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Abstract

The container seaport industry is highly competitive and transports cargo that exceeds a
global trade value of US$ 4 trillion. Time efficiency is essential in container terminals of sea
ports, where the total throughput can rate up to 32.5 million TEU a year. Reducing the
makespan (time needed to unload and reload a ship) can therefore lead to enormous savings,
even if the margin is a few per cent. The scheduling of AGVs influences this makespan.
Nowadays, the scheduling of AGVs is performed by a basic dispatching method, providing
an opportunity for improvement. The researched methods lack either computation speed,
robustness or both. Hence the goal of this thesis is to design a robust scheduling method that
is able to solve the AGV dispatching problem on-line.

A promising approach to scheduling problems is that of max-plus-linear (MPL) systems. MPL
systems proved efficient in various applications, such as in railway timetable scheduling, legged
locomotion or paper scheduling in printers. Using MPL models is convenient, since non-linear
systems will be linear in the max-plus algebra without compensating on the dynamics of the
system. Besides considering the dynamics of the system, it is also possible to take advantage
of fast LP solvers. These solvers determine the dispatching of the AGVs by selecting different
routes for the vehicles, which are all described in advance. The route selection is determined
using max-plus binary control variables, turning the AGV dispatching problem into a MILP
problem.

To alleviate the computational burden, model predictive scheduling (MPS) is introduced.
This method uses the model to make an optimal schedule prediction, to subsequently imple-
ment only the first few control (scheduling) actions. When the schedule is recalculated, new
state information can be considered and a recourse of action is regularly taken due to the
horizon shift and perturbed nature of the system.

To account for the perturbations in the system, a Monte Carlo algorithm is implemented. This
relatively uncomplicated method penalizes choices that may seem favorable when nominal
performance of the resources is assumed, but appear disadvantageous when noise is added to
the system.
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Chapter 1

Problem Description

Automation proved to give cheaper and safer operations, less emissions and better infras-
tructure utilizations. Small efficiency improvements express themselves in huge advantages
when the transshipment and throughput of containers is considered. Container-based liner
service accounts for approximately 60% of the total value of shipments [1]. The total through-
put of the container terminal in Rotterdam in 2012 is estimated on 11.9 million Twenty feet
Equivalent Unit (TEU), of which approximately 40% is transshipped. In the worlds biggest
container terminal (Shanghai) the total throughput is estimated on 32.5 million TEU in the
year 2012, with a transshipment rate of approximately 82% [2]. These numbers emphasize
the importance of container handling. The increasing number of container shipments causes
higher demands on the seaport container terminals, container logistics and management, as
well as on technical equipment [3]. This development results in an increasing competition
between seaports, especially between geographically close ones. It is therefore important to
optimize success factors in container seaports, in particular the time in port for ships (influ-
enced by the makespan) combined with low rates for loading and discharging. Rapid turnover
of containers is thus a crucial competitive advantage.

Container turnover involves discharging and loading operations. During discharging oper-
ations, the containers in a container ship are unloaded from the vessel and stacked in the
storage yard. During loading operations, the containers are retrieved from the storage yard
and are loaded onto the ship [4]. The (un)loading of the container ship is performed by quay
cranes (QCs) and the storing and retrieving in the yard is done by yard cranes (YCs). For
the transportation of containers between the quay and yard, horizontal transport means are
used. One of the handling equipment that is applicable for this, is the automated guided
vehicle (AGV).

Automated Guided Vehicles (AGVs) are an important part of an automated container termi-
nal. Nowadays they are widely incorporated in sea port container handling sites [5]. Using
AGVs has among others the advantages that they are accurate (±25mm) [6], their routes
remain unchanged and are therefore predictable, they operate without human intervention,
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they are integrated with a traffic management system that guarantees no collisions and they
are flexible, since their route can be modified in a matter of seconds. However, the scheduling
and routing of the horizontal transport means (including AGVs) is also a difficult optimiza-
tion problem, which has a large influence on the makespan. Since container ships sail on a
schedule, the cargo stays at the harbor when the reloading of the vessel is not done in time.
Therefore both the harbor and their clients are of benefit when the AGV scheduling and
routing is optimized.

In AGV scheduling, the departure times and arrival times of the AGVs are to be determined.
When considering the definition of the optimal performance, the most evident criteria would
be to reduce the makespan (last QC movement serving a particular ship). This is impeded
by the uncertain handling times and AGV travel times in the container terminal.

Motivation

The competitive environment in container terminal operations forces advising companies to
design better scheduling algorithms. TBA indicates that a robust schedule is of great im-
portance to practical applications, due to the highly uncertain handling times within the
container terminal. This also became clear in the preceding literature study of this thesis.
Stochastic switching max-plus-linear systems and model predictive scheduling can provide a
robust solution to the scheduling problem, creating an opportunity to design a flexible pro-
gram that will schedule AGVs in a more efficient and robust way. Furthermore, the company
emphasize the importance of a fast computation time of an algorithm that only needs little
resources such as serves to suppress the operational costs.

1-1 Research questions

The aim is to find a on-line feasible solution of the AGV dispatching problem that minimizes
congestions at the cranes and finds a (near) optimal solution for the minimization of the
makespan. The algorithm should resolve congestions that may occur due to possible techni-
cal failures of the equipments and it should be able to deal with the major uncertain handling
times within the port. Considering the introduction above and taking the goal into account,
a research question is formulated:

What are the current possibilities and future perspectives for scheduling AGVs in an auto-
mated container terminal using max-plus-linear systems?

The max-plus algebra has been proven to deal efficiently with scheduling problems [7–10].
With the fairly newly applied algebra, it is possible to model a non-linear system in a max-
plus-linear framework. The demand for an on-line scheduling method can be satisfied by
introducing model predictive scheduling. Finally, the uncertain handling times will require
to introduce stochastic variables, which will result in a schedule that is based on a model
predictive, stochastic switching max-plus-linear system.
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1-2 Outline of this thesis

The outline of this thesis is as follows:

First, general information will be provided on container terminals, max-plus algebra and on
max-plus-linear (MPL) systems. Chapter 2 will give a general overview of the most important
features of a container terminal and Chapter 3 introduces the max-plus algebra and (stochas-
tic switching) max-plus-linear systems.

The following part of this Master’s thesis will explain the model, optimization and the dif-
ferent add-ons to enhance the performance. In Chapter 4 an initial model of the system is
designed and explained. Once the system is described, the optimization can be performed. In
Chapter 5, a MILP and Benders’ decomposition approach are taken and the results analyzed.
Hereafter, the problem will be defined as a model predictive scheduling (MPS) problem, which
is again recast into a MILP problem formulation and evaluated (Chapter 6). Finally in Chap-
ter 7, the perturbed system will be described in and solved using a Monte Carlo algorithm.

Chapter 8 discusses the most important findings by reviewing the different models shortly.
Additionally, the final conclusions of this Master’s thesis are presented and recommendations
for future research are done.



4 Problem Description



Chapter 2

The Container Terminal

In this chapter, a brief introduction to the container terminal is provided. Possible layouts of
container terminals are considered and a short overview of a few common handling equipment
will be presented. Finally, some dimensions and typical handling times regarding the terminal
are mentioned, such that it is clear how fast the designed scheduling method should be able
to schedule in an on-line application.

2-1 Layout and dynamics

The system of the container terminal will be partly modeled. In the AGV dispatching problem
only the quay area up until the yard is relevant. This means that the hinterland operations
are disregarded. The container ships dock at the quay area where quay cranes (QCs) unload
the cargo. While doing so, the QCs can move along the quay. The automated guided vehicles
(AGVs) travel also along the quay underneath the QCs to pick up the containers. Hereafter
AGVs transport the containers to the yard [11]. When a container is transported from the
quay side to the yard, it is named a discharge job (or ship-to-yard (S-Y) cycle). It is however
also possible that the container is retrieved from the yard and loaded onto the vessel. This
is then called a loading job (or yard-to-ship (Y-S) cycle). The path that an AGV follows, is
predefined and will not be examined any further. When an AGV arrives at the yard, it takes
position at a transfer point or lane to get (un)loaded by a yard crane (YC). This crane will
eventually store the container in a stack in the yard.

Most yards have one of the two typical layouts, which are either blocks that run parallel to
the quay or blocks that are perpendicular to the quay as can be seen in Figure 2-1 [3]. In
this thesis, the perpendicular layout with transfer points will be assumed when modeling the
system. However, it should be kept in mind that other layouts are not uncommon in container
terminals.
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Figure 2-1: Parallel (left) and perpendicular (right) layout of seaport container terminals.

2-2 Handling equipment

Different kinds of handling equipment can be used to transport the containers. Part of the
operations are often automated in large container terminals, but this is not a necessity. The
handling equipment that is assumed in this work will be discussed.

2-2-1 Quay side

Figure 2-2: QCs serve vessels at
shore.

At the quay side, the container ships are loaded and un-
loaded by QCs, depicted in Figure 2-2 [12]. These cranes
serve deep-sea vessels (capacity up to 13.000 TEU), but
also the smaller feeder vessels (capacity 100 TEU to 1200
TEU) [2]. There are different types of quay cranes [13]:
single-trolley cranes and dual-trolley cranes. In this work
it is assumed that the QCs are single trolley cranes, which
move the containers between ship and shore [14]. Another
assumption is that these cranes place the containers on the
ship or directly on an AGV and that they only move one
20 or 40 feet (1 TEU or 2 TEU) container.

2-2-2 Transport technologies

Figure 2-3: A loaded automated
guided vehicle (AGV) transporting a
two TEU container.

The AGV, shown in Figure 2-3 [15], is chosen as the hor-
izontal transport mean. The AGV is a passive transport
mode, since they need to be served by a crane and are
not able to lift containers themselves. It is not possible to
decouple the processes of the AGV and QC.

The automated guided vehicle

An AGV system exists of two main subsystems: hardware
and software [16]. The hardware includes the physical com-
ponents, e.g. the controllers, sensors, guidance devices, etc.
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The software embodies the algorithms for systematically managing the hardware resources
to obtain the highest efficiency. It is hard to provide conclusive specifications of an AGV,
since they neither contain the same hardware nor software. Usually, an AGV is diesel-electric
or battery-powered and can carry either one 40/45 feet container of maximal 40 tonnes or
two 20 feet containers with a combined weight of 70 tonnes. The dimensions of an AGV are
approximately 15 by 3m. The forward as well as the reverse speed is maximal 6m/s, while in a
maximum curve this speed is 3m/s [6]. Acceleration and deceleration are both approximately
0.5m/s2. A last important point to mention is the (possible) tank capacity of 1400 liters and
the fuel consumption of 8l/hour, providing an operation radius of 175 hours. Since the in-port
time of a vessel is usually around 24 hours, it is admissible to ignore refueling of the vehicles
in simulations.

2-2-3 Yard side

Figure 2-4: RMG cranes serve the
AGVs in the yard.

Depending on the layout of the terminal, different kinds
of YCs can be used. In this work it is assumed that rail-
mounted gantry (RMG) cranes (see Figure 2-4) [17] serve
the AGVs in transfer points. Often two or more cranes are
employed at one block to avoid operational interruptions in
case of technical malfunctions and thereby increasing the
productivity and reliability of the whole system. YCs can
be man-driven, but in the highly automated seaports, there
are autonomous gantry cranes in use, such as in Thames-
port, Rotterdam and Hamburg [3].

2-3 Dimensions and performances

It is hard to present general numbers that define a container terminal, due to: fast develop-
ments in the container terminal equipment, the various different layouts that are possible and
the wide spectrum of investments in harbors to stay competitive. It is however possible to
give a good indication of how fast or accurate the equipment is in most (leading) container
terminals. Data is used from various simulations of container terminals, such as the Delta
Sealand (DSL) container terminal of Europe Container Terminals (ECT) Rotterdam at the
Maasvlakte and the newest ECT terminal at the Maasvlakte 2 [18].

A vessel can carry up to 18.270 TEU (Mærsk Line Denmark). However, more frequently they
will be around 13.000 TEU and with a typical length of approximately 350m. On deck the
containers can be stowed 8 tiers high and 17 rows wide, in the hold 9 tiers high and 15 rows
wide. These vessels are typically served by four to six QCs.

The performance of the QCs depends on the specifications and crane type. Simulations have
been done with a cycle time of approximately 66 seconds (DSL terminal of ECT Rotter-
dam) [18], but also with a QC cycle time of 80 or 90 seconds [19].
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In literature, the cycle time of a YC is often taken as two to four minutes, which are opera-
tional data collected from container terminals in Singapore and Hong Kong [20]. The exact
time depends highly on where the container needs to be stacked or retrieved, since the yard
can have large dimensions.

Every container terminal is unique, but a typical large scale terminal with perpendicular
layout contains approximately:

• 10 QCs performing on average 30 moves per hour,

• 50 AGVs

• 20 to 30 YC modules, performing on average 10 to 15 moves per hour

and has a quay length of approximately 800m. The designed method should be able to provide
a schedule for this problem size.



Chapter 3

Max-plus Algebra & Max-plus-linear
Systems

Since max-plus-linear (MPL) systems are used in the approach to the AGV dispatching prob-
lem, it will first be explained why this approach is convenient. Hereafter, the related theory
will be reviewed in this chapter. First the semantics of max-plus algebra are discussed. Here-
after, max-plus-linear-, switching max-plus-linear- and stochastic switching max-plus-linear
systems are explained, expanding the complexity of the system in each step.

3-1 Max-plus algebra

The AGV dispatching problem can be modeled using discrete-event systems. These are
event-driven dynamical systems, which means that their dynamics are due to asynchronous
occurrences of discrete events. The state transitions are initiated by occurrences rather than
a clock [21]. When max-plus algebra is applied to the scheduling of AGVs, it is possible to
create a max-plus-linear (MPL) system, which is linear in the max-plus algebra. The class
of MPL systems consists of discrete-event systems with synchronization but without concur-
rency or choise between rival transitions (Petri net theory) [22]. Synchronization requires
the availability of several resources at the same time and all preceding operations need to be
finished to start a new operation (concurrency) [23]. Using the max-plus algebra can be of
great advantage, since [24]:

1. nonlinear systems can be presented as linear systems in the max-plus algebra,

2. it provides a structured way to determine bottlenecks in the system such as critical
cranes and AGVs and it provides good initial scheduling variables. A system-theoretical
approach based on eigenvalues and eigenvectors can be taken to determine the critical
cycles,

3. there is a close relation between MPL models and a graph representation of a system,
such that graph based methods can easily be used in the scheduling procedures,
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4. when an AGV is late and delays become a problem, the MPL system can switch to
a different mode, which changes the order of events to resolve delays. When an MPL
system can switch modes, it is called switching max-plus-linear (SMPL) system. With
max-plus algebra, the best switch can be calculated by using eigenvectors,

5. MPL models are often written implicit, but can easily be transformed into an explicit
form, which might result in a faster computation time.

3-1-1 Semantics of max-plus algebra

Max-plus algebra uses mainly two operators, namely the maximization operator ⊕ and the
addition operator ⊗. The definitions of these are

x⊕ y = max(x, y) and x⊗ y = x+ y (3-1)

for x, y ∈ Rε := R ∪ {−∞} [25]. The symbols used for the maximization and addition oper-
ators resemble the conventional addition and multiplication symbols respectively. Therefore,
the operator ⊕ is also named max-plus-algebraic addition and ⊗ the max-plus-algebraic mul-
tiplication. As in conventional algebra the max-plus-algebraic multiplication ⊗ has a higher
priority than the max-plus-algebraic addition ⊕. An important difference with respect to the
conventional algebra is that there is no inverse operation in the max-plus algebra.

The zero element for ⊕ is ε := −∞. Using this definition, it holds that max(x,−∞) =
max(−∞, x) = x, so that:

x⊕ ε = ε⊕ x = x and x⊗ ε = ε⊗ x = ε.

The unit element is e = 0. All components of the max-plus algebra have been defined, which
is the set (Rε,⊕,⊗) [26]. The max-plus algebra is now denoted as:

Rε = {Rε,⊕,⊗, ε, e}.

It is also possible to take the power of x ∈ R by using r ∈ R and is denoted by x⊗r [22]. This
operation corresponds to rx in the conventional algebra, since

x⊗
r = x⊗ x⊗ ...⊗ x = r · x

for all r ∈ Z+. In Example (3-1) some numerical examples are listed.

Example 3-1.
1⊗ 3⊕ ε = max(1 + 3,−∞) = 4
e⊗ 2⊕ 5 = max(0 + 2, 5) = 5
2⊗3 = 3× 2 = 6

4

The algebraic properties of ⊕ and ⊗ are listed in Appendix A.
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3-2 Matrix operations

The max-plus algebra can be extended to matrix operations [26]. The elements of a matrix
A are denoted by:

aij =
[
A
]
ij

, 1 ≤ i ≤ n , 1 ≤ j ≤ m.

The sum of the matrices A,B ∈ Rn×mε is defined as

(A⊕B)ij = aij ⊕ bij = max(aij , bij) (3-2)

for all i, j. The matrix product of A and C ∈ Rm×pε is defined as

(A⊗C)ij =
m⊕
k=1

aik ⊗ ckj = max
1≤k≤m

(aik + ckj) (3-3)

for all i, j. In Eq. (3-3), C can be either a matrix (p > 1) or a vector(p = 1). The scalar
multiple of a matrix A is defined componentwise as

(c⊗A)ij = c⊗ aij = c+ aij (3-4)

for all i, j. Note the analogy with the conventional definitions of matrix sum and product.
Lastly, there exists the max-plus dot product [26], which will not be used. An example of a
matrix addition and matrix multiplication in the max-plus algebra is given in Example (3-2)
(adapted from Duinkerken (2005) [27]).

Example 3-2. Let

A =
[
e 1
1 2

]
, B =

[
1 ε
3 1

]
.

The matrix addition of A and B is:

A⊕B =
[
e⊕ 1 1⊕ ε
1⊕ 3 2⊕ 1

]
=
[
1 1
3 2

]
.

The matrix product of A and B becomes:

A⊗B =
[
(e⊗ 1)⊕ (1⊗ 3) (e⊗ ε)⊕ (1⊗ 1)
(1⊗ 1)⊕ (2⊗ 3) (1⊗ ε)⊕ (2⊗ 1)

]
=
[
1⊕ 4 ε⊕ 2
2⊕ 5 ε⊕ 3

]
=
[
4 2
5 3

]
.

4

It should be noted that, opposite to the scalar max-plus algebra, the matrix multiplication
fails to be commutative. Suppose the A and B matrices of Example (3-2). Indeed:

B⊗A =
[
1 2
3 4

]
6=
[
4 2
5 3

]
= A⊗B.
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Analogous to the zero element, there is a max-plus-algebraic zero matrix (En×m)ij = ε for all
i, j. Furthermore, the n × n identity matrix En in max-plus algebra is defined as (En)ii = 0
for all i and (En)ij = ε for all i, j with i 6= j. Here it holds:

A⊕ E(n,m) = E(n,m)⊕A = A for A ∈ Rn×m

A⊗ E(m,m) = E(n, n)⊗A = A for A ∈ Rn×m.

3-3 Max-plus-linear systems

Discrete-event systems in which there is synchronization but no concurrency can be described
by a model of the form:

x(k) = A⊗ x(k − 1)⊕B⊗ u(k) (3-5)
y(k) = C⊗ x(k) (3-6)

with A ∈ Rn×nε , B ∈ Rn×nu
ε and C ∈ Rny×n

ε (nu is the number of inputs, ny the number of
outputs), which are called max-plus-linear time-invariant discrete-event systems, or max-plus-
linear (MPL) systems for short [23]. The components of the input, output and state are event
times and k an event counter instead of a clock cycle. The AGV dispatching problem is sched-
uled using only the state and system matrix A. In the state x(k) the starting times of events
at k are stacked. In the A-matrix the handling times are stored. The equations of the system
can be derived using graph theory, as will become clear in the next section. For the theory to
determine stability, controllability and observability it will be refered to Van den Boom et al.
(2012) [28] and Gazarik et al. (1999) [29], but is not relevant to the AGV dispatching problem.

A simple MPL system for the container terminal is already designed by Contu et al. (2011)
[30], describing only one QC, one YC and one AGV. Boetzelaer (2013) [31] expanded the
framework to multiple cranes and AGVs with continues variables, modeling the system dif-
ferently than will be shown in this work.

3-3-1 Relation to graph theory

In Section 3-1 it is stated that one of the great advantages of MPL systems is the relation to
graph theory, which is consequently widely incorporated for system designing purposes. This
is due to the definition of such an MPL system, that is closely related to a graph. The entries
of the A-matrix in the system equation as in Eq. (3-5) describe the graph and its weight on
its edges. For example (adapted from Heidergott et al. (2005) [26]), when the A-matrix is as
follows:

Aex =

 ε 15 ε
ε ε 14
10 ε 12

 ,
the directed graph contains three nodes V(Aex) = {1, 2, 3}, because Aex ∈ R3×3. For the
elements that are ε, the directed graph does not have any connections, otherwise it has a
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directed edge. In the case of the given Aex-matrix, there exist edges between (1,3), (2,1),
(3,2) and (3,3), with weights 10, 15, 14 and 12 respectively. So the set of edges is A(Aex) =
{(1, 3), (2, 1), (3, 2), (3, 3)}. The graph representation can be seen in Figure 3-1. Note that for
an arc (i, j) in graph G(V,A) = G(Aex) the weight of arc (i, j) is given by aji. This is due to
the max-plus equations arising from the system x(k) = A⊗ x(k− 1). For example, from the
equation

x1(k) =
(
ε⊗ x1(k − 1)

)
⊕
(
15⊗ x2(k − 1)

)
⊕
(
ε⊗ x3(k − 1)

)
it follows that there is a directed arc from x2(k − 1) to x1(k).

1

2

3

10

15 14

12

Figure 3-1: Directed graph representation of the matrix Aex.

The graph depicted in Figure 3-1 consists of two elementary circuits p = ((1, 3), (3, 2), (2, 1))
and q = (3, 3), whereof the weights can be determined by:

|p|w = a31 + a23 + a12 = 10 + 14 + 15 = 39
|q|w = a33 = 12.

The length of a path is the number of nodes it contains (|p|` = 3 and |q|` = 1 in the example).

Critical circuits

Figure 3-1 consists of two elementary circuits. A circuit is a closed path and it is elementary
when every node has only one incoming and one outgoing arc. If the weight is defined as

|γ|w =
`−1⊗
k=0

aηh+kηh+k+1 = µ⊗`, (3-7)

then the average weight of a circuit can be determined by

|γ|w
|γ|`

= 1
`
× µ⊗` = µ. (3-8)

The elementary path with the maximum average weight is called the critical circuit. Now
let C(A) denote the set of elementary circuits in G(A), then the maximal average circuit
weight and thus the critical circuit is:

µc = max
p∈C(A)

|p|w
|p|`

. (3-9)
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Critical circuits are important to determine, since they are usually the bottlenecks of the
scheduling problem and delays in these circuits might spread to the overall system. When
the system is in operation, the critical circuits should always have the highest priority, since
they are normative for the overall time that is needed to unload and reload a container ship
(the makespan).

3-4 Switching max-plus-linear systems

The MPL system describes only one mode, or a single path in the system. In the container
terminal, a mode corresponds to one assigned QC, one assigned AGV and one assigned YC.
When there are more cranes and/or AGVs, more modes need to be introduced, creating
a switching max-plus-linear (SMPL) system. The switching between modes changes the
structure of the A-matrix, which is done with max-plus binary selection variables (Section 3-
4-1). It also allows to break synchronization and change the order of events [25]. Every
container that is transported by a different combination of QC, AGV and YC gets a unique
A(`(k))-matrix describing the route and determining the time specifications of the container
along the equipment. Eq. (3-5) is adapted to formulate the SMPL system for a container
terminal:

x(k) = A(`(k))(k)⊗ x(k − 1) (3-10)

in which the matrix A(`(k)) is the system matrices in the `-th mode. Each mode ` corresponds
to a required set of synchronizations and an event order schedule. The switching between
modes can be formulated in a switching rule (Appendix A). The fact that SMPL systems
can handle a large amount of modes ` in limited time can also be seen in research to train
scheduling [7, 32].

3-4-1 Max-plus binary control variables

The SMPL system can contain many different A-matrices, all describing a different path. As
mentioned in Chapter 2, a typical dimension of a container terminal with a reasonable size
is ten QCs, 50 AGVs and 20 YCs. This implies that for every isolated container within the
system, there are 10 × 50 × 20 = 1000 paths that need to be described in the model. To
select the right path, binary control variables will be used. Instead of making 1000 different
A-matrices, it is then possible to select the right entry of just one matrix. Suppose that it is
possible to define straightforward the binary control variables for the QCs, YCs and AGVs,
which are in the sets a, b and c respectively. Then the max-plus binary control variables
would be:

a = {a1, ..., a10}
b = {b1, ..., b20}
c = {c1, ..., c50},
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where

ai =

e if i is selected
ε if i not selected

, bj =

e if j is selected
ε if j not selected

,

chl =

e if h is selected
ε if h not selected.

The max-plus binary variables e and ε are equivalent to the plus-times binary variables 1 and
0 respectively. For an extensive example on max-plus binary control variables, it is referred
to Appendix B.

3-5 Stochastic switching max-plus-linear systems

The SMPL system is deterministic when

• the switching is determined by a deterministic switching rule and

• all variables of the system are deterministic [33].

Accordingly, there can be two kind of uncertainties in the system. In the AGV dispatch-
ing problem the switching variable is not perturbed, such as in e.g. telecommunication net-
works [34]. In the container terminal system, the optimal schedule is determined, leaving no
room for switching to a different mode to reconsider the order of events. Therefore, only the
parametric uncertainty needs to be taken into account.

The parametric uncertainty is present in the system matrices, which are perturbed by noise
(fast changes in the system matrices and variable disturbance) and modeling errors by as-
sumption (slow changes or permanent and constant errors in the model variables). Two cases
could be distinguished related to the characterization of the perturbation, which is either (1)
bounded or (2) stochastic [21]. In the bounded case, it is assumed that it is not known how
the uncertainty behaves and therefore the worst case scenario is assumed for every step. This
is a safe choice in modeling the system. Due to the worst case assumption, it guarantees
that all AGVs and cranes will be on time when no major external events happen such as
the breakdown of equipment. This reduces the importance of on-line scheduling, but would
adversely result in a slow scheduling scheme where QCs, AGVs and YCs have large waiting
times. When stochastic perturbation is considered, it is possible to describe the behavior
of the perturbation by a distribution function. A stochastic approach will lead to a tighter
schedule than the bounded case. However, this also means that AGVs and cranes can be
delayed and on-line scheduling will be important since it should resolve the delays.

The advantage of a tight schedule with minimal waiting time for the equipment is of such
importance that the pros of the stochastic perturbation outweigh the pros of the bounded
perturbation. Therefore, stochastic uncertainty is considered when the container jobs are
modeled. A distribution of the perturbation becomes an assumption in the model of the
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system and can be of wide variety. Ideally, the stochastic switching max-plus-linear (SSMPL)
system is used to model the uncertainty, which is commonly additive for noise and model
errors in plus-times linear systems. The plus operator in conventional algebra is equivalent to
the max-plus multiplication operator, making the noise multiplicative in the SSMPL model
[33,35]. The resulting SSMPL system description:

x(k) = A(`(k))(Eu(k))⊗ x(k − 1) (3-11)

where A(Eu(k)) is the system matrix with the uncertainty vector Eu(k). An example is pro-
vided in Appendix C, where an MPL, SMPL and SSMPL model are derived for a production
system (adapted from [25]).

Now that the theory on max-plus algebra and MPL systems is explained, the model of the
container terminal can be designed.



Chapter 4

Model of the System

The main goal of exploring the possibilities and future perspectives for scheduling AGVs
in an autonomous container terminal using MPL systems will be realized by optimizing a
prediction model. The model is created by deriving the equations from a Petri net (PN)-like
representation.

4-1 Model

The construction of the model can be divided into three steps, namely

• creating a graphical representation,

• deriving model equations,

• introducing binary control variables.

Each will be explained in the following sections.

