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ABSTRACT

The three dimensional nature of soil spatial valitgbimplies the need for 3D analysis of
geotechnical structures. This paper presents tbbapilistic analysis of long slopes such as
levees and highway embankments, which are usuablyysed unrealistically in plane strain,
thereby ignoring the discrete failure mechanisngrofencountered in practice. Conditional
random fields of soil heterogeneity have been gardrbased on 3D Kriging, so that they match
measurement data at borehole locations and hohewspiatial correlations of the soil properties.
A simple example involving the cost-effective desaf an excavation in a 3D clay deposit has
been investigated. It has been demonstrated thiaising conditional random fields within the
random finite element method, more cost-effectieetgchnical designs can be achieved while
maintaining the same calculated reliability.

INTRODUCTION

In recent years, three dimensional reliability asagents concerning the stability of long ‘linear’
soil structures have been gaining increasing atter{Spencer and Hicks, 2006; 2007; Spencer,
2007; Hicks et al., 2008; Griffiths et al., 2009¢ks and Spencer, 2010; Vanmarcke, 2011; Li et
al., 2013; 2015a; 2015c; Vanmarcke and Otsubo, ;20k&s et al., 2014, Li and Hicks, 2014; Ji
and Chan, 2014; Ji, 2014, Li et al., 2016; Xiaalet2016; Varkey et al., 2016). The reasons for
this are three-fold: (1) the three dimensional retof soil spatial variability necessitates 3D
analysis of geotechnical structures, as this isemeglistic than a plane strain analysis which
ignores the discrete 3D failure mechanisms geneealtountered in practice; (2) the increasing
computational power makes 3D analyses possiblet(li., 2015b); (3) the increasing attention
paid by regulatory bodies in asking for rationakriassessments and cost-effective design of
important infrastructures, e.g. as in levee/embarkmdesign and maintenance in the
Netherlands.

However, the spatial distribution of related measugnt data were not utilised to
constrain the random fields of soil properties e 8D geotechnical applications mentioned



above. Only partial use was made of available deith, field data at the measurement locations
only being used to derive statistical propertigsifiput into random field generation (i.e. without
being directly used in the simulation). As thisulesin an exaggerated range of responses in the
analysis of geotechnical performance, it is desgr&d make more effective use of field data.

Unconditional random fields can easily be condigidnto known measurements by
Kriging (Journel, 1974; Delfiner and Chiles, 197&hd conditional simulations using Kriging
have long been available in geostatistics in thk fof reservoir engineering and hydrogeology
(Delhomme, 1979; Clifton and Neuman, 1982). Howewude application of conditional
simulation in geotechnical studies has been limigthough some 2D exceptions include, e.g.,
Vanmarcke and Fenton (1991), Van den Eijnden aic#sH2011), Lloret-Cabot et al. (2012;
2014), Van den Eijnden et al. (2017). This is maghle to the smaller amount of data generally
available in geotechnical projects (e.g. compacetlydrogeology). However, it is desirable to
use conditional simulation to make more realiseotgchnical performance predictions. Hence,
following the previous 2D work of Van den EijndendaHicks (2011) and Lloret-Cabot et al.
(2012), this paper applies conditional simulatiorthree dimensional space, in order to reduce
uncertainty in the field when cone penetrations¢SiPTs) (De Gast et al., 2017) are carried out.

In this paper, a simple illustrative example conegatifferent candidate slope designs, in
order to choose the best (most cost-effective)gtesatisfying the reliability requirements.

CONDITIONAL SIMULATION OF RANDOM FIELDS

The generation of a conditional random field imesduwo steps (Journel and Huijbregts, 1978;
Frimpong and Achireko, 1998; Fenton and Griffitk808):
0] Generation of an unconditional random fiefl,(x), of the spatial variability of soil
properties (wherg denotes a location in space);
(i) Conditioning the random field; e.g. Kriging estimstZ,(x), based on measured
values atx; (i = 1, 2, ...,N) and Kriging estimatesx(x), based on unconditionally
(or randomly) simulated values at the same postoii = 1, 2, ...,N), whereN is
the number of measurement locations, are combingdZp(x) from step i) to give
the conditional random fiel&,.(x), where
Z,o(X) = Zu(¥) +( Z,,() = Z4(¥)) 1)
The readers are referred to Li et al. (2016) fadesailed implementation of the conditional
simulator.

The unconditional random field in step (i) can hbmwated using any one of several
methods (Fenton, 1994); for example, interpolatedocorrelation (e.g. Ji et al., 2012),
covariance matrix decomposition (e.g. Zhu and Zh&04d3), discrete Fourier transform or Fast
Fourier transform (e.g. Fenton, 1994), turning lsaneethod (e.g. Matheron, 1973; Delhomme,
1979), local average subdivision (LAS) (Fenton &mhmarcke, 1990), and Karhunen—Loeve
expansion (Phoon et al., 2002), among others. A& method is used in this paper.



Figure 1 shows an example realisation of a 3D dmrdil random field, together with
known CPT profiles taken from the cross-sectioms Eeen that the conditional field honours the
measurement data at the measurement locations. daRl i.e. cone resistance and sleeve
friction, cannot be used directly in the analysegorted here. A conversion or transformation
model is needed to relate the test measurement taparopriate design property (e.g. the
undrained shear strength). As this paper theottisaows how such converted data can be

used, artificial data of undrained shear strengtrerbeen used in the following example.
Cu
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Figure 1. Illustration of conditional simulation of random field of undrained shear strength
cu (black and white indicate high and low values, respectively). Curvesindicate CPT
locations and measur ements.

