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Abstract

A numerical study, using the volume-of-fluid method (VOF), has been made of core-annular
flow in a curved pipe. We investigated two cases: core-annular flow in a 90◦ bend and in a
180◦ return bend. To verify our numerical method we first compared our results for a single-
phase flow in a 90◦ bend with numerical results and experimental data given in the literature.
The agreement was good. Thereafter a detailed analysis has been made for the velocities and
pressures occurring in a 90◦ bend and in a 180◦ return bend. Special attention was given to
the influence of secondary flows perpendicular to the pipe axis. These secondary flows play
an important role in the behaviour of core-annular flow in a curved pipe.

Master of Science Thesis S. M. Park



ii

S. M. Park Master of Science Thesis



Table of Contents

Acknowledgements v

1 Introduction 1

2 Multiphase Flow 5
2-1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2-2 Flow pattern . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2-3 Dimensionless numbers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

3 Perfect Core Annular Flow 9
3-1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
3-2 Velocity distributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

4 Numerical method 13
4-1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
4-2 Spatial discretization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
4-3 Time step restrictions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
4-4 Volume-of-Fluid Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
4-5 Geometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
4-6 Boundary conditions and initial conditions . . . . . . . . . . . . . . . . . . . . . 16

5 Single-Phase Flow in a 90◦ Bend 17
5-1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
5-2 Basic equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
5-3 Boundary conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
5-4 Single Phase flow in 90◦ bend . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

5-4-1 Axial velocity distribution . . . . . . . . . . . . . . . . . . . . . . . . . . 20
5-4-2 Contour plots for axial velocity distribution . . . . . . . . . . . . . . . . 21
5-4-3 Secondary flow velocity . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
5-4-4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

Master of Science Thesis S. M. Park



iv Table of Contents

6 Core-Annular Flow in a 90◦ bend 29
6-1 Geometry and boundary condition . . . . . . . . . . . . . . . . . . . . . . . . . 30
6-2 Core-annular flow in a 90◦ bend without buoyancy effect . . . . . . . . . . . . . 30

6-2-1 Core shape and position in the pipe . . . . . . . . . . . . . . . . . . . . 30
6-2-2 Axial and secondary flows . . . . . . . . . . . . . . . . . . . . . . . . . . 33
6-2-3 Pressure distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

6-3 Core-annular flow in a 90◦ bend with buoyancy effect . . . . . . . . . . . . . . . 36
6-3-1 Core shape and position in the pipe . . . . . . . . . . . . . . . . . . . . 36
6-3-2 Axial and secondary flows . . . . . . . . . . . . . . . . . . . . . . . . . . 37
6-3-3 Reduced pressure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

6-4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

7 Core-annular flow in 180◦ return bend 43
7-1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
7-2 Geometry and boundary condition . . . . . . . . . . . . . . . . . . . . . . . . . 44
7-3 Parameter values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
7-4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

7-4-1 Core shape and position in the pipe . . . . . . . . . . . . . . . . . . . . 46
7-4-2 Secondary flows . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
7-4-3 Axial velocity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
7-4-4 Pressure distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

7-5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

8 Recommendations 57

S. M. Park Master of Science Thesis



Acknowledgements

I would like to express my deep appreciation to prof.dr.ir. G.Ooms and dr.ir. M.J.B.M.Pourquie,
my research supervisors, for their patient guidance, useful advice and warm encouragement
for my research work. I would also like to thank dr.ir. G.H.Keetels for participating in my
graduation committee and for his time devoted to reading my thesis.

I really appreciate my family in South Korea for their support and encouragement to fin-
ish my study in the Netherlands.

Delft, University of Technology S. M. Park
June 24, 2014

Master of Science Thesis S. M. Park



vi Acknowledgements

S. M. Park Master of Science Thesis



Chapter 1

Introduction

In recent decades the amount of energy consumption has increased enormously. As a con-
sequence the usage of natural resources has dramatically increased and their depletion has
become a serious problem. Especially the depletion of light oils (low-viscosity oils) is seriously
influencing the world economy. To solve this problem one looks for a substitute resource to
replace the light oils. A possibility is to use heavy oils (high-viscosity oils). Due to the high
viscosity of this oil a large pumping power is required to transport it. A possibility to reduce
the pressure drop is to use water to lubricate the oil.

There are several types of flow patterns for oil-water transport through a pipeline. When
the gravity effect is strong a stratified flow is present, where the lighter liquid (usually oil) is
on top of the heavier liquid. In that case only a part of the pipe wall is in contact with the
water. A more promising flow pattern (from a pressure gradient point of view) is oil-water
core-annular flow. In that case the oil core is completely surrounded by a thin layer of water
that acts as a lubricating film, thus reducing the pressure drop very considerably.

The earliest study about the application of core-annular flow was by Issacs and Speed (1904).
They generated core-annular flow by using a riffle inside the pipe wall. Due to the centrifugal
force (caused by the riffle) the water was pushed to the wall, thus generating a core-annular
flow. Due to the buoyancy force on the oil core (caused by the density difference between oil
and water) the core had the tendency to drift upwards and foul the upper part of the pipe
wall. However when the centrifugal force due to the riffle was large enough, there remained
a water layer between the oil core and the pipe wall.

The first laboratory test of core-annulus flow was carried out by Clark (1948). He found
that when the density difference of the two liquids is small and the viscosity difference large
enough, the low-viscosity liquid encapsulates the high-viscosity one. Clark carried out tests
with heavy crude oil and water. Clark and Shapiro (1949) removed the buoyancy effect by
matching the density of the heavy oil with the water density by adding a substance to the
oil. Ooms et al.[1] showed that hydrodynamic forces are exerted on the oil core due to the
water flow in the annular layer, which counterbalance the buoyancy force on the core. It was
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2 Introduction

assumed that such forces were due to the movement of waves at the oil-water interface with
respect to the tube wall.

Generally the studies about core-annular flow have focused on straight vertical or horizontal
pipes. There are not many studies on core-annular flow in a curved pipe. However during
pipeline transport of heavy oil one has to deal with curved parts in the pipe. Compared to
core-annular flow in a straight pipe such a flow in a curved pipe is considerably more com-
plicated. The centrifugal force has a strong influence on the flow pattern, causing secondary
flows perpendicular to the pipe axis. Fouling is likely to occur easier than for a straight pipe.
Therefore we decided to study core-annular flow in a curved pipe in more detail.

The flow in a curved pipe is three dimensional. First we analyzed single phase flow in a
curved pipe flow to investigate the curvature effect on such a flow. A 90◦ bend was chosen as
model geometry with a curvature ratio of 1/6. We concentrated in particular on the shift in
the location of maximum axial velocity and on the secondary velocity components caused by
the centrifugal forces.

Thereafter we extended the study to core-annular flow in a 90◦ bend. We used the same
flow properties as applied by Ooms et al.[6] for a straight pipe. In the first calculation we
neglected the buoyancy effect to study in particular the effect of the centrifugal force on
core-annular flow in a bend. Thereafter we implemented the buoyancy effect to analyse the
simultaneous effect of both buoyancy and centrifugal force on core-annular flow in a bend.
The same curvature ratio as used for the single phase flow was applied. We studied in detail
the deformation of the core-annular interface, the axial velocity distribution, the secondary
flow development and the pressure distribution. In our curved core-annular flow study we
did not start with a wavy core-annular interface and the pipe length was too small to see the
development of such a wave.

After completing the study regarding the 90◦ bend we extended our study to a 180◦ return
bend as the last part of our study. We carried out this calculation as experimental results on
such a flow geometry were available in the open literature by Sharma et al.[9]. They studied
up-, down- and horizontal flow of the 180◦ return bend for a range of oil and water superficial
velocities. Information was given by them, for instance, about the flow pattern and pressure
drop. We selected a case from their study in the horizontal core-annular flow regime and
compared our result for the pressure gradient with their result.

