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Abstract: This paper proposes a new hybrid islanding detection method for grid-connected photo-
voltaic system (GCPVS)-based microgrid. In the presented technique, the suspicious islanding event
is initially recognized whilst the absolute deviation of the point of common coupling (PCC) voltage
surpasses a threshold. After an intentional delay, a transient disturbance is injected into the voltage
source inverter’s d-axis reference current to decline the active power output. As a result, the PCC
voltage reduces in islanding operating mode whilst its variation is negligible in the grid presence.
Therefore, the simultaneous drop of PCC voltage and active power output is used as an islanding
detection criterion. The effectiveness of the proposed algorithm is investigated for various islanding
and non-islanding scenarios for a practical distribution network with three GCPVSs. The simulation
results in MATLAB/Simulink show successful islanding detection with a small non-detection zone
within 300 ms without false tripping during non-islanding incidents. In addition to the precise
and fast islanding classification, the presented scheme is realized inexpensively; its thresholds are
determined self-standing, and its output power quality degradation is eminently small. Moreover,
the active power output is restored to the nominal set after islanding recognition, enhancing the
chance of GCPVS generation at its highest possible level in the autonomous microgrid.

Keywords: grid-connected photovoltaic system (GCPVS); hybrid islanding detection method (IDM);
microgrid; non-detection zone (NDZ)

1. Introduction

The growing demand for clean and reliable energy enforces the integration of renew-
able energy resources in the distribution network over the past decades. Among all existing
technologies, grid-connected photovoltaic system (GCPVS) attracts most attention due
to its worldwide availability, noise-free operation, low maintenance cost, and maximum
contribution in supporting the peak-demand of summer noon [1].

Putting the mentioned benefits aside, the connection of GCPVS to the distribution
network accompanies a few challenges such as islanding. Islanding occurs when a part of
the utility including one or multiple distributed generators (DGs) is isolated unintentionally
from the upstream network while remains energized [2]. In this unwanted situation, the
DG generation must be ceased/controlled timely to avoid jeopardizing the repair crew who
think the downstream network is de-energized. The sensitive equipment of the isolated
region may be also damaged regarding the overcurrent/overvoltage of the unsynchronized
reclosing. In this regard, IEEE std 1547-2018 and UL 1741 determine 2 s as the maximum
permissible time for islanding protection [3,4].

Various islanding detection methods (IDMs), broadly categorized into remote and
local groups, have been presented [5–25]. In local schemes, divided into the passive,
active, and hybrid, a DG/PCC variable is monitored continuously. When the grid is lost,
the local variable(s) shifts to the new level regarding the cut of active/reactive power fed
into/received from the utility. Thus, an islanding situation is inferred in passive IDMs when
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a local criterion deviates from the preset threshold [5–8]. For instance, Nale et al. stated
that the decaying DC component of the PCC voltage is prominent during the islanding
operation [5]. When the aggregative absolute error between the estimated voltage and
pure sine wave over a cycle exceeds 9%, islanding has been concluded accordingly. Since
this variable exhibits the same behavior under short-circuit faults, the authors suggested
the measurement of the PCC superimposed current angle, which poses negative and
positive sets during grid-connected and islanding modes, respectively. Similarly, the
abrupt PCC voltage change during the normal to islanding transition has been presented
by Dubey et al. [6]. The DG voltage is estimated by Fourier-Taylor transformation within
a moving window and least square error method. The authors demonstrated that the
average deviation between the estimated signal in three phases and pure sine waveform
grows sharply after islanding inception. The results unveiled successful islanding detection
in less than 55 ms except for the narrow (−1%, +1%) range of relative active and reactive
power mismatches. Abyaz et al. applied six commercial relays, including the rate of
change of frequency, rate of change of voltage (ROCOV), rate of change of phase angle,
and under/over frequency (UF/OF) [7]. It is underlined that the combination algorithm
classifies islanding within a cycle without nuisance tripping in non-islanding switching
transients. The passive plans are realized simply and cost-effectively; however, they
suffer a large non-detection zone (NDZ), i.e., the situations wherein the IDM fails to
identify islanding.