4-1-1 Graphical representation

The model is constructed by using Petri net theory due to the relation between graph the-
ory and MPL systems. A Petri net (PN) is a logical representation of the dynamics of a
discrete-event system that presents the ordering of events in a plant [36]. A PN can either be
timed or untimed. An untimed PN consists of a finite set of places P (circles), a finite set of
transitions T (bars) and a set of directed arcs connecting the places and transitions. The PN
represents the state of the system by the distribution of tokens in places. Usually, tokens are
denoted by dots. A transition t is state-enabled when each upstream place contains at least
one token, whereafter the transition can fire. When the transition is executed, an upstream
token is removed and placed in (one of) the downstream place(s). In an untimed PN only the
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order of events is specified, regardless of time aspects. However, in most applications time
has to be considered, whereby a timed PN is obtained. The arrival times of the tokens in
places are remembered in the state x(k).

The system is modeled using three subcycles, namely the QC subcycle, the AGV subcycle
and the YC subcycle. When two subcycles interact with each other, a synchronization occurs.
In these subcycles, the following transitions occur:

• t1: the AGV moves to the crane of the pick-up location (AGV cycle),

• t4: the AGV moves to the crane of the drop-off location (AGV cycle),

• t2: the QC moves to the ship to pick-up or drop-off a container (QC cycle),

• t3: the QC (un)loads the AGV (QC/AGV synchronization),

• t6: the YC moves to the yard to pick-up or drop-off a container (YC cycle),

• t5: the YC (un)loads the AGV (YC/AGV synchronization).

Every transition t has a corresponding delay τ , which describes the time that a transition
takes. One full cycle is the discharge or loading job of one container. Therefore, every con-
tainer gets a new event step counter k. When k is a discharge job, the AGV gets loaded by
a QC and unloaded by a YC. When k is a loading job, the AGV gets loaded by a YC and
unloaded by a QC. In Figure 4-1 a general directed graph is given. Only one AGV, one QC
and one YC is included. Expanding the graph with multiple AGVs and cranes is however
easily done by adding arcs or nodes. The representation is not exactly equal to that of a PN,
but the idea is equivalent. The arrays are transitions with a delay τ and the dots are places p.
Whenever a place p is true, it receives a token. The filled dots need two places to be true and
thus denote a synchronization. The open dots need only one token. The maximum time of
two places to receive a token (causing a synchronization) is the time before a next transition
is triggered.

To put the theory into perspective, suppose that only discharge jobs are considered. The
process is explained using five nodes in Figure 4-1.

1. The QC picks up the container k from the vessel (1a) and moves it to the quay. When
this is done, node 1 receives a token. Also the AGV needs be ready to receive the
container and should move to the QC (1b). When this latter transition is complete, a
token is placed at node 1. In the next transition (2a) the QC places the container on
the AGV, which can only take place when both tokens are received.

2. The second node does not require a synchronization. It represents the moment that
both the QC and AGV are ready to proceed. The QC will commence its next cycle and
the AGV proceeds cycle k by moving the container to the yard.

3. Node 3 is again a synchronization node, following the same steps as node 1. The YC
has just stored a container in the yard. Whenever it has moved back to the transfer
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Figure 4-1: Graphical representation of the container terminal system.

point, node 3 receives a token. Node 3 receives also a token whenever the AGV has
reached the yard. Only when it has received two tokens, the next transition can fire
and the YC starts picking up the container from the AGV.

4. When the transition fires, node 3 is abandoned. Node 4 is reached with a certain delay,
whereafter both the YC and AGV are ready to proceed. The YC will end cycle k by
storing the container in the yard. The AGV will perform a next cycle and moves to the
quay, reaching point 5.

5. Node 5 is comparable to node 1 and exists in a new cycle.

System analysis

In Section 3-3-1 the concept of critical circuits is explained. Using the handling times provided
in Chapter 2 it is possible to determine the critical cycles in this system. First, the weights of
the three cycles have to be determined. Suppose there is one QC, one AGV and one YC. The
distance between the quay and yard equals 100m and the AGV average speed equals 2m/s.
The following holds:

• weight of the QC cycle: wQC = 120s (based on 30moves/h, including (un)loading time),

• weight of the YC cycle: wY C = 240s (based on 15moves/h, including (un)loading time),

• weight of the AGV cycle: wAGV = 200m
2m/s + (2 × 15s) = 130s (when time loss for

(un)loading is 15s).

The graph in Figure 4-2 results from the statements about this simple system. The A-matrix
that belongs to this configuration is

A =
[
120 65
65 240

]
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Figure 4-2: Graph of the container terminal system for a single mode (bold, black) and multiple
modes (cursive, red). Node 1 and node 2 belong to the QC and YC synchronizations, respectively.

and the figure shows that {(1,1)}, {(1,2), (2,1)} and {(2,2)} are the circuits of the system. Now
the critical cycle is the YC cycle, since max (120, 240, 130) = 240. However, when multiple
modes are considered, the ratio YC/QC typically is about two to three in a container terminal.
Let us suppose there are three times more YCs than QCs. Furthermore, as an approximation,
the number of AGVs is usually taken about five times the number of the QCs. However, pre-
sume that the travel distance might reach 800m, putting the weight on arcs (1,2) and (2,1) to(800

2 + 15
)
× 1

5 . These new weights for the multiple modes are displayed in red in Figure 4-2.

Interesting to point out is the shift of critical circuits. Now

wQC = 120s, wY C = 80s, wAGV = 54 to 166s.

Depending on which route the AGV takes, either the circuit of the QC or that of the AGV
is critical. The boundaries on the system make it impossible to influence the time of the
QC cycle. However, by assigning the AGVs correctly, the schedule can be minimized. This
emphasizes the importance of solving the AGV dispatching problem.

4-1-2 Model equations

The model equations can directly be obtained from the graph in Figure 4-1. The general
framework that is used as guidance for the definition of equation parameters has been for-
mulated by Van den Boom et al. (2014) in [21]. It is designed for discrete event systems
with semi-cyclic behavior. This type of behavior is specified by a periodically repeated set
of operations. In semi-cyclic behavior the set of operations may vary over a limited set of
possible sequences of operations. For now there is neither scheduling nor synchronization
considered in the model design. A distinction can be made between four set of equations,
since there are four cycle types:

1. only discharge jobs are considered ("ship-to-yard, ship-to-yard (SYSY)"),

2. only loading jobs are considered ("yard-to-ship, yard-to-ship (YSYS)"),

3. jumbled cycles: A discharge job is preceded by a loading job ("YSSY"),

4. jumbled cycles: A loading job is preceded by a discharge job ("SYYS").
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The previous container jobs of the QC, YC and AGV in cycle k are independent of each other
and therefore the cycle types of the different resources should be considered separately.

The equations can describe two possible discrete-time model forms: an implicit- or explicit
model. When the model is explicit, the current cycle k only depends on the previous cy-
cles. When it is implicit, the current cycle k depends on the previous cycles as well as on
the current one. The implicit model requires less constraints and will therefore be an ad-
vantage in the MILP formulation. Since it will become clear that the number of constraints
grow exponentially with the size of the problem, the implicit model is applied to keep the
MILP proportions as small as possible. For a more extensive analysis on this statement, the
interested reader is referred to Appendix D.

Deriving the discharge job equations

A job j is defined as the allocation of the j-th container from ship to yard in a discharge cycle.
The event counter k is the allocation of the container from ship to yard at time event k. Every
future job j for j = 1, ..., Np has pj = 6 operations with the starting times in x̂pj (k + j). Job
j has corresponding sequences of resources Rj = (rj,1, ..., rj,pj ) and processing times in cycle
k: Tj(k) = (τj,1(k), ..., τj,pj (k)). For container k, the following state is proposed:

x̂1(k) : starting time AGV travels to next QC location,
x̂2(k) : starting time QC retrieves container from vessel,
x̂3(k) : starting time QC loads AGV,
x̂4(k) : starting time transportation container by AGV from quay to yard,
x̂5(k) : starting time YC crane unloads AGV,
x̂6(k) : starting time YC stores container in the yard,

τ1(k) : time it takes AGV to travel to QC location,
τ2(k) : time it takes QC to retrieve container from vessel,
τ3(k) : time it takes QC to load AGV,
τ4(k) : time it takes AGV to transport container from quay to yard,
τ5(k) : time it takes YC to unload AGV,
τ6(k) : time it takes YC to store container in the yard.

The travel times are variable, whereas all QC and YC handling times are assumed constant.
The equations are however still derived as if the handling times of the cranes can vary, since
the SSMPL model will consider perturbed QC handling times. Moreover, in this fashion the
YC handling times could easily be adjusted when the constant value would be substituted
by a varying parameter depending on the container job location. An estimation of the AGV
travel times can be made using its relation to the traveled distance and its speed, while ac-
counting for some time loss due to delays.

When the states are assigned to the nodes, a new representation is obtained, as depicted in
the directed graph of Figure 4-3.
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x̂6(k − 1), x̂1(k)

x̂3(k)
x̂4(k), x̂2(k + 1)

x̂5(k)
x̂6(k), x̂1(k + 1)

x̂3(k + 1)
x̂4(k + 1), x̂2(k + 2)

x̂5(k + 1)

τ2(k + 1)
x̂2(k)

τ6(k − 1) τ6(k)

τ1(k) τ4(k) τ1(k + 1) τ4(k + 1)

τ3(k)

τ5(k)

τ3(k + 1)

time

Figure 4-3: Graphical representation of the system cycles with corresponding states x̂ and elapsed
time τ .

The following matrix inequality can be derived using the graph in Figure 4-3:


x̂1(k)
x̂2(k)
x̂3(k)
x̂4(k)
x̂5(k)
x̂6(k)


≥



ε ε ε ε ε ε
ε ε ε ε ε ε

τ1(k) τ2(k) ε ε ε ε
ε ε τ3(k) ε ε ε
ε ε ε τ4(k) ε ε
ε ε ε ε τ5(k) ε


⊗



x̂1(k)
x̂2(k)
x̂3(k)
x̂4(k)
x̂5(k)
x̂6(k)


⊕



ε ε ε ε τ
(a)
5 (k − 1) ε

ε ε τ
(q)
3 (k − 1) ε ε ε

ε ε ε ε ε ε
ε ε ε ε ε ε

ε ε ε ε ε τ
(y)
6 (k − 1)

ε ε ε ε ε ε


⊗



x̂1(k − 1)
x̂2(k − 1)
x̂

(q)
3 (k − 1)
x̂4(k − 1)
x̂

(a)
5 (k − 1)
x̂

(y)
6 (k − 1)


(4-1)

where (q), (a) and (y) denote the dependence of (k − 1) with the previous subcycles of the
current QC, AGV and YC, respectively. It was already established that the synchronization
points are in x̂3 and x̂5, where a maximum operator is applied. The states can be reduced by
successive substitution of the equations in the two synchronization points. The previous cycle
of the selected QC, AGV and YC are called respectively (k − µQ), (k − µA) and (k − µY ),
were P the maximum of previous considered cycles: {µQ, µA, µY } ≤ P . Now Eq. (4-1) can
be used to obtain:

x̂1(k) = τ5(k − µA)⊗ x5(k − µA),
x̂2(k) = τ3(k − µQ)⊗ x3(k − µQ),
x̂4(k) = τ3(k)⊗ x3(k),
x̂6(k) = τ5(k − µA)⊗ x5(k − µA).

The synchronization points can be described by the time that the QC can begin with loading
the AGV:

x̂3(k) = x̂Q(k) ≥ τ2(k)⊗ τ3(k − µQ)⊗ x̂Q(k − µQ) ⊕
τ1(k)⊗ τ5(k − µA)⊗ x̂Y (k − µA) (4-2)

and when the YC is able to start unloading the AGV:

x̂5(k) = x̂Y (k) ≥ τ3(k)⊗ τ4(k)⊗ x̂Q(k) ⊕
τ5(k − µY )⊗ τ6(k − µY )⊗ x̂Y (k − µY ). (4-3)
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Notice that at the synchronization points, several equations can describe the same nodes,
such as x̂1(k) and x̂6(k − µA). It is possible to write Eq. (4-2) and Eq. (4-3) in matrix form
as: [

x̂Q(k)
x̂Y (k)

]
≥
[

ε ε

τ3(k)⊗ τ4(k) ε

]
⊗
[
x̂Q(k)
x̂Y (k)

]
⊕[

τ2(k)⊗ τ3(k − µQ) ε

ε ε

]
⊗
[
x̂Q(k − µQ)
x̂Y (k − µQ)

]
⊕[

ε τ1(k)⊗ τ5(k − µA)
ε ε

]
⊗
[
x̂Q(k − µA)
x̂Y (k − µA)

]
⊕[

ε ε

ε τ5(k − µY )⊗ τ6(k − µY )

]
⊗
[
x̂Q(k − µY )
x̂Y (k − µY )

]
(4-4)

x̂(k) ≥ A0 ⊗ x̂(k)⊕AµQ ⊗ x̂(k − µQ)⊕AµA ⊗ x̂(k − µA)⊕AµY ⊗ x̂(k − µY ) (4-5)

and is reformulated as
x̂(k) ≥ A⊗ x(k). (4-6)

The main issue with Eq. (4-5) is that the states consist of the synchronization events at just
one QC and one YC. To address this issue, new states are defined containing the starting
times of the synchronization of all QCs with an AGV to be loaded at event k and all YCs
with an AGV to be unloaded at event k. The model will have the following state:

x̂1(k)
...

x̂QCN
(k)

x̂QCN+1(k)
...

x̂QCN +Y CM
(k)


=



starting time last synchronization of QC1 with some AGV
...

starting time last synchronization of QCN with some AGV
starting time last synchronization of Y C1 with some AGV

...
starting time last synchronization of Y CM with some AGV


(4-7)

where the number of QCs are n = 1, ..., N and the number of YCs are m = 1, ...,M .

When the state expands, the A-matrix naturally expands, too. When x̂ ∈ R(N+M)×1, then
A ∈ R(N+M)×(N+M) with the entries expanding in their own block matrix as in Eq. (4-
4). In A0 there is a non-max-plus zero element in the lower left block matrix. This element
describes the relation between the AGV travel time from any QC to any YC. Therefore, when
expanding A0, all elements in A0{2, 1} equal τ3(k)⊕ τ4(k). The same reasoning pattern can
be used for the matrix AµA{1, 2}. On the contrary, AµQ{1, 1} and AµY {2, 2} describe when
the cranes themselves are ready for their next job. When expanding the state, the elements
will only be on the diagonal of AµQ{1, 1} and AµY {2, 2}.

Deriving the loading job equations

The equations that have been derived are only applicable when subsequently discharge jobs
are in order. It is also possible that loading jobs are performed, whereof the equations are
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derived in a similar fashion. The difference is the definition of the states, model variables τ
and the relations between them. They now get the following meaning:

x̂1(k) : starting time AGV travels to next YC location,
x̂2(k) : starting time QC stores container on vessel,
x̂3(k) : starting time QC unloads AGV,
x̂4(k) : starting time transportation container by AGV from yard to quay,
x̂5(k) : starting time YC crane loads AGV,
x̂6(k) : starting time YC retrieves container from yard,

τ1(k) : time it takes AGV to travel to YC location,
τ2(k) : time it takes QC to store container on vessel,
τ3(k) : time it takes QC to unload AGV,
τ4(k) : time it takes AGV to transport container from yard to quay,
τ5(k) : time it takes YC to load AGV,
τ6(k) : time it takes YC to retrieve container from the yard.

Using Figure 4-3 the equations can again be derived in a systematic way, following the same
procedure as for the discharge moves, obtaining



x̂1(k)
x̂2(k)
x̂3(k)
x̂4(k)
x̂5(k)
x̂6(k)


≥



ε ε ε ε ε ε
ε ε τ3(k) ε ε ε
ε ε ε τ4(k) ε ε
ε ε ε ε τ5(k) ε

τ1(k) ε ε ε ε τ6(k)
ε ε ε ε ε ε


⊗



x̂1(k)
x̂2(k)
x̂3(k)
x̂4(k)
x̂5(k)
x̂6(k)


⊕



ε ε τ
(a)
3 (k − 1) ε ε ε

ε ε ε ε ε ε

ε τ
(q)
2 (k − 1) ε ε ε ε

ε ε ε ε ε ε
ε ε ε ε ε ε

ε ε ε ε τ
(y)
5 (k − 1) ε


⊗



x̂1(k − 1)
x̂

(q)
2 (k − 1)
x̂

(a)
3 (k − 1)
x̂4(k − 1)
x̂

(y)
5 (k − 1)
x̂6(k − 1)


.

(4-8)

Finally, the minimal realization of the inequality (Eq. (4-9) and Eq. (4-10)) is retrieved.
Again, the synchronization points are the time that the QC can start to unload the AGV:

x̂3(k) = x̂Q(k) ≥ τ2(k − µQ)⊗ τ3(k − µQ)⊗ x̂Q(k − µQ) ⊕
τ4(k)⊗ τ5(k)⊗ x̂Y (k) (4-9)

and the time when the YC can start to load the AGV:

x̂5(k) = x̂Y (k) ≥ τ1(k)⊗ τ3(k − µA)⊗ x̂Q(k − µA) ⊕
τ6(k)⊗ τ5(k − µY )⊗ x̂Y (k − µY ) (4-10)
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or in matrix form:[
x̂Q(k)
x̂Y (k)

]
≥
[
ε τ4(k)⊗ τ5(k)
ε ε

]
⊗
[
x̂Q(k)
x̂Y (k)

]
⊕[

τ2(k − µQ)⊗ τ3(k − µQ) ε

ε ε

]
⊗
[
x̂Q(k − µQ)
x̂Y (k − µQ)

]
⊕[

ε ε

τ1(k)⊗ τ3(k − µA) ε

]
⊗
[
x̂Q(k − µA)
x̂Y (k − µA)

]
⊕[

ε ε

ε τ6(k)⊗ τ5(k − µY )

]
⊗
[
x̂Q(k − µY )
x̂Y (k − µY )

]
. (4-11)

Again the states and the A-matrix can be expanded when the system includes more than one
mode.

Jumbled cycles

The QCs, YCs and AGVs can enter a discharge job or a loading job. However, when the
discharge equations are inspected closely, it becomes clear that there is an indirect assumption
that every discharge job is preceded by a discharge job. Considering the loading job equations,
there is an indirect assumption that every loading job is preceded by a loading job. Therefore,
a new distinction is made when discharging jobs are preceded by loading jobs, obtaining:

x̂Q(k) ≥ τ2(k)⊗ τ2(k − µQ)⊗ τ3(k − µQ)⊗ x̂Q(k − µQ) ⊕
τ1(k)⊗ τ3(k − µA)⊗ x̂Q(k − µA) (4-12)

x̂Y (k) ≥ τ3(k)⊗ τ4(k)⊗ x̂Q(k) ⊕
τ5(k − µY )⊗ x̂Y (k − µY ) (4-13)

and when loading jobs are preceded by discharging jobs, obtaining:

x̂Q(k) ≥ τ3(k − µQ)⊗ x̂Q(k − µQ) ⊕
τ4(k)⊗ τ5(k)⊗ x̂Y (k) (4-14)

x̂Y (k) ≥ τ1(k)⊗ τ5(k − µA)⊗ x̂Y (k − µA) ⊕
τ5(k − µY )⊗ τ6(k)⊗ τ6(k − µY )⊗ x̂Y (k − µY ). (4-15)

The states are subsequently expanded again just as the A-matrix. Surely, not all entries of
this expanded A-matrix should be finite, since not all cranes are handling a certain job k.
The entries of those which are not selected should become minus infinite. This issue will be
addressed by adopting max-plus binary control variables, to be discussed in Section 4-1-3.

One last equation needs to be added. The eight inequalities (defined in Eq. (4-2, 4-3, 4-9,
4-10, 4-12 – 4-15)) add handling times to the active states, while the nonactive states should
not change. Therefore, the following inequality holds:
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x̂(k) ≥ E⊗ x̂(k − 1), E ∈ R(N+M)×(N+M) (4-16)

where E the max-plus unity matrix. In this manner, the synchronization times of all cranes
are "remembered", regardless if they are active in cycle k or not.

4-1-3 Binary control variables

Now that new cranes are added to the state, the serving cranes should be selected, since only
these should receive a new ready time for their synchronization in job k. Max-plus binary
control variables are already briefly discussed in Section 3-4-1. These variables are used to
select the correct entries in the A-matrix. As became clear in Eq. (4-4) and Eq. (4-11),
the A-matrix has four distinctive block matrices, existing for four cycles (A0,AµQ ,AµY and
AµA). The block matrices are referred to as

A =
[

Aqq Aqy
Ayq Ayy

]
. (4-17)

The max-plus binary control variables should be placed such that it is possible to uniquely
select every path in the system. A distinction can be made between the max-plus binary
control variables:

• category I – those which select the right elements in the block matrices of A,

• category II – those which make the proper part of an equation within an element
of a block matrix the maximum,

• category III – those which select the right previous cycle.

Accordingly, the following max-plus binary control variables can be introduced:

Category I – variables which select the correct element in the block matrices

• a(k): selects the serving QC in cycle k (in Aqq, Aqy),

• b(k): selects the serving YC in cycle k (in Ayq, Ayy),

• c(k): selects the previous crane of the AGV serving in cycle k (in A).

Category II – variables which maximize the correct part of the equation within an element in
a block matrix

• dQ(k): selects the cycle type of the serving QC in cycle k (in Aqq, Ayq),

• dY (k): selects the cycle type of the serving YC in cycle k (in Aqy, Ayy),

• dA(k): selects the cycle type of the serving AGV in cycle k (in A).



4-1 Model 27

Category III – variables which select the correct previous cycle

• mQ(k): selects the previous cycle (k − µQ) of the serving QC in cycle k (in Aqq),

• mY (k): selects the previous cycle (k − µY ) of the serving YC in cycle k (in Ayy),

• mA(k): selects the previous cycle (k − µA) of the serving AGV in cycle k (in A).

Here, the cycle type can be either "SYSY"(1) (d1), "SYYS"(2) (d2), "YSYS"(3) (d3) or "YSSY"(4)

(d4). These four cycles are equivalent to (1) discharge job followed by a discharge job, (2)
discharge job followed by a loading job, (3) loading job followed by a loading job or (4)
loading job followed by a discharge job. Since the previous cycles of the QC, YC and AGV
are independent from each other, the cycle type of the QC (dQ), YC (dY ) and AGV (dA)
are also independent from each other. Moreover, it is stated that the m∗ max-plus binary
variables "select" the previous cycles. This regards the cycles in the following equation:

x(k) ≥ A0 ⊗ x(k)⊕A1 ⊗ x(k − 1)⊕A2 ⊗ x(k − 2)⊕ ...⊕AP ⊗ x(k − P ) (4-18)

where P the number of previous cycles that are considered.

All possible paths are described for (k − P ) up to k. By defining all these possibilities, only
the right path needs to be selected with the max-plus binary control variables. Making this
effort beforehand is convenient, since then the actual scheduling becomes less cumbersome.
In the following example, the max-plus binary control variables are placed in the A-matrices
for a small case.

Example 4-3. Suppose there are two QCs, three YCs and P = 2. The structure in the
A-matrix of the max-plus binary variables - category I will be

Ap,I =


a1 ⊗ c1 a1 ⊗ c2 a1 ⊗ c3 a1 ⊗ c4 a1 ⊗ c5
a2 ⊗ c1 a2 ⊗ c2 a2 ⊗ c3 a2 ⊗ c4 a2 ⊗ c5
b1 ⊗ c1 b1 ⊗ c2 b1 ⊗ c3 b1 ⊗ c4 b1 ⊗ c5
b2 ⊗ c1 b2 ⊗ c2 b2 ⊗ c3 b2 ⊗ c4 b2 ⊗ c5
b3 ⊗ c1 b3 ⊗ c2 b3 ⊗ c3 b3 ⊗ c4 b3 ⊗ c5

 ∀ p ∈ P. (4-19)

The structure of the second category that is defined, corresponds to the earlier derived equations
with d1 for Eq. (4-2)-(4-3), d3 for Eq. (4-9)-(4-10), d4 for Eq. (4-12)-(4-13) and d2 for Eq. (4-
14)-(4-15). As an example, let us consider Aqq(1, 1) for any p ∈ {1, ..., P}:

Aqq,p,II(1, 1) =
(
τ1(k)⊗ τ3(k − p)⊗ dA4

)
⊕
(
τ2(k)⊗ τ3(k − p)⊗ dQ1

)
⊕ ...(

τ3(k − p)⊗ dQ2

)
⊕
(
τ2(k − p)⊗ τ3(k − p)⊗ dQ3

)
⊕ ... (4-20)(

τ2(k)⊗ τ2(k − p)⊗ τ3(k − p)⊗ dQ4

)
.
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The structure of category III will be

Ap,III =


mQ,p ⊕mY,p ⊕mA,p . . . mQ,p ⊕mY,p ⊕mA,p

mQ,p ⊕mY,p ⊕mA,p . . . mQ,p ⊕mY,p ⊕mA,p

mQ,p ⊕mY,p ⊕mA,p . . . mQ,p ⊕mY,p ⊕mA,p

mQ,p ⊕mY,p ⊕mA,p . . . mQ,p ⊕mY,p ⊕mA,p

mQ,p ⊕mY,p ⊕mA,p . . . mQ,p ⊕mY,p ⊕mA,p

 p = 1, 2. (4-21)

Note the differences in using multiplication ⊗ and addition ⊕ in the first and third matrix.
When ⊗ is used, an element is only selected when all control variables select. When ⊕ is used,
only a single control variable needs to select to have a non-zero element in the matrix. 4

When a binary control variable activates an element of the desired path through the system, it
equals the unit element e. It then adds zero to the handling times (e.g. consider the matrices
of Example (4-3)). When the binary control variable inactivates, it equals the zero element
−∞, such that the element will never be a maximum. To use this latter control variable other
than in the notations is unwise. Computations using ∞ can result in an indeterminate form
(such as ∞−∞ or 0×∞) which are undefined. Instead, the parameter β is used to resemble
−∞, which is defined as:

β << 0. (4-22)

Predefined and scheduling variables

A last observation on the max-plus binary control variables is that a distinction can be made
between predefined and scheduling control variables. The predefined ones are known in the
optimization, while the scheduling max-plus binary control variables are unknown beforehand.
These latter are used to assign jobs to the AGVs. The work queue determines which QC, de-
noted by a(k), and which YC, denoted by b(k), should be selected in the particular container
job k. It indirectly determines which previous QC cycle mQ(k) and previous YC cycle mY (k)
are selected. Furthermore, the information on the cycle type for the QC and YC (dQ(k) and
dY (k)) in cycle k is available by using the work queue in combination with mQ(k) and mY (k).

Unknown max-plus binary control variables are c(k), mA(k) and dA(k). Both the previ-
ous crane c(k) of some AGV and the previous cycle mA(k) basically schedule the AGVs.
Subsequently, the cycle type of the AGV dA(k) can be calculated.

4-2 Model reduction

Writing all the inequality constraints down that the SMPL equations directly impose, re-
sults in an enormous amount of inequality constraints and variables. Since the aim is to
be able to determine a schedule on-line, the computation speed matters. It is therefore wise
to reduce the model as much as possible, since otherwise two main problems can be identified.
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1. Creating the matrices can take a long time (matter of seconds to minutes for large
cases1). Fortunately, most of the MILP formulation is generated only once and can be
reused.

2. More importantly, the solution time of the optimization depends on the number of
constraints and variables. When the optimization need to satisfy less constraints or
variables, it is likely that the solution time is faster.

By taking a closer look at the equations, it can be seen that the first part of Eq. (4-3) equals
the first part of Eq. (4-13) and the second part of Eq. (4-9) equals the second part of Eq. (4-
14). Therefore, these parts of Eq. (4-13) and Eq. (4-14) can be removed. The model can be
reduced even more by assuming that τ2 and τ6 remain (possibly) variable and that:

• the time a QC takes to (un)load an AGV is the same in every cycle k: τ3(k) = τ3,

• the time a YC takes to (un)load an AGV is the same in every cycle k: τ5(k) = τ5,

and knowing that:

• the travel times to a begin location (τ1(k)) and between cranes (τ4(k)) never appear
in the same constraint. One general τv replaces the two travel times,

• the movements of the AGVs are not mapped directly.

