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Abstract

Since its invention, the Atomic Force Microscope (AFM) has emerged into one of the most useful tools in
nanotechnology due to its acclaimed abilities in exploring surface topography, micro- and nanoscale ma-
nipulation and characterization. The nonlinear interaction between the cantilever tip and the sample sur-
face has been studied in great detail and a thorough understanding of the cantilever dynamics can improve
measurements and lead to new methods for identification, manipulation and characterization. One of the
biggest challenges in the field of AFM is related to the identification of the cantilever tip size. The accuracy of
measurements in AFM is directly related to the size and geometry of this tip. It is desired that the tip condi-
tion can be continuously monitored in between or even throughout measurements in order to provide high
quality measurements. In this thesis project, a methodology for tip assessment is introduced based on the
nonlinear dynamic response of the cantilever. The method consists of the acquisition of frequency response
curves in the attractive regime where the influence of the tip radius is predominant. Experimental frequency
response curves are fitted to the tip-sample interaction model that includes the van der Waals forces. It is
found that exploiting the nonlinear dynamic response of the cantilever is a safe and accurate method for tip
assessment.
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1
A Brief Introduction to AFM

Since its invention in 1986 by Binnig et al., the Atomic Force Microscope (AFM) has emerged as a powerful
instrument for various techniques like surface mapping, nanoscale manipulation, modification and charac-
terization [5–9]. Due to its ability in gaining atomic resolution, the AFM has been widely used in chemistry,
microbiology and engineering [10–12]. Over the years, a variety of AFM operating modes have been intro-
duced, each suitable for different purposes.

In AFM, a microcantilever with a nanoscale tip attached to its end interacts with a nonlinear potential,
consisting of both attractive and repulsive parts. Additional nonlinearities can be induced by adhesion, elec-
trostatic or magnetic forces.

The operating modes of AFM can be categorized into static mode, when the AFM cantilever does not
vibrate during measurement, and dynamic mode, where the cantilever is excited to vibrate at or near its
resonance frequency. Dynamic AFM could either be amplitude modulation AFM (AM-AFM) or frequency
modulation AFM (FM-AFM). Usually, AM-AFM is referred to as intermittent contact or tapping mode, and
is characterized by the close proximity of the tip to the sample surface, which induces both attractive and
repulsive interactions between the tip and sample atoms depending on their mutual distance [13]. Measure-
ments can be performed by utilizing solely repulsive (contact mode) or attractive interaction between tip and
sample (noncontact mode) [14].

Over time, AM-AFM has become the universally used mode for imaging due to the minimal interaction
with the sample and the ease of use whilst maintaining the ability to obtain high resolution images. Since
then, the mechanics of AM-AFM have been widely investigated. The nonlinear interaction between the can-
tilever tip and the sample surface has been studied broadly, but many aspects remain not fully explained. Typ-
ically, continuum elasticity based theories such as the Hertz, Johnson-Kendall-Roberts, and the Derjaguin-
Muller-Toporov approximation are able to describe the tip-sample interaction [15–17]. These models are
based on continuum mechanics and cannot provide information on the atomic scale. Their feasibility de-
pends on the atomic structure of both tip and sample [18].

The multi-stable behaviour as a result of the nonlinear tip-sample interaction can lead to negative im-
plications on the measurement. A thorough understanding of the nonlinear dynamics involved in AFM and
especially AM-AFM can improve measurement quality and might lead to new methods for identification,
manipulation and characterization.

The resolution that can be achieved with AM-AFM is directly related to the tip geometry [19, 20]. In the
AFM field, the tip size is quantified by its radius of curvature, which could undergo alterations due to repeated
mechanical contact with the surface. It has been pointed out that obtaining a method for precise tip size
calibration is difficult [21, 22]. Many techniques have been presented to quantify the tip radius, but most of
these come with an increased risk of tip damage and contamination. Therefore, an accurate and safe in-situ
estimation of the tip radius remains an open research question.