Recently, mathematical tools have been developed to distinguish normal and islanding
modes [9–13]. Extensive tests are initially performed to tune the settings for precise island-
ing recognition. Although these passive IDMs have shown an outstanding performance
in islanding and non-islanding incidents, the settings depend fully on the studied system
characteristics, i.e., the tedious islanding and non-islanding scenarios should be repeated
for a new network to readjust the settings.

The injection of an intentional disturbance into the DG’s controller has been adopted in
active IDMs [14–19]. This disturbance does not influence the PCC frequency and voltage in
the grid-tied mode. Conversely, it enlarges/facilitates the deviation of the local variable(s)
during islanding, shortening the NDZ and detection time effectively. Wang et al. estab-
lished positive feedback of the PCC voltage into the inverter’s d-axis reference current [14].
The PCC voltage is thereby destabilized during islanding phenomena, actuating the un-
der/over voltage (UV/OV) relay. Samui and Samantaray indicated reliable performance of
the voltage positive feedback (VPF) algorithm under critical islanding incidents, even in
the presence of a static load [15]. The upper and lower margins of the positive feedback
gain have been also reformulated to attain the minimum NDZ and maximum stability. It is
argued in [16] that the VPF scheme fails to distinguish islanding situations with a surplus
active power due to the PV input power limitation in a given meteorological condition.
Consequently, negative absolute feedback has been introduced to shift the PCC voltage
beyond the minimum standard limit in all scenarios. Sivadas and Vasudevan defined a
three-level active power reference (Pref) disturbance of the inverter-based DGs [17]. When
the DG operates in parallel with the grid, the d-axis equivalent resistance at PCC tracks
the Pref fluctuations while its variation is almost negligible during the islanding operating
mode. Although the experimental tests revealed an accurate detection of the presented
technique even in a fully balanced island, the development to the multi-DGs case (espe-
cially more than two) is complex and costly. In active techniques, the NDZ and detection
time alleviate notably; however, the imposed disturbance deteriorates the power quality
through amplifying the current harmonics. The dependency of the thresholds upon the
DG/grid settings is known as another demerit.

The advantages of combining passive and active IDMs have motivated the researchers
to present hybrid plans [20–22]. These algorithms are strong islanding classifiers with lower
power quality degradation and smaller NDZ in comparison with active and passive IDMs,
respectively. On the other hand, the high complexity and cost as well as large detection
time are reported as their main shortfalls. Rostami et al. recommended the connection
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of a reactive impedance at PCC and the measurement of ROCOV for islanding detection
purposes [20]. The reactive impedance has been switched on under suspicious events so
that the islanding has been recognized by the ROCOV. In spite of the successful classifi-
cation of the islanding and non-islanding events, the method settings have been figured
out by extensive simulations. A two-level maximum power point tracking (MPPT)-based
IDM for GCPVS has been proposed by these authors [21]. Suspicious events have been
categorized in the first stage based on the DG voltage index. Subsequently, a disturbance
has been triggered into the MPPT algorithm to ride the output voltage below the minimum
standard threshold.

Contrary to the local methodologies, remote IDMs are based on a telecommunication
channel between the upstream substation and DG(s). By this means, islanding situation is
recognized whilst the broadcast signal has not been received at the DGs’ terminal [23–25].
Although these IDMs are proven to be accurate and fast, the high burden cost makes them
impractical for small-scale microgrids.

It is concluded from the literature that presenting a new IDM with small NDZ and
detection time, straightforward and inexpensive structure, and negligible power quality
degradation is of interest. The presented scheme should not destabilize the GCPVS to aug-
ment its contribution in supporting the autonomous microgrid as well. In this perspective,
this paper proposes a new hybrid technique based on a disturbance injection into the d-axis
reference current. The suspicious islanding situations are firstly recognized by a passive
criterion when the absolute PCC voltage deviation enlarges a voltage threshold. After-
wards, a transient disturbance is inserted into the d-axis reference current, reducing the
active power output. Hence, the PCC voltage decreases drastically in islanding condition
whereas its variation is marginally in the grid-connected mode. The simultaneous descent
of PCC voltage and active power output is thereby the islanding detection criterion of the
recommended technique.