The first three points reduce the number of handling time parameters (τ -s) in the system to
suppress the size of the MILP vectors to be introduced in Chapter 5. The last provided point
is less obvious. It would be possible to map the movement of every AGV such that it is stated
within the constraints that an AGV performed in cycle k. Every constraint that contains a
travel time τ1 or τ4 would then be repeated V times, if V would be the total number of
AGVs in the system. If the AGVs are unspecified, the constraints do not have to be repeated
(as was already implied when defining the binary control variables). It is not necessary to
use different travel time indications for every vehicle (τv,1, ..., τv,V ). It is then however not
possible to track the movements of the AGVs directly, but these can still be calculated by
using the previous served cycle of the AGV mA and the work queue.

Initially, the number of constraints and handling times equaled:

nrconstr = (4NP + 4MP +N2V P +M2V P + 4NMV + 4NMV P +N +M)×Np

nrhand = (V +N +N + V +M +M)× (Np + V ),

where Np the number of jobs that are to be scheduled: the prediction horizon. For a medium
sized container terminal of five QCs, fifteen YCs, 25 AGVs and 40 previously considered
cycles, this would result in 8.410.800 constraints. When the AGVs are not mapped, the
number of constraints equal

nrconstr = (4NP + 4MP +N2P +M2P + 4NM + 4NMP +N +M)×Np

nrhand = (1 +N + 1 + 1 + 1 +M)× (Np + V ).
1computer specifications in Section 5-3
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Only 382.800 constraints are left of the medium sized container terminal case. When double
inequality constraints are removed, the number of constraints equal

nrconstr = (4NP + 4MP +N2P +M2P + 2NM + 4NMP +N +M)×Np

and only 380.550 constraints remain for the example case. This latter reduction in constraints
introduces two new optimization variables due to the selection of cycle types:

nrvar = (N +M + 4 + P ))×Np → (N +M + 6 + P ))×Np.

The exact formulation and meaning of these two new variables is to be discussed in Section 5-
1-1, Eq. (5-8) and 5-9.

Sparse matrices

The use of sparse matrices reduces the memory capacity that is necessary. In sparse matrices,
only matrix elements unequal to zero are stored, while all matrix elements that are equal to
zero are disregarded. The effect on the memory usage is shown in Table E-1 and Table E-2
in Appendix E.



Chapter 5

MILP & Benders’ Decomposition

Now that the model is defined, there are numerous ways to solve the problem. One conve-
nient method is recasting the problem in a MILP formulation and using a (MILP) solver to
obtain an optimum. Another approach to retrieve an optimal schedule is through Benders’
decomposition, which is often used in stochastic programming. First, the MILP is generated,
wereafter the Benders’ decomposition is explained. The third part of this chapter shows the
results of both the optimization approaches.

5-1 MILP framework

Since the model contains real and integer parameters to optimize, the problem is defined as
a mixed-integer programming (MIP) problem. Moreover, since the problem is formulated in
the max-plus algebra, it is also linear. Therefore, a mixed-integer linear programming (MILP)
problem formulation can be used with integers that are either known variables (w) or to-be
scheduled variables (z). When β (defined in Eq. (4-22)) is placed before the matrix-vector
multiplication, binary variables can be used. Instead now "select" corresponds to zero and
"do not select" corresponds to one. This results in the MILP form:

min
x,z

J(x, z)

subjected to

Ex + βFz ≤ BΘ + βKw
Eeqx + βFeqz = BeqΘ + βKeqw (5-1)

x ∈ Rnr , z ∈ Zni .
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Here, the parameters x, z and Θ are:

x(k) =



x(k +Np − 1)
...

x(k + 1)
x(k)

x(k − 1)
...

x(k − V )


, Θ(k) =



θ(k +Np − 1)
...

θ(k + 1)
θ(k)

θ(k − 1)
...

θ(k − V )


, z(k) =


z(k +Np − 1)

...
z(k + 1)
z(k)



where

x(k) =



x̂QC1(k)
...

x̂QCN
(k)

x̂Y C1(k)
...

x̂Y CM
(k)


, θ(k) =



τv(k)
τ2,1(k)

...
τ2,n(k)
τ3
τ5

τ6,1(k)
...

τ6,m(k)



, z(k) =



c1(k)
...

cn+m(k)
mA1(k)

...
mAp(k)
dA1(k)

...
dA6(k)



.

Note that, even though P (P ≥ V ) previous cycles are considered, the state and time vector
only acknowledge k − V cycles. Including the constraints proposed later in this section, this
allows V number of paths through the system, hence there are V AGVs.

In the vectors described, x is the state, z are all the unknown and to-be-scheduled max-plus
binary control variables and Θ the time vectors. Furthermore, the parameter w:

w(k) =
[
w(k +Np − 1) . . . w(k + 1) w(k) w(k − 1) . . . w(k − V )

]T
,

with w(k):

w(k) =
[
a1(k) . . . an(k) b1(k) . . . bm(k) mQ1(k) . . . mQP

(k) . . .

mY1(k) . . . mYP
(k) dQ1(k) . . . dQ4(k) dY1(k) . . . dY4(k)

]T
describes all the known max-plus binary control variables for every container job. If the above
definitions of the variables are examined closely, it can be seen that there exist six dA in the
unknown vector z(k). The fifth and sixth dA are as follows:

dA5 = dA1 ⊕ dA4

dA6 = dA2 ⊕ dA3

and became a necessity due to the merging of the equations to reduce the model size.
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To easily obtain the matrices E,F,K and B for the MILP framework, the A-matrix is param-
eterized (Example (5-4)). In the parameterization the following is defined: the job number
(cj), the position in the A-matrix (i, j), the previous cyclus (µ), the index of all τ , stored
in three columns

[
θ1 θ2 θ3

]
, the index of all known binary selection variables, stored in[

w1 w2 w3
]
and the index of all unknown binary selection variables in

[
z1 z2 z3

]
.

Example 5-4. Let us consider the model equation Eq. (4-2):

x̂Q(k) ≥ τ2(k)⊗ τ3 ⊗ x̂Q(k − µQ) ⊕
τ1(k)⊗ τ5 ⊗ x̂Y (k − µA).

This equation satisfies the two inequalities:

x̂Q(k) ≥ τ2(k)⊗ τ3 ⊗ x̂Q(k − µQ),
x̂Q(k) ≥ τ1(k)⊗ τ5 ⊗ x̂Y (k − µA).

Suppose there is one QC with state (x1) and two YCs (x2 and x3), P = 2 and only one
container job j is considered (Np = 1). Following from Eq. (5-1):

x(k) =



x̂1(k)
x̂2(k)
x̂3(k)

x̂1(k − 1)
x̂2(k − 1)
x̂3(k − 1)
x̂1(k − 2)
x̂2(k − 2)
x̂3(k − 2)


, Θ(k) =



τv(k)
τ2(k)
τ3
τ5

τ6,1(k)
τ6,2(k)


, z(k) =



c1(k)
c2(k)
c3(k)
mA1(k)
mA2(k)
dA1(k)
dA2(k)
dA3(k)
dA4(k)


(5-2)

and

w(k) =
[
a1(k) b1(k) b2(k) mQ1(k) mQ2(k) mY1(k) mY2(k) . . .

dQ1(k) dQ2(k) dQ3(k) dQ4(k) dY1(k) dY2(k) dY3(k) dY4(k)
]T
. (5-3)

Remembering that max-plus binary parameter "a" selects the QC, "b" the YC, "mQ" the pre-
vious QC cycle, "mY " the previous YC cycle, "dQ" the QC cycle type and "dY " the YC cycle
type, the parameterization for the inequality following from Eq. (4-2) is shown in Table 5-1.
All cj = 1 for every row in the table. The second inequality that follows from Eq. (4-2)
introduces more constraints and is shown in Table 5-2.
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i j p θ1 θ2 θ3 w1 w2 w3 z1 z2 z3

1 1 1 τp2 (k) = 2 τp3 = 3 0 ap1(k) = 1 mp
Q1

(k) = 4 dpQ1
(k) = 8 0 0 0

1 1 2 τp2 (k) = 2 τp3 = 3 0 ap1(k) = 1 mp
Q2

(k) = 5 dpQ1
(k) = 8 0 0 0

1 1 1 τp2 (k) = 2 τp3 = 3 0 ap1(k) = 1 mp
Q1

(k) = 4 dpQ2
(k) = 9 0 0 0

1 1 2 τp2 (k) = 2 τp3 = 3 0 ap1(k) = 1 mp
Q2

(k) = 5 dpQ2
(k) = 9 0 0 0

1 1 1 τp2 (k) = 2 τp3 = 3 0 ap1(k) = 1 mp
Q1

(k) = 4 dpQ3
(k) = 10 0 0 0

1 1 2 τp2 (k) = 2 τp3 = 3 0 ap1(k) = 1 mp
Q2

(k) = 5 dpQ3
(k) = 10 0 0 0

1 1 1 τp2 (k) = 2 τp3 = 3 0 ap1(k) = 1 mp
Q1

(k) = 4 dpQ4
(k) = 11 0 0 0

1 1 2 τp2 (k) = 2 τp3 = 3 0 ap1(k) = 1 mp
Q2

(k) = 5 dpQ4
(k) = 11 0 0 0

Table 5-1: Parameterization of the first part of Eq. (4-2).

cj i j p θ1 θ2 θ3 w1 w2 w3 z1 z2 z3

1 1 2 1 1 4 0 1 0 0 2 4 6
1 1 2 2 1 4 0 1 0 0 2 5 6
1 1 3 1 1 4 0 1 0 0 3 4 6
1 1 3 2 1 4 0 1 0 0 3 5 6
1 1 2 1 1 4 0 1 0 0 2 4 7
1 1 2 2 1 4 0 1 0 0 2 5 7
1 1 3 1 1 4 0 1 0 0 3 4 7
1 1 3 2 1 4 0 1 0 0 3 5 7
1 1 2 1 1 4 0 1 0 0 2 4 8
1 1 2 2 1 4 0 1 0 0 2 5 8
1 1 3 1 1 4 0 1 0 0 3 4 8
1 1 3 2 1 4 0 1 0 0 3 5 8
1 1 2 1 1 4 0 1 0 0 2 4 9
1 1 2 2 1 4 0 1 0 0 2 5 9
1 1 3 1 1 4 0 1 0 0 3 4 9
1 1 3 2 1 4 0 1 0 0 3 5 9

Table 5-2: Parameterization of the second part of Eq. (4-2).

4

The parameterization of the A-matrix is useful, since it prescribes most of the constraints in
the MILP problem. Its columns can be created when the number of QCs and YCs, P and Np

are known. In Example (5-4) it is clear that the values in several columns are pointers to the
vectors of x, Θ, w and z. This way, it is not obligated to define any specific information on
the model parameters and therefore it serves as a general framework that only needs N, M, P
and Np.

If all the model equations are parameterized, the number of constraints equals:

nrconstr =
Np−1∑
j=0

(
4×N ×min(P, V + j) + 2×N ×M + (N +M)2 ×min(P, V + j) ...

+ 4×M ×min(p, V + j) +N +M
)
. (5-4)
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The constraints describe every allowed path in the system for every container job j. This
includes all the resources (QCs, YCs) with AGVs traveling all paths, which is illustrated in
Figure 5-1. The figure reinforces what Eq. (5-4) also shows: the number of defined paths (and
thus constraints) grow rapidly when the container terminal size increases.

cycle k

cycle k-1

cycle k-2

QC1

QC1

QC1

YC1
YC2

YC1
YC2

YC1
YC2

Figure 5-1: All paths described by the A-matrix parameterization for one container job j when
there are one QC, two YCs and P = 2. The paths of the QC and YCs are green and red,
respectively. The AGV paths occupy the largest number of directed arcs, which are drawn in blue.

Beside the constraints that arise from the parameterization of the A-matrix, several other
important constraints are necessary to define. These will set boundary conditions which the
optimization should satisfy.

5-1-1 Constraints

In the previous section, most inequality constraints are already obtained by recasting the
model into the MILP framework of Eq. (5-1), describing every possible travel path in the
system. The equality constraints that determine the restrictions and relations between the
binary variables are introduced next (remember that zero corresponds to "select" and one to
"not select").

1. Per cycle k, only one previous crane c can be selected

c1(k + j)⊗ ...⊗ cN+M (k + j) = N +M − 1 ∀j. (5-5)

2. Per cycle k, only one previous cycle mA can be selected

mA1(k + j)⊗ ...⊗mAP
(k + j) = P − 1 ∀j. (5-6)

3. Per cycle k, only one cycle type of dA1 to dA4 can be selected

dA1(k + j)⊗ ...⊗ dA4(k + j) = 3 ∀j. (5-7)



36 MILP & Benders’ Decomposition

4. Whenever dA1 or dA4 is selected, dA5 is also selected (arising from model reduction)

−dA1(k + j)⊗−dA4(k + j)⊗ dA5(k + j) = −1 ∀j. (5-8)

5. Whenever dA2 or dA3 is selected, dA6 is also selected (arising from model reduction)

−dA2(k + j)⊗−dA3(k + j)⊗ dA6(k + j) = −1 ∀j. (5-9)

6. Per cycle k, there is only one outgoing arc from a node in the previous cycles to cycle k

mA1(k + j − 1)⊗mA2(k + j − 2)⊗ ...
⊗ mAP

(k + j −min (V + j, P )) = min(V + j, P )− 1 ∀j. (5-10)

7. Last V cycles in x(k) equal the initial state xinit[
x(k − 1) . . . x(k − V )

]T
= xinit.

8. First entry in z(k) equals zero, a dummy variable due to the parameterization

z1 = 0 ∀j.

9. Every cycle can be a termination cycle for an AGV and can result in a sink node

s =
[
s1 . . . sNp+V

]T
= nrnodes − nrAGV s = Np.

To match the binary control variables to the correct cycle, inequality constraints are intro-
duced:

1. A particular crane c belongs to previous cycle k + j − p
−mA1(k + j)⊗−c1(k + j) ≤ νc1 . . . −mAP

(k + j)⊗−c1(k + j) ≤ νc1
...

...
−mA1(k + j)⊗−cN+M (k + j) ≤ νcN+M . . . −mAP

(k + j)⊗−cN+M (k + j) ≤ νcN+M
(5-11)

where

νc =

0 if crane νc served in cycle k + j − p
−1 if crane νc did not serve in cycle k + j − p

∀p, ∀j.

2. A particular cycle type dA belongs to previous cycle k + j − p (inequality constraint)
−mA1(k + j)⊗−dA1(k + j) ≤ νd1 . . . −mAp(k + j)⊗−dA1(k + j) ≤ νd1

...
...

−mA1(k + j)⊗−dA4(k + j) ≤ νd4 . . . −mAp(k + j)⊗−dA4(k + j) ≤ νd4
(5-12)

where

νd =

0 if cycle of AGV νd corresponds to dA
−1 if cycle of AGV νd does not correspond to dA

∀p, ∀j.
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5-1-2 Performance index

The performance index describes the cost of the schedule, which should be minimized. How
this is calculated exactly, depends on the objective of the optimization. An obvious objective
would be to minimize the makespan (the last synchronization of the last performing QC). It
is e.g. also possible to minimize the sum of the last QC times or the AGV travel distance (an
"ecological" approach regarding fuel consumption). For the model that is presented so far,
several performance indices will be evaluated.

• The last synchronization times of the QCs. Several possibilities are reviewed, namely
(I) minimizing the sum of these times, (II) minimizing the maximum of these times
(makespan) and (III) making trade-offs between the two possible objectives. The per-
formance index that is obtained:

min
x,z,tn

J = min
x,z,tn

λsum N∑
n=1

x̂n(k +Np) + λmax max
n∈(1,...,N)

x̂n(k +Np)

 . (5-13)

(I) To minimize the sum of the last QC synchronization times, λmax = 0 and the first
N elements in x(k) are weighted by λsum = 1.
(II) To minimize the maximum of the last QC synchronization times, λmax = 1 and
λsum = 0. To obtain the maximum time, a new variable tn is introduced, where

tn ≥ x̂1(k +Np)⊕ ...⊕ x̂N (k +Np) (5-14)

Accordingly, the inequalities for the MILP formulation become:

tn ≥ x̂1(k +Np)
...

tn ≥ x̂N (k +Np).

(III) The trade-off between the average performance of the QCs (sum) and the worst
performance (max) is done by setting λsum = 1 and λmax =

[
0.25 0.50 0.75 1

]
.

• The last synchronization times of the YCs. Again, different possibilities are analyzed:
minimizing the sum and the maximum of the YC times and finally making trade-offs
between the two possible objectives. Exactly the same weights are used as in the
minimizations of the QC performances, except now the minimization is done over the
YC synchronization times:

min
x,z,tm

J = min
x,z,tm

λsum M∑
m=1

x̂N+m(k +Np) + λmax max
m∈(1,...,M)

x̂N+m(k +Np)

 . (5-15)

The last YC synchronization times are weighted by λsum and the new variable that is
introduced for the maximum YC synchronization time now becomes:

tm ≥ x̂n+1(k +Np)⊕ ...⊕ x̂n+M (k +Np). (5-16)
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• Instead of considering the minimization of the makespan, which is financially profitable,
it is also possible to minimize the fuel consumption (financial and ecological lucrative).
This objective can be formulated by the AGV travel distance:

td = τv(k)⊗ ...⊗ τv(k +Np), (5-17)

were τv(k) the selected travel time for x̂(k). New inequality constraints are introduced,
since all τv are not directly expressed in the equations. The new inequalities become:

x̂d(k) ≥ τv(k)⊗ a(k)⊗ c(k), (5-18)

were τv(k) corresponds to the time between a(k) (the assigned QC) and c(k) (the crane
at which the selected AGV terminated its previous cycle). Only the travel distance to
the container job is taken into account, since the travel distance between the cranes
in a container job is not variable. The minimization of purely the travel distance then
becomes:

min
z,td

J = min
z,td

td. (5-19)

This distance objective is weighted to the maximum QC synchronization time in the
ratios 1:1 and 1:10.

It should however be noted that the minimization of the objective functions cannot be imple-
mented exactly the same as the theory prescribes. This due to the formulation of the model
equations. These describe from which time on a synchronization can take place by means of
the inequality sign, which means that it might happen later. Only due to the minimization, it
is ensured that the fastest synchronization time possible is used. Therefore, all the elements
of x(k) should at least have very little weight in the minimization, regardless if they belong
to the theoretical objective function or not.

5-1-3 Search algorithms

Before the results are discussed, the used solvers are reviewed quickly. At first, five different
solvers are considered:

• the standard integer linear programming (ILP) solver of MATLAB,

• the GNU linear programming kit (GLPK) solver,

• the coin-or branch and cut (CBC) solver,

• the Gurobi solver and

• the CPLEX Tomlab solver,

To solve the MILP problem, most modern solvers use the same methodology. They start by
preprocessing the problem by presolving the problem and using heuristics. The MILP problem
is solved by a branch-and-bound algorithm. When the solver applies cutting planes during the
branch-and-bound algorithm, it solves the problem with a branch-and-cut algorithm [37,38].
The interested reader is referred to Appendix F for more information on the branch-and-cut
algorithm, the presolving and heuristics.
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5-2 Benders’ decomposition

Another approach to obtain an optimal schedule is to use Benders’ decomposition [39]. This
method also uses cutting planes, only now they need to be defined explicitly. They can be
generated by a cut generation linear program (CGLP) which has a feasible solution that de-
fines a family of inequality constraints [40]. Suppose in general, all continuous variables are
called x and all integer (or binary) variables are called z. The Benders’ decomposition con-
verts a MILP with continuous variables x and integer variables z to a problem only involving
integer variable x and a single continuous variable η. Here, η describes the contribution of
the continuous variables in the objective function, thus η = cTobj,xx. This problem is called
the master problem and solves the primal problem with the relaxation in the (z, η) space.
This temporary optimal solution (z∗, η∗) is sent to the dual slave problem, where is z∗ the
temporary optimal AGV assignment and η∗ a temporary optimal cost. The dual slave prob-
lem is linear and finds the optimum x∗ such that (x∗, z∗) is feasible for the original problem
and such that η∗ = cTobj,xx∗. When the objective of the dual slave problem does not coincide
with η∗, an optimality cut is added to the master problem. When the objective equals η∗,
the optimum has been found and the algorithm terminates.

In some systems it is possible that the dual slave problem is infeasible. Instead of a Benders’
optimality cut, a Benders’ feasibility cut is added to the master problem. Since in the de-
fined container terminal system feasibility of the dual slave problem will not be an issue (it is
supposed that there is always enough time available), this latter cut will not be considered.

The Benders’ decomposition is not often used when solving MILP problems. However, it is
a commonly applied method in stochastic programming, which is to be explained in Chap-
ter 7. The advantage is the decomposition between the integer and real variables. Since the
stochastic variables will be introduced in the dual slave problem, which is an LP problem,
the multiple realizations can be solved fast.

5-2-1 Benders’ cuts

The standard MILP problem is given in terms of previous named matrices on the left side.
At the right side, the matrices are reformulated such that the notation stays clear.

min
x,z,t

cTobj,xx(k) + cTobj,zz(k) min
x,z,t

cTobj,xx(k) + cTobj,zz(k)

subjected to

−βF1z ≥ B1Θ1 + βK1w F1z ≥ b
−βF2z + E2x ≥ B2Θ2 + βK2w F2z + E2x ≥ r (5-20)

z ∈ {0, 1} z ∈ {0, 1}
x ≥ 0 x ≥ 0

and will be referred to as the original problem. The first set of inequalities contains all
constraints on solely the binary variables z. The second set contains all other constraints
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described in the previous section.

The Benders’ decomposition states that the solution in the following problem will be equiva-
lent to the original problem:

min
z,η

cTobj,zz(k) + η

subjected to

F1z ≥ b
η ≥ π̄T (r− F2z) (5-21)

z ∈ {0, 1}

and is denoted as the primal problem. As seen before, η takes into account cTobj,xz(k) and
set Π contains the vertices of the polyhedron D, defined by

πTE2 ≤ cTobj,x
π ≥ 0. (5-22)

An iterative solution method is applied that uses cuts to reduce the solution space. The
Benders’ decomposition iterates between the master and dual slave problem.

1. Solve the master problem:

min
x,η

cTobj,xz(k) + η

subjected to

F1z ≥ b
< Benders’ cuts > (5-23)

z ∈ {0, 1}

with initially no Benders’ cut at all. The master problem is a relaxation of the primal
problem that keeps the integrality constraints. Now let a temporarily optimal solution
to the master problem be denoted by (z∗, η∗).

2. Solve the dual slave problem:

max
π

πT
(
r− F2z∗

)
subjected to

πTE2 ≤ cTobj,x
π ≥ 0 (5-24)

which is a linear problem and therefore the result can be obtained fast.



5-2 Benders’ decomposition 41

3. Let the optimal of the maximization in formulation (5-24) be denoted as ζ∗ and the
optimal vertex as π̄. If ζ∗ ≤ η∗, the algorithm terminates, since the solution is feasible
and optimal for the primal problem. Otherwise, the Benders’ optimality cut is added to
the current master problem and another iteration is initiated. The Benders’ optimality
cut:

η ≥ π̄T (r− F2z) . (5-25)

If the maximization of the dual slave problem and the Benders’ cut are examined more
closely, it becomes clear that only the constraints that are crucial and determinative for
the synchronization times are penalized in the optimality vector π̄ per subproblem. It then
becomes clear that the master problem chooses different schedules such that η will remain
zero. Therefore, most (as not all) feasible schedules are searched without the lower bound
η increasing. Once it cannot find a costless schedule anymore due to the Benders’ cuts, the
algorithm finds the optimal solution fast, since it already gathered all necessary constraints.
A typical evolution of the lower bound η and optimal solution (new try upper bound) ζ∗ can
be seen in Figure 5-2.
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Figure 5-2: Typical progress of lower bound and temporarily solution of the classical Benders’
decomposition.

Castillo et al. (2006) [41] proposed a different Benders’ cut. They suppose that not only the
continuous variables are variable in the subproblem, but also the integers. However, by fixing
the integers by the constraints z = z∗, they can be treated as continuous. The dual problem
and subproblem are defined slightly different [42]. They propose the Benders’ cut:

η ≥ cTobj,xx + λmax(z− z∗). (5-26)

This Benders’ cut "remembers" the cost cTobj,xx for the schedule z∗. In the system of the
container terminal the cut does not solve the earlier denoted problem. However, keeping
these cuts in mind, a new proposal for an algorithm can be done. The algorithm considers
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the jobs one by one, adding a cost to the calculated schedules. Since these will be included in
the optimization for the next job, the search space will be reduced considerably. The master
problem now becomes:

min c1 T
obj,zz1 + η1

subjected to
F1

1z1 ≥ b1

η1 ≥ π1 T (r1 − F2
1z1).

Here only the first job is calculated and the cuts are retrieved by the classical dual slave
problem. Additionally, the cost is calculated by a linear optimization, deriving c1

obj,xx1 and
ιi = 1 when z∗i = 1 and ιi = −1 when z∗i = 0, obtaining:

ν1 ≥ c1 T
obj,zz∗ 1 − ι1 T (z1 − z∗ 1).

The second job:

min c2 T
obj,zz2 + η2 + ν1

subjected to
F1

2z2 ≥ b2

η2 ≥ π2 T (r2 − F2
2z2)

ν1 ≥ c1 T
obj,zz∗ 1 − ι1 T (z1 − z∗ 1).

Where the problem is exactly the same, but formulated for two jobs. The additional variable
ν introduces a cost for the first job assignment. Again, a cost is calculated for the first two
jobs c2

obj,xx2 and corresponding ι2. This creates ν2, which will be used instead of ν1 in the
optimization for the next job.

5-3 Results of the SMPL model - MILP approach

The MILP problem was implemented in MATLAB 2014b (64-bit version) and the computa-
tions are done on a computer using the Windows 7 Professional 64-bit operating system. It
has 4 Intel R© CoreTM i5-3570 processors with a clock speed of 3.4 GHz. The random access
memory (RAM) of the computer is 8192 MB, while MATLAB has a memory usage of at most
8735 MB.

The solution to the MILP problem returns the cost of the optimization, highly depending
on the handling times that are used in the optimization. The AGVs can be tracked and the
QC waiting times calculated, but can differ considerably when the handling times and AGV
travel times are adjusted. The handling times are shown in Table 5-3.

The settings that are used in computing the results are given in Table 5-4, unless otherwise
indicated.
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τ2(k) = τ2 = 80, τ5 = 15,
τ3 = 10, τ6 = 160.

Table 5-3: Handling times of the QCs and YCs, with τ as defined in Section 4-1-2.

tc 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
N 2 2 3 3 4 4 5 5 6 6 7 7 8 8 9 9 10 10
M 3 4 5 5 6 7 8 8 9 10 11 11 12 13 14 14 15 20
V 3 6 9 12 15 15 18 21 24 27 30 30 33 36 39 42 45 50
P 5 10 15 20 25 25 30 35 40 45 50 50 55 60 65 70 75 85
Np 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15

Table 5-4: The specifications of the test cases used in the experimental runs, where tc the test
case, N the number of QCs, M the number of YCs, V the number of AGVs, P the previous
considered cycles and Np the number of container jobs on the horizon.

The AGV travel times depend on the layout of the terminal, which is chosen parallel and with
the distances as in Figure 5-3 and an average speed of 2.5m/s, taken into account accelerations
and delays. The work queue is presented in Table 5-5 (unless otherwise indicated).

Vessel 1 Vessel 2

1 2 3 4 5 6 7 8 9 10

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

40m
800m

100m

70m

50m

Figure 5-3: Container terminal layout for all the test cases, unless otherwise indicated.

container jobs: 1 to cj e.g.
[
1 2 3 4 5

]T
QC work queue: repeat 1 to N e.g.

[
1 2 1 2 1

]T
YC work queue: repeat 1 to M e.g.

[
1 2 3 1 2

]T
cycle type discharge jobs d1 e.g.

[
1 1 1 1 1

]T
Table 5-5: Work queue for all the test cases unless otherwise indicated.
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Figure 5-4: The AGV routes resulting from solving the system described in Appendix G.

