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A B S T R A C T

Wafer map defect recognition is a vital part of the semiconductor manufacturing process that requires a high
level of precision. Measurement tools in such manufacturing systems can scan only a small region (patch)
of the map at a time. However, this can be resource-intensive and lead to unnecessary additional costs if
the full wafer map is measured. Instead, selective sparse measurements of the image save a considerable
amount of resources (e.g. scanning time). Therefore, in this work, we propose a feedback loop approach for
wafer map defect recognition. The algorithm aims to find sequentially the most informative regions in the
image based on previously acquired ones and make a prediction of a defect type by having only these partial
observations without scanning the full wafer map. To achieve our goal, we introduce a reinforcement learning-
based measurement acquisition process and recurrent neural network-based classifier that takes the sequence
of these measurements as an input. Additionally, we employ an ensemble technique to increase the accuracy
of the prediction. As a result, we reduce the need for scanned patches by 38% having higher accuracy than
the conventional convolutional neural network-based approach on a publicly available WM-811k dataset.
1. Introduction

Recent developments in artificial intelligence (AI), and especially
deep learning (DL), attract much attention in many fields outside
of Computer Science. One such area is the automation of manufac-
turing processes with intelligent digital technologies, which is also
known as Industry 4.0 (Ghobakhloo, 2020). Deep learning applica-
tions are widely used in visual inspection problems including wafer
defect recognition (Kim & Behdinan, 2023) which is crucial for high-
quality semiconductor manufacturing. At the same time, deep neural
networks (DNNs) have achieved tremendous progress in computer
vision problems such as image classification (Russakovsky et al., 2015),
object detection (Zhao, Zheng, Xu, & Wu, 2019) and image genera-
tion (Croitoru, Hondru, Ionescu, & Shah, 2023). Hence, a lot of modern
vision-based monitoring industrial systems use deep neural networks
for assessing the quality of the production (Tabernik, Šela, Skvarč,
& Skočaj, 2020; Zhou, Zhang, & Konz, 2022), including wafer map
analysis in semiconductor manufacturing (Yu, Xu, & Wang, 2019).

Convolutional neural networks (CNNs) have become a powerful
tool in failure pattern recognition of the wafer maps (Bae & Kang,
2023; Chen, Zhang, Hou, Shang, & Yang, 2022; Ishida, Nitta, Fukuda,
& Kanazawa, 2019; Wang, Chou, & Amogne, 2022). Recently, large
vision-language models (LVLMs) (Wang, Li, & Li, 2024) has been also

∗ Corresponding author.
E-mail addresses: A.Dekhovich@tudelft.nl (A. Dekhovich), O.A.Soloviev@tudelft.nl (O. Soloviev), M.Verhaegen@tudelft.nl (M. Verhaegen).

employed as pretrained backbone adapting it for industrial vision mon-
itoring. The development of these approaches has also been accelerated
due to the availability of open-access databases of real wafers (Wang,
Xu, Yang, Zhang, & Li, 2020; Wu, Jang, & Chen, 2014) that contain
enough images for training DNNs. In addition, CNNs require scanning
the full image for the input which leads to the unwanted costs since
the defect can be located in a small region, while the rest is not
useful (see Fig. 1 (left)). However, CNN-based approaches show the
state-of-the-art results in terms of prediction accuracy which makes
them a powerful tool in solving the defect recognition problem. At the
same time, CNNs are often overparameterized, which can make them
difficult to optimize when data is insufficient. Thus, pretraining and
transfer learning techniques have been utilized to facilitate the learning
process (Yu, Shen, & Wang, 2021).

However, the goal of a good monitoring system for the semiconduc-
tor industry is increasing the throughput of the tool having the same
precision to tolerance (P/T) ratio (Ukraintsev, 2003) by reducing the
number of measurements required for making a decision. The state-of-
the-art approaches still use the predefined sequence of measurements
for making a prediction (Bergner, Lippert, & Mahendran, 2023; Doutt
et al., 2023), therefore, making it individual for every example and
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Fig. 1. Conventional CNN-based approach (left) and the proposed RL-based closed-loop with the GRU classifier (right). In the conventional approach, the whole wafer should be
scanned by the measurement system; in the proposed approach, the wafer surface is analyzed by small subregions (patches); the location of the next patch to scan is defined by
an RL agent based on the obtained information (feedback loop).
adding flexibility to the measuring tool is an open challenge. Adap-
tive measurements acquisition (Silvestri, Massoli, Orekondy, Abdi, &
Behboodi, 2024; Yin et al., 2021) proved its importance in the fast
MRI reconstruction (Zbontar et al., 2018). By taking fewer measure-
ments during scanning and reconstructing the original MRI with the
acquired information, the tool can significantly reduce the scanning
time increasing the comfort of a patient. Thus, Bakker, van Hoof, and
Welling (2020) proposed a simple RL-based greedy policy search for
measurements acquisition in the frequency domain, also known as the
𝑘-space (Liang & Lauterbur, 2000). In contrast to these works, (Pineda,
Basu, Romero, Calandra, & Drozdzal, 2020) adapted a Double Deep
Q-Networks (Van Hasselt, Guez, & Silver, 2016) algorithm for 𝑘-space
sampling. In this type of algorithm, a neural network predicts a value of
each action in the current step instead of modeling the sampling policy
directly.

In the context of the image classification problem, Yen et al. (2024)
also employed the RL paradigm for pathology prediction from 𝑘-space
accelerating the sampling process by 12 times. Also, Chu, Li, Chang,
and Wang (2019) proposed an RL-based patch selector which finds the
best input sequence for the Gated Recurrent Unit (GRU) network (Cho
et al., 2014) in the few-shot image classification task. Noom, Thao,
Soloviev, and Verhaegen (2020) proposed solving an automated vi-
sual inspection problem via the Closed-Loop Active Model Diagnosis
(CLAMD) framework. The main novelty of CLAMD is the usage of
the Bhattacharyya coefficients (Bhattacharyya, 1943, 1946) to mini-
mize the model misdiagnosis in the vision inspection task. Also, the
Bhattacharyya coefficients serve as a tool to stop the scanning process
yielding the misdiagnosis error after each measurement. Following
developments of CLAMD were employed to object the recognition
problem with constrained illumination power. The algorithm aimed
to minimize phototoxicity and decrease the number of measurements
required for making a prediction (Noom, Soloviev, Smith, & Verhaegen,
2022). It should be noted that CLAMD focuses on minimizing the
number of measurements needed, while other works in image classifi-
cation (Chu et al., 2019; Yen et al., 2024) work with predefined number
of measurements. However, the number of models in CLAMD increases
with image size, which does not allow the method to be scaled.