In addition to the small NDZ, the proposed scheme provides several advantages including:

• Fast islanding detection within 300 ms;
• Simple and cost-effective structure;
• Reverting the GCPVS active power to the pre-islanding set after islanding classifica-

tion, boosting the chance of full generation in the standalone microgrid;
• Negligible effect on the output power quality.

The rest of the paper is organized as follows. The proposed hybrid algorithm and
the selection criteria of the settings are elaborated in the next Section. The functionality of
the presented scheme is then investigated in Section 3 under various critical islanding and
non-islanding scenarios in MATLAB platform. In Section 4, the outcomes are compared
with the existing IDMs. The concluding remarks are finally described in Section 5.

2. Proposed Hybrid Methodology
2.1. Methodology Description

Grid-tie voltage source inverter (VSI) incorporates two independent controllers as
depicted in Figure 1. The voltage control loop tracks the maximum power point (MPP)
through setting the duty cycle of the DC/DC converter. In DC/AC converter, the current
controller is responsible for balancing the input (PV array) and output powers, synchro-
nizing the injected current to the PCC voltage, and ensuring the output power quality
requirements. In this control loop, the active power output (PDG) tracks a reference power
(Pref). This aim is realized by eliminating the steady-state error between PDG and Pref
through various control strategies. According to the reference frame in where the output
current is transformed, a suitable controller is applied, e.g., proportional-resonant (PR) and
proportional-integral (PI) controllers in αβ and dq reference frames, respectively. In this
paper, the current control loop in dq reference frame is employed in where the three-phase
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output current is transformed to the DC components. Hence, the PI controller is exploited
to remove the steady-state error between PDG and Pref as follows (Figure 2) [26]:

Id,re f =
(

Pre f − PDG

)
(kP +

kI
s
) (1)

where Id,ref stands for the d-axis reference current. Moreover, kP and kI are the proportional
and integral gains of the PI controller. It worth mentioning that PLL and PWM in Figure 1
represent the phase-lock loop and pulse width modulation technique, respectively. The d-
and q-axis quantities are also denoted by “d” and “q” subscripts in Figure 2.
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In the proposed hybrid algorithm, the RMS PCC voltage is measured to compute the
absolute voltage deviation (|∆VPCC|). Since the PCC voltage can be raised or lowered
after the island formation, the absolute deviation is exploited in this work. Suspicious
islanding incidents are identified whilst the |∆VPCC| exceeds a voltage threshold (VT). In
these circumstances, a negative current disturbance (∆IDIS) is injected into Id,ref for a short
duration, e.g., 0.2 s, as follows:

Id,re f =
(

Pre f − PDG

)(
kP +

kI
s

)
− ∆IDIS (2)

The negative disturbance is selected in the proposed algorithm to consider the inherent
power limitation of GCPVS in a given meteorological situation. This disturbance is also
equipped with an intentional delay to avoid nuisance tripping in non-islanding transient
switching as explained later. The active power output drops sharply through the injected



Energies 2021, 14, 1390 5 of 15

disturbance; however, the PDG fall has an insignificant impact on PCC voltage in the normal
operating mode since it is strictly governed by the utility. In contrast, the PCC voltage in
the islanded operating mode can be expressed by [14–16]:

PDG =
V2

po

R
(3)

where R is the resistive part of the local load parallel RLC model, defined in IEEE std
929 [27]. Furthermore, the post-islanding voltage is shown by Vpo. The active power output
reduction yields a PCC voltage drop regarding Equation (3). Therefore, the simultaneous
drop of PCC voltage and active power output beyond the predefined thresholds, i.e.,
∆PDG ≤ ThP and ∆V′PCC ≤ ThV, is the final criterion of the proposed hybrid IDM.