For our study we used CFD (computational fluid dynamics). The capacity for fluid-flow
calculations has dramatically increased in recent decades, thereby making numerical analy-
sis of complicated flows (like core-annular flow) is possible. A range of commercial codes is
available nowadays, but their use is still expensive. However rather recently also open-source
codes have been developed, that are freely available. We have applied the OpenFoam code.
We used the OpenFoam version 2.1.1 package as our CFD code to investigate numerically
core-annular flow in a curved pipe. There exist many types of different solvers in OpenFoam
and we applied the multiphase solver using the VOF (volume of fluid) method which is called
’interFoam’.

The main purpose of this thesis is to understand the physical phenomena of core-annular
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3

flow in a curved pipe. In chapter 2 and chapter 3 we present the theory of multiphase flow
related to core-annular flow and PCAF (Perfect Core-Annular Flow), respectively. In chapter
4, single phase flow in the 90◦ bend is treated and we analyze in particular the secondary
velocity components and their influence on the flow development. In this chapter our com-
putation results are compared with FEM-calculations and experimental results given in the
literature. In chapter 5 core-annular flow in the 90◦ bend is treated. Two different simulations
have been carried out in this chapter to see the separate effects of the centrifugal force and
buoyancy force. In chapter 6 our study regarding core-annular flow in a return bend pipe is
presented. The flow properties in the different parts of the pipe are discussed.

Master of Science Thesis S. M. Park
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Chapter 2

Multiphase Flow

2-1 Introduction

Practical applications of fluid dynamics are often concerned with multiphase flows. In par-
ticular, the flow of two immiscible liquids occurs in a range of processes and equipments in,
for instance, the petroleum industry. In our study we limit ourselves to the two-phase flow
of oil and water through a pipeline. Accurate knowledge of the flow properties (such as flow
pattern, water hold-up and pressure gradient) is essential. Different flow patterns are possi-
ble: oil drops in water, oil slugs in water, stratified flow and core-annular flow. Because of
these various types of flow patterns the study of two-phase flow is more complicated than
of single-phase flow. In order to understand two-phase flows a knowledge of the relevant di-
mensionless parameters is helpful. For two-phase flows more dimensionless parameters exist
than for single-phase flow. In this chapter the dimensionless parameters of two-phase flows
are presented and discussed.

2-2 Flow pattern

In figure 2-2 the various types of multiphase flow patterns are presented: stratified flow, bub-
bly flow, slug flow, dispersed flow and core-annular flow. In stratified flow there is a complete
separation of oil and water. This flow pattern can be formed in a limited range of relatively
low flow rates where the stabilizing gravity force due to a density difference between the two
liquids is dominant. By increasing the water flow rate the oil core breaks up in large slugs
or drops. The oil drops are generated due to capillary instabilities in the presence of shear.
If the water flow rate is sufficiently large, the entire oil phase breaks up into small droplets
which results in an oil-in-water dispersion. If the dispersion is very stable, the flow is called
an emulsion.

In core-annular flow the oil core is completely surrounded by a layer of water, which acts
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6 Multiphase Flow

as a lubricating film. It is the most attractive flow pattern from a pressure drop reduction
point of view and therefore of interest for the pipeline transport of heavy (high-viscosity)
oil. Dependent on the location of the core centerline the flow pattern can be sub-divided
in a number of patterns: fully eccentric, eccentric and concentric core flow (see figure 2-1).
Which flow pattern occurs depends on a number of parameters, such as the density difference
between the oil and water, the superficial velocities of the liquids and the pipe diameter.
Concentric core-annular flow with a smooth oil-water interface is called perfect core-annular
flow (PCAF). The flow equations for a smooth core-annular flow (concentric and eccentric)
have been solved analytically. For the other flow patterns numerical calculations are needed.

PCAF can be considered the ideal flow pattern of core-annular flow. However, due to the
interaction between the two liquids PCAF does not often occur. Joseph et al [2] analysed
experimentally the various core-annular flow patterns in a horizontal pipe as a function of the
superficial velocities of oil and water (see figure 2-2).

As mentioned we will concentrate on core-annular flow in a horizontal curved pipe. For
a straight pipe theoretical models have been developed to understand the levitation force on
the core, which counterbalances the buoyancy force. In these models the presence of waves at
the interface is crucial. In this work we will not pay attention to this aspect of core-annular
flow.

Figure 2-1: The flow patterns of core-annular flow classified according to the centerline position
of the core [11]
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2-3 Dimensionless numbers 7

Figure 2-2: The various flow patterns of core-annular flow in a horizontal pipe as a function of
the superficial velocities [2]

2-3 Dimensionless numbers

In a multiphase flow five different forces play a role. With a characteristic length L and
characteristic velocity U the forces are given by:

-inertial force ρU2L2

-pressure force ∆PL2

-gravity force ρgL3

-viscous force µUL
-surface tension force σL

A dimensionless number is found by the ratio of two of these forces. Some familiar ex-
amples are given below:

Reynolds number:

Re = LρU

µ
(2-1)

Froude number:

Fr = U2

gL
(2-2)
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8 Multiphase Flow

Weber number:

We = LρU2

σ
(2-3)

For the specific problem of core-annular flow six dimensionless groups are relevant. These
dimensionless numbers are listed below. The indices o and w indicate the properties of oil
and water respectively.

Viscosity ratio:

m = µw
µo

(2-4)

Ratio of pipe radius and undisturbed oil radius:

a = R2
R1

(2-5)

Density ratio:

ζ = ρw
ρo

(2-6)

Ratio of driving forces in core and annulus:

K = (f∗ + ρog)
(f∗ + ρwg) (2-7)

Where f∗ is the driving pressure gradient.

Surface tension parameter:

J = σ∗R1ρo
µ2
o

(2-8)

where σ∗ is the surface tension at the interface of the two liquids.

Reynolds number for oil and water:

Rei = ρiV
∗

0 (0)R1
µi

(2-9)

where V ∗0 (0) is the centerline velocity for perfect core-annular flow and i = o, w
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Chapter 3

Perfect Core Annular Flow

3-1 Introduction

PCAF is the ideal flow pattern among the various core-annular flow patterns. In this thesis
we implemented PCAF to set up the initial condition inside the pipe and boundary condition
at the pipe inlet of core-annular flow in a curved pipe. To that purpose we used the velocity
profile for PCAF derived by Li and Renardy [4]. In this chapter the relevant analytical ex-
pressions for PCAF are given.

3-2 Velocity distributions

For the derivation of the velocity profile of PCAF Li and Renardy used the equation of motion
for an incompressible flow in cylindrical coordinates given by equation 3-1 to 3-3. Later on
when we discuss the flow in a curved pipe, a different version of the equation of motion is
used.

