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ABSTRACT 
 
The three dimensional nature of soil spatial variability implies the need for 3D analysis of 
geotechnical structures. This paper presents the probabilistic analysis of long slopes such as 
levees and highway embankments, which are usually analysed unrealistically in plane strain, 
thereby ignoring the discrete failure mechanisms often encountered in practice. Conditional 
random fields of soil heterogeneity have been generated based on 3D Kriging, so that they match 
measurement data at borehole locations and honour the spatial correlations of the soil properties. 
A simple example involving the cost-effective design of an excavation in a 3D clay deposit has 
been investigated. It has been demonstrated that, by using conditional random fields within the 
random finite element method, more cost-effective geotechnical designs can be achieved while 
maintaining the same calculated reliability.  
 
INTRODUCTION 
 
In recent years, three dimensional reliability assessments concerning the stability of long ‘linear’ 
soil structures have been gaining increasing attention (Spencer and Hicks, 2006; 2007; Spencer, 
2007; Hicks et al., 2008; Griffiths et al., 2009; Hicks and Spencer, 2010; Vanmarcke, 2011; Li et 
al., 2013; 2015a; 2015c; Vanmarcke and Otsubo, 2013; Hicks et al., 2014; Li and Hicks, 2014; Ji 
and Chan, 2014; Ji, 2014; Li et al., 2016; Xiao et al., 2016; Varkey et al., 2016). The reasons for 
this are three-fold: (1) the three dimensional nature of soil spatial variability necessitates 3D 
analysis of geotechnical structures, as this is more realistic than a plane strain analysis which 
ignores the discrete 3D failure mechanisms generally encountered in practice; (2) the increasing 
computational power makes 3D analyses possible (Li et al., 2015b); (3) the increasing attention 
paid by regulatory bodies in asking for rational risk assessments and cost-effective design of 
important infrastructures, e.g. as in levee/embankment design and maintenance in the 
Netherlands. 

However, the spatial distribution of related measurement data were not utilised to 
constrain the random fields of soil properties in the 3D geotechnical applications mentioned 
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above. Only partial use was made of available data, with field data at the measurement locations 
only being used to derive statistical properties for input into random field generation (i.e. without 
being directly used in the simulation). As this results in an exaggerated range of responses in the 
analysis of geotechnical performance, it is desirable to make more effective use of field data. 

Unconditional random fields can easily be conditioned to known measurements by 
Kriging (Journel, 1974; Delfiner and Chiles, 1977), and conditional simulations using Kriging 
have long been available in geostatistics in the field of reservoir engineering and hydrogeology 
(Delhomme, 1979; Clifton and Neuman, 1982). However, the application of conditional 
simulation in geotechnical studies has been limited, although some 2D exceptions include, e.g., 
Vanmarcke and  Fenton (1991), Van den Eijnden and Hicks (2011), Lloret-Cabot et al. (2012; 
2014), Van den Eijnden et al. (2017). This is mainly due to the smaller amount of data generally 
available in geotechnical projects (e.g. compared to hydrogeology). However, it is desirable to 
use conditional simulation to make more realistic geotechnical performance predictions. Hence, 
following the previous 2D work of Van den Eijnden and Hicks (2011) and Lloret-Cabot et al. 
(2012), this paper applies conditional simulation in three dimensional space, in order to reduce 
uncertainty in the field when cone penetration tests (CPTs) (De Gast et al., 2017) are carried out. 

In this paper, a simple illustrative example compares different candidate slope designs, in 
order to choose the best (most cost-effective) design satisfying the reliability requirements. 
 
CONDITIONAL SIMULATION OF RANDOM FIELDS 
 
The generation of a conditional random field involves two steps (Journel and Huijbregts, 1978; 
Frimpong and Achireko, 1998; Fenton and Griffiths, 2008): 

(i) Generation of an unconditional random field, Zru(x), of the spatial variability of soil 
properties (where x denotes a location in space); 

(ii)  Conditioning the random field; e.g. Kriging estimates, Zkm(x), based on measured 
values at xi (i = 1, 2, …, N) and Kriging estimates, Zks(x), based on unconditionally 
(or randomly) simulated values at the same positions xi (i = 1, 2, …, N), where N is 
the number of measurement locations, are combined with Zru(x) from step (i) to give 
the conditional random field, Zrc(x), where 

( )( ) ( ) ( ) ( )rc km ru ksZ Z Z Z= + −x x x x                                                    (1) 

The readers are referred to Li et al. (2016) for a detailed implementation of the conditional 
simulator. 

The unconditional random field in step (i) can be simulated using any one of several 
methods (Fenton, 1994); for example, interpolated autocorrelation (e.g. Ji et al., 2012), 
covariance matrix decomposition (e.g. Zhu and Zhang, 2013), discrete Fourier transform or Fast 
Fourier transform (e.g. Fenton, 1994), turning bands method (e.g. Matheron, 1973; Delhomme, 
1979), local average subdivision (LAS) (Fenton and Vanmarcke, 1990), and Karhunen–Loeve 
expansion (Phoon et al., 2002), among others. The LAS method is used in this paper.  
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Figure 1 shows an example realisation of a 3D conditional random field, together with 
known CPT profiles taken from the cross-section. It is seen that the conditional field honours the 
measurement data at the measurement locations. CPT data, i.e. cone resistance and sleeve 
friction, cannot be used directly in the analyses reported here. A conversion or transformation 
model is needed to relate the test measurement to an appropriate design property (e.g. the 
undrained shear strength). As this paper theoretically shows how such converted data can be 
used, artificial data of undrained shear strength have been used in the following example. 

