6) of asphalt binder.

resistance to shear deformation. This relationship stems from the
binder’s molecular structure, where reduced penetration often results
from higher asphaltene content or aging-induced crosslinking, amplify-
ing the elastic component of the viscoelastic response. For &, penetration
exerts a moderate effect, as harder binders exhibit less viscous lag,
resulting in lower phase angles. Aging conditions play an important
role in altering 6. Long-term aging through PAV, with 20 h exposure at
2.1 MPa, increases asphaltene and resin fractions while depleting aro-
matics, stiffening the binder and reducing 6 by favoring elastic behavior
over viscous flow.

Test frequency also affects both G* and 6. Higher frequencies reduce
relaxation time, limiting molecular rearrangement and increasing G* as
the binder exhibits greater stiffness. Simultaneously, higher frequencies
decrease 6 by reducing viscous dissipation, reflecting the binder’s time-
dependent viscoelastic properties under dynamic loading conditions like

13

traffic-induced stresses. At the mastic scale, filler stiffness surpasses
asphaltene importance due to strong physicochemical interactions be-
tween mineral fillers and the binder. High stiffness fillers increase G*
by reinforcing the composite structure, minimizing deformation under
load, and decrease 6 by enhancing elastic recovery, which improves rut-
ting resistance.

The chemical composition, represented by SARA fractions, provides
further insight. Asphaltenes and naphthene aromatics exhibit moderate
importance. Asphaltenes increase G* by enhancing the polar fraction
content, which stiffens the binder at high temperatures, while naph-
thene aromatics contribute to viscosity and ductility. Saturates and
resins show lower importance, as their effects are overshadowed by tem-
perature and aging, though they influence the binder’s flexibility and
aging susceptibility.
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Fig. 12. Training performance of five DNN models in predicting G* (a-e) of asphalt mastic. The true values are derived from FEM simulations, which are compared
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against experimental measurements.
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Fig. 13. Training performance of five DNN models in predicting 6 (a-e) of asphalt mastic. The true values are derived from FEM simulations, which are compared
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Fig. 16. Comparative view of training and testing MSE across epochs for five deep neural networks used for predicting asphalt mastic rheological properties. Subfigures
(a) to (e) show Training MSE (blue) and Testing MSE (orange) curves for each network.

Table 5
Training and inference times for DNN and DNN-GPR models.

Model Training Time (s) Inference Time (s)
DNN (Binder) 120.5 5.1

DNN-GPR (Binder) 142.3 8.8

DNN (Mastic) 185.7 15.4

DNN-GPR (Mastic) 225.9 55.6

3.4. Comparison between the DNN and the DNN-GPR hybrid model

A comparative analysis was performed to assess the improvements
of the proposed hybrid model. The five DNN were compared to the hy-
brid DNN-GPR model. In addition to predictive accuracy, computational
costs were evaluated (Table 5). The DNN-GPR model increases training
time by 18.1% (binder) and 21.6% (mastic) due to GPR’s kernel opti-
mization, with inference times rising by 33.3% and 35.3%, respectively.
These modest increases are acceptable for engineering design, as GPR’s
uncertainty quantification enhances prediction reliability (e.g., reduc-
ing G* error from 22.7% to 0.031% for fresh asphalt binder).

The analysis focused on two extreme cases of binders:

1- Fresh asphalt binder: Where all aging parameters are set to zero.
2- Long-term aged (LTA) binder: Subjected to maximum aging condi-
tions.

Table 6 provides the specific input parameters for both fresh and LTA
bitumen samples used in this comparison. Fig. 20 shows the prediction
deviations for five DNN models alongside the hybrid DNN-GP model in
estimating G* and 6. For fresh binder, the largest prediction error was
noted in DNN 1, approximately 22.7% for both G* and é. Conversely,
the hybrid model exhibited significant enhancements, reducing errors
to roughly 0.031% for G* and 6.2% for 6.
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Table 6
Input parameters of two bitumen samples used to evaluate the
accuracy of the hybrid model.