First, some simple schedules are produced and their correctness verified by hand calculations,
of which an example is provided in Appendix G. In Figure 5-4 it is shown how the AGVs
move through the system in time. Next, the MILP formulation is considered ("the MILP
approach"). With this algorithm, an optimal schedule for all the test cases is derived with
the parameters given above. The following can be established:

• how the number of constraints increases with the complexity of the problem,

• how the number of variables increases with the complexity of the problem,

• which solver provides the fastest solution time,

• how the solution time is affected by the complexity of the problem,

• whether different objective functions return different objective values.

When these aspects have been considered, the model and the optimal schedules are evaluated
by varying and analyzing the effect of the parameters

• Np: the number of container jobs,

• V : the number of AGVs,

• P : the number of previous cycles that are taken into account,

• work queue: mixing discharge and loading jobs.

5-3-1 Analysis MILP approach - terminal size, solvers and objective functions

One of the goals in this thesis is to design a scheduling algorithm that can be used on-line.
Therefore it needs to be fast. The speed of the optimization depends mainly on the size of
the problem and the applied solvers.
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Terminal size

Since the max-plus model describes every path in the system, the complexity grows rapidly
as the problem size increases. Two meaningfull benchmarks are the number of constraints
and the variables that need to be optimized. When the test cases defined earlier are used, it
becomes clear that the number of constraints grows quadratic in the number of QCs N and
YCs M . Even though an increasing number of AGVs does not directly influence the number
of constraints (as it does not appear in Eq. (5-4)), it determines how many previous cycles
should be taken into account. It therefore determines the magnitude of P , which causes
the number of constraints to increase rapidly. The number of variables grows linear with
respect to the number of QCs, YCs and P , as becomes clear with the definition of vector z
in Section 5-1. This is illustrated in Figure 5-5.
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Figure 5-5: The number of constraints and variables of the eighteen test cases with increasing
terminal complexity.

Solvers

Many different solvers can be used to obtain the optimal schedule. Five different solvers are
tested for their computation speed. The GLPK solver already takes over five minutes to solve
the second test case. The standard MATLAB MILP solver and CBC solvers also perform
not nearly as good as the Gurobi and CPLEX (Tomlab) solvers, as can be seen in Figure 5-6.
Whenever there is no solution time drawn for a solver, it means that the solution time was
over five minutes.

The only two solvers that are able to obtain an optimal schedule for the largest test case
within the deadline of five minutes are the Gurobi and CPLEX solvers. Both the solvers re-
turn the same objective values for all test cases, implying that they found the true optimum
of the problem.

From now on, all optimizations will be done using the Gurobi solver, since it performs best.
The CPLEX solver performs approximately just as good, but requires a license, while the
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Figure 5-6: The performances of the different solvers. The upper plot shows the performance of
the slower GLPK, CBC and standard MATLAB solvers. The lower plot shows the results of the
faster CPLEX and Gurobi solvers. Solution time increases when the terminal size increases.

Gurobi solver provides a free academic license. It should be noted that the best performing
open-source solver is the CBC solver.

Objective function

Interesting to see is if and how the performance index influences the results. In Section 5-1-2
the different objective functions are explained. First, let us look at minimizing the last per-
forming QC ("max minimization") versus the sum of all the last synchronizations of the QCs
("sum minimization") (Eq. (5-13), Jmax : λmax = 1, λsum = 0 and Jsum : λmax = 0, λsum =
1).

The results for the test cases appear to be exactly the same, excluding test cases 13 and
16. Figure 5-7 shows that QC5 in test case 13 and QC6 in test case 16 have different syn-
chronization times when the performance index is adjusted from max minimization to the
sum minimization. As expected, the summation has the best overall performance. In this
objective, all last QC synchronizations have the same weight in the optimization, in contrast
to minimizing the maximum, where only one QC has priority (Eq. (5-14)).

However, when more container jobs are scheduled in one single simulation, the differences
between QC synchronization times become larger. The priorities of the objective functions
distinguish themselves as more choices become available in a simulation, of which an example
is given for test case 4 in Table 5-6. The ratio in the last column is that of the average
synchronization time to the maximum synchronization time. The highest ratio is that of the
performance index minimizing the maximum QC time. This objective suppresses the max-
imum, but compensates by increasing other QC synchronization times. Another important
aspect is that of the computation time. In Figure 5-8 it can be seen for several test cases that
there is a considerable difference in computation time.
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Figure 5-7: The last synchronization times of all the QCs for test cases 13 and 16 when the max
minimization and sum minimization are implemented as performance index.

test case 4 (Np = 15)
QC1 QC2 QC3 ratio

sum 810 810 828 0.986
max 810 810 828 0.986

trade-off 810 810 828 0.986

test case 4 (Np = 30)
QC1 QC2 QC3 ratio

sum 1260 1318 1360 0.965
max 1290 1332 1318 0.979

trade-off 1260 1318 1360 0.965

Table 5-6: The last synchronizations of the QCs in test case 4 using three performance indices
(sum, max and λmax = 0.5). When the prediction horizon increases, the difference becomes
visible.

The different tested objective functions that minimize the YC synchronization times also show
almost exactly the same results in the test cases. None of the differences effect the makespan.
More jobs will most probably result in larger differences, as is seen for the QC objectives.
When the QC objective is compared to the YC objective, the QC objective performs better.
In eleven of the 90 cases (18 test cases × 5 trade-offs) it obtained faster synchronizations up
to 155 seconds, but none of them influencing the makespan.

A last objective function describes the minimization of the travel distance of AGVs, deriving
very different results. The computation time increases drastically, far exceeding 300 seconds
for the largest case, while also the makespan is often much larger when only the travel
distance is considered, which is shown in Table 5-7. The performed simulations use λmax =
1, λsum = 1 and the weight on minimizing distance td: λd = {1, 10}. All results can be
seen in Appendix ??. It is concluded that this objective function is not preferable to that of
minimizing the QC or YC synchronization times.
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Figure 5-8: The solution computation times for test cases 11 to 15 and 18.

t.c ωd = 1 ωd = 10
1 1% 6%
4 0% 37%
8 6% 21%

Table 5-7: The percentage loss when the travel distance objective is compared to the QC
objective function.

5-3-2 Analysis MILP approach - varying parameters

The effect of varying the number of jobs (horizon), AGVs and P is studied. Lastly, also the
difference in cycle types will be considered.

Scheduling horizon

To determine how many jobs should be scheduled, a trade-off should be made between the
solution computation time and how far ahead in time one wants to schedule. Due to the
perturbation in the container terminal system, it will not make sense to schedule 2 hours
ahead. However, to obtain some overall optimum, it will be necessary to extend the number
of jobs to a certain horizon. Table 5-8 shows the number of jobs that are tested Np and the
scheduled horizon in seconds, the solution computation time tsol, how long it takes on average
for the next job is ready at the quay side jt (based on 90s cycle time of QC) and the fraction
of jobs per QC jf .

There are different approaches to choose the horizon. It is possible to compute as much as
possible jobs within a certain time, but a better approach might be to schedule a number of
jobs for every QC. A minimum amount would be two jobs per QC, preferably more. However,
there is a maximum amount that should be scheduled, which depends on:

1. whether the computation time exceeds the scheduled time,
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N jt [s] Np jf tsol[s] Np jf tsol[s] Np jf tsol[s]
2 45 5 = 225s 2.5 0.02 10 = 450s 5 0.23 15 = 675s 7.5 0.19
3 30 5 = 150s 1.7 0.08 10 = 300s 3.33 0.41 15 = 450s 5 0.34
4 22.5 5 = 113s 1.25 0.08 10 = 225s 2.5 0.28 15 = 338s 3.75 0.68
5 18 5 = 90s 1 0.22 10 = 180s 2 0.51 15 = 270s 3 1.39
6 15 5 = 75s 0.83 0.14 10 = 150s 1.67 2.73 15 = 225s 2.5 16.4
7 12.9 5 = 64.3s 0.71 0.90 10 = 129s 1.43 4.00 15 = 193s 2.14 20.3
8 11.25 5 = 56.3s 0.63 0.53 10 = 113s 1.25 7.54 15 = 169s 1.88 20.9
9 10 5 = 50s 0.56 1.99 10 = 100s 1.11 15.25 15 = 150s 1.67 33.4
10 9 5 = 45s 0.5 2.91 10 = 90s 1 16.88 15 = 135s 1.5 69.6
N jt [s] Np jf tsol[s] Np jf tsol[s]
2 45 20 = 900s 10 0.49 25 = 1125s 12.5 0.66
3 30 20 = 600s 6.67 0.61 25 = 750s 8.33 1.00
4 22.5 20 = 450s 5 1.35 25 = 563s 6.25 1.91
5 18 20 = 360s 4 2.62 25 = 450s 5 3.72
6 15 20 = 300s 3.33 26.9 25 = 375s 4.17 28.3
7 12.9 20 = 257s 2.86 36.0 25 = 322s 3.57 54.1
8 11.25 20 = 225s 2.5 45.7 25 = 281s 3.13 90.9
9 10 20 = 200s 2.22 66.36 25 = 250s 2.78 108
10 9 20 = 180s 2 87.19 25 = 225s 2.5 136

Table 5-8: Table that describes the horizon per number of QCs. The red number indicate
that an AGV is scheduled for approximately every next 2 to 3 jobs per QC. Test cases were
1-3-5-7-9-11-13-15 and 17.

2. whether the scheduled time exceeds a certain point in time that is crucial for the relia-
bility of the schedule due to uncertainties in the system (0.5 hour) or

3. whether the hardware of the system that runs these simulations or the MATLAB mem-
ory capacity are unable to handle the complexity.

tc Np limit tc Nh limit tc Nh limit
1 40 2 7 100 2 13 40 1 & 3
2 40 2 8 100 2 14 30 1 & 3
3 60 2 9 90 1 & 3 15 20 1 & 3
4 60 2 10 70 1 & 3 16 20 1 & 3
5 80 2 11 50 1 & 3 17 20 1 & 3
6 80 2 12 50 1 & 3 18 20 1 & 3

Table 5-9: The maximum horizon per test case and the nature of its limitation.

The minimum horizons are marked red in Table 5-8. The maximum horizon for test cases 1
to 8 is scheduling half an hour (limitation 2). For test cases 9 to 18 this is not possible due to
memory issues and too long computation times. The maximum number of scheduled jobs can
be seen in Table 5-9, with the limitations from the above summation. It should be pointed
out that in all test cases initially half an hour was scheduled, causing memory issues in test
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cases 9 to 18 (limitation 3). A horizon just within the capacity of MATLAB resulted in too
long computation times (limitation 1).

Number of AGVs

It is expected that the number of AGVs strongly influences the QC waiting times, as seen in
Section 4-1-1. Therefore, one AGV per QC will cause enormous QC waiting times, while four
AGVs are more than enough to serve the QCs on time (optimal performance assumed). This is
exactly what results from simulations with six new test cases, where N =

[
1 2 3 4 5 6

]
and where the number of AGVs equals:

[
N 2N 3N 4N

]
and M = 3N, P = 2V and

Np = 4N .
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Figure 5-9: A typical representation of all the last QC synchronizations for an increasing number
of AGVs (from top to bottem: 3-6-9-12 AGVs).

To exclude the possibility that the horizon is too short to notice any delays, the simulations
were repeated with Np = 8N . Lastly, to also exclude any dependence on the repetitive
sequence of the work queue, the YC sequence is randomized. A typical result of increasing
the number of AGVs can be seen in Figure 5-9, were the QC finished its last job in the blue
dots and synchronizes at the red circles. The red lines are the QC wait times, which reduce
when the number of AGVs increases.

Number of previous cycles

To study the number of previous cycles, the same test cases are used as in the evaluation
of the number of AGVs (with the number of AGVs equal to 2N). Analyzing the results
leads to the conclusion that considering more than 1.5 × V cycles back does not enhance
the performance any more. It would however increase the model complexity and hence the
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computation time. An example of a result can be seen in Figure 5-10, where there are four
AGVs and the synchronization times of the two QCs are shown. When P < 1.6 is chosen,
the optimization loses freedom in the scheduling of the AGVs and the performance becomes
worse. As an explanation, suppose P = V and the initial scheduling sequence for three
container jobs is: AGV1 - AGV2 - AGV3. The constraint Eq. (5-10) combined with Eq. (5-6)
ensures that every AGV, every path through the system continues, except when it terminates
at a sink node. Assuming that none of the AGVs terminate at a sink node, the next jobs
have to be performed in the repetitive sequence of AGV1 - AGV2 - AGV3. This will result
in an unfavorable schedule.
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Figure 5-10: The synchronization times when P is varied. When P = 4 = V and when
P = 5 = 1.25V there are many delays, which are completely resolved when P ≥ 6 = 1.5V .

Cycle types

When comparing the parameters, only discharge jobs are considered. It is however also
possible to mix the discharge jobs with loading jobs. As can be seen in Figure 5-11, this
causes delay in the QC synchronizations. In this particular test case, which is representative
for all the simulations, the following parameters are used:

N = 3, M = 9, V = 9 and P = 18.

Even if the number of AGVs is increased, the delay still remains. This can be explained by
considering the definition of the model, which does not allow any job order switching. The
importance and impact of this limitation will be explained in the next section.
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Figure 5-11: The QC synchronization times for only discharge jobs and for shuffled cycle types.

5-3-3 Switching job orders

In the definition of the model, it is not possible to switch the job order, since Eq. (4-18)
shows:

x(k) ≥ A0 ⊗ x(k)⊕A1 ⊗ x(k − 1)⊕A2 ⊗ x(k − 2)⊕ ...⊕AP ⊗ x(k − P )

hence it always holds that x(k) ≥ {x(k − 1), x(k − 2), ..., x(k − P )}.

Delay type I − YC
Now suppose there is a discharge job (k + 7) which has to be stacked in the yard by YC2.
The container is expected to arrive at time t7 = 1500s, while the crane itself is ready at
t0 = 900s. The next job assigned to YC2 is the discharge job (k+ 11), arriving at the yard at
t11 = 1000s < t7. Now the YC will wait with performing (k + 11) until it finishes (k + 7) (as
Eq. (4-18) prescribes), even though it easily can perform (k + 11) without losing time in job
(k+ 7). These situations cause delay at the yard side, occupying an AGV for an unnecessary
long time. Important is to realize that this flaw is in the model, whereby it loses accuracy in
describing the dynamics of the system, since in a container terminal, the YC probably decides
to perform job (k + 11) first.

Delay type II − QC
A second delay that can occur is at the quay side. From the simulations (Figure 5-11) it is
clear that when a QC performs a loading job preceded by a discharge job (thus cycle type
2), the discharge job has a slow synchronization. Apparently, the AGV lags the fastest QC
synchronization time, concluding that the AGV starts traveling too late. To solve this issue,
the YC-AGV synchronization should happen earlier, implying that the delayed job should
move up in the work queue of the YC. This might result in extra waiting time for an AGV
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performing another job, but it should be kept in mind that delay for a QC is the most unfa-
vorable situation in the container terminal.

There are two courses of action that can be taken. A full switching scheme could be im-
plemented, where new constraints are defined and new binary variables introduced for all
job switches that are allowed. These are then directly introduced into the MILP problem,
increasing the number of constraints and variables tremendously. Another method would be
to only allow switching when the predicted schedule shows a long waiting time for a QC or
YC. In this threshold switching, recalculation is needed to determine if a job switch improves
the schedule. The switching of jobs is highly recommended, but not further explored in this
work. More information on the switching schemes is provided in Appendix H.

5-4 Results of the SMPL model - Benders’ decomposition ap-
proach

Figure 5-2 (Section 5-2) already explained the problem when the classical Benders’ decom-
position is implemented. Due to the relaxation of the constraints, the Master problem is
able to find an unconstrained schedule most (or all) of the time. Hereby, there are too many
iterations that need to be computed by the algorithm to obtain an optimum in as little time
as the MILP approach. Alternative Benders’ cuts are proposed.
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Figure 5-12: The difference regarding the solution times and number of iterations between the
classical and alternative Benders’ cuts for a simple case of one QC, two YCs and two AGVs.

Figure 5-12 shows the results when there are only one QC, two YCs, two AGVs and P = 3.
For very little jobs, approximately 7, the classical Benders’ cuts perform better. However,
when the number of container jobs increases, the alternative cuts perform much better. For
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example. for 20 jobs it takes 1.29s, while the classical cuts result in 111s. The number of
iterations progresses in the same manner as the solution time, since they are related. Again,
the alternative cuts perform worse when using a very small prediction horizon, but better
than the classical cuts when the horizon increases.

From these results it is concluded that the alternative cuts might reduce the problem, but
they do not solve it. Trying larger cases, such as test case 1 (defined in Page 43) with Np = 10
container jobs results in a computation time of more than 1.5 hours. The method performs
thus not nearly as good as the MILP approach, which solved the largest test cases within 20s.
The Benders’ decomposition will not be considered any further as a solution algorithm.

Lastly, it should be noted that the correctness of the implementation of the Benders’ decom-
position is checked by comparing the objective and resulting schedules to those of the MILP
approach. Since they return the same schedules, the correctness of the implementation of the
Benders’ decomposition approach is verified.



Chapter 6

Model Predictive Scheduling

In the previous chapter, it is explained that the schedule is not reliable when a large horizon
is chosen. Since an on-line scheduling method is desired, rescheduling is necessary. To obtain
this, model predictive scheduling (MPS) is used, which in the container terminal system has
several important advantages [21,43].

• The computation time might increase such that it cancels out the time gained by the
optimization or even deteriorate it. MPS uses a receding horizon principle to avoid this
negative effect on the computation time.

• Moreover, it can use a part of the previous solution as an initial guess to the new
optimization, deriving the optimal schedule faster in the new optimization than in the
initial problem.

• It handles constraints in a systematic way during the design and implementation of the
controller.

• It enables reactive operational scheduling. Based on a model, it is possible to opti-
mize the performance by rescheduling using new state information, which makes the
schedule more accurate.

In the MPS method there are five important parts recognizable that coincide with those in
MPC, namely a process (and potentially a disturbance) model, the performance index, the
constraints, the optimization and the receding horizon principle. Only the latter needs to be
added to the existing SMPL model.

6-1 MPS for the SMPL model

When MPS is applied, a receding horizon is added to the problem. This means that the
optimal schedule for a prediction horizon of Np jobs is calculated, where after the horizon
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is shifted Nr event counters k and a new schedule is retrieved. When the schedules are
obtained off-line, the shifting horizon eases the computational burden, since smaller horizons
can be used to schedule the same amount of jobs. When the SMPL-MPS model runs on-
line, information on the state (QC and YC synchronization times) can be obtained and used
to predict a more accurate schedule. In this case, only the first Nr AGV job assignments
are implemented (Figure 6-1). Subsequently, the horizon is shifted, new state information is
obtained and the schedule is recalculated. Due to the shift in horizon, the same number of
jobs are scheduled for every recalculation (excluding the recalculations restricted by the finite
amount of containers at the end of the overall schedule).
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horizon, Np
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ι = 3

ι = 4

subschedule 3

subschedule 2

subschedule 1

true schedule

subschedule 4
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Figure 6-1: Receding horizon principle. The implemented schedule is represented in green,
merged from the blue calculated schedules.

The SMPL-MPS system is described as:

x(κ) = A⊗ x(κ− 1). (6-1)

This model introduces the new event counter κ, with which the state evolves as:

x(κ− 1) =



x(k +Np)
...

x(k)
...

x(k − P )


x(κ + ι) =



x(k +Np + ιNr)
...

x(k + ιNr)
...

x(k − P + ιNr)


(6-2)

for ι = 1, 2, 3, ... and forNp the prediction andNr the receding horizon. The tuning parameters
of the SMPL-MPS approach are the rpediction horizon Np, the receding or rescheduling
horizon Nr and the trade-off variables λsum and λmax.

6-2 Results of the SMPL-MPS approach

The following was analyzed for the off-line SMPL-MPS model:

• effect of λ on the makespan,



6-2 Results of the SMPL-MPS approach 57

• the computation speed using initial guess,

• the trade-offs regarding receding and prediction horizon,

• the difference in makespan when MPS is applied and when not.

The last analysis will consider the value of the SMPL-MPS model on-line, when state in-
formation becomes available. The MILP approach is used to do the numerous simulations
necessary to test the SMPL-MPS approach.

Effect λ on makespan

The same performance index is used as in Eq. (5-13):

min
x,z,tn

J = min
x,z,tn

λsum N∑
n=1

x̂n(k +Np) + λmax max
n∈(1,...,N)

x̂n(k +Np)

 . (5-13)

Earlier it is seen that taking the performance index equal to the summation or to the maximum
of the last QC synchronizations times makes no difference in the makespan. It is verified if
the same applies to the receding horizon approach. The considered objectives are again:

1. summation of the last QC synchronization times (λsum = 1, λmax = 0),

2. maximization of the last QC synchronization times (λsum = 0, λmax = 1) and

3. a trade-off where the weight of the maximum time is λmax = 0.2×N and λsum = 1.

This time, there is a clear difference between the objective values, due to the larger horizons.
The max minimization gives the fastest makespan, since it minimizes the last synchronizing
QC. The trade-off performs slightly better on average and performs still very well in minimiz-
ing the makespan. This due to the implementation of minimizing the last synchronizing QC,
but also suppressing all the last QC synchronization times. The summation performs best
on average QC synchronization times, but much worse on the makespan, since it contains no
weight to minimize the last synchronizing QC (λmax = 0 for Eq. (5-13)). A trade-off between
the average and maximum QC synchronization times appears to be the best objective value.
A good overall performance is desired, but the maximum synchronization time should be
bounded.

QC1 QC2 QC3 QC4 QC5 QC6 QC7 QC8 QC9 QC10 average max ratio
sum 1463 1529 1598 1344 1410 1655 1680 1643 1669 1592 1558 1680 0.928

trade-off 1432 1520 1564 1442 1621 1529 1634 1643 1627 1633 1565 1643 0.952
max 1548 1614 1598 1617 1585 1529 1588 1599 1584 1596 1586 1617 0.981

Table 6-1: The max, sum and trade-off objective functions return different predictions for the
last QC synchronization times of test case 17.

In Table 6-1 the last synchronizations of the QCs in test case 17 are presented. The last
column of the table shows the fraction "average sync/maximum sync". This clarifies the ex-
planation regarding the effect of the objective function on the system. The first objective
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(summation) has the largest deviation and lowest ratio. Only the summation is minimized,
while the maximum is totally disregarded (λsum = 1, λmax = 0 in Eq. (5-13)). The second
objective (maximization) suppresses the maximum synchronization time, but compensates on
others. It therefore has the largest ratio and the smallest differences in synchronization times.
Now λsum << 1 and λmax = 1 in Eq. (5-13), minimizing the maximum synchronization time.
The trade-off is in the middle of these two discussed objectives, as is expected. In the equa-
tion, it shows that both the average performance as well as the maximum are minimized,
since λsum = 1 and λmax = 0.2×N .

In Appendix J the results of the different objective functions for test cases 1, 2, 8, 9 and 17
are shown in a figure (Figure J-1) and in Table J-1.

Computation speed

The first optimization is exactly equal to the one performed in the previous chapter. However,
in all the optimizations that follow due to the receding horizon, an initial guess can be provided
to the optimization. This initial guess is the optimum of the previous optimization. Due to
this, the computation speed increases about five to six times, disregarding some exceptions
in which the optimization has difficulty finding an optimum (Figure 6-2).
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Figure 6-2: The decreasing computation time in the receding horizon approach for the test cases
2 and 3.

Trade-offs Np and Nr

To decide which prediction horizon should be used, the same three reasons apply as did in
Section 5-3-2. The prediction horizon for test cases 1 to 8 stays restricted to the maximum
planning horizon of 30 minutes that is assumed. The other test cases can be calculated
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faster, but they were already using almost all of MATLAB’s assigned memory. Therefore,
Table 5-8 still applies. It is no coincidence that the horizon does not increase. It is already
stated that test cases 9 to 18 are limited by computation time, which are long since the
cases are large and the computer and MATLAB run out of (RAM) memory. It is no sur-
prise that the maximum memory capacity is almost immediately reached when increasing Np.

Regarding Nr, if it is chosen too large, it might happen that unfavorable choices are made
at the end of the schedule, which cannot be corrected any more. This is verified using dif-
ferent Nr in the test cases, for example test case 1, as can be seen in Figure 6-3. In this
simulation 100 container jobs are scheduled and the first 40 are shown, where Np = 25 and
Nr = {5, 10, 15, 20, 25}. After twelve jobs (the sixth of QC2) the schedules start to deviate.
Apparently, when Nr = 5 is used, the schedule is faster than all the other implemented Nr.
The derived schedules when using Nr = 10 and Nr = 15 are exactly the same and perform
worse than when Nr = 5, but better than when Nr = {20, 25}. Lastly, the worst option is
using Np = Nr, since it is impossible to resolve unfavorable choices at the end of computing
one horizon.
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Figure 6-3: The synchronization times of QC2 in test case 1 for the first 40 jobs.

A trade-off should be made between a high computational burden but better guarantee for an
optimal schedule (small Nr) and a lower computational burden but most probably a slower
schedule. Besides this consideration, the computation speed should also be taken into account.
For test case 1 and Np = 25 the algorithm is fast enough to calculate every five container
jobs. However, this will not be the situation in test case 18.

Comparing the SMPL-MPS approach to the SMPL model

The true optimum can be found by calculating the true schedule at once (the green schedule
in Figure 6-1). When a receding horizon is added, the computational burden is lowered
by computing smaller subschedules. However, it has its downsides (as was pointed out in
choosing Nr). For badly chosen combinations of Np and Nr, the schedule will not remain
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optimal. An example can be seen in Figure 6-4, where the first 85 container jobs are showed
of the same simulation as in the previous section. From the figure it can be concluded that
using a receding horizon changes the schedule, depending on the choices of receding horizon
Nr and prediction horizon Np. In the figure, the prediction horizon is 25 jobs when two QCs
are performing, which is a large horizon. As already concluded; Nr = Np is not a convenient
choice. Again, there occurs a delay after 25 to 30 jobs, since the optimization made an
unfavorable schedule to minimize the makespan of the first 25 jobs. The algorithm is not
able to correct the schedule. The other simulations perform almost the same as the optimal
schedule, except for very small deviations.
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Figure 6-4: The synchronization times of QC1 in test case 1 for the optimal schedule and the
schedule that is derived using MPS.

State information in on-line scheduling

When the SMPL-MPS method is used for on-line scheduling, the information on the states
can be used when a new schedule is calculated. In the beginning of this chapter, it is stated
that this is one of the main advantages of using MPS, increasing the accuracy of the schedule.
This is verified as follows:

• a predicted schedule is obtained using the SMPL model,

• noise is added to the AGV travel times (described in Chapter 7),

• the obtained SMPL schedule is simulated (with noisy travel times) as an LP problem,
deriving the "true schedule",

• a predicted schedule is obtained using the SMPL-MPS model,

• the obtained SMPL-MPS schedule is again simulated with the same noisy times, deriving
a second "true schedule".

In this work it is assumed that on the moment of rescheduling (say κ + ι) all information on
previous states are available, due to time limitations. It should be noted that this is a wrong
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assumption, but the idea of using state information still applies when less data is available.

The verification was done for test cases 1 (Np = 50), 8 and 17 (Np = 25). In these simula-
tions many different paths can be chosen in the system due to either many vehicles or a large
prediction horizon. In test cases 8 and 17, the large amount of previous cycles P implies that
a considerable amount of state information can be used. In test case 1, P = 5 and therefore it
was necessary to use a larger distribution for the noise in the real data to make the differences
noticeable. Four schedules for each test case are obtained and presented in Table 6-2 with the
sum and maximum of all QC times. The table supports the claim that using state information
increases the accuracy of the prediction, since the SMPL-MPS prediction is closer to the real
values than the SMPL prediction. The true schedule is faster for the SMPL-MPS model than
for the SMPL prediction.
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test case 1
SMPL true schedule SMPL-MPS true schedule

QC1 3148 4280 3877 4140
QC2 3153 4308 3876 4097
sum 6301 8588 7753 8237
max 3153 4308 3877 4140

test case 8
SMPL true schedule SMPL-MPS true schedule

QC1 901 1018 940 1018
QC2 919 997 838 922
QC3 863 929 874 933
QC4 829 945 830 945
QC5 810 914 956 959
sum 4322 4803 4438 4777
max 919 1018 956 1018

test case 17
SMPL true schedule SMPL-MPS true schedule

QC1 630 665 673 703
QC2 829 849 739 747
QC3 633 668 770 778
QC4 759 791 648 675
QC5 795 837 701 712
QC6 673 747 824 846
QC7 796 827 805 838
QC8 821 869 814 834
QC9 839 853 832 853
QC10 668 793 843 850
sum 7443 7899 7649 7836
max 839 869 843 853

Table 6-2: The QC synchronization times of test cases 1, 8 and 17 for the SMPL- and SMPL-MPS
prediction model and their true schedules.