1



2 1. A Brief Introduction to AFM

1.1. The AFM System
In its essence an AFM is a system that uses a microsized cantilever to measure surfaces of samples. The
most sensitive part of the cantilever is the nanoscale tip that is attached to its far end, which is the only
part that interacts directly with the sample. Most of these cantilevers are constructed from Silicon (Si). The
properties of both cantilever and tip have great influence on the sensitivity, repeatability and the resolution
of topography imaging.

AFM probes are commonly shaped as rectangular cantilevers. In general, they need to be compliant
enough to be deflected at very small force levels and the tip size needs to be comparable with the typical
feature size of the sample in order to obtain accurate measurements. For each operating mode, specific can-
tilevers have been designed. The force constant of AFM cantilevers often needs to be calibrated in order to
find its correct value. The force constant has a cubic dependency on the cantilever thickness, small irregular-
ities and have a significant effect on the stiffness. Therefore, non-destructive procedures for calibrating the
force constant of AFM cantilevers in-situ have been developed [23, 24].

Figure 1.1: Schematic representation of the AFM set-up. In this configuration the actuator is attached to the probe stage and is moved
over the stationary sample surface (source: FLEX AFM operating manual).

The beam deflection technique is the most common method to detect the cantilever deflection [25]. A
laser beam from a laser diode is sent to and reflected off the back of the cantilever onto a position sensitive
photodiode, which senses the change in light intensity caused by the cantilever deflection [26]. The purpose
of the feedback loop is to maintain a predefined set-point, be it a force, amplitude or a frequency. For most
operating modes a simple feedback controller (PI) is sufficient to fulfil this task with the exception of FM-AFM,
where multiple controllers are required [5, 27]. AFM scanner actuators are made from piezoelectric material,
which has the property that it expands and contracts proportionally to an applied voltage. Commonly, tube
scanners are used in AFM systems, which can move in the X-, Y- and Z-directions using only a single tube
piezo. There are two types of scanner configurations, one where the actuator is attached to the probe stage
and is moved over the stationary sample surface, and the other where it is attached to the sample stage and
moved below the stationary probe, see Fig. 1.1.
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1.2. Amplitude Modulation Atomic Force Microscopy
In AM-AFM, sample surfaces are scanned with a vibrating cantilever that is driven at or near its first reso-
nance frequency, and with every oscillation, the tip briefly touches the sample. Initially, when far from the
sample, the oscillation amplitude is (almost) equivalent to the free vibration amplitude. When the sample is
approached by the user, the amplitude reduces as a result of tip-sample interaction. It continues to reduce
until a user defined value is reached. This designated value is the amplitude set-point, which is often defined
as a percentage of the free vibration amplitude. While the surface is scanned, the oscillation amplitude tends
to change as a result of the tip interacting with a sample containing topographic features and/or different
materials. A feedback loop monitors the amplitude and keeps it constant by modifying the distance between
the sample and the cantilever base.

As the tip completes an oscillation cycle in AM-AFM, it experiences two force regimes. When relatively
far from the sample surface, the tip undergoes long-range attractive forces. When the tip starts touching the
sample, the tip experiences short-range repulsive forces. The highest repulsive force is found when the tip is
in contact with the sample and furthest away from its equilibrium position. The interaction between tip and
sample is observed in the change of the resonance frequency of the cantilever, attractive forces cause a de-
crease whereas repulsive forces an increase. In AM-AFM, the cantilever is excited near or at its first resonance
frequency. Attractive interaction will result into a shift of the resonance curve to lower frequencies whereas
with repulsive interaction it shifts to higher frequencies. Consequently, the drive amplitude changes. This
behaviour is demonstrated in Fig. 1.2.

Figure 1.2: Frequency response, simulated for a Single Degree Of Freedom (SDOF) harmonic oscillator when it is excited just above
resonance (solid line) and under influence of attractive and repulsive forces (dashed lines). Without any external force the system is
excited just above resonance (dotted line) at ωd.