ρ

(
∂u

∂t
+ u

∂u

∂r
+ v

∂u

∂x

)
= −∂P

∂r
+ 1
r

∂(rSrr)
∂r

+ ∂Sxr
∂x
− Sθθ

r
+ Fr (3-1)

ρ

(
∂v

∂t
+ u

∂v

∂r
+ v

∂v

∂x

)
= −∂P

∂x
+ 1
r

∂(rSrx)
∂r

+ ∂Sxx
∂x

+ ρg + Fx (3-2)

∇ · u = 1
r

∂ru

∂r
+ ∂v

∂x
= 0 (3-3)

where Srr = 2µ(∂u/∂r), Sθθ = 2µ(u/r), Sxx = 2µ(∂v/∂x), Sxr = Srx = µ(∂v/∂r + ∂u/∂x).
The radial and axial components of the velocity are denoted by u and v respectively. Fr and
Fx are body forces which include the interfacial tension in the VOF formulation.
Starting from these equations Li and Renardy[1999] derived the following expressions for the
dimensionless velocity in the core and annulus.
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10 Perfect Core Annular Flow

Annulus:
V (r) =

[
a2 − r2 − 2(K − 1)log(r

a
)
]
/A (3-4)

Core:
V (r) = 1−mr2K/A (3-5)

A = mK + a2 − 1 + 2(K − 1)loga (3-6)

r has now been made dimensionless by means of R1. The velocities have been made dimen-
sionless by the centerline velocity V ∗0 (0), given by

V ∗0 (0) = (f∗ + ρ2g) R
2
1

4µ2
A . (3-7)

Hold-up ratio

The dimensionless flow rates can be calculated by integrating these velocity fields

Qo =2π
∫ 1

0
rV (r) dr

=2π
∫ 1

0

(
r −mr3K/A

)
dr

=2π
[1

2r
2 − mK

4A r4
]1

0

=π
(

1− mK

2A

)
(3-8)

and

Qw =2π
∫ a

1
rV (r) dr

=2π
A

∫ a

1

(
a2r − r3 − 2(K − 1)rln(r) + 2r(K − 1)ln(a)

)
dr

=2π
A

[1
2a

2r2 − 1
4r

4 − (K − 1)
(
r2ln(r)− 1

2r
2
)

+ r2(K − 1)ln(a)
]a

1

= π

A

(1
2a

4 + (K − 2)a2 + 1
2 − (K − 1) (1 + 2ln(a))

)
.

(3-9)

The dimensional flow rates can be obtained from

Q∗o = QoV
∗

0 (0)R2
1 (3-10)

and
Q∗w = QwV

∗
0 (0)R2

1 . (3-11)
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3-2 Velocity distributions 11

From these flow rates the superficial velocities can be calculated as,

u∗o,s = Q∗o
πR2

2
(3-12)

and
u∗w,s = Q∗w

πR2
2
. (3-13)

According to its definition the hold-up is then equal to

h = QoHw

QwHo
= (a2 − 1)Qo

Qw
. (3-14)

in which Ho and Hw are the volume fractions of oil and water.
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Chapter 4

Numerical method

4-1 Introduction

For our numerical analysis the package OpenFoam version 2.1.1 is applied. In order to
simulate two fluids of different densities the volume-of-fluid (VOF) method is an important
numerical method. We applied the interFoam solver in the package OpenFOAM which uses
the VOF method. OpenFoam uses the finite volume method (FVM) for representing the
relevant partial differential equation in the form of algebraic equations. Selecting the proper
numerical schemes is essential to solve the flow problem correctly. In this chapter the im-
portant numerical schemes, time step restriction and VOF method that we used are explained.

4-2 Spatial discretization

In the system directory of OpenFoam (fvSchemes dictionary) the relevant numerical schemes
for each term of the equations can be selected. For the time term we used the backward Euler
method (implicit method).

dy

dt
= f(t, y) (4-1)

yk+1 = yk + hf(tk+1, yk+1) (4-2)

The Gauss limited linear V method is used for the advection terms of the velocity component
and the Gauss van Leer for the advection term of the scalar.

For the pressure-velocity coupling the PIMPLE scheme is applied. In the OpenFoam ver-
sion 1.6 the PISO (pressure implicit with splitting of operators) scheme was used for the
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14 Numerical method

pressure-velocity coupling. However it cannot be used in OpenFoam version 2.1.1. PIMPLE
is the merged PISO-SIMPLE (semi-implicit method for pressure linked equations) scheme.
It is used for large time-step transient incompressible flows. The following linear solvers are
used: Preconditioned Conjugate Gradient for the pressure (tolerance is 10−10), and Precon-
ditioned Bi-Conjugate Gradient for velocity components (tolerance is 10−7).[21]

4-3 Time step restrictions

The Courant-Friedrichs-Lewy (CFL) is an important condition to ensure convergence. The
interFoam solver uses an adjustable time step based on the maximum Courant number in the
domain. J.C. Beerens [12] tested various Courant numbers for stability reason in his study
and he found that the Courant number needs to be as small as 0.02 to obtain accurate solu-
tion for core-annular flow. For our study we used the same Courant number. The Courant
number is defined by the equation 4-3.

Co = ∆t
n∑
i=1

ui
∆xi

(4-3)

Besides the Courant number the surface tension also influences the stability of the solver.
The surface tension plays a vital role in multiphase flows and it will impose a restriction on
the time step. The exact restriction imposed by the surface tension on the time step is given
by equation 4-4. [12]

∆t ≤ max(10τµ, 0.1τp) with τµ = µ∆x
σ

and τp =

√
ρ∆x3

σ
(4-4)

4-4 Volume-of-Fluid Method

In a VOF method an indicator function is used to determine the fraction of one of the fluids
in a cell. This indicator function, α1 is equal to 1 when the cell is completely filled with the
primary fluid, and equal to 0 when the cell is filled with the secondary fluid. Also intermediate
values can occur. Actual values of density and viscosity are calculated using this indicator
function for every cell via equation 4-5 and 4-6 respectively. The transport of this indicator
function is done with the advection equation 4-7. Combining these equations with the Navier-
Stokes equations (4-8) and mass conversation equation (4-9) gives the set of equations which
has to be solved.[3]

ρ = α1ρ1 + (1− α1)ρ2 (4-5)

µ = α1µ1 + (1− α1)µ2 (4-6)
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4-5 Geometry 15

∂α1
∂t

+∇ · (uα1) = 0 (4-7)

∂ui
∂t

+ uj
∂ui
∂xj

= −1
ρ

∂p

∂xi
+ ν

∂2ui
∂x2

j

+ gi (4-8)

∂ui
∂xi

= 0 (4-9)

Solving this system is not straightforward. Preserving the sharpness of the interface is also
very important for a volume-of-fluid method. In interFoam in contradiction to other state-
of-art codes no geometric reconstruction is made. The algorithm employs a compressive-flux
model called ’interfaceCompression’, which limits the diffusion of the indicator function. [19]

4-5 Geometry

We studied two different cases for the computation domain: the 90◦ and 180◦ bend flow.
For the 90◦ bend we studied single and core-annular flow and for the 180◦ return bend only
core-annular flow. The curved flow does, of course, not fulfill the condition of axi-symmetry,
so a three-dimensional flow is present.

J. C. Beerens evaluated the performance of different numbers of grid points in his master
thesis. He tested three different meshes, 64 × 64, 128 × 128, and 256 × 256, and different
time steps. He found that 128 × 128 grid cells is required with Co = 0.02 to achieve the same
results for the growth rate as found from linear stability theory for axisymmetric flows. [12].

Figure 4-1: Computation domain, a) 90◦ curved bend, b) 180◦ curved bend

Our calculations for a curved pipe are not axisymmetric, but are three-dimensional. So we
could not afford the same number of grid cells in radial direction as applied by Beerens be-
cause of computation time. In the axial flow direction of the pipe we used an equidistant,
orthogonal and non-stretched grid. In case of a core-annular flow we applied in the radial
direction a structured mesh for the annulus and core. For the single-phase calculations we
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16 Numerical method

used 40, 40, and 80 grid cells in radial, circumferential, and axial flow direction, respectively.
For the core-annular flow in the 90◦ bend 114, 88, and 91 grid cells were applied in radial,
circumferential, and axial flow direction. (For the radial direction we used 44 structured grid
cells in the annulus and 48 structured grid cells for the core with double side aspect ratio of
15%. At the center of the core 22 structured grid cells were used). For the core-annular flow
in the 180◦ return bend we used 86, 80, and 103 grid cells in radial, circumferential, and axial
flow direction. (For the radial direction we used 36 and 30 structured grid cells in annulus
and core, respectively. The aspect ratio was 7% at the wall side and 5% at the center. At
the center of the core 22 structured grid cells were used). Due to the movement of the core
towards the pipe wall we implemented more closely packed grid cells near the wall than in
the core region.