Chapter 7

Stochastic Switching Max-plus-linear
Model

In the SMPL model, some parameters in the system are assumed to be constant. However,
there is a lot of perturbation in this system. Lets consider the variable parameters as defined
in the SMPL model:

• τv: the AGV travel times between cranes,

• τ2: the QC container handling times,

• τ6: the YC container handling times.

The aim is to consider stochastic perturbed AGV travel times. Therefore, these will be noisy
in the SSMPL model. Varying QC times will also be considered. The YC handling times are
still assumed to be deterministic.

In the SMPL system, both real-valued variables and binary variables are present. The optimal
schedule can be obtained when a MILP problem is formulated and optimized. However, for
the SSMPL system, the optimization curve in the MILP problem will become a polynomial
of high order and therefore a numerical integration would be time-consuming. Deriving an
analytical equation that describes this polynomial will again be very time consuming, as will
be the calculation of the optimum due to the complexity of the system. Therefore, a proper
alternative would be to settle for a near-optimal solution. When "just" a near-optimal solution
is desired, there are multiple manners to solve the problem, e.g. using an approximation
method for computing the expected value of max-plus systems [44], an ordinal optimization
or randomized algorithms such as the Monte Carlo algorithm. These algorithms do no longer
require the exact polynomial curve of the MILP framework.
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7-1 Monte Carlo method

In this thesis, a Monte Carlo algorithm is implemented to avoid the analytical burden of cal-
culating the expectation of the performance index by obtaining an empirical mean. For this,
a certain number of realizations should be created to make sure the computation is efficient.
The stochastic disturbances in these multiple realizations are chosen randomly, according to
the distribution of the stochastic variables [45]. After the determination of the number of
realizations, the optimal schedule is determined over the R number of realizations.

Assume random variable set Θ and a probability density measure P on Θ. J is measurable
with respect to the probability function P . The expectation of the performance index J can
now be expressed as:

EJ =
∫

Θ
J(θ)dP. (7-1)

The Monte Carlo algorithm approximates Eq. (7-1) by using the empirical mean:

ÊJ := 1
R

R∑
r=1

J(θr), (7-2)

where all θr are independent, identical distributed (i.i.d.) samples from Θ: ϑ = {θ1, ..., θr}. In
words, Eq. (7-2) means that the empirical mean of the cost function is stated to be equal to
the average of R realizations, were every realization has a unique set of distribution variables
θr.

Of course, if R = 1 is chosen, there is no guarantee that the empirical mean is close to the
expected value. If R →∞ the empirical mean ÊJ converges in probability to the "real" EJ .
This can be seen when the error is introduced. Since stochastic systems are considered, the
error is expressed in a confidence interval:

Prob
(
|ÊJ − EJ | < ε

)
≥ 1− (V ar J)2

Rε2
, (7-3)

where ε is the error and Var J the variance of J . Now if R→∞, then for all ε > 0.

Prob
(
|ÊJ − EJ | < ε

)
→ 1. (7-4)

Thus the probability that the absolute difference between the empirical mean and the expected
value is smaller than ε, is (almost) one. Commonly used confidence intervals are 95% or 99%.
Suppose 95% reliability of the estimation procedure is desired and ε = 0.05 is chosen, then:

0.95 ≥ 1− (V ar J)2

0.05R (7-5)

When both the confidence interval and error are chosen and additionally the variance of the
performance index is calculated, the number of samples R can be obtained. The variance is
not calculated analytically for the same reasons as the real expected value is not calculated.
Therefore, it needs to be determined experimentally. Next, an explanation of the distribution
of the variables is given.
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7-1-1 Weibull distribution

Nor in literature, nor common knowledge provides a specific distribution for the container
handling times in a terminal. It is however possible to obtain a likely distribution by reason-
ing. When there is a lack of accurate information about the distribution of a variable, the
Gaussian or uniform distribution are widely accepted. It is however argued that the Weibull
distribution fits the problem better. This distribution is more often used in scheduling prob-
lems [7, 32].

The QC will never exceed its optimal performance. The added time here is zero: e0. On
average, it will perform slightly above its optimal performance, say eav/h seconds. Suppose
that in the worst case, the QC takes twice the optimal handling time (adding ewc to the
optimal handling time). The uniform distribution would not be very accurate. It is highly
doubtable that the optimal, average and worst performance occur the same rate. Furthermore,
the average performance is not the average of "optimal performance + worst performance",
such as a Gaussian distribution implies. Moreover, the distribution is asymmetric and it
should be skew with the mean closer to the optimal performance (positive skew). A convenient
choice for a distribution is that of Weibull, since it fits the description of the desired shape
and is also used in similar types of problems, such as train scheduling [46, 47]. An example
of the distribution can be seen in Figure 7-1. Note that the average performance per hour is
the mean. The blue area and green area under the curve are equal.
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Figure 7-1: Example of a Weibull distribution with the additive noise e, divided in optimal
performance e0, average performance loss per hour eav/h,q and worst performance ewc,q.

The same reasoning can be used for the AGV travel time, only now the time that is lost
during the journey should depend on the distance the AGV travels. Since a linear relation
between the AGV travel time and distance will be assumed, the lost time depends linearly on
the AGV travel time. Now eav/h and ewc in Figure 7-1 is not a hard number, but for example
respectively 20% and 200% of the travel time (0.2T and 2T ).
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The probability density function of a Weibull distribution is described as:

f(x; ηwb, ρwb) =


ρwb
ηwb

(
x

ηwb

)ρwb−1

e(−x/ηwb)k

x ≥ 0

0 x < 0.
(7-6)

Here, ρwb ∈ (0,∞) is the shape parameter and ηwb ∈ (0,∞) the scale parameter. The former
determines the shape of the distribution, the latter determines how wide the distribution
spreads. A number of combinations will be evaluated, all satisfying the defined e0, eav/h and
ewc.

7-1-2 Performance index

The only objective that will be considered is that of minimizing the makespan. The YC
optimization has a slightly worse performance and the AGV travel distance has a very un-
favorable effect on the makespan. Therefore, these will be disregarded. To determine the
objective of the optimization of the SSMPL model is then straightforward. First of all, an
optimal average performance is desired. Minimizing this component of the cost function aims
for a minimum makespan most of the time. Due to the stochastic nature of the model, it
however might happen that the performance in few cases is far from optimal. Even when the
probability of such an event is very low, it would still be disastrous for this system. Therefore,
a second, weighted cost is added to the performance index: the weighted worst case scenario.
The minimization of the performance index will be formulated as:

min
t,x,z

J = min
t,x,z

 1
R

R∑
r=1

tr + λr max
r
tr

 for r = 1, ..., R. (7-7)

Here λr is the weighting factor. If λr is chosen much larger than one, the minimization of the
performance index will focus on minimizing the worst case. If λr = 1, the trade-off between
the average performance and worst case scenario is equal. Logically, when 0 < λr < 1, the
average performance has more weight in the minimization of the performance index. Lastly,
if λr = 0, minimizing J equals the minimization of the average performance.

The parameters in the cost function:

• R: number of realizations

• tr: maximum QC synchronization time of the last cycle of one stochastic realization:

tr = max
i
xi(k +Np) for i ∈ (1, ..., N) (7-8)

Earlier it was already explained that all cycles k+j in a realization should have some weight in
the implemented optimization. This is again neglected in the formulation of the performance
index. To clarify the expressions above, a small example is given.
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Example 7-5. Suppose the number of realizations R equals 2. The weight λr is set to 0.5.
There are two QCs and one YC, thus x(k) ∈ R3×1. Then

min
t,x,z

J = min
t,x,z

(1
2 (t1 + t2) + 0.5 max (t1, t2)

)
Suppose in respectively the first and second realization, the states regarding the QCs become:

for r = 1 : xr=1(k +N) =
[
x1,r=1(k +N)
x2,r=1(k +N)

]
=
[
1150
1390

]

for r = 2 : xr=2(k +N) =
[
x1,r=2(k +N)
x2,r=2(k +N)

]
=
[
1130
1340

]
.

Then t1 and t2 are calculated as follows:

t1 ≥ x1,r=1(k +N)
t1 ≥ x2,r=1(k +N)
t2 ≥ x1,r=2(k +N)
t2 ≥ x2,r=2(k +N)

thus

t1 ≥ 1390
t2 ≥ 1340

If the variable twc is introduced for the worst case, it is obtained that:

twc ≥ t1

twc ≥ t2

thus

twc ≥ 1390

The minimization of the performance index then becomes:

Jmin = 1
2 (1390 + 1340) + 0.5× 1390

= 1365 + 695 = 2060

4

7-2 Results of the SSMPL model

The distribution functions will be defined and the number of realizations necessary to approxi-
mate the mean of the expected value is determined. This will be a trade-off between accuracy,
problem size and solution times. Lastly, the SMPL and SSMPL models are compared.
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Distribution function

To determine the parameters of Eq. (7-6), the shape of the Weibull distribution is chosen
by analyzing a number of plots and set to be ρwb = 2. The second parameter in Eq. (7-6)
can be fit such that the mean of the distribution is about 20s for the QC (ηwb = 23) and
0.2 × T for the AGV. The noise e can be added by using the MATLAB function wblinv.
This function contains an analytically expression of the inverse of the cumulative distribution
function (CDF) and selects the noise related to the given (random) points between 0 and 1,
as is clarified in Figure 7-2. Note that the chance of 50 ≤ e ≤ 80 is very slim, while it is very
well possible that 15 ≤ e ≤ 25.
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Figure 7-2: The noise is chosen by picking a random number between 0 and 1, here 0.5655. The
additional time e corresponds to the projection on the x axis following the chosen distribution.

Number of realizations

Now that the distributions are defined, the number of realizations can be determined. Of
course, more realizations results in a better estimate (see Eq. (7-5)), but choosing a large
number of realizations results in memory problems and long computation times. The maxi-
mum number of realizations for the largest test case equals 12. The Monte Carlo algorithm
increases the number of constraints by approximately:

nrconstr(SSMPL) ≈ R× nrconstr(SMPL). (7-9)

Therefore, some simple cases are defined to be able to make a large number of realizations.
The alternative cases are shown in Table 7-1, where also handling time adjustments are done.

In Figure 7-3 it can be seen that the number of realizations influences the accuracy of the esti-
mation. When 250 realizations are used, the makespan is much more reliable than when only
5 realizations are used. However, due to the memory restrictions, the number of realizations
in the Monte Carlo algorithm is chosen to be 10 (Figure 7-3).
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test alternative QCs YCs AGVs P Np

1 1 1 1 2 5
2 1 2 2 5 5
3 2 4 4 8 5

Table 7-1: The newly defined alternative test cases to simulate with large number of realizations.
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Figure 7-3: A typical representation of the makespan in 100 simulations when 5, 10 or 250
realizations are used (alternative test case 2).

In Figure 7-4 the development of the standard deviation can be seen, which is empirical
determined. To check how valid one simulation with a particular number of realizations is,
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Figure 7-4: The empirical standard deviation of the makespan decreases with the number of
realizations for all alternative test cases (here case 2).
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100 simulations are done for this certain R (R is the number of realizations). When R is low,
it is expected that the mean of all tr (as defined in Section 7-1-2) has a larger deviation than
when R is high. Low R causes large fluctuation in the first part of the performance index
(the mean of tr) in Eq. (7-7), resulting in a less reliable estimation. When the number of
realizations in increased, more samples are taken from the distribution and the estimation is
less dependent on unfortunate distribution choices for one single realization. The trend in
Figure 7-4 is therefore expected. The figure also shows the increase in computation time. For
this small test case, the runtime of the solver is still below one second, but again the trend is
typical for larger test cases.

SSMPL model results

First, the influence of the distribution of the QC and AGV handling times is tested by using
different Weibull parameters. The performance index is analyzed and the results of the SMPL
model are compared to those of the SSMPL system.

The influence of the amount of noise on the QC and AGV are tested by increasing the expected
time loss up to respectively 20s and 0.2% per move. With the shape parameter ρwb = 2, the
mean is 7, 14 and 20s for the QC and 0.1% and 0.2% for the AGV.

number of run
10 20 30 40 50 60 70 80 90 100

m
ak

es
pa

n 
[s

]

700

750

800

850

900
Makespan for increasing expected mean of the QC handling times

e
0

e
av/h

 = 7s

e
av/h

 = 14s

e
av/h

 = 20s

number of run
10 20 30 40 50 60 70 80 90 100

m
ak

es
pa

n 
[s

]

700

710

720

730
Makespan for increasing expected mean of the AGV handling times

e
0

e
av/h

 = 0.1T

e
av/h

 = 0.2T

Figure 7-5: Makespan for increasing expected mean of both QC (top) and AGV (bottom)
handling times. The dotted lines represent the standard deviation in the 100 simulations, while
the horizontal lines represent the nominal values.

As the expected mean of the distribution increases, the makespan also increases. Secondly,
the makespan objective is more scattered when the stochastic variables are taken from a wider
distribution. Another observation is that the makespan is more often larger than the nominal
makespan (with purely the expected means). This is due to the max-plus algebra, were
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synchronization can only occur when two preceding events are finished. For the preceding
handling times, only one of the following four situations results in a faster schedule:

• the crane handling time slower + the AGV travel time slower → synchronization later,

• the crane handling time slower + the AGV travel time faster → synchronization later,

• the crane handling time faster + the AGV travel time slower → synchronization later,

• the crane handling time faster + the AGV travel time faster → synchronization earlier.

A last important remark is that the schedule is always less tight than that of the optimal
performance. Applying multiple realizations with distributed variables will most probably
result in a more robust schedule. When the variables are deterministic, the algorithm can
choose an AGV that is exactly on time. When the variables are distributed, the algorithm
"realizes" that this decision might result in a delay and can handle accordingly.

Performance index

The performance index is discussed in Section 7-1-2 and is a trade-off between optimizing the
average performance of all realizations and limiting the worst case. In the container terminal
system the optimization of solely the worst case will not be convenient. The trade-offs that
are investigated are λr = {0, 1

R , 0.5, 1, 10}. The same set of stochastic variables is used in
the optimization to compare the λr-s fairly.

In test case 1, the results for λr = {0, 1
R} are equal and the resulting schedules of λr =

{0.5, 1, 10} are also the same. In Figure 7-6 the difference is displayed when the worst case
scenario is taking into consideration (black line) or when it is (almost) disregarded (blue line).
The gain in reducing the absolute maximum is large when the worst case is weighted in the
performance index, while it only slightly compensates on the average maximum. In the lower
plot in Figure 7-6 it shows that minimizing the worst case also results in a slight decrease
in average QC synchronization times. This might be a coincidence, since this criteria is not
included in the performance index. Figure 7-6 is typical when multiple sets of distributed
variables for test case 1 are analyzed.

The same analysis is performed for test cases 8 and 17. In test case 8, no difference appears
when the objective function is adjusted. This can be explained by the ratio of AGVs to
QCs, which is high. Therefore, the AGV cycles are not critical and the makespan can not be
influenced by varying weights in the objective function.

In test case 17 there is no difference in the maximum synchronization times. The choices in
the optimization are "too obvious" to the Gurobi solver, since the relative high number of
AGVs (V = 45) to the schedule container jobs (Np = 15). Interesting to see is that, while
the maximums remain equal, the average QC synchronization times differ. This is possible,
because the sum of the last QC synchronizations is not specified in the objective function. In
Appendix K, Figure K-1 shows the average QC synchronizations.



72 Stochastic Switching Max-plus-linear Model

realization number
2 4 6 8 10 12 14 16 18 20

m
ax

 s
yn

c 
tim

e 
[s

]

1920

1940

1960

1980

2000

2020
Maximum QC synchronization times varying λ

r

λ
0

λ
1

µ
w.c.

 λ
0

µ
w.c.

 λ
1

realization number
2 4 6 8 10 12 14 16 18 20av

er
ag

e 
sy

nc
 ti

m
e 

[s
]

1920

1940

1960

1980

2000
Average QC synchronization times varying λ

r

λ
0

λ
1

µ
QCs

 λ
0

µ
QCs

 λ
1

Figure 7-6: The maximum and average QC synchronization times in test case 1, when the
performance weight λr is varied. λ0 = {0, 1

R} and λ1 = {0.5, 1, 10}.

Validation of the model

The SSMPL model is presented in this chapter. To estimate the value of the stochastic
approach, the difference is discussed by calculating schedules using three different models and
verifying their results in a number of "real-case" simulations. The models that are simulated
are:

• the SMPL approach assuming optimal performance,

• the SMPL approach assuming nominal performance,

• the SSMPL approach using stochastically distributed variables (Monte Carlo approach).

Since noise and modeling errors by assumption are multiplicative in the max-plus algebra,
the SSMPL system results in a MILP problem of the form:

diag (E1, ...,ER)


x1
...

xR

+ β


F1
...

FR

 z ≤ diag (B1, ...,BR)


Θ1
...

ΘR

+


e1
...

eR

+ β


K1
...

KR

w (7-10)

where only the AGV travel times are perturbed.

Initially, test cases 1, 8 and 17 are tested, using the following system properties:

• λmax = 1, λsum = 0 in the performance index of Eq. (5-13),

• only the AGV travel times are perturbed by noise,
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• this noise is distributed as described on Page 68,

• λr = 1
R in the performance index of Eq. (7-7),

• the number of realizations for the Monte Carlo algorithm is 20 (test case 1), 15 (test
case 8) or 10 (test case 17),

• the prediction horizon is Np = 25 (test cases 1 and 8) or Np = 15 (test case 17).

In Chapter 5 it is argued that the performance index Eq. (5-13) should be a trade-off
(λsum > 0). This is however not realized, due to the formulation of the variable tr in Eq. (7-8).

When the three derived schedules are simulated in 1000 real cases, it immediately becomes
clear they are exactly equal in test case 8. A plausible explanation is that the AGV cycles are
not critical. In Chapter 5 it is argued that the QC waiting times are resolved when V = 3N -
4N . In the test case, V = 4.2N and the AGV travel times are relatively short compared to
those of e.g. test case 17. By reducing the AGV speed to 1.5m/s, it is ensured that its cycles
become critical. A second observation is that it is not possible to simulate sufficient container
jobs to notice differences in QC1 to QC5 for test case 17.

The actual performance should be measured by the average maximum QC synchronization
times, due to the formulation of the performance index. For both test cases 1 and 8, the
SSMPL approach resulted in the lowest times. The standard deviations are relatively low in
test case 8. It is possible that the AGV cycle is often still not critical or too few choices are
in the optimization. When using nominal values, a better performance is obtained than when
optimal values are assumed. Based on the three test cases (test case 17 showed the same
trends as can be seen in Appendix K) it is concluded that using distributed values indeed
enhances the performance. This is probably due to the avoidance of situations where the
AGV is just in time to pick up a container at a crane.

The question arises if the Monte Carlo algorithm is (too) conservative in avoiding these "just
in time" situations, especially since the number of realizations is low for test case 17. To in-
fluence the choices made by the algorithm, the variables are adjusted such that they are less
distributed. A probability density function (PDF) is introduced (ρwb = 20 and corresponding
ηwb) that has a sharp peak at 20% travel time. The results can be seen in Appendix K,
Table K-1. Since the adjustment did not result in considerable enhanced performance, the
number of realizations is sufficient and the original approach does not need adjustment.

Lastly, it should be noted that the performance on the sum of the QCs in the SSMPL approach
might be worse than that of when nominal values are assumed (Table 7-2). This is related to
the objective function.

7-3 MPS for the SSMPL model

The previous explained advantages of introducing a receding horizon still applies to the sys-
tem. When this schedule is used on-line, state information can again enhance the performance
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test case 1 Optimal Nominal SSMPL

QC1
mean 1960 1961 1958
std 25 26 22

QC2
mean 1960 1954 1951
std 24 24 20

sum mean 3920 3915 1909
std 48 48 41

max mean 1964 1963 1959
std 24 25 21

test case 8 Optimal Nominal SSMPL

QC1
mean 1206 1201 1200
std 6 3 0

QC2
mean 1081 1085 1080
std 3 7 0

QC3
mean 1109 1080 1109
std 11 1 13

QC4
mean 1098 1081 1080
std 15 5 0

QC5
mean 1101 1083 1081
std 18 8 3

sum mean 5594 5530 5550
std 27 12 13

max mean 1206 1201 1200
std 6 3 0

Table 7-2: The average times and standard deviations for the QC synchronizations in test cases
1 and 8. The average summation and maximum of all 1000 runs with their standard deviations
are also shown.

and the SSMPL-MPS method is obtained. Important to note is that this method has slight
differences with respect to the SMPL-MPS approach. When a job enters in the horizon,
new noisy travel times are introduced. For jobs that are already defined in the previous
horizon κ, the handling times remain equal. The on-line and off-line approach need different
implementations:

• Off-line: The SSMPL optimization uses R realizations, which all have unique states
xr, as shown in Eq. (7-10). These states will be used as initial condition for the next
optimization, when the horizon shifts.

• On-line: The true state is calculated using an LP optimization, which serves as the
initial condition in the rescheduling.

Earlier, it is argued that it is not convenient to schedule far ahead in time, due to the
perturbations in the container terminal system. Now that these uncertainties are introduced
in the model, great deviations at the end of schedules for a large amount of jobs are to be
expected for the off-line scheduling.
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7-4 Results of the SSMPL-MPS approach

As seen in Eq. (7-9) the problem size of the Monte Carlo algorithm is even larger than
the SMPL approach. This restricts the prediction horizon and number of realizations to
e.g. Np = 15 and R = 10 for test case 17. In the following simulations, test case 1 is used. It
allows more realizations, larger prediction horizon and showed the best results in Section 7-2.
Based on these results, λr = 0.5. Additionally, the prediction horizon is chosen as Np = 25,
the number of realizations R = 20 and the rescheduling horizon as Nr = 15 (considering the
trade-offs made in Section 6-2).

Receding horizon

State information in on-line scheduling



76 Stochastic Switching Max-plus-linear Model



Chapter 8

Conclusions & Recommendations

In this final chapter, the SMPL, SMPL-MPS, SSMPL and SSMPL-MPS models are shortly
discussed and the most important conclusions from this work are drawn. Finally, recommen-
dations are done for future research.

8-1 Conclusions

From the results of the SMPL-, SMPL-MPS, SSMPL- and SSMPL-MPS approaches, conclu-
sions are drawn, suggestions are made and design rules are formulated.

Most of the MILP inequality constraints are derived by obtaining the model equations using
graph theory and by the parameterization of the introduced max-plus binary control variables.
This proved to be an effiecent method. However, due to the formulation of the model and
max-plus binary control variables, small problems already result in enormous matrices. This
often causes memory problems. As long as the model is derived as explained in Section 4-1
and it is desired to describe all possible path in the system, this problem remains and is a
drawback of this method.

8-1-1 SMPL model

An optimal schedule for the SMPL model is calculated using the MILP- and Benders’ decom-
position approaches, both discussed next.

MILP approach

General design rules can be formulated from the analysis of the parameters in the MILP
formulation.
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• The Gurobi and CPLEX solvers perform best for a MATLAB implementation, not
guaranteeing the same result for other programming languages. A disadvantage is that
they require a license, which might be costly to the user. The CBC solver is the best
open-source solver, but does not perform satisfiable. The solvers highly influence the
solution times.

• The best performing objective function is the optimization of the QCs. A trade-
off (λsum = 1 and 0 < λmax > 0.5) between the sum and the maximum of last QC
synchronizations is recommended (Table 5-6). The value of λmax should not be chosen
too large, since an overall optimal performance is desired when a receding horizon is
added to the SMPL model.

• In this work, the prediction horizon depends on computation time, scheduled hori-
zon in time and the capacity of hardware to solve the problems. This is explained in
Section 5-3-2 and shown in Table 5-8 and Table 5-9. If it is assumed the hardware is
sufficiently advanced to solve the schedule without being limited by the computation
times or memory capacity, the most important criteria to choose the prediction horizon
is the scheduled horizon in time. This depends on the the accuracy of the prediction and
the cycle time and number of QCs. A larger prediction horizon might be used when a
high accuracy in prediction is obtained, when e.g. a terminal is not busy and AGVs are
seldom delayed. If the QC cycle time is low or the number of QCs high, the prediction
horizon increases with respect to when the QC cycle time is high or the number of QCs
is low. This due to the number of container jobs that occur in the same amount of time.

• The number of AGVs influence the dynamics of the system enormously. If too little
AGVs are available, the QCs have large waiting times (Figure 5-9), which is very unde-
sirable. To anticipate on the investment in unnecessary capital, too many AGVs should
also be prevented. If the system is deterministic, an estimation of the number of AGVs
can be made by (assuming sufficient amount of YCs):

cycle time QC

N
≈ cycle time AGV

V
(8-1)

where N the number of QCs and V the number of AGVs. The left part of the equation
represents the average time interval of which a container job is ready at the quay.
Choices of the cycle time could be the average or maximum (utterly conservative) cycle
time. This can be verified using the results of the simulations (Figure 5-9). When the
average AGV cycle time is used (including a penalty for delays), the optimal number of
AGVs can be found as follows:

cycle time AGV = (average QC − Y C travel time) ∗ 2 + τ3 + τ5
120
3 ≈ 461

V
V ≈ 11, 5
V ≈ 3, 8N

as Figure 5-9 shows. In conclusion, the number of AGVs necessary to reduce QC waiting
times relates to their own cycle time, the number of QCs and their cycle times.
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• For the number of previous cycles, P = 1.6V is recommended as setting. Larger
P will not enhance performance, but will increase the computational burden. When
P < 1.6 is chosen, the optimization loses too many freedom in its scheduling, as is
explained in Section 5-3-2.

A last important remark is that it is highly recommended to use sparse matrices in the
implementation of (all the) SMPL model(s), reducing the memory usage.

Benders’ decomposition approach

The results of the Benders’ decomposition approach are disappointing. When this method is
compared to the MILP approach, it performs much worse. The Benders’ decomposition ap-
proach reaches the same optima in simulations as the MILP approach, but uses much longer
computation times (Figure 5-12). Alternative Benders’ cuts are proposed, but it is concluded
that they do not solve the problem that is adduced.

8-1-2 MPS for SMPL model

Using MPS proved to be sufficient for two main reasons:

• since it will not be accurate to schedule hours ahead, a smaller prediction horizon can
be adapted, reducing the computation times,

• new state information can be taken into consideration when a new horizon is scheduled,
increasing the accuracy.

The computation speed might reduce approximately six times (Figure 6-2). The possibility
that an optimization continues for longer time than expected should always be taken into
account. The newly introduced scheduling parameter Nr (discussed in Section 6-2) and the
already defined parameters λsum, λmax and Np are considered. Lastly, conclusions are drawn
from the off-line and on-line validation of the SMPL-MPS approach.

• The same conclusions as in the SMPL model can be drawn for the performance index.

• In the MPS approach, rescheduling horizon Nr is closely related to prediction
horizon Np, where Np should be chosen as explained in Section 8-1-1. The rescheduling
horizon should not be taken too small, since this will result in higher computational
burden without increasing the performance. Choosing a large ratio Nr/Np will result
in a performance drop, due to unfavorable choices made at the end of one (horizon)
schedule. The next optimization should be able to correct for these choices by shifting
the horizon before it is reached. From simulations it is obtained that Nr/Np = 4/5 can
still result in delays, while Nr/Np = 2/3 performs approximately equal to the SMPL
approach. It is therefore advised to take the ratio 1/3 ≤ Nr/Np ≤ 2/3.
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• In the off-line validation, there is no state information available. It should be verified
that the SMPL-MPS approach calculates an optimum that is approximately equal to
the optimum of the SMPL model. With the correct Nr/Np ratio this appears to be the
case. As is concluded, the MPS implementation usually reduces the simulation time,
but using this validation it is also assured that the optimality of the schedule is not lost.