We assume that the input (wafer map) is initially not fully observed
and a measurement system can scan only a small patch at each time
step. Therefore, for example, CNN-based algorithms should first scan
all patches and then predict the defect type. We want to mitigate this
challenge since this patch acquisition process has significant resource
costs. Thus, in our work, we combine the feedback loop paradigm
with the RL approach for the wafer defect recognition problem. The
overall structure of the method and its difference from the conventional
CNN-based approach are shown in Fig. 1. The proposed framework
utilizes a GRU model for processing sequential measurements, while
a controller, an RL algorithm, predicts the next best action — new
patch (or measurement) based on already acquired ones. A confidence
estimation model is trained to evaluate how certain the model is about
its prediction after each measurement. This also allows the model to
2 
stop the scanning process if the confidence in the GRU output at the
current time step is high enough. Current approaches in the literature
aim for higher prediction accuracy while using the full wafer. Thus, to
the best of our knowledge, our work is the first attempt at adaptive
information acquisition for the wafer map recognition problem. We
believe that our algorithm uses as many patches as necessary to make
a correct prediction in contrast to the strategy where the number of
scanned patches is fixed. We show the advantages of our feedback loop
approach compared to the open-loop one with CNN both in terms of
accuracy and patch acquisition costs. Our main contribution can be
formulated as follows:

• We propose a feedback loop approach for wafer map defect
recognition. The algorithm aims to minimize the number of mea-
surements (in contrast to previous works on MRI measurements
acquisition (Bakker et al., 2020; Pineda et al., 2020; Yen et al.,
2024)) and scales well with the increase of image size or decrease
of the scanned region (in contrast to CLAMD);

• We decrease the number of necessary patches scanned from the
image by 38% on WM-811k dataset (Wu et al., 2014) of real
wafers having the same prediction accuracy as CNN models that
need access to the full image;

• By introducing the confidence estimator, we can determine the
images that require additional inspection with more advanced
models or human feedback. We send these images to a CNN-based
model which leads to better accuracy without additional scanning
costs.

• Additionally, we employ an ensemble procedure to increase the
robustness of each component and to boost the accuracy, outper-
forming the CNN approach.

The structure of the paper is as follows: Section 2 gives the overview
of the required theoretical background for the proposed algorithm and
Section 3 explains the method and its core components in detail. Sec-
tion 4 sets the experiments and provides the results on the open wafer
map database (Wu et al., 2014). Finally, Section 5 concludes the article
and shows future steps to explore. The code implementation of the work
can be found here: https://github.com/adekhovich/sequential_wafer_
inspection.

2. Related work

For the feedback loop formulation of this decision-making problem,
we need to actively select the input that is the most informative at
the current time step, feed it to the classifier and, select the next
input or stop the process based on the feedback from the classifier.
To address this challenge we consider a (Deep) Reinforcement learning
(RL) approach (Sutton & Barto, 2018) which is well-suited for this type
of problem. In addition, we want to evaluate the trustworthiness of the
prediction after each measurement (scanned patch), and therefore, we
also revisit some uncertainty quantification techniques for classification
problems.

https://github.com/adekhovich/sequential_wafer_inspection
https://github.com/adekhovich/sequential_wafer_inspection
https://github.com/adekhovich/sequential_wafer_inspection
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2.1. RL preliminaries

Reinforcement learning problems are formulated as Markov De-
ision Process (MDP) with a tuple ( ,, 𝑝(𝑠′|𝑠, 𝑎), 𝑅(𝑠, 𝑎), 𝑝0(𝑠), 𝛾 , 𝑇 ),

where  is a state space,  is an action space and 𝑎 ∈  is an
action, 𝑝(𝑠′|𝑠, 𝑎) is a transition distribution, 𝑅(𝑠, 𝑎) is a reward function,
𝑝0(𝑠) is an initial state distribution, 𝛾 ∈ [0, 1] is a discount factor, and
𝑇 is a task horizon (Yen et al., 2024). An agent interacts with the
environment according to its policy 𝜋(𝑎|𝑠) that maps from  to . This
policy can be found by maximizing the expected cumulative discounted
sum of rewards E𝜋

[

∑𝑇−1
𝑡=0 𝛾 𝑡𝑅(𝑠𝑡, 𝑎𝑡)

]

, where 𝑠0 ∼ 𝑝0(⋅), 𝑎𝑡 ∼ 𝜋(⋅|𝑠𝑡) and
𝑠𝑡+1 ∼ 𝑝(⋅|𝑠𝑡, 𝑎𝑡).

One way of maximizing the expected return and deriving the
optimal policy 𝜋∗ is by approximating it with some model 𝜋𝜃 with
arameters 𝜃 (Sutton, McAllester, Singh, & Mansour, 1999) and op-
imizing the parameters of this model by gradient ascent. Williams

(1992) proposed REINFORCE algorithm that computes the return 𝐺𝑡 =
∑𝑇−1

𝑘=𝑡 𝛾𝑘−𝑡𝑅(𝑠𝑘, 𝑎𝑘) and updates the parameters in the direction of
∇𝜃 ln𝜋𝜃(𝑎𝑡|𝑠𝑡)𝐺𝑡, where 𝑡 = 0, 1,… , 𝑇 − 1. Additionally, a subtraction
of a baseline model value 𝑏𝑡(𝑠𝑡) from the return 𝐺𝑡 can reduce the
variance in gradient estimates while leaving the expected value of the
estimate unchanged. The update of 𝜃 occurs then in the direction of
∇𝜃 ln𝜋𝜃(𝑎𝑡|𝑠𝑡)

(

𝐺𝑡 − 𝑏𝑡(𝑠𝑡)
)

.
Over the past decades, many further improvements have been made

to this algorithm, which has come to be known as actor-critic algo-
rithms (Sutton & Barto, 2018). In this type of approach, the critic
evaluates the updates made by the actor to the policy, and the actor
makes changes with respect to the critic’s evaluation. Many variants of
actor-critic algorithms also include DNNs as function approximates (Li,
2017). Among them are advantage actor-critic (A2C) and asynchronous
dvantage actor-critic (Mnih et al., 2016), proximal policy optimization
PPO) (Schulman, Wolski, Dhariwal, Radford, & Klimov, 2017).

2.2. Uncertainty estimation and ensembles

One of the most important challenges in deep learning is under-
tanding how reliable the model’s prediction is. During testing, we
o not have ground truth labels, therefore, a learning system should
ave an estimation of the quality of its prediction. Moreover, deep
eural networks tend to produce overconfident predictions even if they
re wrong (Lakshminarayanan, Pritzel, & Blundell, 2017). For these
easons, several approaches have been developed over the last couple of

decades to assess the certainty in prediction (Hüllermeier & Waegeman,
2021). We focus on the methods that can help us to evaluate the
confidence in our GRU-based classifier, i.e. epistemic uncertainty. In
this subsection, we briefly discuss some of them, namely Bayesian
eural networks (BNNs), ensembles and confidence prediction.