Moreover, a further condition is established in the presented IDM to discriminate
short-circuit fault situation. Similar to [8,16], this state is identified whilst DG output
current (IDG) in any phase exceeds 125%, as shown in Section 3.5.

The realization and flowchart of the recommended scheme are illustrated in
Figures 2 and 3, respectively. It is apparent that the structure of the proposed method
is straightforward and inexpensive, implementable into the existing VSIs with a mini-
mum effort. In addition, PDG reduces during the disturbance injection, i.e., DG current
amplitude decreases for a linear load. Hence, it does not disturb the power quality of the
distribution network.
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2.2. Thresholds Selection Criteria

In order to ensure reliable islanding detection, the voltage threshold (VT) as well as the
settings of the active power (ThP) and PCC voltage (ThV) should be quantified accurately.
The selection criteria of these settings are described as follows.

2.2.1. Voltage Threshold

In the proposed technique, the passive criterion is responsible for classifying the suspi-
cious islanding events under |∆VPCC| ≥ VT condition. Hence, the presented disturbance
would be more triggered under a lower VT set, enhancing the chance of critical island-
ing events with a small voltage variation. On the other hand, the nuisance disturbance
activation raises during non-islanding incidents with voltage fluctuation greater than VT.
This parameter should be thereby defined as a compromise between minimum nuisance
activation (prevent high active power drop) and minimum NDZ. Since the time duration
of the injected disturbance is short, 0.2 s, for instance, the voltage threshold is quantified
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in the term of NDZ. In this regard, the PCC voltage in the normal operating mode can be
expressed as follows [14–16]:

PDG − ∆P =
V2

pr

R
(4)

where Vpr and ∆P are the pre-islanding PCC voltage and active power mismatch, received
from/fed into the network before island formation. By combining Equations (3) and (4),
the PCC voltage variation after islanding inception (∆VPCC) can be given by:

∆VPCC
Vpr

=
1√

1− ∆P
PDG

− 1 (5)

where ∆VPCC equals to Vpo − Vpr. Based on the recent expression, the NDZ of a given
voltage threshold includes the relative active power mismatches (∆P/PDG) with |∆VPCC|
< VT. This zone is illustrated in Figure 4 for various VT sets in the nominal pre-islanding
voltage (Vpr = 100%). It is readily seen that the NDZ of the presented hybrid IDM is small in
comparison with the conventional IDMs, e.g., the voltage relay’s one with (−29.13%, 17.35%).
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2.2.2. Active Power and PCC Voltage Thresholds 

As explained earlier, the GCPVS’s real power output plummets after disturbance in-
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2.2.2. Active Power and PCC Voltage Thresholds

As explained earlier, the GCPVS’s real power output plummets after disturbance
injection, reducing the PCC voltage for this time being. In order to determine ThV and ThP
analytically, the output voltage and active power reduction should be initially quantified.
The amount of ∆V′PCC and ∆PDG drop can be defined in the term of current disturbance
size (∆IDIS) as follows:

PDG − ∆PDG =

(
Vpo − ∆V′PCC

)2

R
= R

(
Ipo − ∆IDIS

)2 (6)

where Ipo is the GCPVS’s post-islanding current before inserting the disturbance. The
recent expression is derived by modifying Equation (3) during islanding mode, before and
after disturbance injection. By assuming ∆IDIS = 20%, for instance, the GCPVS’s current
and PCC voltage decline by 20%. Subsequently, PDG shifts to 64% of its pre-disturbance
activation level, implying a 36% fall. Therefore, islanding can be distinguished successfully
by selecting ThV and ThP greater than −20% and −36%, respectively, i.e., the simultaneous
∆V′PCC ≤ ThV and ∆PDG ≤ ThP would be ensured during islanding.