Parameter Fresh Bitumen LTA Aged Bitumen
Aging Temperature [°C] 0 100

Aging Time [h] 0 20

Aging Pressure [MPa] 0 21
Asphaltene (%) 12.8 18.6
Naphthene aromatics (%) 53.3 43.9
saturates (%) 3.6 3.6

resins (%) 30.3 33.9
Penetration [dmm] 91 44.2
Softening Point [°C] 48 58.1576736
Test Temperature [°C] 0 0

Test Frequency [rad/s] 100 0.2

In the case of long-term aged (LTA) binder, DNN 3 demonstrated
the highest error rates, with 82.3% for G* and 13.7% for 6. The hybrid
DNN-GP model, however, showed a marked improvement, achieving
relative errors of 12.7% for G* and 1.4% for 6. These results highlight
the potential advantages of integrating GPR with DNN in managing the
complex aging processes of materials like asphalt binder.

A comparative study was also conducted to evaluate the improve-
ments of the proposed hybrid model at the mastic scale. The analysis
focused on a STA binder sample containing high stiffness fillers at low
concentrations within the matrix. The input parameters of the mastic
sample used to assess the precision of the hybrid model are listed in
Table 7. Fig. 21 shows the prediction deviations for five DNN models
compared to the hybrid DNN-GP model. Similar to the case of asphalt
binder, the DNN+GP model demonstrates a significant improvement by
reducing the error percentage for G* by approximately 50% compared
to DNN 2. The high errors and negative predictions in the standalone
DNN stem from their sensitivity to the stochastic nature of training. The
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Fig. 17. Gaussian process model performance in predicting (G*) and (6) of asphalt mastic.

five DNN were trained independently with different random weight ini-
tializations. This variability can lead to outliers, including physically
implausible negative values for G*, which is a positive quantity that
represents G*. The hybrid DNN-GPR model mitigates these issues by
using the GPR to refine the DNN predictions.

3.5. Feature contributions to prediction uncertainty

The feature importance results also suggest differential impacts tied
to binder evolution, particularly through aging conditions. For instance,
long-term aging (PAV) consistently ranks as a critical factor for § across
methods (Fig. 18), reflecting its pronounced effect on binder viscoelas-
ticity as it transitions from fresh to aged states. This aligns with the
higher uncertainty observed in standalone DNN predictions for aged
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binders (e.g., Fig. 20), where chemical and physical changes amplify
variability, subsequently reduced by the GP’s probabilistic smoothing.
While this study focuses on a generalized feature impact across binders,
these trends hint at how aging-sensitive binders may exhibit greater de-
pendence on environmental and test parameters, an aspect warranting
further exploration with binder-specific datasets.

To further explain how specific features influence prediction uncer-
tainty, Fig. 22 quantifies their contributions to the variance of the GPR
model for G* and §. Features such as test temperature and long-term ag-
ing emerge as the primary drivers of uncertainty, consistent with their
high importance (Fig. 18), reflecting their sensitivity to change binder
state. Comparison with SHAP values reveals that while importance and
uncertainty often align, features such as test frequency contribute more
to uncertainty in 6 than their overall importance suggests. This analysis
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Table 7
Input parameters of the mastic sample used to evaluate the
accuracy of the hybrid model.

Parameter Mastic (STA Bitumen + Fillers)
Aging Temperature [°C] 163
Aging Time [h] 5
Aging Pressure [MPa] 0
Asphaltene (%) 14.6
Naphthene aromatics (%) 51.6
saturates (%) 3.6
resins (%) 30.2
Penetration [dmm] 70.2
Softening Point [°C] 53.76
Filler (%) 8
Filler Stiffness [GPa] 70
Test Temperature [°C] 0
Test Frequency [rad/s] 100

underscores the hybrid model’s ability to enhance reliability by address-
ing feature-driven uncertainty in all conditions.