In the Bayesian approach (Kendall & Gal, 2017; Maddox, Izmailov,
Garipov, Vetrov, & Wilson, 2019), we aim to quantify the uncertainty of
he prediction by modeling the distribution of the parameters instead of
aking a point-wise estimate. This means that during training Bayesian
eural Network (BNN) learns a posterior distribution 𝑝(𝜃|) of its pa-

ameters 𝜃 on the observed data . At the inference stage, the following
ntegral is computed by Bayesian model averaging (BMA) (Wilson &

Izmailov, 2020): 𝑝(𝑦|𝐗,) = ∫𝜃 𝑝(𝑦|𝐗, 𝜃)𝑝(𝜃|)𝑑 𝜃, where 𝑝(𝑦|𝐗, 𝜃) is
the output distribution for the set of parameters 𝜃. However, in the
case of neural networks, this integral cannot be computed analytically
and should be approximated for example with Markov Chain Monte
Carlo (MCMC) sampling (Izmailov, Vikram, Hoffman, & Wilson, 2021).
This is an obvious flaw since MCMC sampling is computationally ex-
pensive. An alternative approach was proposed by Lakshminarayanan
et al. (2017) that is called Deep Ensembles. In this algorithm, multiple
neural networks with different parameters initialization are trained
independently, and then for a given test point a prediction with each
f them is made followed by the averaging of the outputs across all
3 
networks. The confidence boundaries can be computed from standard
deviations of predictions. This method is much simpler in implementa-
tion and training than BNNs and yet is a good baseline for uncertainty
quantification (Tan, Urata, Goldman, Dietschreit, & Gómez-Bombarelli,
2023). In addition, averaging of outputs often leads to a more accurate
prediction (Lakshminarayanan et al., 2017).

Predicting the model’s confidence in the classification task is an-
ther way of determining the quality of its prediction. Early works

(Hendrycks & Gimpel, 2016) used Maximum Class Probability (MCP) of
the network output after applying Softmax to determine how a model
is certain in its prediction: 𝙼𝙲𝙿(𝐗) = max𝑘∈ P(𝑌 = 𝑘|𝐗, 𝜃), where 𝐗 is
he input data point and  is the set of labels. In this method, higher
alues of these probabilities correspond to greater certainty in the
odel. However, DNNs tend to overestimate these probabilities even if

they produce wrong predictions, therefore, MCP is not reliable in many
cases (Nguyen, Yosinski, & Clune, 2015). Thus, Corbière, Thome, Bar-

en, Cord, and Pérez (2019) proposed the True Class Probability (TCP)
measure, which is the probability that the neuron that corresponds
to the correct label produces: 𝚃𝙲𝙿(𝐗) = P(𝑌 = 𝑦∗|𝐗, 𝜃), where 𝐗 is
the input data point and 𝑦∗ is its correct label. Then, a model called
Confidnet is trained on pairs {(𝐗, 𝚃𝙲𝙿(𝐗)), 𝐗 ∈ train} which is possible
since the correct label 𝑦∗ is available on training set. At inference
stage, Confidnet takes the test image 𝐗test and predicts its confidence
𝑐(𝐗test;𝜔), where 𝜔 are the parameters of Confidnet.

3. Method

Let 𝐗 ∈ R𝑁1×𝑁2 be an input wafer map given for an inspection and
𝑦 ∈ {1, 2,… , 𝐾} is its defect type (label). Let us also denote with 𝐲
the one-hot encoded label 𝑦. At each time step 𝑡, the measuring tool
can scan only a small patch 𝐱𝑖𝑡 ∈ R𝑛1×𝑛2 , 𝑛1 ≪ 𝑁1 and 𝑛2 ≪ 𝑁2. We
assume that these patches do not overlap and must cover the whole
image 𝐗, meaning that 𝑛1|𝑁1, 𝑛2|𝑁2 and for the final patch 𝐱𝑖𝑇 holds:
𝑇 = 𝑁1𝑁2

𝑛1𝑛2
∈ Z. Our goal is to collect measurements 𝐱𝑖1 , 𝐱𝑖2 ,… , 𝐱𝑖𝑡∗ and

make a prediction �̂�𝑡∗ ∶= 𝑤(𝐱𝑖1 , 𝐱𝑖2 ,… , 𝐱𝑖∗𝑡 ) ∈ {1, 2,… , 𝐾} based on
these measurements using the classifier 𝑤 with learnable parameters
𝑤, such that:

• For ∀𝑡 < 𝑡∗ �̂�𝑡 ∶= 𝑤(𝐱𝑖1 , 𝐱𝑖2 ,… , 𝐱𝑖𝑡 ) ≠ 𝑦 and �̂�𝑡∗ = 𝑦;
• 𝑡∗ is the minimal time step over all possible patch permutations
𝜎 = (𝑖1, 𝑖2,… , 𝑖𝑇 ) of numbers 1, 2,… , 𝑇 .

In other words, we aim to train an inspection model that makes a
prediction based on the smallest possible number of scanned patches.

e can define the ratio of non-scanned patches as 𝑅 = (1 − 𝑡∗

𝑇 ) ⋅ 100%.
he higher this ratio, the better, as it means we can scan fewer patches.
e also refer to the number of scanned patches as the number of
easurements. The approach that we propose consists of three core
odels:

1. Classifier 𝑤, that takes a sequence of patches as an input and
is invariant to the order of the patches. For this purpose, we
pretrain a GRU model permuting input sequence arbitrary for
each image. We construct the loss for GRU in such a way that
its intermediate outputs can also be used for prediction (see
Section 3.1)

2. Confidence estimator 𝑐𝜔 that evaluates the trustworthiness of
the prediction at the current time step and decides whether to
continue measurements or stop them with the current predic-
tion. This is also a GRU model that maps the hidden state of
classifier 𝐳𝑡 to a confidence 𝑐 = 𝑐𝜔(𝐳𝑡) in classifiers’ prediction
(see Section 3.2).

3. Active patch selector 𝜋𝜃 – a sampler that generates an input
sequence for the pretrained classifier 𝑤 that minimizes the
number of measurements needed to make a reliable prediction.
Here we utilize a reinforcement learning approach for this task:
next patch 𝑎 = 𝜋 (𝐳 ,𝐦 ), where 𝐳 is a feedback signal from the
𝑡 𝜃 𝑡 𝑡 𝑡
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GRU and 𝐦𝑡 ∈ {0, 1}𝑇 , 𝑡 = 0, 1,… , 𝑇 , is a mask that indicates
which patches are available at time step 𝑡, e.g. 𝐦0 = (1, 1,… , 1)
and 𝐦𝑇 = (0, 0,… , 0) (see Section 3.3).

It is worth noting that these models are trained sequentially one
fter another and not all together. First, we train the classifier 𝑤
o be invariant to different patch sequences, then we can train a
onfidence estimator 𝑐𝜔 based on classifier’s response to evaluate the
uality of its predictions at different time steps (from partial obser-
ations 𝐱𝑖1 , 𝐱𝑖2 ,… , 𝐱𝑖𝑡 ). At last, having the classifier and its confidence
stimator, we train the input sequence generator 𝜋𝜃 that finds the
hortest sequence of measurements needed for making a prediction for
he given input 𝐗.