Both the attractive and repulsive forces are highly nonlinear and therefore induce nonlinear behaviour in
the AFM cantilever vibration. The presence of these forces emerges an intriguing property of AM-AFM, the
coexistence of two stable oscillation states, at a single frequency the cantilever can vibrate with two distinct
amplitudes [13, 21, 28–30]. The strength of the nonlinear interaction depends on sample, cantilever and tip
properties [13, 31]. Bi-stable behaviour in the amplitude of the cantilever can also be inspected in the fre-
quency response. Its resonance frequency becomes a function of the excitation amplitude when subjected to
the nonlinear forces [13, 28, 32–37]. Another consequence of the nonlinear force potential is the introduction
of higher harmonics in the frequency spectrum of the cantilever, which are integer multiples of the driving
frequency. A frequency spectrum of an AFM cantilever containing higher harmonics marks the presence of
nonlinear interaction forces [35, 38–41]. These nonlinear phenomena are directly related to the geometry and
size of the nanoscale tip, since it is the only part of the cantilever interacting with the sample. Knowledge of
the tip condition is therefore crucial for performing measurements with high accuracy.
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1.3. Previous Research on Tip Identification
1.3.1. Tip Estimation with Electron Microscopy
Several methods to characterize the tip shape have been proposed. A common procedure is using a Scanning
Electron Microscope (SEM) to asses the tip quality [42]. With SEM, high-precision images with nano-meter
resolution can be obtained. An alternative is to use a high resolution transmission electron microscope (HR-
TEM). It has been shown that with HR-TEM the crystalline structure of a silicon tip can be quantified [43].
However, there are some limitations and complications paired with these methods. The main drawback of
both SEM and HR-TEM is that they are not able to quantify the tip in-situ, the tip wear can only be inspected
at the end of a measurement. Recently though, in-situ characterization of the tip wear has been performed
using an AFM implemented within an HR-TEM [44]. Another limitation of electron microscopy is that only
semi-quantitative determination of the tip shape is possible, as the method only provides a two-dimensional
profile of the tip. It should be noted that by using electron microscopy methods for tip characterization, there
is always the risk of carbon deposition during observation [45].

1.3.2. ’Blind Tip Reconstruction’
An alternative method to determine the tip shape, is the Blind Tip Reconstruction (BTR) [46, 47]. This method
exploits the fact that a topographic image obtained with AFM is a convolution of the tip geometry and the
features on the sample surface. The first step of BTR is imaging a sample with calibrated small and sharp
features. With post-processing of the topographic image a 3D approximation of the tip shape can be recon-
structed. BTR has been experimentally validated by comparing it to results obtained by SEM and HR-TEM
[43, 48, 49]. One of the disadvantages of BTR is that it can only reconstruct the tip geometry over a region that
is a few nanometers from the tip apex. In practice, a combination of BTR and HR-TEM imaging can be used.
BTR can determine the portion of the tip that is directly interacting with the sample and the data acquired
by HR-TEM is used to identify the tip apex [43]. However, because for each measurement an additional ap-
proach and scan of the calibrated sample needs to be performed, BTR has an increased risk of damaging the
tip.

1.3.3. Exploiting the Tip-Sample Interaction
The tip geometry can be extracted from topographic data, but the interaction forces are affected by the size of
the tip as well, especially the long-range attractive forces show a strong dependency. Using static mode force-
spectroscopy, the nonlinear forces have been analyzed in a fitting procedure to estimate the value of the
tip radius [50]. Dynamic mode AFM is potentially another non-destructive way of estimating the tip radius
during AFM measurements. Analysis of the tip-sample interaction can be performed by the acquisition of
vibration amplitude-distance curves, the use of amplitude-frequency response curves, or by extracting the
Fourier spectrum of the driving signal.