According to the aforementioned explanation, the voltage threshold is assigned as 1%
in this paper to inject the disturbance in all scenarios except the narrow [−2.03%, 1.97%]
range of the relative active power mismatches. Further, ThP and ThV are selected −20%
and −10%, respectively, to ensure islanding classification after imposing a 20% current
disturbance (∆IDIS = 20%).
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3. Simulation Results

In this section, the performance of the proposed hybrid algorithm has been assessed
in MATLAB/Simulink platform. Various islanding and non-islanding scenarios have been
simulated for the case study system depicted in Figure 5. In this practical network, three
large-scale GCPVSs are linked at the end of two parallel lines, connected to the two feeders.
The PCC voltage and output current of the GCPVSs, denoted by “1”,”2”, and ”3” subscripts
for the first, second, and third DGs are exploited in the islanding detection process. The
parameters of this prototype system are detailed in Table 1.
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Table 1. Details of the case study system.

Equipment Characteristics

Grid 20 kV, 50 Hz, 2500 MVA

Lines Z+ = 0.034 + j0.312 Ω/km, Z0 = 0.232 + j0.91 Ω/km

GCPVSs DG1: 0.5 MW, DG2: 1 MW, DG3: 1 MW

Loads (normal settings) L1: 0.5 MW, L2: 0.5 MW + j0.5 MVAr, L3: 2 MW

Transformers T1: 3 MVA, T2: 1.2 MVA, T3: 3 MVA, T4: 2.5 MVA, T5 and T6: 1.2 MVA
All connected in ∆Y11, T1:20/120 kV, T2–T6:0.4/20 kV

All islanding and non-islanding conditions are yielded by opening/closing circuit
breakers (CBs) at t = 0.5 s. The local loads (L1, L2, and L3) are also set to create different
active/reactive power mismatches and load quality factors (Qfs) for single and multi-DGs
cases. These studies are analyzed thoroughly and presented in the following subsections.

3.1. Active and Reactive Power Mismatches

The amount of active and reactive power mismatches plays a critical role in the
PCC voltage variation of the islanded area. IEEE std 1547-2018 and UL 1741 emphasize
conducting the tests for difference relative active and reactive power mismatches (∆Q)
within the (−5%, +5%) range. Accordingly, the initial analysis has been carried out in cases
1–11 for various ∆P and ∆Q levels inside the voltage relays’ blind zone (Table 2). The
results, including the reference and output d-axis current (for case 3), the PCC voltage, and
active power output waveforms for a few scenarios are depicted in Figure 6. The decision
indices of these scenarios are also tabulated in Table 2.

It is evident from Figure 6c that the PCC voltage deviation results in a |∆VPCC| greater
than VT (except in case 4) at t = 0.6 s due to the active and reactive power mismatches.
Thereafter, the proposed disturbance is injected into Id,ref (Figure 6a), reducing the active
power output by around 36% during the [0.7 s, 0.8 s] interval as shown in Figure 6b. As
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a result, the DG terminal voltage drops by 20% for this time frame. Since the ∆V′PCC and
∆PDG go beyond the preset thresholds simultaneously, the islanding detection signal is
triggered at 0.8 s.

According to the illustrated outputs in Table 2 and Figure 6, the presented approach
classifies islanding in all situations except the well-balanced island wherein the output
voltage fluctuation is negligible (∆VPCC < VT). The disturbance has not been stimulated
and accordingly, the proposed IDM fails to find islanding. This result matches with the
computed NDZ in Section 2.2.1.
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Figure 6. Outputs of active and reactive power mismatches islanding scenarios: (a) Reference and
output current (case 3 only); (b) GCPVS active power; (c) PCC voltage.
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Table 2. Scenarios and outputs of the islanding cases.