3.6. Limitations and future directions

The hybrid DNN-GPR model achieves high predictive accuracy for
asphalt binder and mastic rheological properties, yet several limitations
must be considered to fully understand its applicability.

First, the model was trained and validated using laboratory data from
controlled experiments and standardized aging tests (RTFOT and PAV),
achieving high R? values. However, the complexities of real-world field
conditions are not fully represented in the existing datasets., including
variable environmental factors (e.g., humidity, UV exposure), dynamic
traffic loading, and long-term pavement performance. The standardized
aging protocols simplify oxidative aging processes, which may not fully
represent the nonlinear aging dynamics in in-service pavements. Con-
sequently, the generalizability of the model to field conditions remains
untested, and the predictions may deviate under diverse scenarios. Fu-
ture research should validate the model against field data from oper-

ational pavements to ensure robustness in various environmental and
loading conditions.

Secondly, the mastic-scale model heavily relies on synthetic data
generated through FEM simulations. To improve reliability and better
reflect real-world behavior, future studies should focus on collecting
comprehensive experimental mastic datasets, thereby minimizing re-
liance on synthetic inputs and enhancing the ability of the model to
capture diverse mastic responses.

Finally, the binder-scale model is constrained by a relatively small
dataset compared to the mastic scale, which may limit the ability to cap-
ture the full spectrum of binder behaviors, particularly for modified or
unconventional binders. The exclusion of viscosity as an input param-
eter, due to insufficient data availability, further restricts the model’s
ability to predict rheological behaviors influenced by this critical prop-
erty.

4. Conclusions

This study introduces a hybrid modeling framework that combines
DNN with GPR to predict G* and é of asphalt binders and mastics. The
main findings are:

+ The hybrid DNN-GPR model achieved R? values up to 0.997 for G*

and 0.972 for 6, outperforming standalone DNN models in terms of

predictive accuracy.

Finite Element Modeling (FEM) was effectively utilized to gener-

ate synthetic mastic data, addressing the scarcity of experimental

datasets and enabling multiscale model training.

Test temperature, aging conditions, and penetration were consis-

tently identified as the most significant factors influencing rheo-

logical behavior, based on SHAP, ANOVA, random forest, and chi-

squared analyses.

+ The proposed model provides a reliable and interpretable tool for
asphalt material design, with potential to improve the durability
and sustainability of pavements.
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Fig. 19. Identifying the most important features affecting G* and é simultaneously using SHAP method.

+ Future work should explore model performance under diverse field
conditions and investigate binder-specific aging mechanisms as
well as additional environmental variables.
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Appendix A. Validation of FEM results

The FEM simulation incorporated several critical elements to accu-
rately reproduce the experimental conditions. An implicit time step was
utilized for the analysis, with a logarithmic frequency sweep ranging
from 0.0159 to 16 Hz that replicates the experimental test conditions.
Proper load transfer between model components was ensured through
tie contacts. Additionally, a cohesive stiffness contact was established
between the mastic sample and both the top and bottom plates.

The Genetic algorithm parameters were selected to balance thorough
exploration of the solution space with computational efficiency [59].
Tables A.1 and A.2 summarize the key parameters used in this study,
including the filler properties, binder properties, Genetic algorithm and
Prony series parameters.

The FEM results are compared against the GSCM, and experimental
test data. Two representative examples are provided: (1) a comparison
of FEM and GSCM predictions across different filler percentages, and (2)
a validation of FEM against experimental tests under fresh and long-term
aged (LTA) conditions. More details on the model development and the
input parameters used in these validations can be found in [60].