4-6 Boundary conditions and initial conditions

The boundary conditions for the domain are as follows. On the pipe wall a no-slip boundary
condition was imposed. On the inflow cross section of the pipe the groovy boundary condition
was imposed for the core-annular inlet velocity profile and zero velocity gradient at the outlet.
At the outlet a fixed value was imposed for the reduced pressure. A back-flow occurred for
a zero-gradient condition. The initial velocity distribution was set equal to the analytical
solution of Li and Renardy for perfect core-annular flow. No initial wave at the core-annular
interface was applied. In our study we did not pay attention to the possible wave development
at the interface.
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Chapter 5

Single-Phase Flow in a 90◦ Bend

5-1 Introduction

Compared to the flow in a vertical or horizontal straight pipe the physical phenomena of
the flow in the curved pipe are significantly different. The curved-pipe flow is influenced by
gravity and centrifugal force while a straight-pipe flow is only influenced by gravity effects.
Due to the centrifugal force a secondary flow motion develops when the liquid flows through
the curved area of the pipe. The study of curved-pipe flow is quite important for all kind
of applications, such as flow in a heat exchanger, oil transport through a pipe, blood flow
through a vessel, etc. The purpose of our study is to investigate the influence of a pipe cur-
vature on core-annular flow. In this chapter single-phase curved pipe flow is studied. In the
next chapters core-annular flow in a curved pipe is investigated.

In order to make a balance between the pressure gradient and the centrifugal forces, the
slow liquid particles should pass through the inner-curve part of the curved pipe, while the
fast liquid passes through the outer-curve part. This causes the development of secondary
flows perpendicular to the pipe axis in the curved pipe region. At the center line of the pipe
cross section the secondary velocity flows from the inner to the outer curve, and returns back
from the outer curve to the inner one along the pipe wall. In this way two vortices develop in
the plane of the pipe cross section. These vortices push the maximum axial velocity toward
to the outer curve of the pipe.

To study curved tube flow two dimensionless parameters are quite important: the curva-
ture ratio (δ) and Dean number (κ). By implementing a toroidal coordinate system to the
Navier-Stokes equation these two dimensionless parameters are found.

δ = a

R
(5-1)

κ = Re
√
δ (5-2)
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18 Single-Phase Flow in a 90◦ Bend

The curvature ratio is the ratio of the pipe radius a (in earlier chapters called R2) and the
radius of the curved pipe, R. The Dean number is the dimensionless product of the Reynolds
number and square root of the curvature ratio. In addition it can be expressed as the ratio of
the square root of the product of the convective inertial forces and centrifugal forces to the
viscous forces.

For the simulation of single-phase curved pipe flow three Reynolds numbers and Dean num-
bers have been used: Re = 100, 300 and 500, κ = 41, 122 and 204. By using different Reynolds
numbers and Dean numbers it was possible to study the secondary flow and its influence on
the total flow.

5-2 Basic equations

In order to derive the momentum equation for a curved-pipe flow the Navier-Stokes equation
must be written in toroidal co-ordinates.

Figure 5-1: Toroidal co-ordination

In figure 5-1, u’, v’ and w’ are dimensionless velocities in a cross-section of the pipe in the
radial, circumferential and axial direction respectively. θ is curvature angle of the curved pipe
and α is the angle of a liquid particle located in the cross-section of the pipe. We introduce
the following dimensionless quantities:

r = r′

a
, s = Rθ

a
, t = W 0t

′

a
, u = u′

W 0
, v = v′

W 0
, w = w′

W 0
, p = p′

ρW 0
2 (5-3)

where W 0 is averaged axial velocity in the pipe and the Reynolds number can be formulated
as the ratio of inertial force and viscous force, aW0

ν . Using these quantities the equations of
motion and continuity equation for an incompressible liquid in a toroidal coordinate system
are given by [18]
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radial momentum

∂u

∂t
+ 1
rB

[
∂

∂r
(rBu2) + ∂
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(Buv) + ∂

∂θ
(δruw)−Bv2 − δr cos αw2

]
= −∂p
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+ 1
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[
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{
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)
+ ∂

∂α
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∂θ

(
δ2r

B
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− 1
r2

(
2 ∂v
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+ u

)
+ δ sin αv
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)] (5-4)

circumferential momentum

∂v

∂t
+ 1
rB

[
∂

∂r
(rBuv) + ∂

∂α
(Bv2) + ∂

∂θ
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)] (5-5)

axial momentum

∂w

∂t
+ 1
rB
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∂
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)] (5-6)

continuity
∂

∂r
(rBu) + ∂

∂α
(Bv) + ∂

∂θ
(δrw) = 0 (5-7)

(*B = 1 + δr cos α)

5-3 Boundary conditions

We solved the single phase flow equations numerically using the OpenFoam code for the 90◦
bend shown in figure 5-2. The curvature ratio of the curved bend is δ=1/6. For the numerical
solution we needed the boundary conditions at the inlet, outlet and pipe wall. The inlet is
vertical and the flow acts against gravity in that part. At the wall the no-slip condition holds.
The outlet part is horizontal. The fully developed parabolic velocity profile is imposed at the
inlet and initial velocity condition, while the natural (zero-gradient) outflow condition is used.

Master of Science Thesis S. M. Park



20 Single-Phase Flow in a 90◦ Bend

5-4 Single Phase flow in 90◦ bend

We selected five cross-section areas at θ = 0, π/8, π/4, 3π/8 and π/2 in the 90◦ bend to
analyse the flow patterns in these cross-sections of the pipe (see figure 5-2). We selected three
cases of Reynolds number, Re = 100, 300 and 500, and Dean number, κ = 41, 122 and 204.
We paid special attention to the secondary flows and the position of the point of maximum
axial velocity. The results are compared with finite-element method (FEM) calculations for
Re = 100, 300 and 500 of Vosse et al [7] and with experimental data at Re = 300 derived by
Bovendeerd [7].

Figure 5-2: Geometry of 90◦ bend. Indicated angles are the location of cross sections for analysis

5-4-1 Axial velocity distribution

In figure 5-3 the axial velocity distribution in a number of pipe cross-sections is shown for
three values of the Reynolds number. A comparison is made with the numerical results of
van de Vosse and with experimental results of Bovendeerd. As can be seen in figure 5-3 the
agreement is good. At the inlet of the pipe the location of the maximum velocity is at the
pipe centerline. However in the curved part of the pipe this location starts moving to the
outer-curve part of the pipe. This effect depends on the Reynolds number. With increasing
Reynolds number the shift in the location of maximum velocity becomes stronger.

The deformation of the axial velocity distribution from the parabolic profile in the curved
part of the pipe depends also on the Reynolds number. At a Reynolds number of 100 the
deviation from the parabolic profile remains limited. However for values of the Reynolds
number of 300 and 500 the velocity distribution deviates considerably from the parabolic
profile. This is in accordance with the results for the location of maximum axial velocity.
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5-4 Single Phase flow in 90◦ bend 21

Figure 5-3: Axial velocity at Re = a) 100, b) 300 and c) 500. The results presented as the thin
black line of the figure were derived by Vosse et al. (a and c)[7] and by Bovendeerd et al.(b) [8]
(I: inner curve, O: outer curve)

5-4-2 Contour plots for axial velocity distribution

In figure 5-4 contour plots are given for the axial velocity distribution in pipe cross-sections
for three values of the Reynolds number and five consecutive cross-sections in the curved part
of the pipe. In the top half of the plots the numerical and experimental results of respectively
van de Vosse and Bovendeerd are shown, In the bottom half our numerical results are shown.
As can be seen the agreement is good. Also these plots show the considerable deformation of
the velocity profile in the curved part of the pipe and the shift in the location of maximum
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22 Single-Phase Flow in a 90◦ Bend

axial velocity. This effect becomes stronger with increasing Reynolds number.