Case No. Description ∆P + j∆Q
(%)

∆VPCC/Vpr
(%)

∆V
′
PCC/Vpo
(%)

∆PDG/PDG
(%)

1

Active power mismatches
(Opening CB2)

−15 −6.3 −17.3 −28.4
2 −10 −4.8 −16.5 −28.6
3 −5 −2.5 −16.9 −29.4
4 0 <0.01 <0.01 −0.4
5 +5 +2.6 −18.8 −30.4
6 +10 +5.5 −18.3 −30.5
7 +15 +8.5 −18.5 −31.0

8 Active/reactive power
mismatches

(Opening CB2)

−5 − j5 −5.5 −17.5 −35.3
9 −5 + j5 −5.7 −17.8 −29.6
10 +5 − j5 +6.3 −23.6 −37.0
11 +5 + j5 +6.5 −22.3 −31.0

12

Load quality factor
(Opening CB2)

+5 (Qf = 0.5) +2.6 −17.4 −29.8
13 +5 (Qf = 1.0) +2.7 −16.9 −29.7
14 +5 (Qf = 1.5) +2.5 −16.6 −29.8
15 +5 (Qf = 2.0) +2.7 −16.7 −29.8
16 +5 (Qf = 2.5) +2.6 −16.4 −29.4
17 +5 (Qf = 4.0) +2.6 −16.5 −29.3
18 +5 (Qf = 8.0) +2.5 −16.7 −29.4

19 Multi DGs, Distinct buses
connection

(Opening CB1)

−5 −2.5 −2.1 −16.9 −17.3 −29.6 −29.7
20 +5 +2.4 +2.9 −17.8 −17.7 −30.8 −30.9
21 −10 −5.1 −5.3 −17.0 −17.1 −30.2 −30.3
22 +10 +4.9 +4.8 −17.1 −16.9 −30.1 −29.8

23
Multi DGs, Near bus connection

(Opening CB3)

−5 −2.5 −2.1 −15.9 −16.3 −29.8 −29.6
24 +5 +2.6 +3.0 −17.1 −17.5 −30.8 −30.9
25 −5-j5 −2.5 −2.2 −18.4 −18.3 −35.9 −36.0
26 +5 + j5 +3.1 +3.2 −18.4 −18.6 −34.2 −34.1

3.2. Load Quality Factor

During the islanding event, load quality factor (Qf) has a substantial effect on local
quantities. This variable is defined as the ratio of the maximum reactive power stored in
the load inductor/capacitor to the active power consumed by the resistive part. In the
parallel RLC branch of the local load model, this variable is quantified as follows:

Q f = R

√
C
L

(7)

where R, C, and L represent the load resistance, capacitor, and inductor, respectively. As
mentioned in IEEE std 1547-2018 and UL 1741, islanding assessment with the load quality
factor lower than 2.5 and 1.0 is mandatory. In this regard, the first local load (L1) is tuned
in cases 12–18 to simulate several Qfs with +5% active power imbalance. The outputs of
these scenarios are shown in Table 2 and Figure 7 (for case 14 with Qf = 1.5).
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Figure 7. Results of islanding events under Qf =1.5.
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The results reveal a coincident shift of active power output and PCC voltage to the
stipulated thresholds after 0.3 s of islanding onset. The total detection time includes
100 ms for classifying the suspicious event, 100 ms for an intentional time delay, and
100 ms to decline PDG and VPCC. These time frames which are the same as other islanding
circumstances are also highlighted in Figure 7.

3.3. Multi DGs

Most large-scale PV plants are constructed through several VSIs, connected to the
nearby bus. The PV systems are connected to the distinct buses in real applications as well.
The presented hybrid scheme should be effective in such practical cases. The CB1 and CB3
are opened to this end to simulate an islanding with distinct bus and near bus case studies.
The loads are also adjusted to provide various power mismatches, as given in Table 2.

In the distinct bus connection cases, since the second and third DGs behave almost the
same, the variation of the PCC voltage and active power output are presented for the first,
and the second GCPVSs, respectively. In the same bus connection, the provided outputs
represent the second and third DGs, respectively.

According to the presented results in Figures 8 and 9 (for cases 19 and 26) and Table 2,
the DGs’ active power output diminishes after inserting a disturbance inside the (0.7 s,
0.8 s) time frame. This active power fall is around 0.15 MW for the first GCPVS and
0.30 MW for the second and third ones, implying the ~30% reduction. The DGs’ end
voltage is consequently dropped by almost 15%. Just as same as other islanding scenarios,
the islanding detection signal is therefore activated at t = 0.8 s.
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Figure 8. Multi-DGs islanding outputs for the distinct bus connection scenario.
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Figure 9. Results of multi DGs islanding case of the same bus connection.