Exploring the first option, a method has been developed to identify the tip sharpness by inspecting the
transitions from attractive to repulsive force regimes [51]. The tip radius is linked with a power law to the so
called critical amplitude, which is the amplitude where bi-stability of two oscillation states is present. The
method is found to be quite robust, showing accurate results for a range of different cantilever-sample com-
binations. The disadvantage in this method is that the magnitude of the power law needs to be identified
empirically. For each cantilever-sample combination a separate power law has to be found. Other studies
have exploited the nonlinearities for parametric identification in dynamic AFM. So has it been shown that a
harmonic balance based identification method can be applied to extract material constants from the nonlin-
ear vibration spectrum of the cantilever [52].
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1.4. Research Question & Strategy
Recent advances of AFM are related to the development of techniques based on spectral analysis. Several
studies related to AFM have been making use of higher modes, harmonics and nonlinear frequency response
curves. Dynamic AFM holds a possible way of estimating the tip in-situ whilst minimizing further tip damage
in the process. Based on this, the research question of the project is:

How can nonlinear dynamics be used to estimate the tip condition in AFM?

In order to provide an answer to this question, first the theory regarding the complicated cantilever motion
when it interacts with a sample surface is investigated. Based on the insight gained, a methodology to identify
the tip radius is developed. In order to validate the method, experimental results, which are acquired with
novel systematic procedures are compared to numerical simulations.





2
Mechanics of the Tip-Sample Interaction

Due to the nonlinear nature and complexity of the tip-sample interaction forces, it is difficult to predict the
cantilever motion. A variety of forces make up the AFM force potential and a lot of research has been spent on
the interpretation and approximation of these forces. Knowledge about the tip-sample mechanics models is
essential for accurate modelling and prediction of the cantilever motion and tip estimation. In the following
sections, the various components of the AFM force potential will be explored. Furthermore the different
theories that describe the tip-sample interaction are explored. Because there is no singular model that can
describe all types of interaction, a suitable model has to be chosen.

2.1. The Tip-Sample Interaction Potential
When an AFM cantilever is brought in proximity of a surface, the tip-sample interaction forces cause a change
in its vibration amplitude. Understanding the tip-sample interaction is essential for a study on tip identifica-
tion, since the forces are highly dependent on the tip size. The interaction forces are divided into long-range
attractive and short-range repulsive forces [53, 54]. In the tapping mode, the tip undergoes both these force
regimes. This can be further inspected by closer inspection of the exemplary tip-sample force potential plot-
ted in Fig. 2.1. The tapping mode oscillation cycle corresponds to a path from A to C and back along the force
potential. Other operating modes will follow different paths, such as the noncontact mode, where a single
oscillation follows the force potential from A to B and back.

0

0

Figure 2.1: The AFM force potential, which the force-distance relation between tip and sample, the contact (blue) and noncontact (ma-
genta) regions are indicated. A is a point on the force potential where the cantilever is far away from the sample and barely affected by
the attractive forces. B is a point closer to the sample, where the cantilever experiences an attractive force. C is a point where there is
contact between tip and sample and the net force on the cantilever is repulsive.

7
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2.2. The Lennard-Jones Potential
In order to formulate the long-range attractive forces, it is important to first describe the model that is used
to specify the interaction between two atoms or molecules, the Lennard-Jones potential. The Lennard-Jones
potential between two neutral atoms or molecules is

ULJ(r ) = 4U0

((σ
r

)12
−

(σ
r

)6
)
, (2.1)

where U0 is the potential depth, r the distance between the two particles and σ is the finite distance at which
the potential is zero (U0(r = σ) = 0), adapted from [55]. If two atoms are brought in very close proximity to
each other, due to overlapping electron orbitals there is an extremely strong repulsive force between the two
of them. This is called Pauli exclusion and is described by the r−12 term. The r−6 term expresses the long-
range attractive dispersion forces or Van der Waals forces. The attractive term has a clear physical justification
whereas the repulsive term is empirically found. Differentiation of the Lennard-Jones potential with respect
to the separation distance r gives the expression for the force FLJ between two neutral atoms or molecules as