• In the on-line validation, new state information is available. Using this state in-
formation is of great advantage. In test case 1, approximately one hour is scheduled,
where the on-line SMPL-MPS model reduces the makespan approximately five minutes
compared to the off-line method. Increasing the accuracy of the prediction is valuable
to this model and measurements on the state are highly recommended.

8-1-3 SSMPL model

In the SSMPL approach an optimal schedule is derived, using a Monte Carlo algorithm
which introduces (Weibull) distributed variables for the AGV travel times. The Monte Carlo
algorithm uses multiple realizations (changing the performance index) to avoid choices in
which the AGV is just in time. An important disadvantage of the algorithm is the increasing
problem size by the number of realizations. From the analysis in Section 7-2, numerous
conclusions can be drawn.

• The Weibull distribution is recommended, since it has matching properties with the
expectation of the distribution of the variables, as argued in Section 7-1. The Weibull
parameters are an indication for the shape of the distribution function. In this work,
the average AGV travel time is 20% above the optimal travel time. These values are
also an indication and container terminal specific.

• A very important consideration is that of choosing the number of realizations. More
realizations provide a better estimation of the performance index. A proper design tool
is relating the number of realizations to the variance of the performance index, using:

Prob
(
|ÊJ − EJ | < ε

)
≥ 1− (V ar J)2

Rε2
, (7-3)

and shown in Figure 7-4. General accepted values are ε = 0.05 and a 95 or 99% confi-
dence interval. The variance of the performance index should be determined empirically.
Due to memory issues in this work, it is not possible to use more than 10 realizations
for large terminals, which is relatively little.

• In the performance index, a trade-off is made between minimizing the worst case
scenario and optimizing the overall performance, as Eq. (7-7) shows. It is recommended
to use 0.5 < λ < 1. The average performance is the primal objective, since an overall
optimal performance is desired. However, the worst case scenario in the container
terminal system would be disastrous and should have weight in the minimization.

• By validating the SSMPL model it becomes clear that the SSMPL approach has the
most optimal performance compared to the SMPL model (nominal and optimal AGV
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travel times assumed). The addition of distributed variables is highly recommendable,
since it showed this positive influence on the schedule robustness when AGVs are the
critical cycle.

8-1-4 MPS for SSMPL model

Als dit nut heeft om nog naar te kijken

8-1-5 Final conclusion

In the beginning of this thesis, the following research question is formulated:

What are the current possibilities and future perspectives for scheduling AGVs in an auto-
mated container terminal using max-plus-linear systems?

Two important criteria are emphasized: the approach should be fast, such that it can be used
on-line, and it should be robust, such that it considers the uncertainties in the system. The
research question is answered by exploring several methods that take the two criteria into
account; the SMPL-, SMPL-MPS-, SSMPL- and SSMPL-MPS approaches. The SMPL-MPS
approach provides schedules within seconds for large container terminals, satisfying the speed-
criteria. The SSMPL system appears to be more robust, but takes longer to compute. Since
the SSMPL performed better in the validation, it is recommended to implement distributed
variables.

In conclusion, the possibilities are explored and show promising results, but are not refined
sufficiently to use in the industry. A recurrent problem is the memory capacity, which can
be resolved by using more advanced hardware. With the ongoing developments in hardware
and (MILP) optimization algorithms, this issues will probably be solved in the near future.
Lastly, assumptions are made on the exact dynamics and the distribution in the container
terminal. Several resources provide different crane handling times, e.g. the company TBA,
Duinkerken et al. (2000) [18] or Steenken et al. (2004) [3].

8-2 Recommendations for future research

Recommendations are made for future research, of which first the most important ones are
presented.

• The importance of job order switching is explained, but is not implemented due to time
restrictions. Major gaps in QC synchronization times occur when the cycle type is 2:
"SYYS". A solution is suggested and further explained in Appendix H, which should
resolve the delays.
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• In the rescheduling of the (S)SMPL-MPS schedules, the assumption that all state infor-
mation is available is false. The implementation should be adjusted such that only part
of the states contain the true synchronization times and the remaining part is estimated.
It should also be taken into account that the rescheduling takes time, during which the
system continues. The jobs that occur during this rescheduling, should be introduced
as equality constraints in the rescheduling.

• While comparing the SSMPL model to the optimal and nominal SMPL cases, the vari-
able tr of the Monte Carlo performance index is formulated as:

tr = max
i
xi(k +Np) for i ∈ (1, ..., N). (7-8)

From analyzing the SMPL system, it is concluded that the best performance index is a
trade-off between minimizing the maximum and the sum of the last QCs. It is therefore
suggested that tr should be formulated as:

tr =
∑
i

xi(k +Np) for i ∈ (1, ..., N),

or it should be a combination of the two equations discussed.

• An important direction for future research is the implementation of the Benders’ de-
composition method. If this method works properly, it has a great advantage over the
MILP approach in solving the SSMPL. The (hard to solve) binary variables are decou-
pled from the noisy handling times. Since the multiple realizations only occur in the
dual slave problem, of which the optimization is very fast, more realizations might be
implemented than is possible in the Monte Carlo algorithm. A possible explanation to
the bad behavior in this work, is suggested by Fischetti et al. (2015) [48]. They argue
that the convergence behavior of the optimization heavily depends on the method used
for generating the next point to cut. These methods can have good theoretical conver-
gence properties, but fail to be efficient when only one single cut has to be generated.
They suppose that the iteration method is weak in polyhedral terms, because the role
of the cut is not to let integer points emerge as vertices of the LP relaxation, but to
exclude a large subspace from further considerations. They propose multiple solutions,
using different cutting schemes that stabilize the cut loops.

• The distribution of the QC handling times and AGV travel times should be determined
by obtaining test data, which should improve the accuracy of the model.

• The handling times of the YC can be estimated better. Instead of assigning a constant
variable, it should depend on the location at which a container is stored or retrieved.
These locations are available beforehand and implementation should improve the model
accuracy.

• The rescheduling horizon can be defined in a number of jobs, which is discussed in this
work, or in time, which still should be considered.

• The optimizations variables could be parameterized, reducing the number of variables
that need to be optimized by the MILP solver [21]. This might result in faster compu-
tation times. An example would be parameterizing {c1 . . . c40} for the AGV selection
by 2w−1 < 40 < 2w → w = 6 newly defined max-plus binary variables with their adjoint
values.
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The following recommendations are made on the model implementation and suggestions are
done for practicality.

• It might be beneficial to model the system from the cranes’ perspective, assigning k
to every cycle that a QC or YC handles a container. This approach would introduce
more event counters k. On the other hand, both cycle types 1 and 3 ("SYSY" and
"YSYS") would have the same dynamics for one event k and are thus equal. Moreover,
introducing the possibility to transport multiple containers on one AGV would become
less troublesome. Instead of coupling a QC cycle k+µQ to some YC cycle k+µY , four
cycles should be coupled, e.g. k + µQ,1, k + µQ,2, k + µY,1 and k + µY,2.

• It might be possible to reduce the number of constraints imposed by the model equa-
tions. Four cycle types are introduced, resulting in a fast growing problem size. The
time that a quay crane (QC) takes to (un)load an AGV is separated from the time that
a YC needs to (un)load an AGV. Also in e.g. cycle type 4 ("YSSY") this time is taken
twice, representing "unloading AGV" and "loading AGV" (Eq. (4-14)). These differences
are relatively small and might be irrelevant when the noise in the system is considered.
Their relevance should be verified and it should be considered if these small differences
might be better modeled as noise. If this is feasible, it might decrease the problem size
tremendously, which removes the memory issues and possibly decreases solution times.

• When on-line scheduling is implemented correctly, it is possible to evaluate and take
advantage of the true data. While the schedule is running, the mean of the distribution
should be adjusted to that of the true data, obtaining a better estimate.

• Since the solution time of a schedule fluctuates in some cases, it might be safe to
calculate a short prediction horizon, ensuring that the calculation time never exceeds
the scheduled time. The calculation of this short prediction horizon can be done in
every rescheduling, or can kick in when the initial calculation exceeds a certain time.

• It is recommended to optimize the implementation of the algorithms. A certain ordering
of the constraints which are supplied to the MILP, can reduce the time that the solver
needs to optimize the schedule. Furthermore, it is important to write the code in such
a way that the programming language computes and handles the large matrices fast, as
can be seen in Appendix L.
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Appendix A

Additional Theory on Max-plus
Algebra

The properties of the max-plus operators and the switching rule for SMPL are discussed in
this appendix.

A-1 Algebraic properties of the max-plus operators

When calculations are done on the system described in the max-plus algebra, it is important to
know the properties of the operators ⊕ and ⊗. The following properties will be of importance
in this thesis [26]:

• Associativity:

∀x, y, z ∈ Rε : x⊕ (y ⊕ z) = (x⊕ y)⊕ z,
∀x, y, z ∈ Rε : x⊗ (y ⊗ z) = (x⊗ y)⊗ z.

• Commutativity:

∀x, y ∈ Rε : x⊕ y = y ⊕ x,
∀x, y ∈ Rε : x⊗ y = y ⊗ x.

• Distributivity of ⊗ over ⊕:

∀x, y, z ∈ Rε : x⊗ (y ⊕ z) = (x⊗ y)⊕ (x⊗ z).

• Existence of a zero element:

∀x ∈ Rε : x⊕ ε = ε⊕ x = x.
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• Existence of an identity element:

∀x ∈ Rε : x⊗ e = e⊗ x = x.

• The zero is absorbing for ⊗:

∀x ∈ Rε : x⊗ ε = ε⊗ x = ε.

• Idempotent of ⊕:

∀x ∈ Rε : x⊕ x = x.

A-2 Switching rule

The moments of switching are determined by a switching mechanism. A switching variable
z(k) is defined in Eq. (A-1), which can depend on the previous state x(k− 1), previous mode
`(k − 1), the input variable u(k) and/or an additional control variable v(k):

z(k) = Φ(x(k − 1), `(k − 1),u(k),v(k)) ∈ Rnz . (A-1)

The space Rnz can be partitioned in nm subsets Z(i), i = 1, ..., nm. For every different mode
`(k), k is in a different set z(k). Switching will be necessary in the optimization, but can also
be used when a large delay occurs and when changing the job order of cranes can resolve this
problem.
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Max-plus Binary Control Variables

In this appendix, an example is provided to clarify the use of max-plus binary control variables
in the models that are designed.
Example B-6. Suppose there are two QCs (n = 2), three YCs (m = 3), three AGVs
(V = 3), 5 container jobs that need to be handled (Np = 5) and 5 previous containers are
considered. The latter results in P =

[
p(k + 1) p(k + 2) p(k + 3) p(k + 4) p(k + 5)

]
=[

3 4 5 5 5
]
, since there are V initial cycles k. The handling times are as follows:

• τ2 = 100: time QC stores / retrieves container in / from ship,

• τ3 = 20: time QC (un)loads AGV,

• τ5 = 30: time YC (un)loads AGV,

• τ6 = 270: time YC stores / retrieves container in / from yard,

• T =

 Y C1 Y C2 Y C3
QC1 140 100 140
QC2 210 170 130

: AGV travel time matrix

Further, the work queue is given in Table G-1 and the initial state:

k QC YC cycle type AGV
−2 1 3 D 1
−1 2 1 D 2
0 1 2 D 3
1 2 3 L ?
2 1 2 D ?
3 2 1 L ?
4 1 2 L ?
5 2 1 D ?

Table B-1: Work queue of this example

xinit =



k − 2 k − 1 k

90 90 180
0 90 90
0 210 210
0 0 300

290 290 290


.
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For k = 1:

a =
[
a1 a2

]
=
[
ε 0

]
since QC2 serves job (k + 1)

b =
[
b1 b2 b3

]
=
[
ε ε 0

]
since YC3 serves job (k + 1)

mQ =
[
mQ1 mQ2 mQ3

]
=
[
ε 0 ε

]
since QC performed in (k − 1)

mY =
[
mY1 mY2 mY3

]
=
[
ε ε 0

]
since YC performed in (k − 2)

dQ =
[
dQ1 dQ2 dQ3 dQ4

]
=
[
ε 0 ε ε

]
since QC2 has cycle type 2

dY =
[
dY1 dY2 dY3 dY4

]
=
[
ε 0 ε ε

]
since YC3 has cycle type 2.

Now there exists the possibility to select the AGV that terminated previous cycle at either YC1,
YC2 or YC3. The work queue shows that k + 1 is a loading job. Therefore, it is convenient
to select the AGV that is already at YC3, thus AGV1. It is then obtained that:

c =
[
c1 c2 c3 c4 c5

]
=
[
ε ε ε ε 0

]
since AGV1 comes from the fifth crane

mA =
[
mA1 mA2 mA3

]
=
[
ε ε 0

]
since AGV1 served in (k − 2)

dA =
[
dA1 dA2 dA3 dA4

]
=
[
ε 0 ε ε

]
since AGV1 has cycle type 2.

It now is possible to calculate the value of k + 1:
xQ1(k + 1)
xQ2(k + 1)
xY1(k + 1)
xY2(k + 1)
xY3(k + 1)

 ≥


ε ε ε ε ε

ε ε ε ε
τ4(k+1)+τ5(k+1)+

a2(k+1)+b3(k+1)+dY2 (k+1)
ε ε ε ε ε
ε ε ε ε ε
ε ε ε ε ε


⊗


xQ1(k + 1)
xQ2(k + 1)
xY1(k + 1)
xY2(k + 1)
xY3(k + 1)

⊕

e ε ε ε ε
ε e ε ε ε
ε ε e ε ε
ε ε ε e ε
ε ε ε ε e

⊗

xQ1(k)
xQ2(k)
xY1(k)
xY2(k)
xY3(k)

⊕


ε ε ε ε ε

ε
τ3(k−µQ)+

a2(k+1)+mQ2 (k+1)+dQ2 (k+1) ε ε ε

ε ε ε ε ε
ε ε ε ε ε
ε ε ε ε ε


⊗


xQ1(k − 1)
xQ2(k − 1)
xY1(k − 1)
xY2(k − 1)
xY3(k − 1)

⊕


ε ε ε ε ε
ε ε ε ε ε
ε ε ε ε ε
ε ε ε ε ε

ε ε
τ1(k+1)+τ5(k−µA)+

c3(k+1)+mA3 (k+1)+dA2 (k+1) ε
τ5(k−µY )+τ6(k−µY )+τ6(k+1)+
b3(k+1)+mY3 (k+1)+dY2 (k+1)


⊗


xQ1(k − 2)
xQ2(k − 2)
xY1(k − 2)
xY2(k − 2)
xY3(k − 2)
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≥


ε ε ε ε ε
ε ε ε ε 200 + 15
ε ε ε ε ε
ε ε ε ε ε
ε ε ε ε ε

⊗

xQ1(k + 1)
xQ2(k + 1)
xY1(k + 1)
xY2(k + 1)
xY3(k + 1)

⊕

e ε ε ε ε
ε e ε ε ε
ε ε e ε ε
ε ε ε e ε
ε ε ε ε e

⊗


180
90
210
300
290

⊕

ε ε ε ε ε
ε 10 ε ε ε
ε ε ε ε ε
ε ε ε ε ε
ε ε ε ε ε

⊗


90
90
210
0

290

⊕

ε ε ε ε ε
ε ε ε ε ε
ε ε ε ε ε
ε ε ε ε ε
ε ε 0 + 15 ε 15 + 160 + 160

⊗


90
0
0
0

290



≥


ε ε ε ε ε
ε ε ε ε 215
ε ε ε ε ε
ε ε ε ε ε
ε ε ε ε ε

⊗

xQ1(k + 1)
xQ2(k + 1)

210
300
625

⊕


180
100
210
300
625



≥


180
840
210
300
625


For k + 2:

a =
[
a1 a2

]
=
[
0 ε

]
b =

[
b1 b2 b3

]
=
[
ε 0 ε

]
mQ =

[
mQ1 mQ2 mQ3

]
=
[
ε 0 ε

]
mY =

[
mY1 mY2 mY3

]
=
[
ε 0 ε

]
dQ =

[
dQ1 dQ2 dQ3 dQ4

]
=
[
0 ε ε ε

]
dY =

[
dY1 dY2 dY3 dY4

]
=
[
0 ε ε ε

]
.

Now there exists the possibility to select the AGV that terminated previous cycle at either
YC1, YC2 or QC2. Suppose, AGV2 (coming from YC1) is selected to serve this job, then:

c =
[
c1 c2 c3 c4 c5

]
=
[
ε ε 0 ε ε

]
mA =

[
mA1 mA2 mA3 mA4

]
=
[
ε ε 0 ε

]
dA =

[
dA1 dA2 dA3 dA4

]
=
[
0 ε ε ε

]
.
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It is verifiable that:
xQ1(k + 2)
xQ2(k + 2)
xY1(k + 2)
xY2(k + 2)
xY3(k + 2)

 ≥


ε ε ε ε ε
ε ε ε ε ε
ε ε ε ε ε

τ3(k+2)+τ4(k+2)+
a1(k+2)+b2(k+2)+dY1 (k+2) ε ε ε ε

ε ε ε ε ε


⊗


xQ1(k + 2)
xQ2(k + 2)
xY1(k + 2)
xY2(k + 2)
xY3(k + 2)

⊕ E⊗


xQ1(k + 1)
xQ2(k + 1)
xY1(k + 1)
xY2(k + 1)
xY3(k + 1)

⊕


τ2(k+2)+τ3(k−µQ)+
a1(k+2)+mQ2 (k+2)+dQ1 (k+2) ε ε ε ε

ε ε ε ε ε
ε ε ε ε ε

ε ε ε
τ5(k−µY )+τ6(k−µY )+

b2(k+2)+mY2 (k+2)+dY1 (k+2) ε

ε ε ε ε ε


⊗


xQ1(k)
xQ2(k)
xY1(k)
xY2(k)
xY3(k)

⊕

ε ε

τ1(k+2)+τ5(k−µA)+
c4(k+2)+mA2 (k+2)+dA1 (k+2) ε ε

ε ε ε ε ε
ε ε ε ε ε
ε ε ε ε ε
ε ε ε ε ε


⊗


xQ1(k − 1)
xQ2(k − 1)
xY1(k − 1)
xY2(k − 1)
xY3(k − 1)

⊕ E ⊗

xQ1(k − 2)
xQ2(k − 2)
xY1(k − 2)
xY2(k − 2)
xY3(k − 2)



≥


(10 + 80 + 180)⊕ (15 + 130 + 210)

840
210(

10 + 110 + xQ1(k + 2)
)
⊕ (15 + 160 + 300)

625



≥


355
840
210
475
625

 .

Following the same fashion, k + 3, k + 4 and k + 5 can be calculated. Suppose AGV3, AGV2
and AGV1 are chosen, respectively. Then the states evolve as:

k + 3 k + 4 k + 5
355 935 935
930 930 1100
545 545 1220
475 810 810
625 625 625


(B-1)

dit overlapt met appendix hand calculations: richt dit deel op binaire variabelen of haal k+3
tot k+5 weg. 4



Appendix C

Example of MPL models

In this appendix an MPL, SMPL and SSMPL model for a production system are proposed.

Example C-7. To follow a logical procedure, this example is divided into three parts. First,
an MPL system is created. Secondly, a new mode is added and thus an SMPL system is then
obtained. Lastly, the uncertainty in the parameters is considered and the SMPL system is
extended to an SSMPL system.

Figure C-1: The production system with five machines that is considered in Example (C-7).

The MPL system

A production system exists of five machines: M1,M2,M3,M4 and M5. The input is fed into
machines M1 and M2. The products go from M1 to M3 and from M2 to M4. Both products
will be assembled instantaneously in M5, see Figure C-1. u(k) is the time instant at which the
system is fed for the kth time, y(k) = x5(k) is the time instant at which the kth product leaves
the system and xi(k) is the time instant at which machine i starts a process for the kth time.
The variables tj are the transportation times and di the processing times. It is assumed that
each machine starts working as soon as possible on each batch. For example, M1 can start
working when
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1. it has finished its previous batch:

x1(k) ≥ x1(k − 1) + d1,

2. the new material has been transported to the machine:

x1(k) ≥ u(k) + t1.

One of these two conditions takes more time than the other and should become equality:

x1(k) = max(x1(k − 1) + d1, u(k) + t1).

In the same fashion, the system equations of x2, x3, x4 and x5 could be calculated:

x2(k) = max(x2(k − 1) + d2, u(k) + t2)

and

x3(k) = max(x3(k − 1) + d3, x1(k) + d1 + t3 + t5)
= max(x3(k − 1) + d3, x1(k − 1) + 2d1 + t3 + t5, u(k) + d1 + t1 + t3 + t5)

x4(k) = max(x4(k − 1) + d4, x2(k) + d2 + t4 + t6)
= max(x4(k − 1) + d4, x2(k − 1) + 2d2 + t4 + t6, u(k) + d2 + t2 + t4 + t6)

x5(k) = max(x3(k) + d3 + t7, x4(k) + d4 + t8)
= max(x3(k − 1) + 2d3 + t7, x1(k − 1) + 2d1 + d3 + t3 + t5 + t7,

u(k) + d1 + d3 + t1 + t3 + t5 + t7,

x4(k − 1) + 2d4 + t8, x2(k − 1) + 2d2 + d4 + t4 + t6 + t8,

u(k) + d2 + d4 + t2 + t4 + t6 + t8).

When these resulting equations are written in max-plus algebra, such as in Eq. (3-5) and
Eq. (3-6), the matrices A,B and C can be obtained:

A =


d1 ε ε ε ε ε
ε d2 ε ε ε

2d1 + t3 + t5 ε d3 ε ε
ε 2d2 + t4 + t6 ε d4 ε

2d1 + d3 + t3 + t5 + t7 2d2 + d4 + t4 + t6 + t8 2d3 + t7 2d4 + t8 ε



=


1 ε ε ε ε
ε 3 ε ε ε
2 ε 6 ε ε
ε 6 ε 4 ε
8 11 12 9 ε



B =


t1
t2

d1 + t1 + t3 + t5
d2 + t2 + t4 + t6

max(d1 + d3 + t1 + t3 + t5 + t7, d2 + d4 + t2 + t4 + t6 + t8)

 =


4
1
5
4
11


C =

[
8 11 12 9 ε

]
.
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The MPL system is now obtained.

The SMPL system

Now suppose that the system is interconnected and the batches of machines M1 and M2 can
proceed to either M3 or M4, depending on which batch is completed first. The products coming
from machine M1 and M2 are directed to a switching device Sw that feeds the first product
in the kth cycle to the slowest machine. Since the processing time of M3 is longer than that
of M4, it is fed to M3. The second batch is fed to the fastest machine M4 to reduce the
overall production time. Now there exist two scenarios; the first one when M1 is fed to M3:
x1(k) + d1 ≤ x2(k) + d2, the second one when M1 is fed to M4: x1(k) + d1 > x2(k) + d2. The
first scenario will be referred to as "mode ` = 1", the second scenario will be referred to as
"mode ` = 2".

The first mode is already considered in the first part of this example, except now A = A(1),
B = B(1) and C = C(1). The second mode results in the following equations:

x1(k) = max(x1(k − 1) + d1, u(k) + t1)
x2(k) = max(x2(k − 1) + d2, u(k) + t2)
x3(k) = max(x3(k − 1) + d3, x2(k) + d2 + t4 + t5)

= max(x3(k − 1) + d3, x2(k − 1) + 2d2 + t4 + t5, u(k) + d2 + t2 + t4 + t5)
x4(k) = max(x4(k − 1) + d4, x1(k) + d1 + t3 + t6)

= max(x4(k − 1) + d4, x1(k − 1) + 2d1 + t3 + t6, u(k) + d1 + t1 + t3 + t6)
x5(k) = max(x3(k) + d3 + t7, x4(k) + d4 + t8)

= max(x3(k − 1) + 2d3 + t7, x2(k − 1) + 2d2 + d3 + t4 + t5 + t7,

u(k) + d2 + d3 + t2 + t4 + t5 + t7,

x4(k − 1) + 2d4 + t8, x1(k − 1) + 2d1 + d4 + t3 + t6 + t8,

u(k) + d1 + d4 + t1 + t3 + t6 + t8).

When these equations are again written in max-plus algebra, the system matrices can be
obtained for the second mode of the SMPL system:

A(2) =


d1 ε ε ε ε ε
ε d2 ε ε ε
ε 2d2 + t4 + t5 d3 ε ε

2d1 + t3 + t6 ε ε d4 ε
2d1 + d4 + t3 + t6 + t8 2d2 + d3 + t4 + t5 + t7 2d3 + t7 2d4 + t8 ε



=


1 ε ε ε ε
ε 3 ε ε ε
ε 6 6 ε ε
2 ε ε 4 ε
7 12 12 9 ε
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B(2) =


t1
t2

d2 + t2 + t4 + t5
d1 + t1 + t3 + t6

max(d2 + d3 + t2 + t4 + t5 + t7, d1 + d4 + t1 + t3 + t6 + t8)

 =


4
1
4
5
10


C(2) =

[
7 12 12 9 ε

]
.

The SMPL system with ` = {1, 2} is now obtained.

The SSMPL system

In the SMPL model, the system matrices contain di as well as on tj. Suppose the switching
between modes is deterministic and the processing time and the transportation time are both
stochastic due to variable transportation times tj and processing times di. Furthermore, sup-
pose there are no constant deviations, so no model errors. Now it cannot be assumed that di
and tj are constant for every k, but they should depend on k: di(k) and tj(k). The equations
for both modes:

x
(1,2)
1 (k) = max(x1(k − 1) + d1(k − 1), u(k) + t1(k))

x
(1,2)
2 (k) = max(x2(k − 1) + d2(k − 1), u(k) + t2(k)).

Furthermore for ` = 1:

x
(1)
3 (k) = max(x3(k − 1) + d3(k − 1), x1(k) + d1(k) + t3(k) + t5(k))

= max(x3(k − 1) + d3(k − 1),
x1(k − 1) + d1(k − 1) + d1(k) + t3(k) + t5(k),
u(k) + d1(k) + t1(k) + t3(k) + t5(k))

x
(1)
4 (k) = max(x4(k − 1) + d4(k − 1), x2(k) + d2(k) + t4(k) + t6(k))

= max(x4(k − 1) + d4(k − 1),
x2(k − 1) + d2(k − 1) + d2(k) + t4(k) + t6(k),
u(k) + d2(k) + t2(k) + t4(k) + t6(k))

x
(1)
5 (k) = max(x3(k) + d3(k) + t7(k), x4(k) + d4(k) + t8(k))

= max(x3(k − 1) + d3(k − 1) + d3(k) + t7(k),
x1(k − 1) + d1(k − 1) + d1(k) + d3(k) + t3(k) + t5(k) + t7(k),
u(k) + d1(k) + d3(k) + t1(k) + t3(k) + t5(k) + t7(k),
x4(k − 1) + d4(k − 1) + d4(k) + t8(k),
x2(k − 1) + d2(k − 1) + d2(k) + d4 + t4(k) + t6(k) + t8(k),
u(k) + d2(k) + d4(k) + t2(k) + t4(k) + t6(k) + t8(k))
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and for ` = 2:

x
(2)
3 (k) = max(x3(k − 1) + d3(k − 1), x2(k) + d2(k) + t4(k) + t5(k))

= max(x3(k − 1) + d3(k − 1),
x2(k − 1) + d2(k − 1) + d2(k) + t4(k) + t5(k),
u(k) + d2(k) + t2(k) + t4(k) + t5(k))

x
(2)
4 (k) = max(x4(k − 1) + d4(k − 1), x1(k) + d1(k) + t3(k) + t6(k))

= max(x4(k − 1) + d4(k − 1),
x1(k − 1) + d1(k − 1) + d1(k) + t3(k) + t6(k),
u(k) + d2(k) + t1(k) + t3(k) + t6(k))

x
(2)
5 (k) = max(x3(k) + d3(k) + t7(k), x4(k) + d4(k) + t8(k))

= max(x3(k − 1) + d3(k − 1) + d3(k) + t7(k),
x2(k − 1) + d2(k − 1) + d2(k) + d3(k) + t4(k) + t5(k) + t7(k),
u(k) + d2(k) + d3(k) + t2(k) + t4(k) + t5(k) + t7(k),
x4(k − 1) + d4(k − 1) + d4(k) + t8(k),
x1(k − 1) + d1(k − 1) + d1(k) + d4(k) + t3(k) + t6(k) + t8(k),
u(k) + d1(k) + d4(k) + t1(k) + t3(k) + t6(k) + t8(k)).