The presented analyzes confirm effective islanding detection of the proposed hybrid
IDM under various critical scenarios. The detection time is also 300 ms for all cases, short
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enough to restore GCPVSs to the nominal sets for facilitating the chance of PV generation
at its maximum level in the standalone microgrid.

3.4. Non-Islanding Events

The distribution network is frequently exposed to the switching transients which
may trigger the proposed disturbance. Although the disturbance injection is inevitable in
such situations, the PCC voltage and active power output should cross the corresponding
thresholds at the same time. The analysis is developed for several non-islanding incidents in
cases 27–36, including capacitor switching, prompt load change, and third DG interruption.
These scenarios are realized through opening/closing the CBs at t = 0.5 s as detailed in
Table 3. In this table, the minimum recorded voltage and active power change of the first
or second DG are tabulated for two intervals; during the non-islanding event and during
the disturbance injection. The outputs of several cases are also shown in Figure 10.

Table 3. Results of the non-islanding scenarios.

Case No. Description ∆P + j∆Q
During Incident During Disturb. Inject.

∆V
′
PCC/Vpo ∆PDG/PDG ∆V

′
PCC/Vpo ∆PDG/PDG

27 Capacitor
switching off

(Opening CB6)

1 MVAr −1.9% +2.8% −0.1% −39.9%
28 2 MVAr −3.9% +4.9% −0.1% −39.8%
29 3 MVAr −6.1% +7.6% −0.2% −40.1%

30 Capacitor
connection

(Closing CB2)

1 MVAr +2.0% −2.9% +0.1% −40.7%
31 2 MVAr +4.0% −5.8% +0.1% −41.7%
32 3 MVAr +6.1% −9.1% +0.2% −42.4%

33
Third GCPVS
interruption

(Opening CB9)
−1 MW <0.01% <0.01% <0.01% <0.01%

34 Local load change
(Closing CB5)

0.5 MW +0.7% +2.7% <0.01% <0.01%
35 0.5 MW + j0.5 MVAr +0.8% +2.6% <0.01% <0.01%
36 0.5 MW − j0.5 MVAr −0.7% −2.8% <0.01% <0.01%
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Figure 10. Outputs of non-islanding study: (a) PCC voltage, (b) First/Second GCPVS active power.
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The results in Table 3 and Figure 10 indicate that the PCC voltage deviation is small in
several cases so that the disturbance would not be triggered. The voltage deviation, how-
ever, activates the proposed disturbance in other conditions; the ∆V′PCC crosses ThV during
the non-islanding event whereas PDG remains unchanged for this time being. During the
disturbance injection, the active power output reduces so that the ∆PDG/PDG goes under
ThP. Meanwhile, the PCC voltage variation is negligible since it is strictly controlled by
the utility. Hence, the equipped 0.1 s delay between detecting the suspicious islanding
condition and disturbance injection prevents false tripping in switching transients.

3.5. Short-Circuit Faults

Short-circuit faults frequently occur in the electrical power system. The proposed
IDM should categorize such situations and de-energize GCPVS for preventing probable
damages. As explained earlier, an IDG ≥ 125% condition is considered in the detection
process to discriminate fault events. This capability has been explored for the case study
system by simulating a single-phase to the ground (AG), double-phase to the ground (ABG),
and three-phase to the ground (ABCG) short-circuit faults, nearby of the first GCPVS. The
current of the faulted phase (phase A) of these scenarios under several fault resistance (RF)
is displayed in Figure 11 (cases 37, 41, and 45). The detection time of the fault scenarios
is shown in Table 4 as well. It is noteworthy that in the presented results, the GCPVS is
protected against the overcurrent through an instantaneous relay installed at its terminal.
This relay is set to disconnect the GCPVS with a 50 ms delay after observing IDG ≥ 125% in
any phase [28].
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Table 4. Simulation results of short-circuit fault case studies.