In addition, we want to point out it is possible that we still need
to scan the full image since confidence estimator 𝑐𝜔 may not be sure
about the predictions of GRU classifier 𝑤. In this case, we propose
to pay additional attention to such images and evaluate them with a
CNN-based model. It will to affect the total number of measurements
since they all have been collected for GRU. We call such approach as
hybrid approach since it includes both GRU and CNN-based classifiers.

3.1. GRU classifier

As mentioned before, we have selected GRU network (Cho et al.,
2014) as a classifier, a variant of a recurrent network (Rumelhart,
Hinton, & Williams, 1986), to process sequential data and make a
rediction from partial observations. Also, for our problem the GRU

need to be able to predict from an arbitrary order of patches, that is, it
hould be invariant to the patch order. To achieve this, we follow the

Vision Transformer (ViT) strategy (Dosovitskiy et al., 2021) introducing
 patch and its position together to the classifier. Each patch 𝐱𝑖𝑡 ∈

R𝑛1×𝑛2 at time step 𝑡 is flattened to a vector 𝐳𝑡 ∈ R𝑛1𝑛2 to which we apply
inear projection using MLP and sum up with learnable embedding
𝑖𝑡 = 𝙴𝚖𝚋𝚎𝚍𝚍𝚒𝚗𝚐(𝑖𝑡), the encoding of position 𝑖𝑡. The resulting vector

s then fed to the GRU with 𝐿 cells and a Layer normalization (Ba,
Kiros, & Hinton, 2016) (LN) after each of them. Fig. 2 illustrates the
architecture. Formally, the expressions for the model’s architecture are
s follows:

𝐳(0)𝑡 = 𝙼𝙻𝙿(𝙵𝚕𝚊𝚝𝚝𝚎𝚗𝚎𝚍(𝐱𝑖𝑡 )) + 𝐄𝑖𝑡 ,

𝐳(𝑙)𝑡 = 𝙻𝙽

(

𝙶𝚁𝚄𝙲𝚎𝚕𝚕

(

𝐳(𝑙−1)𝑡

)

)

, 𝑙 = 1, 2,… , 𝐿,

�̂�𝑡 = 𝚂𝚘𝚏𝚝𝚖𝚊𝚡

(

𝙼𝙻𝙿
(

𝐳(𝐿)𝑡
)

)

,

�̂�𝑡 = arg max
𝑘=1,2,…,𝐾

{�̂�𝑡,𝑘} ∈ {1, 2,… , 𝐾}

(1)

Our objective is to make the classifier invariant to different se-
quences of patches, meaning that for any permutation 𝜎 = (𝑖1, 𝑖2,… , 𝑖𝑇 )
of numbers 1, 2,… , 𝑇 we want 𝑤(𝐱1, 𝐱2,… , 𝐱𝑇 ) = 𝑤(𝐱𝑖1 , 𝐱𝑖2 ,… , 𝐱𝑖𝑇 ).
Then, it is unimportant to the classifier in which order we scan the
image and it can predict correctly from any order. To achieve that, we
apply some random permutation of patches to every image in the batch.
This can be seen as part of the data augmentation process.

However, we require the classifier to make meaningful predictions
t the last time step 𝑇 and at intermediate steps 𝑡 < 𝑇 . There-
ore, the loss function for GRU pretraining can have a form  =
∑𝑇

𝑡=1 𝙲𝚛𝚘𝚜𝚜𝙴𝚗𝚝𝚛𝚘𝚙𝚢(𝐲, �̂�𝑡). To simplify the learning procedure, we pro-
ose to sample a small subset {𝑖1, 𝑖2,… , 𝑖𝜏} ⊂ {1, 2,… , 𝑇 } of output
eads and optimize the loss  =

∑

𝑖∈{𝑖1 ,𝑖2 ,…,𝑖𝜏} 𝙲𝚛𝚘𝚜𝚜𝙴𝚗𝚝𝚛𝚘𝚙𝚢(𝐲, �̂�𝑖).
his subset is sampled from the uniform distribution individually for
ach data point in a batch at every optimization step. As we show in
ection 4.2, by introducing this loss we provide the model the ability to

give reliable prediction much earlier than in the conventional training
scenario.
4 
3.2. Confidence estimator

Once the classifier is trained, we need to have the ability to make
 reliable prediction based on some intermediate time step 𝑡 < 𝑇 . The
xistence of such a time step is provided by the loss we constructed,
owever, the optimal stopping point depends on the patch ordering
= (𝑖1, 𝑖2,… , 𝑖𝑇 ) and input 𝐗. To address this task, we train a separate
odel on top of the classifier that estimates the confidence 𝑐𝑡 in clas-

ifier prediction �̂�𝑡 at time step 𝑡. Following the work (Corbière et al.,
2019), we build a confidence network 𝑐𝜔 which aims to predict the

rue Class Probability (TPC) P(𝑌 = 𝑦|𝐰,𝐗) for the image 𝐗 with label
. In contrast to the examples in Corbière et al. (2019), we use the GRU

model for confidence estimation since our signal is time-dependent.
Fig. 3 shows how confidGRU cooperates with the classifier 𝑤: at

time step 𝑡 we first compute the feature vector 𝐳(𝐿)𝑡 which is then
ed to the confidGRU 𝑐𝜔 as input. Based on the estimated confidence
�̂� = 𝑐𝜔

(

𝐳(𝐿)𝑡
)

, we make a decision on whether to continue to take
new patches (if 𝑐𝑡 < 0.5), or stop scanning (if 𝑐𝑡 ≥ 0.5) and our final
rediction is �̂� ∶= arg max𝑘=1,2,…,𝐾{�̂�𝑡,𝑘}. The reason why 0.5 is set as
 threshold is explained in the original article (Corbière et al., 2019).
he main idea here is that the classifier correctly predicts a defect 𝑦

f P(𝑌 = 𝑦|𝐰,𝐗) ≥ 0.5. Therefore, we guarantee a correct prediction as
ong as 𝑐𝜔 approximates P(𝑌 = 𝑦|𝐰,𝐗) well and 𝑐𝑡 ≥ 0.5. As a result, if
or some input wafer image 𝐗 there exists 𝑡∗ such that 𝑐∗𝑡 ≥ 0.5, we do
ot need to process the remaining patches. Otherwise, we measure the
ull image 𝐗.

As indicated in Section 2.2, there are many techniques for uncer-
ainty/confidence estimation (Corbière et al., 2019; Gal & Ghahramani,

2016). We justify the choice of confidGRU by the simple interpretabil-
ity of its output for our task. In contrast to Bayesian deep learning
techniques (Maddox et al., 2019) that estimate the distribution of the
rediction, confidGRU produces the binary rule that we can easily

interpret as trust or do not trust the prediction at the given time step.