Putting the equations in max-plus-linear notation for both modes ` = 1 and ` = 2 results in
the matrices presented below.

System matrices mode ` = 1

The system matrices A(1),B(1) and C(1) for the first mode ` = 1 for the SSMPL system:

A(1) =


d1(k − 1) ε ε ε ε

ε d2(k − 1) ε ε ε
d1(k − 1) + d1(k) + t3(k) + t5(k) ε d3(k − 1) ε ε

ε d2(k − 1) + d2(k) + t4(k) + t6(k) ε d4(k − 1) ε
d1(k − 1) + d1(k) + d3(k) + t3(k) + t5(k) + t7(k) d2(k − 1) + d2(k) + d4(k) + t4(k) + t6(k) + t8(k) d3(k − 1) + d3(k) + t7(k) d4(k − 1) + d4(k) + t8(k) ε



B(1) =


t1(k)
t2(k)

d1(k) + t1(k) + t3(k) + t5(k)
d2(k) + t2(k) + t4(k) + t6(k)

max(d1(k) + d3(k) + t1(k) + t3(k) + t5(k) + t7(k), d2(k) + d4(k) + t2(k) + t4(k) + t6(k) + t8(k))



C(1) =


d1(k − 1) + d1(k) + d3(k) + t3(k) + t5(k) + t7(k)
d2(k − 1) + d2(k) + d4(k) + t4(k) + t6(k) + t8(k)

d3(k − 1) + d3(k) + t7(k)
d4(k − 1) + d4(k) + t8(k)

ε



T

.
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System matrices mode ` = 2

The system matrices A(2),B(2) and C(2) for the second mode ` = 2 for the SSMPL system:

A(2) =


d1(k − 1) ε ε ε ε

ε d2(k − 1) ε ε ε
ε d2(k − 1) + d2(k) + t4(k) + t5(k) d3(k − 1) ε ε

d1(k − 1) + d1(k) + t3(k) + t6(k) ε ε d4(k − 1) ε
d1(k − 1) + d1(k) + d4(k) + t3(k) + t6(k) + t8(k) d2(k − 1) + d2(k) + d3(k) + t4(k) + t5(k) + t7(k) d3(k − 1) + d3(k) + t7(k) d4(k − 1) + d4(k) + t8(k) ε



B(2) =


t1(k)
t2(k)

d2(k) + t2(k) + t4(k) + t5(k)
d1(k) + t1(k) + t3(k) + t6(k)

max(d2(k) + d3(k) + t2(k) + t4(k) + t5(k) + t7(k), d1(k) + d4(k) + t1(k) + t3(k) + t6(k) + t8(k))



C(2) =


d1(k − 1) + d1(k) + d4(k) + t3(k) + t6(k) + t8(k)
d2(k − 1) + d2(k) + d3(k) + t4(k) + t5(k) + t7(k)

d3(k − 1) + d3(k) + t7(k)
d4(k − 1) + d4(k) + t8(k)

ε



T

.

All the stochastic, variable parameters can be gathered in the uncertainty vector Eu(k):

Eu(k) =
[
d1(k − 1) d1(k) d2(k − 1) d2(k) d3(k − 1) d3(k) d4(k − 1) d4(k)

· · · t1(k) t2(k) t3(k) t4(k) t5(k) t6(k) t7(k) t8(k)
]T
.

Note that since the variables tj and di are depending on event counter k, it is not possible to
substitute the values given in Figure C-1 in the system matrices of the SSMPL model. 4



Appendix D

Implicit vs. Explicit Models

In Section 4-1-2 it is stated that an implicit model would result in less constraints in the
MILP formulation. In this appendix this statement will be clarified.

Suppose Eq. (4-2)-(4-3), Eq. (4-9)-(4-10), Eq. (4-12)-(4-13) and Eq. (4-14)-(4-15) are all
considered for the MILP inequality constraints. Furthermore, only the binary variables
{d1, ..., d4} are taken into account, with which a cycle type for the QC, YC and AGV can be
selected. The cycle types are: "SYSY","SYYS","YSYS" and "YSSY". The inequality expres-
sions that are then obtained for the QC synchronization:

xQ(k) ≥ τ2(k)⊗ τ3(k − µQ)⊗ xQ(k − µQ)⊗ dQ1

xQ(k) ≥ τ1(k)⊗ τ5(k − µA)⊗ xY (k − µA)⊗ dA1

xQ(k) ≥ τ3(k − µQ)⊗ xQ(k − µQ)⊗ dQ2

xQ(k) ≥ τ4(k)⊗ τ5(k)⊗ xY (k)⊗ dA2

xQ(k) ≥ τ2(k − µQ)⊗ τ3(k − µQ)⊗ xQ(k − µQ)⊗ dQ3

xQ(k) ≥ τ4(k)⊗ τ5(k)⊗ xY (k)⊗ dA3

xQ(k) ≥ τ2(k)⊗ τ2(k − µQ)⊗ τ3(k − µQ)⊗ xQ(k − µQ)⊗ dQ4

xQ(k) ≥ τ1(k)⊗ τ3(k − µA)⊗ xQ(k − µA)⊗ dA4

for the YC synchronization

xY (k) ≥ τ3(k)⊗ τ4(k)⊗ xQ(k)⊗ dA1

xY (k) ≥ τ5(k − µY )⊗ τ6(k − µY )⊗ xY (k − µY )⊗ dY1

xY (k) ≥ τ1(k)⊗ τ5(k − µA)⊗ xY (k − µA)⊗ dA2

xY (k) ≥ τ5(k − µY )⊗ τ6(k)⊗ τ6(k − µY )⊗ xY (k − µY )⊗ dY2

xY (k) ≥ τ1(k)⊗ τ3(k − µA)⊗ xQ(k − µA)⊗ dA3

xY (k) ≥ τ6(k)⊗ τ5(k − µY )⊗ xY (k − µY )⊗ dY3

xY (k) ≥ τ3(k)⊗ τ4(k)⊗ xQ(k)⊗ dA4

xY (k) ≥ τ5(k − µY )⊗ xY (k − µY )⊗ dY4
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and finally it should hold that

x(k) ≥ x(k − 1).

These seventeen constraints follow from the implicit model, that is also used for the SSMPL
system. The implicit model can be reduced to fifteen constraints when assumed that (I) τ3
and τ5 are constant variables and (II) if there is no distinction made between the traveling
times to and from a departure crane (τ1(k) = τ5(k)). The inequality constraints imposed by
the A-matrix parameterization for the implicit model are now as follows:

xQ(k) ≥ τ3 ⊗ τ2(k)⊗ xQ(k − µQ)⊗ dQ1 (D-1)
xQ(k) ≥ τ5 ⊗ τ1(k)⊗ xY (k − µA)⊗ dA1 (D-2)
xQ(k) ≥ τ3 ⊗ xQ(k − µQ)⊗ dQ2 (D-3)
xQ(k) ≥ τ5 ⊗ τ1(k)⊗ xY (k)⊗

(
dA2 ⊗ dA3

)
(D-4)

xQ(k) ≥ τ3 ⊗ τ2(k − µQ)⊗ xQ(k − µQ)⊗ dQ3 (D-5)
xQ(k) ≥ τ3 ⊗ τ2(k)⊗ τ2(k − µQ)⊗ xQ(k − µQ)⊗ dQ4 (D-6)
xQ(k) ≥ τ3 ⊗ τ1(k)⊗ xQ(k − µA)⊗ dA4 (D-7)

and

xY (k) ≥ τ3 ⊗ τ1(k)⊗ xQ(k)⊗
(
dA1 ⊗ dA4

)
(D-8)

xY (k) ≥ τ5 ⊗ τ6(k − µY )⊗ xY (k − µY )⊗ dY1 (D-9)
xY (k) ≥ τ5 ⊗ τ1(k)⊗ xY (k − µA)⊗ dA2 (D-10)
xY (k) ≥ τ5 ⊗ τ6(k)⊗ τ6(k − µY )⊗ xY (k − µY )⊗ dY2 (D-11)
xY (k) ≥ τ3 ⊗ τ1(k)⊗ xQ(k − µA)⊗ dA3 (D-12)
xY (k) ≥ τ5 ⊗ τ6(k)⊗ xY (k − µY )⊗ dY3 (D-13)
xY (k) ≥ τ5 ⊗ xY (k − µY )⊗ dY4 . (D-14)

and

x(k) ≥ x(k − 1). (D-15)

To obtain the explicit model, the inequalities containing dependence on the current cycle k
of the unreduced implicit model are substituted by the following expressions:

• For the SYSY-cycle (d1):

τ3(k)⊗ τ4(k)⊗ xQ(k)⊗ dA1 ≥
τ3(k)⊗ τ4(k)⊗ τ2(k)⊗ τ3(k − µQ)⊗ xQ(k − µQ)⊗ dQ1 ⊕

τ3(k)⊗ τ4(k)⊗ τ1(k)⊗ τ5(k − µA)⊗ xY (k − µA)⊗ dA1 .

• For the SYYS-cycle (d2):

τ4(k)⊗ τ5(k)⊗ xY (k)⊗ dA2 ≥
τ4(k)⊗ τ5(k)⊗ τ1(k)⊗ τ5(k − µA)⊗ xY (k − µA)⊗ dA2 ⊕

τ4(k)⊗ τ5(k)⊗ τ5(k − µY )⊗ τ6(k)⊗ τ6(k − µY )⊗ xY (k − µY )⊗ dY2 .
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• For the YSYS-cycle (d3):

τ4(k)⊗ τ5(k)⊗ xY (k)⊗ dA3 ≥
τ4(k)⊗ τ5(k)⊗ τ1(k)⊗ τ3(k − µA)⊗ xQ(k − µA)⊗ dA3 ⊕

τ4(k)⊗ τ5(k)⊗ τ6(k)⊗ τ5(k − µY )⊗ xY (k − µY )⊗ dY3 .

• For the YSSY-cycle (d4):

τ3(k)⊗ τ4(k)⊗ xQ(k)⊗ dA4 ≥
τ3(k)⊗ τ4(k)⊗ τ2(k)⊗ τ2(k − µQ)⊗ τ3(k − µQ)⊗ xQ(k − µQ)⊗ dQ4 ⊕

τ3(k)⊗ τ4(k)⊗ τ1(k)⊗ τ3(k − µA)⊗ xQ(k − µA)⊗ dA4 .

The first assumption (τ3(k) = τ3, τ5(k) = τ5) can also be valid for this model. However,
the second assumption can not be used, since τ1 and τ4 can exists in one constraint. The
inequality constraints imposed by the A-matrix parameterization for the explicit model now
become:

xQ(k) ≥ τ3 ⊗ τ2(k)⊗ xQ(k − µQ)⊗ dQ1 (D-16)
xQ(k) ≥ τ5 ⊗ τ1(k)⊗ xY (k − µA)⊗ dA1 (D-17)
xQ(k) ≥ τ3 ⊗ xQ(k − µQ) ⊗ dQ2 (D-18)
xQ(k) ≥ τ5 ⊗ τ5 ⊗ τ1(k)⊗ τ4(k)⊗ xY (k − µA)⊗ dA2 (D-19)
xQ(k) ≥ τ5 ⊗ τ5 ⊗ τ1(k)⊗ τ6(k)⊗ τ6(k − µY )⊗ xY (k − µY )⊗ dY2 (D-20)
xQ(k) ≥ τ3 ⊗ τ2(k − µQ)⊗ xQ(k − µQ)⊗ dQ3 (D-21)
xQ(k) ≥ τ3 ⊗ τ5 ⊗ τ1(k)⊗ τ4(k)⊗ xQ(k − µA)⊗ dA3 (D-22)
xQ(k) ≥ τ5 ⊗ τ5 ⊗ τ1(k)⊗ τ6(k)⊗ xY (k − µY )⊗ dY3 (D-23)
xQ(k) ≥ τ3 ⊗ τ2(k)⊗ τ2(k − µQ)⊗ xQ(k − µQ)⊗ dQ4 (D-24)
xQ(k) ≥ τ3 ⊗ τ1(k)⊗ xQ(k − µA)⊗ dA4 (D-25)

and

xY (k) ≥ τ3 ⊗ τ3 ⊗ τ1(k)⊗ τ2(k)⊗ xQ(k − µQ)⊗ dQ1 (D-26)
xY (k) ≥ τ5 ⊗ τ3 ⊗ τ1(k)⊗ τ4(k)⊗ xY (k − µA)⊗ dA1 (D-27)
xY (k) ≥ τ5 ⊗ τ6(k − µY )⊗ xY (k − µY )⊗ dY1 (D-28)
xY (k) ≥ τ5 ⊗ τ1(k)⊗ xY (k − µA)⊗ dA2 (D-29)
xY (k) ≥ τ5 ⊗ τ6(k)⊗ τ6(k − µY )⊗ xY (k − µY )⊗ dY2 (D-30)
xY (k) ≥ τ3 ⊗ τ1(k)⊗ xQ(k − µA)⊗ dA3 (D-31)
xY (k) ≥ τ5 ⊗ τ6(k)⊗ xY (k − µY )⊗ dY3 (D-32)
xY (k) ≥ τ3 ⊗ τ3 ⊗ τ1(k)⊗ τ2(k)⊗ τ2(k − µQ)⊗ xQ(k − µQ)⊗ dQ4 (D-33)
xY (k) ≥ τ3 ⊗ τ3 ⊗ τ1(k)⊗ τ4(k)⊗ xQ(k − µA)⊗ dA4 (D-34)
xY (k) ≥ τ5 ⊗ xY (k − µY )⊗ dY4 . (D-35)

and

x(k) ≥ x(k − 1). (D-36)
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Since there are 21 inequalities describing the MILP constraints for the explicit model, it is
already clear that the implicit model (fourteen inequalities) results in less constraints for the
MILP problem.

Assuming that there exist P previous cycles, the number of constraints of the implicit model
are:

nrc,impl =
(
4NP + 4MP + 4NMP + PN2 + PM2 + 2NM +N +M

)
×Nmax (D-37)

Assuming that there exist p previous cycles, the number of constraints of the explicit model
are:

nrc,expl =
(
4NP + 4MP + 8NMP + 2PN2 + 2PM2 +N +M

)
×Nmax (D-38)

There is however one downside when the implicit model is used. The number of variables that
need to be optimized is namely slightly larger. This is due to the merging of the constraints.
In the inequality constraints D-5 and D-9 the variables

(
dA2 ⊗ dA3

)
and

(
dA1 ⊗ dA4

)
exist,

respectively. In the MILP formulation, these are denoted by the new variables dA5 and dA6 .
This on their turn introduce 2 × Nmax new inequality constraints. However, due to these
inequalities, the extra variables directly follow from d1 to d4 (Equations 5-8 and 5-9). The
number of variables that need to be optimized in respectively the implicit and explicit model:

nrv,impl = (N +M + P + 6)×Nmax (D-39)

nrv,expl = (N +M + P + 4)×Nmax (D-40)

In Table D-1, the number of constraints and variables for all test cases (t.c.) are represented.
It can be observed that the difference in the number of constraint far exceeds the difference
in the number of optimization variables.

Nr of constr. Nr of var.
t.c. Impl. Expl. Impl. Expl.
1 4.560 7.125 240 210
2 11.760 19.290 330 300
3 28.950 49.620 435 405
4 38.400 66.120 510 480
5 71.400 126.150 615 585
6 83.910 149.415 630 600
7 136.875 247.695 735 705
8 159.450 288.945 810 780
9 237.675 435.825 915 885

Nr of constr. Nr of var.
t.c. Impl. Expl. Impl. Expl.
10 299.070 551.040 1005 975
11 415.110 771.270 1110 1080
12 415.110 771.270 1110 1080
13 557.610 1.043.100 1215 1185
14 663.165 1.244.115 1305 1275
15 855.330 1.612.995 1410 1380
16 920.805 1.737.045 1485 1455
17 1.158.030 2.194.125 1590 1560
18 1.816.980 3.468.450 1815 1785

Table D-1: For all eighteen test cases (t.c.), the number of constraints and variables are decided
for the implicit as well as the explicit model, assuming that there are P previous cycles.

The same difference becomes clear in Figures D-1 and D-2. The absolute difference in the
number of constraints increases, while the absolute difference in variables stays equal (since
this is 2×Nmax). This means that the relative difference in variables reduces.
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Figure D-1: The number of constraints in the MILP formulation for eighteen test cases for the
implicit and explicit model. The problem is always bigger with an explicit model and this problem
size grows rapidly.
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Figure D-2: The number of optimization variables in the MILP formulation for eighteen test
cases for the implicit and explicit model. The absolute difference stays the same in all test cases.

The relative difference in constraints reduces, too. This can be seen in Figure D-3. To
understand why the relative difference decreases in the beginning and less in the larger test
cases, the equations Eq. (D-37) and (D-38) are considered. When the test cases become
larger, the following terms have the most weight in the equations:

4NMP (≈ 50%), N2P, M2P and 8NMP, 2N2P, 2M2P,

since have either one squared crane- or two cranes multiplied by P (which grows rapidly).
For larger cases, also N2P and 2N2P have little weight in the final amount of constraints.
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Very roughly, the relative difference in the number of constraints is mainly determined by

4NMP +M2P

8NMP + 2M2P
= 4NMP +M2P

2× (4NMP +M2P ) = 1
2

Assuming the relations between the parameters that are defined in the test cases, the relative
difference will thus be approximately 0.5.
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Figure D-3: The relative difference in the number of constraints for the implicit and explicit
model. The difference shrinks, but appears to reach a value around 0,5 for the larger test cases.



Appendix E

Sparse Matrices

When an MPL system is formulated in a MILP framework, the amount of zeros in the MILP
matrices can be huge. Since the matrices are very large, they take a considerable amount of
memory capacity. To reduce this amount as much as possible, the matrices that consist of
mostly zeros, should be implemented as sparse matrices. This will reduce the memory usage
considerably, as can be seen in Table E-1.

type size bytes bytes per element
diagonal matrix 10.000× 10.000 8× 108 8

diagonal sparse matrix 10.000× 10.000 4× 105 24

Table E-1: Difference in memory usage of a conventional matrix and sparse matrix. The last
column shows the bytes used per matrix element.

The differences for the specific case of the container terminal MILP formulation can be seen
in Table E-2.

test case E Esparse F Fsparse

1 24.480 5.032 24.480 6.104
8 10.833.680 153.784 2.424.320 170.552
17 303.149.200 1.063.608 32.687.392 1.131.800

Table E-2: Difference in memory usage (bytes) of conventional and sparse matrices for the
specific container terminal MILP matrices E and F.
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Appendix F

Search algorithms

MILP solvers use in general the same methodology, of which presolving, heuristics, the branch-
and-bound search methods and cutting planes is explained.

Branch-and-bound

At first, the problem is solved by removing all the integrality constraints (those on the binary
variables). These constraints allow MIP models to capture the discrete nature of the system.
The LP problem that arises, is called the LP relaxation of the original MIP problem. Then
a constraint is added of a variable that is restricted to be integer, but whose value in the
LP relaxation is fractional. This variable becomes the branching variable and two sub-nodes
arise in the search tree (Figure F-1). These sub-nodes both become a new MIP problem,
that is solved again by relaxation and the branching of a integer variable. Note that the LP
relaxation returns an infeasible solution to the original MILP at first. When a feasible solution
is found to the original MIP problem, the node is designated as fathomed (permanent leaf in
the search tree). Thereby, the solution is denoted as incumbent. Only if the solution has a
better objective, the incumbent is updated by the current incumbent and its objective value.
The final optimal solution is found when the difference between the minimum objective value
of all current leaves and the incumbent objective value equals zero.

Cutting planes

Cutting planes tighten the formulation by disregarding undesirable fractional solutions, with-
out actually computing them. They do this during the solution process, without creating
additional sub-problems. For a more thorough explanation it is referred to the Gurobi docu-
mentation [37].
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Figure F-1: The search tree where every node is a new MIP which can be branched again. The
the leaf nodes denoted in blue are (not yet) branched. The red node is fathomed and a feasible
solution for the problem.

Presolve

Presolving reduces the size of the problem by solving variables that follow directly from the
constraints and removing the inequality constraints.

Heuristics

Heuristics are used to find good incumbents in a fast manner. This is desirable since (I) it
might be impossible to solve the problem to provable optimality if the MIP is too difficult
and (II) it helps with the search process and a node being fathomed. If the objective value of
the incumbent is lower, the more likely it is that the value of an LP relaxation will exceed it.



Appendix G

Model Verification by Hand
Calculations

To verify the model, numerous simulations are verified by hand calculations. In this appendix,
an example is provided of such calculation.

Example G-8. Suppose there are 2 QCs, 3 YCs, 3 AGVs and Np = 5. Furthermore
τ =

[
τ2 τ3 τ5 τ6

]
=
[
80 10 15 160

]
and

T =

 Y C1 Y C2 Y C3
QC1 130 110 180
QC2 200 140 190



The work queue and inital states are as follows:

k QC YC cycle type AGV
−3 1 1 D 1
−2 2 2 D 2
−1 1 3 D 3
0 2 1 D ?
1 1 2 D ?
2 2 3 D ?
3 1 1 D ?
4 2 2 D ?

Table G-1: Work queue and initial AGV
dispatching for this example.

xinit =



k − 1 k − 2 k − 3
130 35 35
35 35 0
175 175 175
185 185 10
320 0 0


.
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For the first cycle k:

x̂2(k) ≥ τ2 + τ3 + x̂2(k − 2) ⊕
τv(k) + τ5 + {x̂3(k − 3), x̂4(k − 2), x̂5(k − 1)}

x̂2(k) ≥ 80 + 10 + 35 ⊕
{200, 140, 190}+ 15 + {175, 185, 320}

The values between brackets are respectively {AGV1, AGV2, AGV3}. AGV3 would result
in a very slow time for the QC synchronization. Furthermore, even though AGV1 can start
traveling soonest, the travel from YC1 to QC2 is quite long. Therefore, it would be 50 seconds
faster to use AGV2. Therefore, this latter option is most probably fastest, thus

x̂2(k) ≥ 125 ⊕ 140 + 15 + 185
x̂2(k) ≥ 340

and

x̂3(k) ≥ τ3 + τv(k) + x̂2(k)⊕
τ5 + τ6 + x̂3(k − 3)

x̂3(k) ≥ 10 + 200 + 340 ⊕15 + 160 + 175
x̂3(k) ≥ 550

The next job k + 1 is performed by QC1 (x̂1(k + 1)) and YC2 (x̂4(k + 1)):

x̂1(k + 1) ≥ τ2 + τ3 + x̂1(k − 1) ⊕
τv(k + 1) + τ5 + {x̂3(k − 3), x̂3(k), x̂5(k − 1)}

x̂1(k + 1) ≥ 80 + 10 + 130 ⊕ {130, 130, 180}+ 15 + {175, 550, 320}

Selecting AGV1 would result in the fastest synchronization time, obtaining

x̂1(k + 1) ≥ 220 ⊕ 130 + 15 + 175
x̂1(k + 1) ≥ 320

The YC2 synchronization time then becomes

x̂4(k + 1) ≥ τ3 + τv(k + 1) + x̂1(k + 1)⊕
τ5 + τ6 + x̂4(k − 2)

x̂4(k + 1) ≥ 10 + 110 + 320 ⊕15 + 160 + 185
x̂4(k + 1) ≥ 440.

For job k + 2

x̂2(k + 2) ≥ τ2 + τ3 + x̂2(k) ⊕
τv(k + 2) + τ5 + {x̂4(k + 1), x̂3(k), x̂5(k − 1)}

x̂2(k + 2) ≥ 80 + 10 + 340 ⊕ {140, 200, 190}+ 15 + {440, 550, 320}.
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AGV2 will not be the best choice. However, between AGV1 and AGV3 there is a difference
of 70 seconds. Therefore, AGV3 is chosen.

x̂2(k + 2) ≥ 430 ⊕ 190 + 15 + 320
x̂2(k + 2) ≥ 525

The YC3 synchronization time then becomes

x̂5(k + 2) ≥ τ3 + τv(k + 2) + x̂2(k + 2)⊕
τ5 + τ6 + x̂5(k − 1)

x̂5(k + 2) ≥ 10 + 190 + 525 ⊕15 + 160 + 320
x̂5(k + 2) ≥ 725.

For job k + 3

x̂1(k + 3) ≥ τ2 + τ3 + x̂1(k + 1) ⊕
τv(k + 3) + τ5 + {x̂4(k + 1), x̂3(k), x̂5(k + 2)}

x̂1(k + 3) ≥ 80 + 10 + 320 ⊕ {110, 130, 180}+ 15 + {440, 550, 725}.

Choosing AGV1 gives:

x̂1(k + 3) ≥ 410 ⊕ 110 + 15 + 440
x̂1(k + 3) ≥ 565

The YC1 synchronization time then becomes

x̂3(k + 3) ≥ τ3 + τv(k + 3) + x̂1(k + 3)⊕
τ5 + τ6 + x̂3(k)

x̂3(k + 3) ≥ 10 + 130 + 565 ⊕ 15 + 160 + 550
x̂3(k + 3) ≥ 725.

For job k + 4

x̂2(k + 4) ≥ τ2 + τ3 + x̂2(k + 2) ⊕
τv(k + 4) + τ5 + {x̂4(k + 3), x̂3(k), x̂5(k + 2)}

x̂2(k + 4) ≥ 80 + 10 + 525 ⊕ {200, 200, 190}+ 15 + {725, 550, 725}.

Choosing AGV2 gives:

x̂2(k + 4) ≥ 615 ⊕ 200 + 15 + 550
x̂2(k + 4) ≥ 765

The YC2 synchronization time then becomes

x̂4(k + 4) ≥ τ3 + τv(k + 4) + x̂2(k + 4)⊕
τ5 + τ6 + x̂4(k + 1)

x̂4(k + 4) ≥ 10 + 140 + 765 ⊕15 + 160 + 440
x̂4(k + 4) ≥ 915.
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The states thus become:

xinit =



k k + 1 k + 2 k + 3 k + 4
180 320 320 565 565
340 340 525 525 765
550 550 550 725 725
185 440 440 440 915
320 320 725 725 725


and is compared to the result of MATLAB. It is not possible to guarantee the implementation is
correct by checking various small test cases. However, since they return the same result as the
hand calculations, it can be stated that the implementation is correct with highly probability.
This scheme is also visible in Figure 5-4.

4



Appendix H

Job Order Switching Schemes

Switching of job orders most probably decreases the overall makespan. The two proposed
switching schemes, full- and threshold switching, are elaborated on next.

Full switching scheme

Example H-9. There are three jobs: k, k+1 and k+2. In the current formulation:

x(k + 2) ≥ x(k + 1) x(k + 1) ≥ x(k). (H-1)

To switch the order of events, the following should all be defined

x(k + 1) ≥ x(k) → g10 x(k + 2) ≥ x(k + 1) → g21 x(k + 2) ≥ x(k) → g20

x(k) ≥ x(k + 1) → ḡ10 x(k + 1) ≥ x(k + 2) → ḡ21 x(k) ≥ x(k + 2) → ḡ20 (H-2)

for every crane. Besides the numerous extra constraints, it introduces three new max-plus
binary control variables g10, g21 and g20 with their complements. 4

A more general notation for the inequalities in Eq. (H-2) would be

x(k + j) ≥ x(k + i) + τ + w + z + g j > i

x(k + i) ≥ x(k + j) + τ + w + z + ḡ i > j,

where τ some handling time, w a combination of known - and z a combination of unknown
max-plus binary variables.