A.1. Validation against GSCM across different filler percentages
The GSCM is an analytical approach commonly used to predict the

effective properties of composite materials, such as asphalt mastics,
by assuming a homogeneous matrix with embedded inclusions. In this
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Table A.1

Parameters used in the FEM simulation.
Parameter Value
Temperature [°C] 20°C
Frequency [Hz] [0.0159-16]
Population Size 15
Recombination 0.7
Mutation Rate [0.5, 1]
Number of Prony Parameters 10
Fillers Stiffness [GPa] 70
Fillers [%] [8-28]
Instantaneous Young’s Modulus (E,) [MPa] 240.5
Poisson’s ratio (v) 0.35
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study, the FEM predictions of the G* are compared with GSCM across a
range of frequencies (0 to 16 Hz) and varying filler percentages.

Fig. A.10 illustrates the comparison for six different filler percent-
ages, ranging from low to high volume fractions. The FEM results show
a consistent trend with the GSCM predictions across all frequencies, par-
ticularly at lower filler percentages. However, as the filler percentage
increases, the GSCM predictions deviate more from the FEM results,
especially at higher frequencies. This deviation arises due to the lim-
itations of the GSCM, which does not fully account for particle inter-
actions at higher filler concentrations. At higher filler percentages, the
interactions between filler particles and the binder become more signifi-
cant, leading to a stiffer mastic response that the GSCM underestimates.
The FEM, by contrast, explicitly models these interactions through the
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Table A.2
Prony Series Parameters used in the FEM
simulation.

Relaxation times (z;)

Weights (g;)

O 00N WN =

-
o

0.004694686
0.115054235
0.012508845
0.004675019
0.033004199
0.039371971
0.004888031
4.005918554
0.004949636
0.568111227

0.093632628
0.117440582
0.097836541
0.098564454
0.093474197
0.034233612
0.157408419
0.051016550
0.149722400
0.086711249

Maxwell viscoelastic model and the random distribution of fillers, pro-
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viding a more accurate representation of the mastic’s behavior under
such conditions.

A.2. Validation against experimental tests under fresh and LTA conditions

The FEM predictions are further validated by comparing them with
experimental test data obtained from the DSR tests conducted on as-
phalt mastic samples under two aging conditions: fresh (unaged) and
long-term aged (LTA). Fig. A.11 (a) and (b) present the comparison of
G* predictions across a frequency range of 0 to 20 Hz for these two
conditions.

In Fig. A.11, the fresh mastic sample (aging parameters set to zero)
shows excellent agreement between the FEM predictions and the exper-
imental data. The FEM accurately captures the viscoelastic behavior of
the mastic, with G* increasing steadily with frequency, reflecting the
stiffening response. Similarly, in Fig. A.11 (b), the LTA binder sample
demonstrates strong alignment between the FEM and experimental re-



M. Khadijeh, C. Kasbergen, S. Erkens et al.

1x10° ——
1x10° - 4+ -

= 1x107
o

o
O 1x108

1x10° |- 1 F .

1x104 s 1 L | L 1 L 1 1 1 1 1 | 1

0 5 10 15 20 0
Frequency [Hz]

5 10 15 20
Frequency [Hz]

— Experimental Test
***** FEM

Fig. A.11. Comparison of experimental and FEM results for G* of asphalt mastic
at 20 °C. (a) Fresh asphalt mastic, (b) LTA asphalt mastic.

sults. The LTA sample exhibits a higher G* due to the increased stiffness
from oxidative aging, a trend that the FEM effectively replicates across
the frequency range.

The close match between the FEM and the experimental data in both
fresh and LTA conditions underscores the reliability of the FEM in cap-
turing the rheological behavior of asphalt mastic under varying aging
states. The use of the Maxwell model in ABAQUS, combined with Prony
series parameters to represent the viscoelastic response, enables the FEM
to accurately simulate the time-dependent behavior even as its proper-
ties evolve due to aging.

Appendix B. Supplementary material

Supplementary material related to this article can be found online at
https://doi.org/10.1016/j.rineng.2025.105629.

Data availability

The FEM results that support the findings of this study are available
from the corresponding author upon reasonable request.
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