3.3. Active patch selector

In the previous subsection, we introduced the confidence-based
topping criterion for taking the measurements from an image. How-
ver, we considered an arbitrary patch ordering 𝜎. Thus, our next goal

is generating the optimal ordering 𝜎∗ such that 𝑡∗ = 𝑡(𝐗, 𝜎∗) was the
inimal possible time step for which 𝑐𝑡∗ ≥ 0.5. In other words, we want

to find a patch ordering 𝜎∗ such that 𝑐𝑡∗ ≥ 0.5, 𝑐𝑡 < 0.5 ∀𝑡 < 𝑡∗ and for
any other patch ordering 𝜎 its optimal stopping time step 𝑡(𝐗, 𝜎) > 𝑡∗.

A natural choice for this task is formulating it as a reinforcement
learning problem and finding an optimal policy 𝜋∗

𝜃 that generates the
ptimal ordering 𝜎∗. At every time step 𝑡, the policy maps the current

state 𝑠𝑡 to the next best action 𝑎𝑡, 𝜋∗
𝜃 ∶ 𝑠𝑡 ↦ 𝑎𝑡, where we define the

urrent state as 𝑠𝑡 = [𝐳(𝐿)𝑡 ,𝐦𝑡] – a vector that consists of the normalized
last hidden state 𝐳(𝐿)𝑡 (before MLP layer) of the GRU network and a mask
𝐦𝑡 ∈ {0, 1}𝑇 of available actions (patches) at time 𝑡. The total return
is defined as 𝐺 =

∑𝑇−1
𝑡=0 𝛾 𝑡𝑟𝑡+1, where 𝛾 ∈ [0, 1] and 𝑟𝑡+1 = 𝑅(𝑠𝑡, 𝑎𝑡) is a

reward obtained by taking action 𝑎𝑡 from state 𝑠𝑡 at time 𝑡. We define
this reward as:

𝑟𝑡 =

{

1, if 𝑐𝑡 ≥ 0.5,
0, otherwise.

(2)

Thus, the reward function defined this way promotes actions that
ead to more confident predictions of the classifier and stop the scan-

ning process earlier. To train the policy model 𝜋𝜃 , we follow the
olicy-gradient type RL algorithm (Sutton et al., 1999). We observed

that a simpler REINFORCE algorithm (Williams, 1992) works bet-
ter in our case than more advanced actor-critic-based ones such as
PPO (Schulman et al., 2017). We explain this with the difficulty of
training a more complex model with the limited amount of data we
have (see Section 4.1 for details).
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Fig. 2. Proposed multi-output GRU (MO-GRU) model that is invariant to the random patch ordering: at each time 𝑡, MO-GRU takes the patch and its position in some predefined
order (e.g. 1 → 2 → … → 16).
Fig. 3. Schematic of confidGRU that evaluates the confidence in the current prediction �̂�𝑡. It takes the hidden state from the last GRU cell as input and outputs 𝑐𝑡 which approximates
the TPC.
During inference, we take measurements according to the learned
policy 𝜋𝜃 and stop the process when 𝑐𝑡 ≥ 0.5. The pseudocode is
described in Algorithm 1. Also, we want to notice that if all 𝑐𝑡 < 0.5
that means that we scanned the full image and the GRU model is still
not sure about its prediction. In this case, we can classify the image
with a convolutional neural network, e.g. ResNet (He, Zhang, Ren, &
Sun, 2016), which typically works better for fully observed images.
Algorithm 1 also illustrates this idea.

3.4. Ensembling (inference)

In the previous subsections, we described the core blocks of the
feedback loop model, namely the GRU network 𝑤 that plays the role
of a classifier, confidGRU 𝑐𝜔 that estimates the confidence in classifier
prediction at every time 𝑡, and a patch sequence generator that aims
to facilitate inference by giving the classifier the most informative
patches to speed up the decision. It is worth noting that training of
these three models involves a lot of randomnesses: first, we train GRU
on random sequences of patches, then confidGRU is trained on top of
this pretrained GRU, so its performance depends on how well the GRU
was trained. At last, patch selector 𝜋𝜃 uses both GRU and confidGRU
in its training loop, making it sensitive to the GRU and confidGRU
training stages. To increase the robustness of our approach, we propose
using ensembles of the networks at each stage: classification, confi-
dence estimation and next patch prediction. However, we do not use
5 
ensembles for estimating the standard deviations of the outputs of these
models.

In ensembling, one has to decide how to aggregate the predictions
from several models. The simplest way is averaging the outputs of the
networks. For example, if we have 𝑀 GRU models  (1)

𝑤 , (2)
𝑤 ,… , (𝑀)

𝑤
and the corresponding output probabilities are �̂�(1)𝑡 , �̂�(2)𝑡 .… , �̂�(𝑀)

𝑡 , the
final output at time 𝑡 can be found as �̂�𝑡 =

1
𝑀

∑𝑀
𝑖=1 �̂�

(𝑖)
𝑡 . Similarly, we

put 𝑐𝑡 =
1
𝑀

∑𝑀
𝑖=1 𝑐

(𝑖)
𝑡 for confidence estimation. For aggregation of policy

outputs, we can consider two different strategies:

• averaging: similarly to the previous cases, 𝑝(𝑖)𝑡 = 𝜋(𝑖)
𝜃 (𝑠𝑡) and

𝑝𝑡 = 1
𝑀

∑𝑀
𝑖=1 𝑝

(𝑖)
𝑡 , then the next patch number 𝑎𝑡 is a mode of

categorical distribution with 𝐾 categories and probabilities 𝑝𝑡 =
(𝑝𝑡1, 𝑝𝑡2,… , 𝑝𝑡𝐾 ).

• min-entropy selection: in contrast to averaging, we can
select the policy 𝜋𝜃 that is most certain at current time 𝑡. We
propose to evaluate the certainty of the policy models with the en-
tropy of their prediction: H(𝑖)

𝑡 = −∑𝐾
𝑘=1 𝑝

(𝑖)
𝑡𝑘 log 𝑝(𝑖)𝑡𝑘 , 𝑖 = 1, 2,… , 𝐾.

Therefore, at time 𝑡, we select the policy 𝜋𝜃 ∈ {𝜋(1)
𝜃1
, 𝜋(2)

𝜃2
,… , 𝜋(𝑀)

𝜃𝑀
}

that gives the smallest value among H(1)
𝑡 ,H(2)

𝑡 ,… ,H(𝑀)
𝑡 .