 
Figure 1. Illustration of conditional simulation of random field of undrained shear strength 

cu (black and white indicate high and low values, respectively). Curves indicate CPT 
locations and measurements. 

 
COST-EFFECTIVE DESIGN OF A LONG SLOPE 
 
The conditional simulator introduced above has previously been used to investigate cost-
effective plans for site investigations using the random finite element method (RFEM), i.e. in 
terms of sampling locations and sampling intensity (Li et al., 2016). For the 3D problem 
considered, it was shown that the optimum spacing for CPTs was around half the horizontal scale 
of fluctuation. Moreover, it was demonstrated that the design of geotechnical structures such as 
slopes and embankments also became more cost-effective as the uncertainty is reduced. In this 
section, an example involving cost-effective design with regard to slope angle is presented.  

Figure 2 shows the x-z cross-sections (see Fig. 1) of three possible angles of a slope to be 
constructed (vertical:horizontal ratios of 1:2, 1:1 and 2:1). Also shown are the corresponding 
finite element mesh discretisations (involving 20-node, 3D elements), the boundary conditions (a 
fixed base, rollers on the back face preventing x-displacements, and rollers on the two ends 
allowing only settlements), and the location where CPT data were taken prior to the slope 
construction. The slope is H = 5 m high and L = 50 m long in the third dimension, and the left-
hand boundary is taken to be W = 15 m from the slope toe. Five equally spaced CPTs were taken 
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along the length of the slope, at intervals of 10 m (see Fig. 1). The clay soil was modelled by a 
linear elastic, perfectly plastic Tresca soil model and by a spatially varying undrained shear 
strength represented by a truncated normal distribution and an exponential covariance function, 

with a mean µ = 21 kPa, coefficient of variation V = 0.2, and vertical and horizontal scales of 

fluctuation of θv = 1 m and θh = 12 m (Spencer, 2007), respectively. The other parameter values 

were assumed to be deterninistic: elastic modulus E = 100 MPa, Poisson’s ratio ν = 0.3, and soil 

unit weight γ = 20 kN/m3. 

 
Figure 2. Finite element mesh discretization, problem geometry, CPT measurement 

locations and boundary conditions for different slope angles.  
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The slope factors of safety were calculated using the strength reduction method, by 
applying gravitational loading to generate the in situ stresses (Smith et al., 2013). The analyses 
have been undertaken within a probabilistic (RFEM) framework; specifically, for each candidate 
slope angle shown in Fig. 2, two RFEM simulations comprising 500 realisations have been 
carried out, i.e. a conditional simulation and, for comparative purposes, an unconditional 
simulation. Note that the CPT measurements used in the conditional random fields in the RFEM 
analyses are taken from one reference random field that was generated and assumed to represent 
the ‘real’ field situation. 

Figure 3 shows the probability density functions (fitted normal) of the realised factor of 
safety (FR) for the three slopes, for both conditional (cond) and unconditional (uncond) 
simulations. The deterministic (traditional) factors of safety FT, i.e. the factors of safety based on 
the mean property values, are also shown as vertical lines. It is seen that the probability of the 2:1 
slope failing down is significant (23%) when unconditional simulation is performed (the 
probability of failure is the area under the pdf for the realised factor of safety that is smaller than 
1.0). It is not surprising that the gentlest (i.e. 1:2) slope has the lowest probability of failure. 
However, the narrower probability distributions (shown as dashed curves in the figure) 
demonstrate that conditional simulation significantly reduces the uncertainty in the structural 
response (i.e. FR). In particular, the reliability (i.e. 1 – probability of failure) of the steepest slope 
increases from 77% to greater than 99% when the CPT measurement data are directly taken into 
account. 

A target reliability level of 95% is suggested in Eurocode 7 (2004). The results show that 
the 1:1 and 1:2 slopes, but not the 2:1 slope, satisfy this criterion if unconditional simulations are 
used. However, when additional (i.e. actual spatial distribution) information from the CPT 
profiles is used, even the steepest slope meets the target reliability. Hence, the embankment may 
be designed to a slope angle of 2:1 if the CPT measurements are directly used in the simulation. 
This has implications for the soil volume to be excavated (i.e. the volume above the slope faces 
in Fig. 2) and thereby the cost, although the cost can be dependent on the site-specific situation 
(e.g. whether there are nearby structures). The ‘best design’ can be defined as a design that 
minimises the cost while meeting the requirements set by standards. In this case, the steepest 
slope which is 95% reliable is the best design. 
 
CONCLUSION 
 
Unconditional and conditional simulations involving differing levels of uncertainty have been 
carried out to demonstrate the cost effective design of a long slope characterised by a spatially 
varying undrained shear strength. A 3D (conditional) random field generator, coupled with a 3D 
finite element model, has been used for this purpose. The model output is described by the 
variance of the structure response (in this case, the factor of safety), which is a measure of the 
prediction error resulting from the uncertainty involved. It is shown that the prediction 
error/variance can be reduced and thereby the confidence in a project’s success or failure 
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increased, by making use of the spatial arrangement of measurements (e.g. Cone Penetration Test 
(CPT), Vane Shear Test (VST)) via conditional simulation. For the problem analysed, a steeper 
slope was found to be sufficiently reliable (i.e. in line with Eurocode 7). This was in contrast to 
the finding if unconditional simulation was carried out, where only partial use was made of 
available measurement data. The potential benefit of a 3D conditional simulation in geotechnical 
cost-effective designs has therefore been highlighted. 

 
Figure 3. Probability density functions of realised factor of safety for three slopes, based on 

conditional and unconditional simulations. 
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