FLJ(r ) =−∂ULJ

∂r
. (2.2)

2.3. Long-Range Interaction Forces
There are three main contributors to the long-range interaction forces, the Keesom, Debye and London force,
which are related to mutual attraction between dipoles and their temporary formation. The Keesom force de-
scribes the interaction between permanent dipoles. The interaction between permanent and induced dipoles
is known as the Debye force and the London force covers the interaction between induced dipoles. Their sum
is also known as the van der Waals force. Their potential U is related to the separation distance as r−6. Addi-
tion of the Keesom, Debye and London potential gives an expression for the van der Waals potential as

UvdW(r ) =UK(r )+UD(r )+UL(r ) = [
CK +CD +CL

] 1

r 6 =−CvdW

r 6 . (2.3)

In order to model the interactions between tip and sample, it is necessary to consider continuum bodies.
Assuming that the net interaction force is equal to the sum of its interactions with all molecules in the body,
the Van der Waals energies between bodies can be calculated by integration using Derjaguin’s approximation
[56]. Typically in AFM, the tip-sample geometry is modelled as a (hemi-)sphere with a radius R and a flat
surface [57]. If the tip is considered (hemi-)spherical, the van der Waals forces are equal to

FvdW(d) =− HR

6d 2 . (2.4)

Here H , R and d are the Hamaker constant, the tip radius and the instantaneous tip-sample separation,
respectively. Hamaker constant can be defined for a van der Waals body-body interaction as

H =π2CvdWρ1ρ2, (2.5)

where ρ1 and ρ2 are number densities of the two different materials. The tip-sample distance d is expressed
as d = zc+z where zc is the separation between the cantilever base and the sample surface and z the cantilever
deflection in the negative Z-direction with respect to its rest position, as shown in Fig. 2.2.

 d

 sample

 z
 z

c

Figure 2.2: Schematic of the AFM and the sample surface. The rest position of the cantilever acts as reference for its deflection z. This
figure is adopted from the publication in Applied Physics Letters [1].
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Besides elementary tip shape approximations ((hemi-)spherical, flat-circular, conical and paraboloid [23,
58, 59]) more sophisticated configurations have been introduced [50]. For the three common tip-sample
geometries the van der Waals forces are given in Table 2.1. A comparison between the geometries of Table
2.1 is made in Fig. 2.3. For a flat-circular tip the separation distance, where the attractive force rises rapidly,
is larger compared to the (hemi-)sphere or cone. The conical and (hemi-)spherical tip shape show a similar
force-distance relation. In Fig. 2.4, the force-distance relation between a (hemi-)spherical tip versus a flat
sample is calculated for a range of values of R. The force is the most sensitive to the tip size when R is relatively
small (R = [10, 50]nm). A small change in tip size within these boundaries has a significant effect on the
magnitude of the van der Waals force.

Table 2.1: Van der Waals interaction force derived for common tip-sample geometries, where R is the sphere radius, r is the radius of the
flat-circular area and θ is the cone angle. Adapted from [4].

Geometry van der Waals Force

two flat surfaces F =− H

6πd 3 per unit area

sphere - flat surface F =− HR

6d 2

flat-circular - flat surface F =−Hr 2

6d 3

cone - flat surface F =−H tan2θ

6d

0

0

(hemi-)sphere
flat circle
cone

Figure 2.3: Plot of the force-distance relation for different tip ge-
ometries, visualizing the difference in the van der Waals forces
between a (hemi-)spherical (R = 10nm), flat-circular (r = 10nm)
and conical tip (θ = 20°). Cantilever and material properties are
kept constant throughout the simulations.

0

0

10

250

Figure 2.4: A series of force-distance curves for a (hemi-)spherical
tip shape, for increasing values of the tip radius R.