Figure 5-4: Axial velocity contour maps; a) Re =100, b) 300 and c) 500, (I: inner curve, O:
outer curve). The results presented in the upper half of the figure were derived by Vosse et al. (a
and c)[7] and by Bovendeerd et al.(b) [8] Our numerical results are given in the bottom half.

5-4-3 Secondary flow velocity

In order to analyse the physical characteristic of the flow field more in detail we also paid
attention to the secondary velocity components perpendicular to the pipe axis. The results
are shown in figure 5-5 at the end of this chapter. Enlarged versions of the secondary flows
are given in figure 5-6, figure 5-7 and figure 5-8 at the end of this chapter. At the inlet to the
pipe no secondary flows are observed. However in the curved part of the pipe secondary flows
develop. The highest secondary flow is observed at θ = π/4. At the centreline the flow is from
the inner-curve part of the pipe to the outer-curve part. The flow then continues from the
outer-curve part downward along the pipe wall back to the inner-curve part. So two vortices
are present. At the higher Reynolds number (Re = 300 and 500) the location and shape of
vortices are rather similar to those for the low Reynolds number case (Re = 100). So it seems
that the Reynolds number does not have a strong influence on the shape and location of the
vortices, although with increasing Reynolds number the location of vortices shifts slightly
more to the inner-curve part of the pipe. However the magnitude of the secondary flow
velocity is stronger at higher Reynolds numbers than at lower value of the Reynolds number.
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5-4 Single Phase flow in 90◦ bend 23

5-4-4 Conclusion

In this chapter we studied the single-phase flow of liquid through a 90◦ bend at three values of
the Reynolds number (100, 300, and 500). We compared our numerical results with those of
van de Vosse et al. and with the experimental data of Bovendeerd et al. Our results compared
well with the literature data. Special attention was given to the axial velocity distribution and
the shift of the maximum axial velocity due to the curvature. The parabolic profile changes
its shape in the curved part of the pipe. This deformation is strongest at the highest value of
the Reynolds number. A secondary flow perpendicular to the pipe axis occurs in the bend.
It flows upward through the centre of the pipe and downward again along the pipe wall. The
strength of these vortices increases with increasing Reynolds number, but their shape remains
nearly the same.

Master of Science Thesis S. M. Park



24 Single-Phase Flow in a 90◦ Bend

Figure 5-5: Secondary velocity: a) Re = 100, b) 300 and c) 500. The results presented in the
upper half of the figure were derived by Vosse et al (a and c)[7] and by Bovendeerd et al (b) [8].
The full cross-section results are our numerical simulations.
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Figure 5-6: Enlarged version of secondary flows, Re = 100
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26 Single-Phase Flow in a 90◦ Bend

Figure 5-7: Enlarged version of secondary flows, Re = 300

S. M. Park Master of Science Thesis



5-4 Single Phase flow in 90◦ bend 27

Figure 5-8: Enlarged version of secondary flows, Re = 500
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Chapter 6

Core-Annular Flow in a 90◦ bend

After our study of single-phase flow through a 90◦ bend we extended it to core-annular flow
in a 90◦ bend. Much research has been carried out on core-annular flow through a straight
(vertical or horizontal) pipe, but not much on core-annular flow in a curved pipe. For the case
of core-annular flow in a straight pipe special attention was given to the formation of waves
at the core-annular interface. In our study we do not pay attention to this phenomenon. In
case of core-annular flow through a straight pipe periodic boundary conditions can be applied
to the inlet and outlet of the pipe. In the case of a curved pipe that is no longer possible. So
inlet and outlet conditions have to be supplied. With periodic boundary conditions the length
of the computation domain can be restricted to a rather short pipe length and the calculation
can be continued until convergence has been reached. With inlet and outlet conditions a long
pipe length is needed for the computation domain before convergence is reached. The flow will
also not remain axi-symmetric, so a three dimensional computation domain has to be applied.
These facts make the computation time much longer then for the case that periodic boundary
conditions can be used. In this chapter we give results for the change in the shape of the core
due to the curvature effect (centrifugal force) and for the secondary flow development. First
we neglect the influence of the buoyancy force on flow due to the density difference between
the core liquid (oil) and the annular liquid (water). Next we included the gravity effect and
studied its influence on core-annular flow.
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30 Core-Annular Flow in a 90◦ bend

6-1 Geometry and boundary condition

Figure 6-1: Geometry for core-annular flow in a 90◦ bend, Indicated angles are the location of
cross sections for analysis

We used the same 90◦ bend as for the single-phase flow in the foregoing chapter (see figure
6-1). The pipe radius was R2 =0.00476 m. As velocity distribution at the inlet we used the
analytical expression of Li and Renardy for a fully developed velocity profile. Close to the
pipe wall is the thin layer of water, where the largest gradients in velocity can be expected.
In that region the computation mesh was finer than at the pipe center. In total 412412 cells
were used; 4532 in cross-sectional direction and 91 in the axial direction.

6-2 Core-annular flow in a 90◦ bend without buoyancy effect

Ooms et al[6] already studied horizontal core-annular flow in the straight pipe without buoy-
ancy effect. Here we will use the same parameters as used by Ooms et al[6], but this time
for the flow through a 90◦ bend. By neglecting the buoyancy effect we can concentrate
on the influence of the centrifugal force on the flow in the curved part of the pipe. The
physical parameters are given by ρo = 905kg/m3, ρw = 995kg/m3, µo = 0.601kg/m · s,
µw = 0.001kg/m · s, σ∗ = 8.54 ∗ 10−3kg/s2, R1 = 0.00372m and f∗ = 150 kg/m2, which gives
the following values of the relevant dimensionless groups

m = 0.00166, a = 1.28, ζ = 1.10, K = 1, J = 7.96∗10−2, Re1 = 1.85, κ1 = 0.755 , (6-1)

in which κ1 is the Dean number. As mentioned we assumed that at the inlet a smooth core-
annular flow velocity distribution according to Li and Renardy is present. This distribution
was also supposed to be present inside the pipe at the start of the calculation.

6-2-1 Core shape and position in the pipe

We first studied the location of the core inside the pipe at a number of pipe cross-sections
as function of time. In particular we were interested to find out, whether fouling of the pipe
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wall occurred due to touching of the wall by the oil core. In figure 6-2 presented on next
page the core position inside the pipe is shown for a number of cross-sections and time steps.
More detailed information about the core position is given in the bottom part of the figure.
It can be seen that the core position is quickly established in time. At the inlet the core has
an axisymmetric shape. However further down the pipe the core starts to deform and move
to the outer-curved part of the pipe. However it never touches the wall. As we will show
later this is due to the pressure build-up in the annular layer which pushes the core from the
wall. As oil has a lower density than water we expected that the core would move to the
inner-curved part of the pipe. In order to explain this surprising phenomenon we studied the
secondary flows perpendicular to the pipe axis.
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32 Core-Annular Flow in a 90◦ bend

Figure 6-2: Different position of the oil core inside the pipe. Red and blue colors in the contour
map indicate oil and water, respectively. (I: inner curve, O: outer curve)
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6-2-2 Axial and secondary flows

In the case of single-phase flow we already found the development of secondary flows perpen-
dicular to the pipe axis in the curved part of the pipe. This is also the case for core-annular
flow, but this time the situation is more complicated. We start with a discussion of the axial
velocity distribution in the pipe. In figure 6-3 this distribution is given for a number of axial
positions in the bend. At the inlet the core velocity is nearly constant due to the large vis-
cosity of the oil compared to the water viscosity. In the water annulus the velocity decreases
quickly from the core velocity to zero velocity at the pipe wall. However in the curved part of
the pipe the core moves to the outer wall and the core velocity is no longer constant. At the
outer-curved part of the pipe the velocity becomes larger than at the inner-curved part. The
highest axial velocity was found at θ = π/4: Vmax = 0.35 m/s. From the velocity distribution

Figure 6-3: Axial velocity distribution for core-annular flow in a bend. (I: inner curve, O: outer
curve)

a rough estimate can be made of the centrifugal force distribution by taking the ratio of the
square of the axial velocity and the radius of the pipe curvature. The result is given in Figure
6-4. The centrifugal force is largest at the outer-curved part of the pipe. The change in the

Figure 6-4: Centrifugal force distribution
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34 Core-Annular Flow in a 90◦ bend

position of the maximum axial velocity and the core deformation are more clearly visible in
the axial velocity contour map (see figure 6-5). At θ = 0 the axial velocity profile of the core
is almost constant due to the high viscosity of the oil compared to the water viscosity, while
in the annulus the velocity decreases nearly linearly to zero at the wall. Going in downstream
direction the core starts deforming and the axial velocity profile in the annulus at the inner-
curved part of the pipe is no longer linear. Due to the shear at the core-annular interface
secondary flows could also be expected inside the core. However they were not observed, very
likely due to the high viscosity of the oil compared to the water viscosity.