COST-EFFECTIVE DESIGN OF A LONG SLOPE

The conditional simulator introduced above has ipresly been used to investigate cost-
effective plans for site investigations using th@dom finite element method (RFEM), i.e. in
terms of sampling locations and sampling intengity et al., 2016). For the 3D problem
considered, it was shown that the optimum spa@n@PTs was around half the horizontal scale
of fluctuation. Moreover, it was demonstrated ttiet design of geotechnical structures such as
slopes and embankments also became more costheffast the uncertainty is reduced. In this
section, an example involving cost-effective desigth regard to slope angle is presented.
Figure 2 shows the-z cross-sections (see Fig. 1) of three possibleesngfi a slope to be
constructed (vertical:horizontal ratios of 1:2, lfAd 2:1). Also shown are the corresponding
finite element mesh discretisations (involving 2i#a, 3D elements), the boundary conditions (a
fixed base, rollers on the back face preventirdjsplacements, and rollers on the two ends
allowing only settlements), and the location wh&eT data were taken prior to the slope
construction. The slope I8 = 5 m high and. = 50 m long in the third dimension, and the left-
hand boundary is taken to = 15 m from the slope toe. Five equally spaced Wdre taken



along the length of the slope, at intervals of 1@see Fig. 1). The clay soil was modelled by a
linear elastic, perfectly plastic Tresca soil modeld by a spatially varying undrained shear
strength represented by a truncated normal distoibiand an exponential covariance function,
with a meanu = 21 kPa, coefficient of variatiod = 0.2, and vertical and horizontal scales of
fluctuation of & = 1 m andé, = 12 m (Spencer, 2007), respectively. The othearpater values
were assumed to be deterninistic: elastic modilesl00 MPa, Poisson’s ratio= 0.3, and soll

unit weighty= 20 kN/nf.
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Figure 2. Finite element mesh discr etization, problem geometry, CPT measurement
locations and boundary conditions for different slope angles.




The slope factors of safety were calculated ushmgy sdtrength reduction method, by
applying gravitational loading to generate theitn stresses (Smith et al., 2013). The analyses
have been undertaken within a probabilistic (RFEfinework; specifically, for each candidate
slope angle shown in Fig. 2, two RFEM simulatiomsnprising 500 realisations have been
carried out, i.e. a conditional simulation and, fmymparative purposes, an unconditional
simulation. Note that the CPT measurements uséutkiconditional random fields in the RFEM
analyses are taken from one reference randomthealdwas generated and assumed to represent
the ‘real’ field situation.

Figure 3 shows the probability density functiontt€él normal) of the realised factor of
safety Fgr) for the three slopes, for both conditional (corat)d unconditional (uncond)
simulations. The deterministic (traditional) fagt@f safetyFr, i.e. the factors of safety based on
the mean property values, are also shown as viitiesa. It is seen that the probability of the 2:1
slope failing down is significant (23%) when uncdiwhal simulation is performed (the
probability of failure is the area under the pdf flee realised factor of safety that is smallentha
1.0). It is not surprising that the gentlest (e2) slope has the lowest probability of failure.
However, the narrower probability distributions @am as dashed curves in the figure)
demonstrate that conditional simulation signifitgnmeduces the uncertainty in the structural
response (i.e=gr). In particular, the reliability (i.e. 1 — probdty of failure) of the steepest slope
increases from 77% to greater than 99% when the i@@asurement data are directly taken into
account.

A target reliability level of 95% is suggested iarBcode 7 (2004). The results show that
the 1:1 and 1:2 slopes, but not the 2:1 slopesfgatiis criterion if unconditional simulations are
used. However, when additional (i.e. actual spatiatribution) information from the CPT
profiles is used, even the steepest slope meetsuthet reliability. Hence, the embankment may
be designed to a slope angle of 2:1 if the CPT aoreasents are directly used in the simulation.
This has implications for the soil volume to be axated (i.e. the volume above the slope faces
in Fig. 2) and thereby the cost, although the castbe dependent on the site-specific situation
(e.g. whether there are nearby structures). Thset ‘design’ can be defined as a design that
minimises the cost while meeting the requiremestsby standards. In this case, the steepest
slope which is 95% reliable is the best design.

CONCLUSION

Unconditional and conditional simulations involvindgfering levels of uncertainty have been

carried out to demonstrate the cost effective aesiga long slope characterised by a spatially
varying undrained shear strength. A 3D (conditipnahdom field generator, coupled with a 3D
finite element model, has been used for this pwepdfie model output is described by the
variance of the structure response (in this cdmefdctor of safety), which is a measure of the
prediction error resulting from the uncertainty ohxed. It is shown that the prediction

error/variance can be reduced and thereby the dmmde in a project’'s success or failure



increased, by making use of the spatial arrangeofeneasurements (e.g. Cone Penetration Test
(CPT), Vane Shear Test (VST)) via conditional siatioin. For the problem analysed, a steeper
slope was found to be sufficiently reliable (i.e.line with Eurocode 7). This was in contrast to
the finding if unconditional simulation was carriedt, where only partial use was made of
available measurement data. The potential benfefit3D conditional simulation in geotechnical
cost-effective designs has therefore been highdijht
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Figure 3. Probability density functions of realised factor of safety for three slopes, based on
conditional and unconditional simulations.
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