It has been shown that the (hemi-)sphere is a good approximation for the tip geometry [57, 60]. Therefore,
in the remaining parts of this work the tip geometry will be considered as (hemi-)spherical, unless stated
otherwise. The van der Waals forces between tip and sample are assumed to be equal to Eq. (2.4).



10 2. Mechanics of the Tip-Sample Interaction

2.4. Short-Range Repulsive Forces
By close inspection of the force potential displayed in Fig. 2.1, one can notice that in very close proximity to
the sample the van der Waals forces are overruled by strong forces in the repulsive direction. These are known
as short-range repulsive forces and are the result of adhesion, cohesion and surface tension phenomena.
Multiple models are developed to describe the contact mechanics, such as the JKR (after Johnson, Kendall
and Roberts) and the DMT (after Derjaguin, Muller and Toporov) model.

2.4.1. The Hertz Model
These models find their origin in the Hertz theory [15]. When the AFM tip indents the sample surface it
creates a contact area, which can be modelled as a sphere with radius R indenting to an elastic surface with
an indentation depth. With the Hertzian contact model we find for the applied force F related to the tip-
sample separation d is

FHertz(d) =


0, d > 0

4

3
E∗pR(−d)

3
2 , d ≤ 0,

(2.6)

where E∗ is the effective Young’s modulus calculated from Etip, Esample and the Poisson’s ratios νtip, νsample

associated with the tip and sample as

1

E∗ =
1−ν2

tip

Etip
+

1−ν2
sample

Esample
, (2.7)

adapted from [15, 55].

2.4.2. The DMT Model
The DMT model incorporates the fact that atoms interact with each other, even when they are not in contact
[17, 55]. If the tip-sample separation exceeds the intermolecular distance, i.e. d > a0, the tip only undergoes
attractive van der Waals forces. If d ≤ a0, the net force on the tip is repulsive. The DMT force-distance relation
is equal to

FDMT(d) =


− HR

6d 2 , d > a0

−HR

6a2
0

+ 4

3
E∗pR(a0 −d)

3
2 , d ≤ a0.

(2.8)

2.4.3. The JKR Model
The JKR model incorporates the effect of adhesion in the Hertzian contact [16, 55]. The adhesive contact is
formulated using a balance between the stored elastic energy and the loss in surface energy. The JKR model
only considers the effect of adhesion and contact pressure inside the contact area. In addition, it describes
hysteresis between the approach and retract operation. In the approach phase there is no interaction be-
tween tip and sample until they touch. Upon impact, there is a large attractive force present. As the inden-
tation depth increases, the behaviour is identical to the Hertz and the DMT model. In the retract phase the
jump from contact does not occur at d = 0 but at a critical distance d = dcrit, due to the work of adhesion. The
JKR force-distance relation is equal to

FJKR(d) =


0, no contact

4E∗a3

3R
−4

√
FadE∗a3

3πR
, contact,

(2.9)

where a is the radius of the contact area and Fad the adhesion force, which is equal to

Fad = 9

8

HR

6a2
0

. (2.10)
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0

0

0

0

0

0

approach
retract

Figure 2.5: Force-distance relations for the different contact models. LEFT: Hertzian contact, describing repulsive interaction at zero
separation. MIDDLE: DMT model, where a transition from attractive to repulsive interaction occurs at d = a0. RIGHT: JKR model, where
the effect of adhesion is incorporated. Hysteresis is observed between the approach and retract phase.

2.5. Electrostatic & Capillary Forces
Often unwanted but inevitably present forces in AFM are the electrostatic and capillary forces. On hydrophilic
surfaces a thin water layer is often formed, especially in ambient conditions. If the tip and sample surface are
in close proximity, a liquid bridge may be formed between tip and sample, which introduces an attractive
capillary force [61, 62], as shown in figure 2.6. This effect can be minimized by controlling the relative hu-
midity or performing experiments in vacuum. Trapped electrostatic charge in dielectric surfaces could imply
the increase of long-range interaction forces. This especially holds for experiments where an external electric
field is applied between tip and sample. Capillary and electrostatic forces can play an important part in ex-
periments [41]. In order to conduct accurate experimental measurements the consideration of these forces
is of vital importance.