The pseudocode for ensemble strategy during inference is also
shown in Algorithm 2. Analogously with previous cases, if we needed
to scan the full image, we can use another model (e.g. CNN-based) to
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Algorithm 1 Active patch selection with RL
1: function Inference(GRU classifer 𝑤, confidGRU 𝑐𝜔, policy network 𝜋𝜃 , auxiliary CNN, patches {𝐱1, 𝐱2,… , 𝐱𝑇 }, hybrid = True or False)
2: �̂� ← ∅
3: 𝐦0 ← (1, 1,… , 1) ⊳ mask initialization
4: 𝐳(𝐿)0

(𝑖)
← (0, 0,… , 0)

5: for 𝑡 = 0, 1,… , 𝑇 − 1 do
6: 𝑠𝑡 ← [𝐳(𝐿)𝑡 ,𝐦𝑡] ⊳ state initialization
7: 𝑎𝑡 ← 𝜋𝜃(𝑠𝑡) ⊳ next patch prediction
8: 𝐦𝑡+1 ← 𝐦𝑡; 𝐦𝑡+1[𝑎𝑡] ← 0 ⊳ mask update
9: �̂�𝑡+1, 𝐳

(𝐿)
𝑡+1 ← 𝑤(𝑎𝑡, 𝐱𝑎𝑡 )

10: 𝑐𝑡+1 ← 𝑐𝜔
(

𝐳(𝐿)𝑡+1
)

⊳ confidence estimation
11: if 𝑐𝑡+1 ≥ 0.5 then �̂� ← �̂�𝑡+1 and stop loop ⊳ not full scan case
12: end if
13: end for
14: if �̂� = ∅ then ⊳ full scan case
5: if hybrid then �̂� ← CNN(𝐱)
6: else �̂� ← �̂�𝑇
7: end if
8: end if
9: return �̂�
0: end function
Algorithm 2 Ensemble strategy during inference

1: function Ensemble inference(GRU classifers { (𝑖)
𝑤𝑖
}𝑀𝑖=1, confidGRUs {𝑐(𝑖)𝜔𝑖

}𝑀𝑖=1, policy networks {𝜋𝑖
𝜃𝑖
}𝑀𝑖=1, auxiliary CNN, patches {𝐱1, 𝐱2,… , 𝐱𝑇 },

aggregation_type = averaging or min-entropy, hybrid = True or False)
2: �̂� ← ∅
3: 𝐦0 ← (1, 1,… , 1) ⊳ mask initialization
4: 𝐳(𝐿)0

(𝑖)
← (0, 0,… , 0), 𝑖 = 1, 2,… , 𝑀

5: for 𝑡 = 0, 1,… , 𝑇 − 1 do
6: for 𝑖 = 1, 2,… , 𝑀 do
7: 𝑠(𝑖)𝑡 ← [𝐳(𝐿)𝑡

(𝑖)
,𝐦𝑡] ⊳ state initialization

8: end for
9: 𝜋𝜃 , 𝑠𝑡 ← Aggregate

(

𝜋(1)
𝜃1
, 𝜋(2)

𝜃2
,… , 𝜋(𝑀)

𝜃𝑀
, 𝑠(1)𝑡 , 𝑠(2)𝑡 ,… , 𝑠(𝑀)

𝑡 ; aggregation_type
)

⊳ policies ensembles
10: 𝑎𝑡 ← 𝜋𝜃(𝑠𝑡) ⊳ next patch prediction
1: 𝐦𝑡+1 ← 𝐦𝑡; 𝐦𝑡+1[𝑎𝑡] ← 0 ⊳ mask update

12: for 𝑖 = 1, 2,… , 𝑀 do
13: �̂�(𝑖)𝑡+1, 𝐳

(𝐿)
𝑡+1

(𝑖)
←  (𝑖)

𝑤 (𝑎𝑡, 𝐱𝑎𝑡 )

14: 𝑐(𝑖)𝑡+1 ← 𝑐(𝑖)𝜔
(

𝐳(𝐿)𝑡+1
(𝑖))

⊳ confidence estimation
15: end for
16: �̂�𝑡+1 ←

1
𝑀

∑𝑀
𝑖=1 �̂�

(𝑖)
𝑡+1 ⊳ prediction ensemble

17: 𝑐𝑡+1 ←
1
𝑀

∑𝑀
𝑖=1 𝑐

(𝑖)
𝑡+1 ⊳ confidence ensemble

18: if 𝑐𝑡+1 ≥ 0.5 then �̂� ← �̂�𝑡+1 and stop loop ⊳ not full scan case
19: end if
20: end for
21: if �̂� = ∅ then ⊳ full scan case
22: if hybrid then �̂� ← CNN(𝐱)
23: else �̂� ← �̂�𝑇
24: end if
25: end if
26: return �̂�
27: end function
i
t
d
1

make the prediction (see line 21 of the algorithm), i.e. use the hybrid
approach.

4. Experiments

4.1. Setup

We use the WM-811 dataset (Wu et al., 2014) to validate our
lgorithm. The dataset contains 811k wafer map images of 9 categories,
6 
but only around 173k of them are annotated. Among the annotated
mages, 147k do not have a pattern of the defect (class None) and
herefore we leave it out of the consideration remaining with 𝐾 = 8
efect patterns. By default, these subsets of the dataset are split into
7 625 train and 7894 test images. As we discussed in Sections 3.2

and 3.3, we need different images for confidence estimator 𝑐𝜔 and next
patch selector 𝜋𝜃 training than for GRU classifier 𝑤. Therefore, we split
the test subset into two. Table 1 summarizes the subsets of datasets and
for which purpose they were used.
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Fig. 4. Comparison between GRU that is trained with the conventional cross-entropy loss on random (red) and fixed (blue) patch orders, and MO-GRU trained with the loss
roposed in Section 3.1 on random patch orders. MO-GRU (green) outperforms at every time step the GRU variants trained to predict the defect only at the last time 𝑇 . The
haded areas represent the standard deviation of different runs.
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Table 1
Number of wafer maps in every subdataset that are used for training and evaluation.

Dataset Purpose # Of images

1 Train 𝑤 17 625
2 Train 𝑐𝜔 and 𝜋𝜃 3947
3 Test 𝑤 , 𝑐𝜔 , 𝜋𝜃 3947

Thus, subdatasets 1 and 2 are used only for training separate
odels, while 3 for testing of all models and overall approach as well.
he images have different sizes, therefore, we resize them all to the

size of 64 × 64. Table 2 summarizes the variables for setting up the
experiments. We also apply rotation by the random angle in [− 𝜋

2 ,
𝜋
2 ],

ertical and horizontal flips with probability 0.5 during training to
ncrease the variability of the example.

For evaluation of the proposed approach, we use the standard
accuracy metric, as well as 𝐹1-score to take into account the data
imbalance issue:

ACC = TP + TN
TP + FP + TN + FP (3)

𝐹1 = 2 ⋅ Recall × Precision
Recall + Precision (4)

where Recall = TP
TP+FN , Precision = TP

TP+FP , and TP is the true positive, FP
s the true negative, FN is the false negative and FP is the false positive
redictions.