Figure 6-5: Axial velocity contour map and axial velocity distribution at t = 0.5 s (I: inner curve,
O: outer curve)

Figure 6-6: Secondary flows of core-annular flow at t = 0.5 s (I: inner curve, O: outer curve, T:
Top of the cross section, B: Bottom of the cross section)

In figure 6-6 the secondary flows are shown that developed inside the water annulus. The re-
circulating flow in the annulus is upward along the core-annular interface and downward along
the pipe wall. Of course, at the inlet the secondary flow does not exist. However when the
flow enters the curved part of the pipe the secondary flow appears. At first it is rather weak,
but it increases in strength on its way to the exit. The highest secondary flow is observed
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at θ = π/8. It pushes the core and therefore also the position of maximum axial velocity in
the direction of the outer-curved part of the pipe. As can be seen the core also deforms on
the influence of the secondary flow. The cross-sectional area for the vortices increases in the
downstream axial direction. Enlarged versions of the secondary flows are shown in figure 6-16
at the end of the chapter.

6-2-3 Pressure distribution

Although the core moves under the influence of the centrifugal force to the outer-curved part
of the pipe, it does not touch and foul the pipe wall. This is caused by the pressure build-up
at that part of the pipe, as can clearly be seen in figure 6-7 and figure 6-8. At the inlet
of the pipe the pressure in the core is slightly higher than in annulus due to the interfacial
tension. In downstream direction the pressure distribution changes strongly. The pressure
at the outer-curved part of the pipe increases, whereas it decreases at the inner-curved part.
So a net force is exerted on the core, pushing it away from the outer-curved part. This is
the reason that fouling does not occur, although the annular film at the outer-curved part
becomes rather thin. It is very well possible that at other flow conditions fouling takes place,
but that requires a further study.

Figure 6-7: Pressure distribution of core-annular flow at t = 0.5 s (I: inner curve, O: outer curve)

Figure 6-8: Pressure distribution of the two phase flow at t = 0.5 s without gravity effect. (I:
inner curve, O: outer curve)
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36 Core-Annular Flow in a 90◦ bend

6-3 Core-annular flow in a 90◦ bend with buoyancy effect

In the preceding section we presented core-annular flow without buoyancy effect to study the
influence of the centrifugal force on core-annular flow in a curved pipe. In this section we
present the same study but now with buoyancy effect. The 90◦ bend is the same as in the
foregoing case. We assume that the bend lies in a horizontal plane and that the gravity force
is perpendicular to it, so perpendicular to the axial flow direction (see figure 6-9). Apart from
the gravity force the flow conditions are the same as in the previous case.

Figure 6-9: Geometry of the case with buoyancy effect

6-3-1 Core shape and position in the pipe

In figure 6-10 we give a sketch of the forces acting on the core. The centrifugal force is in the
x-direction and the gravity force in the z-direction. So the combined force is no longer in the
x-direction, but makes an angle with it.

Figure 6-10: Sketch of the combined force due to the centrifugal force and gravity force

For that reason the core shape and position in the pipe is different than for the case without
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Figure 6-11: Different core shape and position of core-annular flow in a bend with gravity force.
Red and blue color in contour map is oil and water, respectively. (I: inner curve, O: outer curve)

gravity force. The core shape and position as function of time for different cross-sections
along the pipe are shown in figure 6-11. At the inlet the core is axisymmetric. However in
the curved part of the pipe it moves slightly upwards and in the direction of the outer-curved
part of the pipe and the core shape changes significantly. This is again due to the action of
the secondary flows (to be discussed). It can be seen that the equilibrium position of the core
in the pipe is quickly established. At θ = π/4 there is no significant change in the shape and
position of the core. Fouling was again not observed.

6-3-2 Axial and secondary flows

Axial velocity

Axial velocity contour plots and axial velocity distributions for different cross-sections along
the pipe are given in figure 6-12. The core velocity is at the inlet almost constant due to the
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large viscosity of the core liquid (oil) compared to the viscosity of the annulus liquid (water).
However due to the movement of the core in the direction of the outer-curved part of the
pipe, the shear at the core-annular interface increases significantly at that part of the pipe
and so the velocity distribution changes also. It can be seen that the velocity distribution
is different from the case without buoyancy. This is due to the fact that the core moves to
the outer-curved part of the pipe in a direction that makes an angle of about 30◦ with the
x-direction. The axial velocity is again highest close to the thinnest part of the annulus.

Secondary flows

In figure 6-13 the secondary flow and the iso-axial velocity contour lines are shown. At
the inlet no secondary flows are present. However with increasing distance in axial direction
secondary flows develop and the highest secondary flow is observed at θ = π/8. At first two
rather weak vortices appear at the top and bottom side of the core. Further down in axial
direction a peculiar phenomenon occurred: the vortex at the top side becomes weaker and
the one at the bottom side increases in strength. Finally only the bottom side vortex remains
and becomes still stronger. The flow at the core-annular interface is upward to the outer
curve of the pipe and downward along the pipe wall. As in the case without gravity force the
secondary flow pushes the core to the outer curve of the pipe and causes the rather strong
deformation of the core shape. Enlarged versions of the secondary flows are shown in figure
6-17 at the end of the chapter.

Figure 6-12: Axial velocity contour plots and axial velocity distributions for core-annular flow in
a bend with gravity effect (I: inner curve, O: outer curve)
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Figure 6-13: Secondary flows and iso-axial velocity contour lines for core-annular flow in e 90◦

bend with gravity effect. (I: inner curve, O: outer curve, T: Top of the cross section, B: Bottom
of the cross section)

6-3-3 Reduced pressure

In figure 6-14 and figure 6-15 the reduced pressure distribution and reduced pressure contour
plots are given at several cross-sections of the pipe. The reduced pressure is the pressure
without the gravity contribution. The result is rather similar to the one for the case without
gravity effect, although due to the combined action of centrifugal force and gravity force the
pressure is slightly larger. The highest values of the pressure are found at the upper-curved
part of the pipe. This is due to the secondary flow, that pushes the core in the upper-curved
part. The highest pressure is found at the curvature angle θ = π/8. The large pressure
built-up at the upper-curved part of the pipe is responsible for the fact that the core does not
touch and foul the pipe wall. The difference in pressure between the core and the annulus
which is clearly visible in figure 6-15.