Figure 2.6: Water capillary bridge that is formed between tip and sample, observed in an SEM. The water bridge was obtained by drasti-
cally increasing the relative humidity (RH > 98%). Adopted from [2].

2.6. Interaction Model Selection
To date, a universal contact model has not been developed, hence the previously mentioned models are
suited for different types of contact. According to the elasticity parameter, which is proportional to the ra-
tio between adhesion and elasticity, the different models are categorized [63]. It has been shown that the
general solutions for ’stiff’ contact, reduce to the Hertz or the DMT model. The DMT model is especially
suitable for describing stiff contacts with low adhesion forces and small tip radii. The JKR model is suited for
contacts characterized by high adhesion, low stiffness and large tip radii, or in other words, ’soft’ contact. In
the remaining of this work the DMT contact model is used because experiments will be performed on rela-
tively hard samples, and the relative humidity will be controlled. The total interaction force between tip and
sample is chosen to be equal to Eq. (2.8) in the remaining parts of this work.





3
Nonlinear Cantilever Dynamics in

AM-AFM

In AM-AFM the cantilever is driven to oscillate at or near its resonance frequency. The cantilever signal is
therefore expressed in vibration amplitude and phase. The interaction between tip and sample can be de-
tected by observing the change in resonance frequency of the cantilever. If excited above its first resonance
frequency, attractive interaction will result in a higher drive amplitude of the cantilever and repulsive inter-
action in a lower one as previously shown in Fig. 1.2. Due to the nonlinear nature of the tip-sample interac-
tion, the cantilever can vibrate in seemingly unpredictable ways. Knowledge about the associated nonlinear
dynamics allows one to model its motion, which can serve as a useful tool for tip characterization. The nu-
merical simulations in this report are obtained using the bifurcation analysis package AUTO [64].

3.1. Equation of Motion
A thorough understanding of AM-AFM is found in deriving the Equation Of Motion (EOM) of the cantilever-
tip ensemble interacting with the sample surface. The most thorough approach involves solving the EOM of
a cantilever beam. Under symmetry conditions, one would allow to approximate the cantilever beam by a
one-dimensional object, then

E I
∂4w(x, t )

∂x4 +µ∂
2w(x, t )

∂t 2 = F (x, t ). (3.1)

Here w(x, t ) describes the vertical displacement of the cantilever beam, E , I and µ are Young’s modulus,
mass moment of inertia and mass per unit length of the cantilever, respectively. F (x, t ) is the sum of all the
forces per unit length acting on the tip. The implicit assumption made here is that the tip itself is considered
a massless object. Several methods have been developed to solve this particular equation [65–67]. From a
dynamics point of view, the cantilever-tip ensemble is often modelled as a point-mass spring system [28, 33,
68–72]. The tip motion is then governed by a nonlinear, second order differential equation

∂2z

∂t 2 + mωn

Q

∂z

∂t
+kcz = F0 cos(Ωt )+Fts, (3.2)

where z, Q, ωn and kc are the deflection, quality factor, angular resonance frequency and the stiffness of
the cantilever, respectively. F0 and Ω are the amplitude and angular frequency of the excitation force. Fts

corresponds to the total tip-sample interaction force which is equal to Eq. (2.8). For further analysis it is
convenient to consider the non-dimensional form of Eq. (3.2):

∂2 ẑ

∂τ2 + ĉ
∂ẑ

∂τ
+ ẑ =λcos(Ω̂τ)+ F̂ts. (3.3)