4.2. Main result

In this subsection, we want to validate our approach using the
components described in Section 3. Every image is split into 𝑇 = 64
patches of size 8 × 8. We train MO-GRU and confidGRU using Adam
optimizer (Kingma & Ba, 2015) with learning rate 10−3 and weight
ecay 10−5 for 240 and 300 epochs respectively. The patch selector

𝜋𝜃 consists of a feed-forward neural network with 2 hidden layers of
size 400, which is trained with learning rate 10−3. The discounting
factor 𝛾 = 0.99 for this case. We train our model with 5 different
initializations for collecting statistics and constructing ensembles. We
also experimented with different numbers of layers and hidden layer
sizes for 𝜋𝜃 but did not notice any significant difference.

First, we justify the need for the training procedure described in
3.1. Fig. 4 shows that MO-GRU is significantly better at intermediate
steps 𝑡 < 𝑇 than GRU trained on random patch orders but classifies
defects only at time 𝑇 . For completeness, we also present the numbers
or conventional GRU trained with the predefined fixed patch order
nd only the last output contributes to the loss. MO-GRU significantly
utperforms GRU in intermediate time steps, since it was specifically
7 
trained to recognize defect patterns not only at the final time moment.
Moreover, MO-GRU is more robust to parameters initialization since
t has lower variance in results as can be seen from the shaded areas
n the figure. We explain this by having a training procedure for
ntermediate time steps, which makes the model less dependent on
nitialization at times 𝑡 = 16, 32, 48. At time 𝑡 = 64, the models converge
o the same accuracy since all of them were optimized for that time
tep. At time 𝑡 = 1, we observe a higher accuracy and lower 𝐹1-
core for GRU with fixed patch order which is explained by the GRU
ias at 𝑡 = 1 towards two specific classes Loc and Scratch, which
ogether comprise 50% of the dataset. However, as more patches are
cquired, this phenomenon is eliminated. Also, we want to emphasize
he importance of positional embedding in pretraining for an arbitrary
atch sequence. MO-GRU without patch position as an input yields
verage classification accuracy around 44%.

From Table 3, we see that the RL approach significantly helps in
optimizing the order of input patch sequence for both single-model case
(80.23% w/o RL against 81.04% w/RL) and ensemble case (82.22%
w/o RL against 83.33% w/RL). Moreover, the approach with patch
selector 𝜋𝜃 outperforms the scenario where the patch order is random
in every run. Both policy aggregation strategies improve the accuracy,
however, min-entropy is slightly better than averaging one yield-
ing the advantage of 1.22% over the random patch order. Also, the
average number of scanned patches decreases in every case where RL
was applied to optimize the input patch order. From the results, we
observe that we need 39−40 patches out of 64 which corresponds to
61−62.5% of the full image. That means that we save up to 𝑅 = 39% of
scanning time.

We can see an interesting natural separation of the defect classes.
Fig. 5 displays how the number of measurements is distributed (left),
the average number of required patches per class, and the correspond-
ing accuracy for min-entropy ensemble strategy (right). From the
figure, we see that we still have a considerable part of the images
that require full scanning. At the same time, we observe that the
patterns that require more measurements have lower accuracy and
vice versa. That hints us that such patterns as Scratch, Donut and Loc
are the main source of both error and thelarger number of required
patches, while for Near-full, Edge-Ring and Center we could decrease the
number of measurements twice having ∼90% of accuracy. We can also
conclude that patterns that required fewer measurements were detected
more accurately. That means that the algorithm achieves a sufficient
confidence level for Near-full, Edge-Ring and Center faster than for other
types. At the same time, recognizing the other types is more difficult.
Therefore, the algorithm is less confident in its prediction, leading to
more scanning steps and lower accuracy.

For further investigation, we split all wafer maps into two cate-
gories: those that require all patches scanning and those for which the
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Table 2
Variables from Section 3 and their values that were used in the numerical experiments.
Variables Image size (𝑁1 ×𝑁2) Patch size (𝑛1 × 𝑛2) Number of patches (𝑇 ) Number of defects (𝐾)

Values 64 × 64 8 × 8 64 8
Table 3
Accuracy (%), 𝐹1-score and average stopping time 𝑡∗ over five different runs.The last column represents averaged results for the Single MO-GRU
model and Ensemble results for the ensemble of models. The best indicators for each scenario are in bold.

Metrics Run 1 Run 2 Run 3 Run 4 Run 5
Single MO-GRU + confidGRU Average

+ Random patch order
acc 80.01 80.62 80.03 80.29 80.18 80.23
f1 0.787 0.793 0.785 0.788 0.785 0.788
𝑡∗ 42.3 42.6 41.4 41.5 43 42.1∕64

+ RL
acc 𝟖𝟎.𝟗𝟐 𝟖𝟏.𝟕𝟔 𝟖𝟎.𝟕𝟓 𝟖𝟏.𝟑𝟓 𝟖𝟎.𝟒𝟒 𝟖𝟏.𝟎𝟒
f1 0.806 0.808 0.807 0.801 0.784 𝟎.𝟖𝟎𝟏
𝑡∗ 38.5 40 37.3 39.1 41.3 𝟑𝟗.𝟐∕64

Ensemble MO-GRU + confidGRU Ensemble

+ Random patch order
acc – – – – – 82.11
f1 – – – – – 0.804
𝑡∗ 42.5∕64

+ Averaging ensemble for RL
acc – – – – – 82.62
f1 – – – – – 0.816
𝑡∗ – – – – – 40.7∕64

+ Min-entropy ensemble for RL acc – – – – – 𝟖𝟑.𝟑𝟑
f1 – – – – – 𝟎.𝟖𝟏𝟖
𝑡∗ – – – – – 𝟑𝟗.𝟕∕64
Fig. 5. Histogram of the number of measurements (left) and an average number of measurements by defect (right) with the classification accuracy on top of each bar.
Fig. 6. Accuracy (on top of the bars) on images that require (blue) and do not require (orange) full scan for (a) min-entropy and (b) averaging ensemble approaches.
8 
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Table 4
Accuracy (%), 𝐹1-score and stopping time 𝑡∗ for the hybrid approach over five different runs. The best indicators are in bold and the second
best are underlined.

Metrics Run 1 Run 2 Run 3 Run 4 Run 5 Average

ResNet-34
acc 84.98 85.33 85.25 85.56 85.30 85.28
f1 0.841 0.836 0.844 0.841 0.845 0.841
𝑡∗ 64 64 64 64 64 64∕64

ResNet-34 + Single MO-GRU + confidGRU

+ Random patch order
acc 84.56 84.91 84.53 85.01 85.04 84.81
f1 0.838 0.833 0.832 0.834 0.836 0.835
𝑡∗ 42.3 42.6 41.4 41.5 43 42.1∕64

+ RL acc 84.55 84.90 84.32 84.77 85.10 84.73
f1 0.845 0.836 0.841 0.831 0.839 0.838
𝑡∗ 38.5 40 37.3 39.1 41.3 𝟑𝟗.𝟐∕64

ResNet-34 + Ensemble MO-GRU + confidGRU

+ Random patch order
acc 84.65 85.18 84.8 85.31 85.13 85.01
f1 0.834 0.838 0.839 0.840 0.841 0.838
𝑡∗ 42.5 42.5 42.5 42.5 42.5 42.5∕64

+ Averaging ensemble for RL
acc 85.08 85.43 85.28 85.79 85.33 𝟖𝟓.𝟑𝟖
f1 0.844 0.843 0.845 0.844 0.846 𝟎.𝟖𝟒𝟒
𝑡∗ 40.7 40.7 40.7 40.7 40.7 40.7∕64

+ Min-entropy ensemble for RL
acc 85.03 85.33 85.10 85.74 85.56 85.35
f1 0.840 0.840 0.838 0.846 0.846 0.842
𝑡∗ 39.7 39.7 39.7 39.7 39.7 39.7∕64
3
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prediction is made faster. Fig. 6 displays the findings, the numbers
n the top of the bars correspond to the accuracy for each category,

meaning that the images that do not require full scanning have more
than 94% accuracy while using only about 24 patches on average for
both ensemble types. At the same time, images that require all patches
are predicted with the accuracy ∼64−66%.