Figure 6-14: Reduced pressure distribution at t = 0.5 s at several cross-sections of the pipe
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Figure 6-15: Reduced pressure contour plots at t = 0.5 s at several cross-sections of the pipe

6-4 Conclusion

In this chapter we studied two cases of core-annular flow in a bend: first without gravity effect
and then with gravity. In this way we could separate the effect of the centrifugal force and the
gravity force on the flow. We found that secondary flows occurred in the annular layer which
push the core to the outer-curved part of the pipe. Without gravity the movement of the core
to the wall is symmetric with respect to the x-axis; for the case with gravity effect the core
movement is slightly upward and no longer symmetric with respect to the x-axis. Without
gravity there are two vortices in the annular layer that are also symmetric with respect to the
x-axis. With gravity a peculiar effect occurs: the top side vortex becomes weaker in the axial
flow direction and finally disappears, whereas the bottom side vortex survives and becomes
stronger. This causes the non-symmetric movement of the core with respect to the x-axis.
At the outer-curved part of the pipe a high pressure build-up takes place. Therefore the core
remains free from the pipe wall and does not foul it.
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Figure 6-16: Enlarged version of secondary flow without buoyancy effect. The black circle line
is interface between oil and water. (I: inner curve, O: outer curve)
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Figure 6-17: Enlarged version of secondary flow with buoyancy effect. The black circle line is
interface between oil and water. (I: inner curve, O: outer curve)
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Chapter 7

Core-annular flow in 180◦ return bend

7-1 Introduction

In order to extend our study of core-annular flow in a curved pipe we studied also the flow in
a 180◦ return bend. We compared our results with the experimental data of Sharma et al [9],
who studied core-annular flow in a 180◦ return bend in up-flow, down-flow and horizontal flow
with a curvature ratio of (R/R2) = 16.67 and pipe radius of R2 = 0.006 m. They studied a
range of superficial oil and water velocity, u∗s,o and u∗s,w, that belonged to a range of two-phase
flow patterns such as droplet flow, core-annular flow, plug flow and distorted plug flow (see
figure 7-1). From this range of superficial velocities we compared our predictions with the
experimental flow for u∗s,o = 0.5m/s and u∗s,w = 0.5m/s that belonged to core-annular flow.
In the experiments the straight parts at the inlet and outlet of the return bend were 340 times
the pipe diameter. So very likely a wave was present at the core-annular interface during the
experiments. Because of computation time such inlet and outlet lengths were not possible
in our simulations. We choose an inlet and outlet length of 5 times the pipe diameter. We
assumed a smooth core-annular interface; no waves were present.

Figure 7-1: Flow pattern at different section and superficial velocity region, a) bend flow, b)return
flow [9]
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44 Core-annular flow in 180◦ return bend

7-2 Geometry and boundary condition

In the figure 7-2 the geometry of 180◦ return bend is presented. The radius of the curved
bend, R, is 0.10002 m and the radius of the tube, R2, is 0.006 m. The length of the straight
pipe (at the inlet and outlet) is 0.06 m. The number of grid cells in the cross section is 3040,
in the flow direction 103 grid cells are used. As mentioned the pipe lies in a horizontal plane,
so the gravity force acts in a perpendicular direction to the pipe. The no-slip condition holds
at the pipe wall. The initial velocity profile at the inlet was assumed to be given by the Li
and Renardy [4] velocity profile. This initial profile was also assumed to be present in the
internal flow region of the pipe at the start of the calculation.

Figure 7-2: Geometry of 180◦ return bend

7-3 Parameter values

We applied the same fluid properties as used by Sharma et al. in their lubricating-oil ex-
periments (ρo = 960kg/m3, µo = 0.22Pa · s, σo = 0.051N/m) and water (ρw = 999kg/m3,
µw = 0.001Pa · s, σw = 0.072N/m).

In order to implement the initial core-annular flow profile of Li and Renardy into the flow
the core diameter and pressure gradient were required. To calculate the core diameter we
followed the empirical correlation proposed by Arney et al. [1993] for the straight pipe at the
inlet. (This correlation was also used by Sharma et al [9]). According to this correlation the
volume fraction of oil and water, Vo and Vw are given by

Vw = β[1 + 0.35(1− β)] (7-1)
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Vo = 1− Vw , (7-2)

in which β is given by

β = Qw
Qo +Qw

=
u∗s,wπR

2
2

u∗s,oπR
2
2 + u∗s,wπR

2
2

(7-3)

where Qo and Qw are the volumetric flow rate of oil and water respectively. From equation
7-1, 7-2 and 7-3 we found that β = 0.5 and Vw = 0.5875. Using

Vw = Aw
A

= 1−
(
R1
R2

)2
, (7-4)

where A is cross section area of the pipe and Aw is the cross section area of the water flow,
the core diameter can be calculated R1 = 0.003854 m. Then the mixture Reynolds number
with the mixture density, ρm, mixture viscosity, µm, and mixture velocity, Um can be found
from

Rem = DUmρm
µm

, (7-5)

in which
ρm = ρoαo + ρw(1− αo) (7-6)

and
µm = 1/

(1− β
µo

+ β

µw

)
(7-7)

and
Um = u∗s,w + u∗s,o (7-8)

The following value was calculated Rem = 5897.

From figure 7-3 of Sharma on next page the pressure gradient in the straight pipe at the
inlet can be found. The result was ∆P/L = 1000 Pa/m.

Figure 7-3: Pressure gradient as a function of mixture Reynolds number for the experiments by
Sharma et al. The square with red color is the location of the mixture Reynolds number computed
from the superficial oil velocities we selected, u∗

s,o = 0.5m/s and u∗
s,w = 0.5m/s. The green

triangle is the location of recalculated mixture Reynolds number from the equation 3-4 and 3-5
to compare between Sharma, and Li and Renary [9]
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46 Core-annular flow in 180◦ return bend

As the core radius and pressure gradient at the inlet were now known we could calculate
the initial velocity profile using the expression of Li and Renardy for a smooth core-annular
flow. Also the superficial velocities for oil and water could be calculated. These superficial
velocities were different (much larger) from the ones that we originally selected (u∗s,o = 0.5m/s
and u∗s,w = 0.5m/s). We considered the possible reasons for this discrepancy. Turbulence in
the annular water layer was not likely the cause for the discrepancy, as the Reynolds number
of the water flow was too low for turbulence to occur. Waves at the core-annular interface
could be the reason, as in earlier studies we found that these waves have a significant influence
on the pressure gradient. However, we did not study this possibility in more detail. In order
to get superficial velocities that are closer to the originally chosen ones we adapted the pres-
sure gradient in the Li and Renardy formula. For a pressure gradient of ∆P/L =250Pa/m
we found the following values for the superficial velocities u∗s,w = 0.3882 m/s and u∗s,o =
0.5462 m/s. From these new superficial velocities we recalculated mixture Reynolds number
and found Rem = 4595. According to figure 7-3 we then found ∆P/L =800Pa/m, still much
larger than the one used for the Li and Renardy velocity profile. We continued our calculation
with ∆P/L =250Pa/m and R1 = 0.003854 m.

We realize that our comparison with the experimental data has become uncertain due to
the mentioned difficulties. Again the reason could be the water turbulence or the waves at
the core-annular interface. Using the velocity at the centerline of the core and the thickness
of the annular layer we find for the Reynolds number in the annulus the value of Re2 = 1385.
It is not likely that this explains the discrepancy that we found.

7-4 Results

In our simulation we found fouling (the core touches the pipe wall) in the straight pipe at the
pipe exit. Fouling is observed only after 0.6 seconds. In the straight pipe at the inlet and in
the curved part of the pipe fouling is not observed at all time steps.