Case No. Fault Description RF (Ω) Fault Detection Time (ms)

37
AG

0.1 9.6
38 1 14.8
39 5 15.9

40
ABG

0.1 4.0
41 1 4.2
42 5 13.1

43
ABCG

0.1 16.7
44 1 17.3
45 5 24.5

The outputs imply successful fault detection of the presented IDM under all states
within 25 ms. Furthermore, the faulted current in Figure 11 goes down after instantaneous
overcurrent relay tripping. The safety of the sensitive equipment is ensured accordingly.
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4. Comparison with Existing Methodologies

In addition to the small NDZ and detection time, the level of complexity and cost as
well as the thresholds’ dependency upon the case study system are among the paramount
features of the IDMs. The impact of injected disturbance should be also limited during the
normal operating mode. In this section, the proposed technique has been compared with
the existing IDMs, summarized in Table 5.

Table 5. Comparison assessment of the proposed technique with the existing IDMs.

IDM NDZ Detection
Time

Dependency on
System Sets

Cost and
complexity

Power Quality
Degradation

Passive [5–8] Medium Large Medium Small Small

Mathematical
tools [9–13] Small Large High Medium Small

Active [14–19] Small Medium Medium Small High

Hybrid [20–22] Small Medium Medium Medium Medium

Remote [23–25] Small Small Small High Small

Proposed IDM Small Small Small Small Medium

• Based on the provided analyzes, the presented methodology detects islanding within
300 ms under various cases except for the small range of active power imbalance.
Therefore, it can be considered among the fast and accurate existing IDMs.

• The thresholds of the local techniques rely heavily on the studied DG/system charac-
teristics [4–7,9–20,22]. Therefore, a precise threshold(s) determination is mandatory
for a new DG/network. Conversely, the settings of the proposed technique can be
defined independently of the DG/grid characteristics (Equations (4)–(6)).

• In active and hybrid IDMs with periodic disturbance injection, the power quality
is degraded, even in grid-tied operating mode. Whereas, the proposed algorithm
exploits a short-duration disturbance under suspicious islanding events. Thus, the
power quality remains almost unchanged during grid-connected situations.

• The total cost of the proposed technique includes the measurement of the output
current, voltage, active power estimation, and a pre-defined disturbance injection into
Id,ref. Hence, the investment for sensors, microcontroller/digital signal processor, and
a signal generator is estimated lower than 100 USD. By contrast, the realization of the
remote techniques is costly, especially for small-scale microgrids [24–26].

5. Conclusions

This paper deals with a new hybrid methodology for detecting islanding operations of
GCPVSs. The first level of the proposed scheme is dedicated to recognizing the suspicious
islanding events when the absolute PCC voltage exceeds the predetermined voltage thresh-
old. Following this, a transient 20% disturbance is injected into the VSI’s d-axis reference
current to decrease the active power output. In this way, the PCC voltage declines by 30%
to 36% despite the PV generation level. Hence, the simultaneous drop of the active power
output and the PCC voltage is defined as the islanding detection criterion.

The presented results of numerous islanding scenarios revealed an effective islanding
detection within 300 ms with a narrow NDZ. Since the imposed disturbance removes after
a short duration, the active power output is re-established at the GCPVS’s highest possible
level. Therefore, islanding is found without destabilizing the GCPVS, unlike most active
and hybrid IDMs. This facilitates the voltage and frequency recovery and demand supply
of the autonomous microgrid. The outputs of various non-islanding case studies remarked
that one of the mentioned indices, i.e., ∆V′PCC and ∆PDG, remained unchanged during the
disturbance injection time frame. Hence, unlike a few active IDMs, the proposed approach
has not failed in detecting the islanding mode in the presence of multiple DGs.
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In addition to the outstanding performance, it is shown that the realization of the
presented technique is simple and cost-effective. While the thresholds of the most local
techniques depend highly on the GCPVS/network settings, VT, ThV, and ThP are defined
self-standing. Hence, the presented IDM can be integrated into the existing VSIs with a
minimum effort.
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