4.3. Hybrid approach

We want to make our approach comparable with CNN-based mod-
els, e.g. ResNet architecture. Therefore, we train ResNet-34 for the
comparison receiving 85.27% average accuracy. However, ResNet re-
quires scanning of the full image, which gives it an advantage over
our approach. From Fig. 5, we see that a significant part of the images
till require all patches for scanning. Thus, we can combine these two
odels (see also line 21 of Algorithm 2). Table 4 shows the results

for this hybrid approach where the wafer map images that require
full scanning are sent to the ResNet model. Here we have applied one
ResNet for every run without ensembling them. Therefore, the columns
for the Ensemble case are not empty and correspond to different
ResNets, which we then average. Overall, we consider three scenarios:
1) only ResNet-34; (2) MO-GRU + confidGRU with random and RL-

optimized patch orders, and ResNet-34 for the full scan case (see line 14
of Algorithm 1); and (3) an Ensemble of MO-GRUs + confidGRUs with
andom patch orders and two aggregation strategies for RL-optimized
atch sequence, and ResNet-34 for the full scan case (see line 21 of
lgorithm 2).

As we can see from the results, we could significantly increase
ccuracy when suspicious images are classified with ResNet instead of

MO-GRU. We want to emphasize that the number of scanned patches
oes not change when we use ResNet as an auxiliary model since we
ave already measured all patches for MO-GRU. Therefore, this hybrid
pproach also saves 𝑅 = ∼38% of scanning time in terms of the number
f scanned patches while having slightly higher accuracy than ResNet
hich requires full scanning. We can also observe that random patch
rder leads to lower accuracy and higher measured patches.

Our approach can be used with any CNN-based solution. Instead of
conventional ResNet-34, one can use a state-of-the-art approach that
ses the full image for classification. For illustration, we consider an
pproach in which a CNN model is trained with supervised contrastive
oss (SCL) proposed by Bae and Kang (2023) in addition to cross-

entropy loss. Table 5 shows this comparison, SCL ResNet-34 refers to
ResNet trained with a new loss. We can see from the table that by
 t

9 
Table 5
Proposed hybrid approach with SCL ResNet-34 in comparison with pure SCL ResNet-
4. The results are averaged over five different runs with different initialization for

ResNet-34 and SCL ResNet-34.
Method Acc f1 𝑡∗

ResNet-34 85.28 0.841 64∕64
SCL ResNet-34 (Bae & Kang, 2023) 85.52 0.848 64∕64

SCL ResNet-34 + Ensemble MO-GRU + confidGRU
+ Averaging ensemble for RL 85.41 𝟎.𝟖𝟒𝟗 40.7∕64

+ Min-entropy ensemble for RL 𝟖𝟓.𝟓𝟕 0.847 𝟑𝟗.𝟕∕64

replacing ResNet-34 with SCL ResNet-34, our hybrid approach with en-
semble outperforms the pure SCL ResNet-34 strategy while keeping the
property that only ∼62% of patches should be scanned. Min-entropy
ensemble is a bit better in terms of accuracy while averaging one
provides greater 𝐹1 score.

The purpose of this example is to demonstrate that our approach can
e used in combination with other approaches to images that require
ull scanning. In this way, we improve the classification accuracy while
aving scanning time.

4.4. Cost of computing resources

Additionally, we want to outline that computational complexity in-
reases with the number of models in the ensemble. However, computa-
ions in the ensemble can be performed independently, and, therefore,
his effect can be mitigated by parallelizing the computations in the
ode implementation of the ensemble. In addition, our main objective
s to reduce the scanning steps due to the time associated with this

process and the financial costs.
Concerning memory costs, we need 1.2 MB for the classifier, 905 KB

for confidGRU and 1.2 MB for the policy network, which results in
4.6 MB for one model. In the case of an ensemble of 5 models, we
need 5 × 4.6 MB = 23 MB. For comparison, one ResNet-34 allocates
81.3 MB. Thus, in the non-hybrid case, we allocate even 3.5 times than
for ResNet-34 while saving 38% of measurement steps but sacrificing
around 2% of accuracy (see Table 3). In the hybrid approach, the
nsemble adds 28% of memory costs achieving the best accuracy, how-

ever, the single-model case produces slightly lower accuracy compared
to ResNet-34, while adding only 5% of memory costs and decreasing
he number of scanning steps by 39%.
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5. Conclusion

Automatic visual inspection of wafer maps is an important part
f semiconductor manufacturing. However, this process is expensive
nd requires high confidence in the prediction. In this work, we have
roposed an algorithm for the adaptive sequential measurement of the
afer map for defect pattern classification that aims to reduce costs
ithout sacrificing accuracy. In contrast to the conventional CNN ap-
roach, the proposed feedback loop leverages already acquired patches
n deciding which patch should be taken next. This allows the algorithm
o exclude information that is not useful for prediction.

Our approach consists of three core blocks: 1) a recurrent network to
rocess measurements sequentially; 2) an RL-based sampling procedure
o facilitate and speed up classification by selecting only the most
nformative regions to be scanned; and 3) a confidence network which

evaluates the confidence in the classifier’s prediction after every new
measurement and indicates when scanning procedure can be stopped.
Our framework allows us to reduce the scanning area by 38%. More-
over, a confidence score is provided along with the prediction, which
signals suspicious predictions that require additional consideration,
or tells us that a prediction is trustworthy. We provide an ensemble
strategy to increase the performance of these models and outperform
the conventional CNN-based approach. In addition, we have illustrated
that our approach could be combined with other CNN-based methods
in the hybrid case, improving their performance while requiring fewer
measurements.

Further steps might be considered to improve the core blocks pro-
osed in our approach: classifier, confidence estimator, or patch se-

quence generator. Also, another direction is addressing a wider range
of problems under different real-life restrictions such as wafers with
multiple defect types, few-shot learning, and learning from noisy data.
However, we advocate the advantages of the feedback loop approach
and believe that it opens new opportunities to improve inspection and
measuring systems.
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