7-4-1 Core shape and position in the pipe

In the figure 7-4, 7-5 and 7-6 the shape and position of the core in the different parts of
the return bend are presented. In the straight part at the inlet the flow remains a perfect
core-annular flow at all times. The buoyancy effect is obviously not relevant in that part. In
the curved part of the pipe the core moves to the outer-curved part of the pipe and starts
deforming. It moves also slightly upwards due to the buoyancy effect. As mentioned fouling
is not observed at the inlet and the curved part of the pipe. However in the straight pipe at
the exit fouling is observed from time step 0.6 second. At the cross section at y = 0.04 and
0.05 fouling occurs, but disappears again. It is not clear, whether that will also take place at
the other cross-sections and also further down the straight pipe at the exit. Figures 7-4, 7-5
and 7-6 are presented on the next page.
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Figure 7-4: Core shape and position in the straight pipe at the inlet. The red and blue color
indicate oil and water, respectively. y = 0 is at the inlet of the straight pipe. y=0.5 is at the
transition of the straight pipe and the curved part of the pipe. (I: inner curve, O: outer curve)
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48 Core-annular flow in 180◦ return bend

Figure 7-5: Core shape and position in the curved part of the pipe. The red and blue color
indicate oil and water, respectively. θ = 0 is at the inlet and θ = π is at the outlet of the curved
part of the pipe. Return flow occurs from θ = 5π/8 and the location of the inner and outer curve
is opposite to that at the inflow (I: inner curve, O: outer curve)
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Figure 7-6: Core shape and position in the straight part of the pipe at the exit. The red and
blue color indicate oil and water, respectively. y = 0.5 is at the transition between the curved
part and the straight part. y = 0 is exit of the straight part of the pipe. (I: inner curve, O: outer
curve)
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50 Core-annular flow in 180◦ return bend

7-4-2 Secondary flows

In the straight pipe at the inlet no secondary flows occur. However in the curved part of the
pipe secondary flows are present. In the figure 7-7 these secondary flows are shown. Enlarged
versions of these figures are given in figure 7-15 and figure 7-16. As can be seen the vortices
are stronger in the curved part of the pipe close to the inlet than in the part close to the
exit. The strongest secondary flow is observed at θ = π/8. Vortices are clearly visible at
the θ = π/8, π/4 and 3π/8. This fact can be understood from the axial velocity profile.
Compared to the curved part at the inlet the axial velocity in the curved part at the outlet
is small. As a consequence the centrifugal force is also smaller and the vortices are weaker.

Figure 7-7: Secondary flow in the curved part of the pipe. (I: inner curve, O: outer curve, T:
Top of the cross section, B: Bottom of the cross section)

7-4-3 Axial velocity

In the figure 7-8 the axial velocity profile in the straight part of the pipe at the inlet is given.
No significant velocity change is observed. The core velocity is nearly constant due to the
large viscosity compared to the water viscosity, and the water velocity decreases quickly from
the interface between the core and the annulus to the wall.

In the curved part of the pipe the core moves to the outer-curve pipe wall and no longer
remains constant. In the figure 7-9 and 7-10 the velocity profiles at the inlet part of the
curved pipe and the outlet part are given respectively. At the θ = π/8 and θ = π/4 the ax-
ial velocity of annular is nearly constant except close to the interface and close to the pipe wall.

The maximum axial velocity in the straight pipe at the inlet is 1.326 m/s. In the curved
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pipe the highest axial velocity is 1.292 m/s at the θ = 0, inlet of curved pipe. The axial
velocity in the straight pipe at the exit cannot be analysed due to the fouling.

The axial velocity distribution in a cross-section and its change is more clearly visible in
the axial velocity contour map (see figure 7-11). Only the results for the curved part of the
pipe are presented.

Figure 7-8: Axial velocity distribution in the straight pipe at the inlet. y = 0 is inlet of the inflow
straight pipe. (I: inner curve, O: outer curve)

Figure 7-9: Axial velocity distribution in the curved inflow part of the pipe. θ = 0 is inlet of the
curved bend. (I: inner curve, O: outer curve)
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52 Core-annular flow in 180◦ return bend

Figure 7-10: Axial velocity distribution in the curved return flow part of the pipe. θ = π is
outlet of the curved return flow. For return flow the location of inner and outer curve is opposite
compared to inflow (I: inner curve, O: outer curve)

Figure 7-11: Axial velocity contour map in the curved part of the pipe, red dash is plot line.
Return flow is from θ = 5π/8 and the location of inner and outer curve is opposite compared to
inflow (I: inner curve, O: outer curve)
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7-4-4 Pressure distribution

In figure 7-12 the pressure distributions in the straight pipe at the inlet is given. The pressure
distributions in the core are nearly constant except close to the curved part of the pipe. At
y=0.05 m the centrifugal force effect has already started, and therefore the pressure distribu-
tion in the core is slightly tilted from the outer-curved part of the pipe to the inner-curved
part. The pressure distribution in the curved-part of the pipe is given in figure 7-13. The left
figure is for the part close to the inlet and the right figure for the part close to the outlet.
As for the case of the 90◦ bend the pressure at the outer-curved part of the pipe increases,
whereas it decreases at the inner-curved part. As can be seen the difference in pressure at the
outer-curved part and the inner-curved part of the pipe is significantly lower out the outlet
than at the inlet. Pressure contour maps for the curved part region of the the pipe are given
in figure 7-14. Figures are presented in next page.

Figure 7-12: Pressure distribution in the straight pipe at the inlet. y = 0 is inlet of the inflow
straight pipe. (I: inner curve, O: outer curve)

Figure 7-13: Pressure distribution in the curved part of the pipe. For return flow the location of
inner and outer curve is opposite compared to inflow (I: inner curve, O: outer curve)
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54 Core-annular flow in 180◦ return bend

Figure 7-14: Pressure distribution contour map for the curved part of the pipe. Return flow is
from θ = 5π/8 and the location of inner and outer curve is opposite compared to inflow (I: inner
curve, O: outer curve)

7-5 Conclusion

In this chapter we studied core-annular flow in 180◦ return bend. We paid attention to three
parts of the return bend: the straight pipe at the inlet, the curved part of the pipe and the
straight pipe at the outlet. In the curved part we found a secondary flow, that is almost
symmetrical as the effect of the buoyancy force is small compared to the centrifugal force.
In the curved part of the pipe the core moves to the outer-curved part of the pipe under the
influence of the secondary flow. At the outlet we found a fouling of the pipe wall. We tried
to compare our results with the experiments data of Sharma. However it turned out that
the experimental initial pressure gradient and velocity profile could not be reproduced in our
calculation. This is very likely due to the fact that in the experiments waves are present at
the oil-water interface, whereas we assume a smooth interface.
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Figure 7-15: Secondary flow in the curved part of the pipe. The black circle line is interface
between oil and water. (I: inner curve, O: outer curve)
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56 Core-annular flow in 180◦ return bend

Figure 7-16: Secondary flow in the curved part of the pipe. The black circle line is interface
between oil and water. For return flow the location of inner and outer curve is opposite compared
to inflow (I: inner curve, O: outer curve)
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Chapter 8

Recommendations

In this thesis we performed a numerical study of laminar core-annular flow. So not only the
flow in the core is laminar, but also the flow in the annulus is supposed to be laminar. How-
ever in practice the annular flow can be turbulent. At the start of the project we tried to take
the turbulence into account by using a RANS-model: the κ-ω model. (RANS model means
Reynolds-averaged-Navier-Stokes model). We did not find reliable results. The problem of
this model is that the calculation of the dissipation, specified by ω, is not accurate at the
interface between high- and low-viscosity liquid. In order to solve this problem an additional
damping term has to be added to ω equation. That requires a separate study.

In practise waves develop at the core-annular interface. These waves are essential for the
counterbalancing of the buoyancy force on the core due to a density difference between the
core liquid and annular liquid. In our study we have not paid attention to the wave devel-
opment. A pipe of sufficient length is needed to see this development. However for a long
pipe the computation time increases significantly. To avoid a too long computation time a
possibility is to start already at the inlet with a wavy core-annular interface, but then also
the initial velocity distribution needs to be adapted. This requires also a separate study.

A detailed study of grid refinement is also necessary. For our three-dimensional calculations
this leads quickly to too large computation times. More study is needed for this numerical
topic of three-dimensional core-annular flow.

Further research could also take place on real applications with different types of pipe. (Gen-
erally the studies about core-annular flow are focused on straight vertical or horizontal pipes.)
Our study of core-annular flow can be considered as a first step in that direction. Also the
influence of the temperature of the liquids on the physical parameters of the liquids (for
instance the viscosity) needs further investigation.
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