Example (H-9) shows that the number of constraints and variables will increase when switch-
ing is added to the system. Instead of constraints for just the two state-inequalities Eq. (H-1),
described in parameterizationM (Section 5-1), it needs constraints for all six state-inequalities
of Eq. (H-2). The number of these state-inequalities equals Nswitch × (Nswitch − 1), where
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Nswitch the horizon in which job switching is allowed. Note that this concerns the state-
inequalities and should be multiplied according to Eq. (5-4) to obtain the real number of
constraints.

Another crucial point illustrated by Example (H-9) is the increase in control variables. The
number of variables necessary equals 1

2
(
Nswitch × (Nswitch − 1)

)
. These should be added (not

multiplied) to the existing set of max-plus binary variables, each selecting a different set of
constraints corresponding to different state-inequalities.

Due to the explained growth in constraints, this method will not be advised to implement.
Memory issues are already a concern in the suggested SMPL model and it is therefore supposed
that the full switching scheme will fail for the large (and possibly the medium) test cases.

Threshold switching

For the threshold switching it is not necessary to introduce more constraints. Instead, the
schedule is calculated just as explained before, where after the state is analyzed. When it
appears that a crane has a large waiting time, a switch in job order is considered for only
a small part of the system. After the switch, the schedule is recalculated to check if the
switch results in a faster schedule. The threshold switching looks more promising since it
avoids memory issues, but is also convenient since large delays and thus possible switches are
uncommon.

Before specifying how the switch would occur, the delays are studied, starting with the QC
delays (type II) for which minimum waiting times are crucial. A delay might arise when a QC
switches from serving discharge jobs to serving loading jobs. Accordingly, a delay happens
only every now and then, since the QC serves the job types in batches (containers are unloaded
off the ship, before placing containers back on the vessel). It finishes loading an AGV and
starts waiting for its next job, say (k+j). This job starts at the yard side, were the YC starts
to retrieve (k + j) after it finished its last job (k + i∗). Hereafter, the container is placed on
the AGV (τ5 seconds) and the AGV transports this container to the quay (τv seconds). If
there is a delay, the YC should perform job (k + j) earlier and it should be moved up in its
job sequence (while leaving the QC job sequence untouched). The ideal time for job (k + j)
to leave the yard side is:

x̂Y C,ideal(k + j) = x̂QC,ideal(k + j)− tv(k + j)− τ5.

When there is a delay, x̂Y C(k + j) > x̂Y C,ideal(k + j) is true and job (k + j) should be
substituted directly before the job for which it holds:

x̂Y C(k + i) ≤ x̂Y C,ideal(k + j). (H-3)

Suppose the job sequence of a YC changes as follows when (k + j) is delayed (red):

k + i+ ς−1 — k + i — k + i+ ς1 — k + j — k + j + δ1
k + i+ ς−1 — k + j — k + i — k + i+ ς1 — k + j + δ1
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Job switching can easily be done by defining the three jobs that are affected:

1. the delayed job (k + j), now after (k + i+ ς−1),

2. the job performed by the YC directly after (k+j), say (k+j+δ1), now after (k+ i+ς1),

3. the switch job (k + i) for which Eq. (H-3) holds, now after (k + j),

and defining (k + i+ ς1) as the job performed by the YC directly following after (k + i).

The matrix E and B from Eq. (5-1) should be adjusted:

for E :


−1 1 0 0 0
0 −1 1 0 0
0 0 −1 1 0
0 0 0 −1 1

⊗

x̂Y C(k + j + δ1)
x̂Y C(k + j)

x̂Y C(k + i+ ς1)
x̂Y C(k + i)

x̂Y C(k + i+ ς−1)

 ≤


0
0
0
0

 ,

for Eswitch :


−1 0 1 0 0
0 −1 0 0 1
0 0 −1 1 0
0 1 0 −1 0

⊗

x̂Y C(k + j + δ1)
x̂Y C(k + j)

x̂Y C(k + i+ ς1)
x̂Y C(k + i)

x̂Y C(k + i+ ς−1)

 ≤


0
0
0
0

 .

The matrix B follows exactly the same scheme.

The above switching methodology is focused on the QC delay, type II. Switching jobs when
the YC is delayed (type I) uses the same methodology, except now the delay occurs at (k+ i)
Furthermore, (k + j) = (k + i + ς1) and x̂Y C,ideal(k + i) is described with the inequality
constraints in the model equations. Hence obtaining:

k + i+ ς−1 — k + i — k + j — k + j + δ1
k + i+ ς−1 — k + j — k + i — k + j + δ1

while the MILP is perturbed as follows (B follows again the same scheme):

for E :

−1 1 0 0
0 −1 1 0
0 0 −1 1

⊗

x̂Y C(k + j + δ1)
x̂Y C(k + j)
x̂Y C(k + i)

x̂Y C(k + i+ ς−1)

 ≤


0
0
0
0

 ,

for Eswitch :

−1 0 1 0
0 −1 0 1
0 1 −1 0

⊗

x̂Y C(k + j + δ1)
x̂Y C(k + j)
x̂Y C(k + i)

x̂Y C(k + i+ ς−1)

 ≤


0
0
0
0

 .

Since for both delay types only YCs orders are switched, there will be no problem in the QC
job sequence as it is constant, such that problems regarding (un)loading orders and QC drives
are prevented.
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Appendix I

Performance Index Travel Distance

Minimizing the travel distance is one of the objectives that is considered. The results are
shown in the tables below. The traveled distance is indeed lower when it is minimized, while
it compensates on the QC synchronization times.

test case 1
mean max distance [m]

λd = 0 1095 1143 ×
λd = 1 1112 1165 2060
λd = 10 1161 1262 2020

test case 8
mean max distance [m]

λd = 0 657 721 ×
λd = 1 693 781 1980
λd = 10 791 956 1740

Table I-1: The average and maximum QC synchronization times when the traveled distance of
the AGVs is the objective.
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Appendix J

Performance Index SMPL-MPS

The three different performance indices that were simulated for test cases 1, 2, 8, 9 and 17:
1) summation of the last QC synchronization times,
2) maximization of the last QC synchronization times and
3) a trade-off where the weight of the maximum time is λ = 0.2×N .

The last QC synchronization times of test case 17 are presented in Figure J-1, showing the
difference between the maximization and summation objectives. The summation has higher
synchronization times for some cranes than the maximum objective. On the other hand, due
to the much lower synchronization times for other cranes, the average is minimal.

QC
1 2 3 4 5 6 7 8 9 10

tim
e 

[s
]

1300

1350
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1500
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1700
Last QC synchronization times for different objectives in test case 17

sum
max
trade-off

Figure J-1: Last QC synchronization times for three simulations in test case 17 using the objective
functions as described above.

Especially interesting in Table J-1 is the ratio between the last synchronizing QC and the
average performance. In the small cases, the amount of different routes are limited. However,
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when the cases are large there are many paths through the system. The first objective
(summation) has the largest deviation and lowest ratio. Only the summation is minimized,
while the maximum is totally disregarded (ω = 1, λ = 0 in Eq. (5-13), repeated below).
The second objective (maximization) suppresses the maximum synchronization time, but
compensates on others. It therefore has the largest ratio and the smallest differences in
synchronization times. Now ω << 1 and λ = 1 in Eq. (5-13), minimizing the maximum
synchronization time. The trade-off is in the middle of these two discussed objectives, as
is expected. In the equation, it shows that both the average performance as well as the
maximum are minimized, since ωn = 1 and λ = 0.2×N .

min
x,z,tn

J = min
x,z,tn

ωn N∑
n=1

x̂n(k +Np) + λ max
n∈(1,...,N)

x̂n(k +Np)



test case 1
QC1 QC2 ratio

sum 5762 5808 0.996
max 5768 5783 0.999

trade-off 5768 5783 0.999
test case 2

QC1 QC2 ratio
sum 4590 4500 0.980
max 4590 4500 0.980

trade-off 4590 4500 0.980
test case 8

QC1 QC2 QC3 QC4 QC5 ratio
sum 2396 2409 2438 2353 2432 0.987
max 2386 2404 2438 2404 2381 0.985

trade-off 2391 2409 2438 2353 2432 0.986
test case 9

QC1 QC2 QC3 QC4 QC5 QC6 ratio
sum 2092 2214 2353 2277 2330 2317 0.962
max 2200 2314 2305 2299 2247 2312 0.985

trade-off 2101 2318 2249 2296 2332 2290 0.971
test case 17

QC1 QC2 QC3 QC4 QC5 QC6 QC7 QC8 QC9 QC10 ratio
sum 1463 1529 1598 1344 1410 1655 1680 1643 1669 1592 0.928
max 1548 1614 1598 1617 1585 1529 1588 1599 1584 1596 0.981

trade-off 1432 1520 1564 1442 1621 1529 1634 1643 1627 1633 0.952

Table J-1: Varying the performance index for the test cases 1, 2, 8, 9 and 17.
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Results of the SSMPL approach

In Chapter 7 the objective of the SSMPL model is studied and the model is validated. Addi-
tions to the results provided in the chapter can be found here.

K-1 Additional results on the performance index analysis

The average synchronization times of test case 17 can differ without influencing the objective
function. This is due to the formulation of the performance index, where the average syn-
chronization per realization is not defined. The differences in average QC performance per
realization can be seen in Figure K-1.
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Figure K-1: When the performance weight λr is varied, the average QC synchronization times
are different in test case 17.



122 Results of the SSMPL approach

K-2 Additional results on the model validation

The SSMPL model is validated by calculating a schedule when optimal, nominal and dis-
tributed values are assumed. It is claimed that the results for test case 17 show the same
trend as the results for test case 1 and 8. This is supported by Table K-1 (Page 123), which
shows that the SSMPL has the best performance when the 1000 "real cases" are simulated.
An additional column is presented, where the distribution in the Monte Carlo algorithm is
adjusted as is described in Section 7-2. The performance of this new approach is not consid-
erably better or worse.
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Figure K-2: Box plots of test cases 1 and 17 showing the distribution of simulating the "real
cases".

Figure K-2 shows the box plots of the "real cases" of test case 1 and 17. The median is the
central red mark and the box represents the value of 25% to 75% of the data. The whiskers
extend to the most extreme data points (not considering outliers, which are denoted sepa-
rately). The SSMPL approach seems less scattered than when nominal values are assumed,
since the both the box and the whiskers cover less area of the y axis. Test case 1 shows this
more clearly than test case 17. Also the whole plot of the SSMPL model appears lower than
that of the nominal values, visualizing the trends found in Table K-1.
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test case 17 Optimal Nominal SSMPL SSMPL∗

QC1
mean 720 720 720 723
std 0 0 0 7

QC2
mean 722 722 720 720
std 3 3 0 0

QC3
mean 732 720 720 720
std 7 0 0 0

QC4
mean 720 720 720 720
std 0 0 0 0

QC5
mean 720 720 720 720
std 0 0 0 0

QC6
mean 731 731 728 728
std 19 19 17 17

QC7
mean 771 765 771 765
std 32 18 32 18

QC8
mean 747 741 731 741
std 26 26 13 26

QC9
mean 746 730 726 732
std 17 15 12 10

QC10
mean 724 733 734 723
std 6 7 7 6

sum mean 7334 7302 7290 7291
std 48 40 39 38

max mean 783 733 772 772
std 27 19 19 19

Table K-1: The average times and standard deviations for the QC synchronizations in test case
17. The average summation and maximum of all 1000 runs with their standard deviations are
also shown.
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Appendix L

Programming Importance

In the results it is shown how much time the problem formulation takes (tb). It is interesting
to note that these obtained times, of course, highly depend on the programming structure.
When not enough attention is spend on the implementation, it can have a major impact
on the speed of the calculations that need to be done. To illustrate the importance of the
implementation, the extend of the impact on the calculation speed is explained by an example.
The first time all test cases were formulated, the following code was written:

1 % Generate theta vector of MILP formulation
2 l_M = length(M); % number of ineq constr of matrix A
3 Mt = M(5:7); % taus in column 5 to 7 of M
4 for ll = 1:l_M % create for every constraint tau
5 ii = M(ll,2); % AGV arrival crane
6 jj = M(ll,3); % AGV departure crane
7 tauk = [T(ii,jj);tau2(ones(n,1),:);tau3;tau5;tau6(ones(m,1),:)];
8 % taus for only cycle k+N_max
9 tau = [0;repmat(tauk,(N_max+v),1)]; % tau for whole state

10 Mt(ll,:) = tau(M(ll,5:7)+ones(1,3)); % select desired values from tau
11 end
12 theta = [Mt(:,1)+Mt(:,2)+Mt(:,3);N_max]; % add all values of tau
13 % last value for sink node:
14 % (N_max+v) possible sink nodes
15 % − v occupied sink nodes = N_max

For every constraint that is imposed by the parameterization of the A-matrix a new vector
θ is created. In this θ vector the value of all τ1 depend on the travel time of this one specific
constraint. When it is kept in mind that the number of constraints grow rapidly, as is seen
in the results, it becomes clear that the for-loop runs immensely often. It even creates a
new θ vector when there is no travel time in the constraint at all. The written code may be
relatively short, but it describes a big effort.

To avoid any unnecessary work, another code is written that should speed up the calculation
of the known θ vector in the MILP formulation. The parameterization of the A-matrix (the
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M-matrix) indexes the positions of θ. First the indices of all τ1 and their indices in M are
derived. An incorrect and initial vector for θ is defined, since the traveling times are all set
to zero. Then only for the constraints that contain a traveling time, the correct time is added
to the initial vector θ, obtaining the correct vector.

1 % Generate theta vector of MILP formulation
2 tau1_pos = (0:N_max+v−1)∗(3+n+m)+1; % position of tau1 in every cycle k
3 M_pos = []; % list to store all tau1 positions M
4 for ll = 1:length(tau1_pos) % find all positions of tau1 in M
5 [pos1,pos2] = find(M(:,5)==tau1_pos(ll));
6 M_pos = [M_pos;pos1]; % store all positions
7 end
8
9 taus = [0;repmat([0;tau2(ones(n,1),:);tau3;tau5;tau6(ones(m,1),:)],N_max+v,1)];

10 % create vector taus, 0 for all tau1
11 theta1 = taus(M(:,5)+1)+taus(M(:,6)+1)+taus(M(:,7)+1);
12 % select desired values from taus
13 for ll = 1:length(M_pos) % for all tau1 positions
14 theta1(M_pos(ll),1) = theta1(M_pos(ll),1)+T(M(M_pos(ll),2),M(M_pos(ll),3));
15 % select 0 in taus, add the correct
16 % traveling time from matrix T
17 end
18 theta = [theta1;N_max];
19 % last value for sink node:
20 % (N_max+v) possible sink nodes
21 % − v occupied sink nodes = N_max

The following table shows how the formulation times of the two implementations. They both
grow rapidly, but the difference is tremendously large.

nr tb1 tb2

1 0,124 0,0484
2 0,253 0,0508
3 0,679 0,0548
4 0,947 0,0568
5 2,23 0,0640
6 2,89 0,0733
7 6,00 0,0780
8 7,37 0,0824
9 13,7 0,0954

nr tb1 tb2

10 20,0 0,1079
11 36,2 0,1292
12 36,2 0,1291
13 65,8 0,1541
14 93,1 0,1755
15 161 0,2118
16 186 0,2292
17 311 0,2711
18 842 0,3989

Table L-1: Formulation times of the MILP problem for both implementations.



Bibliography

[1] I. H. S. Global-Insight, “Valuation of the Liner Shipping Industry - Economic Contribu-
tion and Liner Industry Operations,” tech. rep., I. H. S. Global Insight, 2013.

[2] United Nations Conference on Trade and Development, “Review of maritime transport,”
2013.

[3] D. Steenken, A. Voß, and R. Stahlbock, “Container terminal operation and operations
research - a classification and literature review,” OR Spectrum, vol. 26, no. 1, pp. 3–37,
2004.

[4] V. D. Nguyen and K. H. Kim, “Dispatching vehicles considering uncertain handling times
at port container terminals,” Progress in Material Handling Research, pp. 210–226, 2010.

[5] T. Ganesharajah, G. H. Nicholas, and C. Sriskandarajah, “Design and operational issues
in AGV-served manufacturing systems,” Annals of Operations Research, vol. 76, pp. 109–
154, 1998.

[6] Terex Corporation, “Automated guided vehicles.” http://www.terex.com/
port-solutions/en/products/new-equipment/automated-guided-vehicles/
index.htm. Accessed: 2014-09-11.

[7] B. Kersbergen, T. J. J. van den Boom, and B. De Schutter, “Reducing the time needed to
solve the global rescheduling problem of trains,” in Proceedings of the 16th International
IEEE Conference on Intelligent Transportation Systems, pp. 791–796, 2013.

[8] R. Goverde, “Railway timetable stability analysis using max-plus system theory,” Trans-
portation Research Part B: Methodological, vol. 41, pp. 179–201, 2007.

[9] R. Goverde, “A delay propagation algorithm for large-scale railway traffic networks,”
Transportation Research Part C: Emerging Technologies, vol. 18, pp. 269–287, 2010.

[10] G. Lopes, R. Babuška, B. De Schutter, and T. van den Boom, “Switching max-plus
models for legged locomotion,” in Proceedings of the 2009 IEEE International Conference
on Robotics and Biomimetics (ROBIO 2009), pp. 221–226, 2009.

http://www.terex.com/port-solutions/en/products/new-equipment/automated-guided-vehicles/index.htm
http://www.terex.com/port-solutions/en/products/new-equipment/automated-guided-vehicles/index.htm
http://www.terex.com/port-solutions/en/products/new-equipment/automated-guided-vehicles/index.htm


128 Bibliography

[11] Y.-L. Cheng, H.-C. Sen, K. Natarajan, C.-P. Teo, and K.-C. Tan, “Dispatching auto-
mated guided vehicles in a container terminal,” in Supply Chain Optimization (J. Geunes
and P. M. Pardalos, eds.), pp. 355–389, Springer US, 2005.

[12] Bharat S Raj, “Container cranes at Kochi.” http://en.wikipedia.org/wiki/
Container_crane#mediaviewer/File:Vallarpadam_Container_Terminal.JPG. Ac-
cessed: 2014-12-12.

[13] J. Wiese, L. Suhl, and N. Kliewer, Handbook of Terminal Planning. Springer New York,
2011.

[14] R. Stahlbock and S. Voß, “Operations research at container terminals: a literature up-
date,” OR Spectrum, vol. 30, pp. 1–52, 2008.

[15] VDL, “Automatic guided vehicle AGV / container.”
http://www.nauticexpo.com/prod/vdl-containersystemen/
automatic-guided-vehicles-agv-container-30628-435255.html. Accessed:
2014-12-16.

[16] L. Qui and W.-J. Hsu, “Scheduling and routing algorithms for AGVs: a survey from
a computer science perspective,” in Proceedings of the 5th International Conference on
Mechatronics Technology (ICMT 2001), pp. 112–117, 2001.

[17] C. U. Bellin, “Portalkranpaare, luftaufnahme containerlager altenwerder.” http:
//www.bildarchiv-hamburg.de/fotos/16/HHLA+Container+Terminal+Hamburg+
Altenwerder+%28+CTA+%29/14/0150_0749+Portalkranpaare%2C+Luftaufnahme+
Containerlager+Altenwerder. Accessed: 2014-12-16.

[18] M. B. Duinkerken and J. A. Ottjes, “A simulation model for automated container termi-
nals,” in Proceedings of Advanced Simulation Technology Conference (ASTC2000), 2000.

[19] TBA, “Putting AGVs to the test.” http://www.tba.nl/resources/press+section/
publications/putting_{AGV}s_to_the_test.pdf. Accessed: 2014-10-23.

[20] W. C. Ng and K. L. Mak, “Yard crane scheduling in port container terminals,” Applied
Mathematical Modelling, vol. 29, pp. 263–276, 2005.

[21] T. J. J. van den Boom and B. De Schutter, “Model predictive control of manufactur-
ing systems with max-plus algebra,” in Formal Methods in Manufacturing (J. Campos,
C. Seatzu, and X. Xie, eds.), pp. 343–381, CRC Press, 2014.

[22] B. De Schutter and T. J. J. van den Boom, “Max-plus algebra and max-plus linear dis-
crete event systems: An introduction,” in Proceedings of the 9th International Workshop
on Discrete Event Systems (WODES’08), pp. 36–42, May 2008.

[23] F. Baccelli, G. Cohen, G. J. Olsder, and J.-P. Wuadat, Synchronization and Linearity -
An Algebra for Discrete Event Systems. John Willey & Sons, New York, 1992.

[24] T. J. J. van den Boom, G. D. Lopes, and B. De Schutter, “A modeling framework for
model predictive scheduling using switching max-plus linear models,” in Proceedings of
Decision and Control, 2013 IEEE 52nd Annual Conference on, pp. 5456–5461, 2013.

http://en.wikipedia.org/wiki/Container_crane#mediaviewer/File:Vallarpadam_Container_Terminal.JPG
http://en.wikipedia.org/wiki/Container_crane#mediaviewer/File:Vallarpadam_Container_Terminal.JPG
http://www.nauticexpo.com/prod/vdl-containersystemen/automatic-guided-vehicles-agv-container-30628-435255.html
http://www.nauticexpo.com/prod/vdl-containersystemen/automatic-guided-vehicles-agv-container-30628-435255.html
http://www.bildarchiv-hamburg.de/fotos/16/HHLA+Container+Terminal+Hamburg+Altenwerder+%28+CTA+%29/14/0150_0749+Portalkranpaare%2C+Luftaufnahme+Containerlager+Altenwerder
http://www.bildarchiv-hamburg.de/fotos/16/HHLA+Container+Terminal+Hamburg+Altenwerder+%28+CTA+%29/14/0150_0749+Portalkranpaare%2C+Luftaufnahme+Containerlager+Altenwerder
http://www.bildarchiv-hamburg.de/fotos/16/HHLA+Container+Terminal+Hamburg+Altenwerder+%28+CTA+%29/14/0150_0749+Portalkranpaare%2C+Luftaufnahme+Containerlager+Altenwerder
http://www.bildarchiv-hamburg.de/fotos/16/HHLA+Container+Terminal+Hamburg+Altenwerder+%28+CTA+%29/14/0150_0749+Portalkranpaare%2C+Luftaufnahme+Containerlager+Altenwerder
http://www.tba.nl/resources/press+section/publications/putting_{AGV}s_to_the_test.pdf
http://www.tba.nl/resources/press+section/publications/putting_{AGV}s_to_the_test.pdf


129

[25] T. J. J. van den Boom and B. De Schutter, “Modelling and control of discrete event
systems using switching max-plus-linear systems,” in Proceedings of the 7th International
Workshop on Discrete Event Systems (WODES’04), pp. 115–120, Sept. 2004.

[26] B. Heidergott, G. J. Olsder, and J. van der Woude, Max plus at work: modeling and
analysis of synchronized systems. A course on max-plus algebra. Princeton University
Press, 2005.

[27] E. M. van Duinkerken, “Modelling railway infrastructure constraints in max-plus alge-
bra,” Master’s thesis, Delft University of Technology - Faculty of Electrical Engineering,
Mathematics and Computer Science, 2005.

[28] T. J. J. van den Boom and B. De Schutter, “Modeling and control of switching max-
plus-linear systems with random and deterministic switching,” Discrete Event Dynamic
Systems, vol. 22, pp. 293–332, 2012.

[29] M. J. Gazarik and E. W. Kamen, “Reachability and observability of linear systems over
max-plus,” Kybernetika, vol. 35, pp. 2–12, 1999.

[30] F. Contu, A. Di Febbraro, and N. Sacco, “A model for performance evaluation and
sensitivity analysis of seaport container terminals,” in Proceedings of the 18th IFAC
World Congress, pp. 13870–13875, 2011.

[31] F. B. van Boetzelaer, “Model predictive scheduling for container terminals,” Master’s
thesis, Delft University of Technology - Faculty of Mechanical, Maritime and Materials
Engineering, 2013.

[32] B. Kersbergen, J. Rudan, T. J. J. van den Boom, and B. De Schutter, “Towards railway
traffic management using switching max-plus-linear systems.” To be published, 2015.

[33] M. J. van Loenhout, “Stochastic switching max-plus-linear system - theory and aspects,”
Master’s thesis, Delft University of Technology - Faculty of Mechanical, Maritime and
Materials Engineering, 2011.

[34] T. J. J. van den Boom and B. De Schutter, “Stabilizing model predictive controllers
for randomly switching max-plus-linear systems,” in Proceedings of the 2007 Control
Conference (ECC07), pp. 4952–4959, July 2007.

[35] T. J. J. van den Boom and B. De Schutter, “Model predictive control for perturbed max-
plus-linear systems: a stochastic approach,” International Journal of Control, vol. 77,
no. 3, pp. 302–309, 2004.

[36] B. De Schutter and M. Heemels, Modeling and Control of Hybrid Systems - SC4160
course notes. 2012.

[37] Gurobi Optimization, “Mip basics.” http://www.gurobi.com/resources/
getting-started/mip-basics. Accessed: 2015-05-25.

[38] T. J. J. van den Boom and B. De Schutter, Optimization in Systems and Control -
Lecture Notes for the Course SC4091. 2012.

http://www.gurobi.com/resources/getting-started/mip-basics
http://www.gurobi.com/resources/getting-started/mip-basics


130 Bibliography

[39] J. Benders, “Partitioning procedures for solving mixed-variables programming problems,”
Numerische Mathematik, vol. 4, no. 3, pp. 238–252, 1962.

[40] M. Fischette, D. Salvagnin, and A. Zanette, “Minimal infeasible subsystems and benders
cuts,” tech. rep., DEI, University of Padova, Italy, 2008.

[41] E. Castillo, R. Minguez, A. Conejo, and R. Garcia-Bertrand, Decomposition techniques
in mathematical programming. Springer, 2006.

[42] S. van Dijk, “Decomposition methods and rolling horizon approach for the yard crane
scheduling problem,” Master’s thesis, Delft University of Technology - Faculty of Applied
Mathematics, 2015.

[43] B. De Schutter and T. J. J. van den Boom, “Model predictive control for max-plus-linear
discrete event systems,” in Automatica, vol. 37, pp. 1049–1056, 2001.

[44] S. S. Farahani, Approximation Methods in Stochastic Max-Plus Systems. PhD thesis,
Delft University of Technology, 2012.

[45] I. Batina, Model predictive control for stochastic systems by randomized algorithms. PhD
thesis, Eindhoven University of Technology, 2004.

[46] J. Rudan, B. Kersbergen, T. van den Boom, and K. Hangos, “Performance analysis of
MILP based model predictive control algorithms for dynamic railway scheduling,” in
European Control Conference (ECC), pp. 4562–4567, 2013.

[47] P. Kecman, F. Corman, A. D’Ariano, and R. Goverde, “Rescheduling models for network-
wide railway traffic management,” Public Transport, vol. 5, pp. 95–123, 2013.

[48] M. Fischette, I. Ljubic, and M. Sinnl, “Thinning out facilities: a Benders decomposition
approach for the incapacitated facility location problem with separable convex costs,”
tech. rep., DEI, University of Padova, Italy, 2015.



Glossary

List of Acronyms

AGV automated guided vehicle

CBC coin-or branch and cut

CDF cumulative distribution function

CGLP cut generation linear program

CPLEX CPLEX

DSL Delta Sealand

ECT Europe Container Terminals

GLPK GNU linear programming kit

i.i.d. independent, identical distributed

ILP integer linear programming

LP linear programming

MILP mixed-integer linear programming

MIP mixed-integer programming

MPC model predictive control

MPL max-plus-linear

MPS model predictive scheduling

PDF probability density function

PN Petri net

QC quay crane



132 Glossary

RAM random access memory

RMG rail-mounted gantry

SMPL switching max-plus-linear

SMPL-MPS switching max-plus-linear model predictive scheduling

SSMPL stochastic switching max-plus-linear

SSMPL-MPS stochastic switching max-plus-linear model predictive scheduling

SYSY ship-to-yard, ship-to-yard

SYYS ship-to-yard, yard-to-ship

S-Y ship-to-yard

TEU twenty feet equivalent unit

YC yard crane

Y-S yard-to-ship

YSSY yard-to-ship, ship-to-yard

YSYS yard-to-ship, yard-to-ship
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