According to the schematic representation of Fig. 2.2, the spatial parameter is normalized to zc. Time is
made dimensionless by considering τ=ωnt . The non-dimensional deflection and dissipation coefficient are

governed by ẑ = z

zc
and ĉ = 1

Q
, whereas λ= F0

zckc
represents the sinusoidal excitation with frequency Ω̂= Ω

ωn
.
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The tip-sample interaction force is then governed by

F̂ts(ẑ, zc)


− HR

6z3
c kc

1

(1+ ẑ)2 , ẑ > a0

zc
−1

− HR

6a2
0 zckc

+ 4E∗pR

3zckc

(
a0 − zc(1+ ẑ)

) 3
2 , ẑ ≤ a0

zc
−1.

(3.4)

More information regarding the derivation of the dimensionless EOM can be found in Appendix A.1.

3.2. Coexistence of Multiple Oscillation States
The participation of nonlinear attractive and repulsive tip-sample interactions result to an exciting character-
istic of AM-AFM, the coexistence of two stable oscillation states [13, 21, 28–30]. In extreme cases, such as with
very small tip-sample separation and very large oscillation amplitudes, more than two stable or even chaotic
solutions can be found[73–76]. The representation of the amplitude as a function of the tip-sample separa-
tion gives an insight to the bi-stable behaviour. This representation is also known as an amplitude-distance
(A-d) curve. In an experimental setting, A-d curves are obtained by measuring the cantilever amplitude while
it is approached to and retracted from the sample.

Figure 3.1: Experimental A-d curve (approach and retract phase) taken on a mica sample. Partial sections of the high and low amplitude
branches are observed. A is the point in the approach phase where a transition from the low to the high amplitude branch occurs. B is
the point in the retract phase were a transition from the high to the low amplitude branch takes place. Adopted from [3].

Fig. 3.1 shows both a simulated and experimentally obtained A-d curve. The simulation shows two so-
lution branches for a range of different tip sample separations. In reality the tip cannot be in two distinct
oscillation states at once, with as a result that the two branches cannot be experimentally measured simulta-
neously. In the experimental curve, discontinuities at A and B indicate a transition between the low and high
amplitude solution. A hysteresis loop can be observed in the middle section of the A-d curve, which means
there are two state transitions at different tip-surface separation distances. Typically, at large separations the
tip oscillates in a state that coincides with the low amplitude solution, whereas with small separations the
tip vibrates with high amplitude. The hysteresis between the up- and downward transition is repeatable for
a given system, but the tip-sample distance at which a transition occurs may change. Since the equation of
motion of the tip has a deterministic nature, the tip tends to remain in its original state or solution branch. A
transition from one branch to another therefore requires a perturbation in the system. Because perturbations
occur at random, one might observe amplitude curves with multiple state transitions [77].

The bi-stable behaviour in the amplitude of the cantilever can also be inspected in the frequency re-
sponse. It is useful to extract the information near the first resonance frequency of the cantilever subjected
to interaction forces. In principle, if an harmonic oscillator undergoes nonlinear interaction, it will result to
bending of its resonance frequency peak. In AM-AFM, the nonlinear interaction forces have the same effect
on the frequency response of the cantilever tip [32, 34–37]. In Fig. 3.2 this bending behaviour is demonstrated
for three cases. The location of the variation of the nonlinear frequency shift for increasing values of the tip
oscillation amplitude is referred to as a backbone curve. Attractive van der Waals forces cause a bending of
the resonance peak to lower frequencies, called softening. If the tip is subjected to repulsive contact forces,
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the resonance peak bends to the right, which is called hardening. A combined attractive-repulsive potential
results in initial softening, with a transition to hardening.

0.9 1 1.1 0.9 1 1.1 0.9 1 1.1

Figure 3.2: Numerical simulations of a nonlinear SDOF harmonic oscillator, demonstrating bi-stability and hysteresis in the frequency
response when subjected to attractive and/or repulsive forces. The backbone curves are illustrative and not obtained with numerical
simulations (black dashed line). LEFT: Exclusively attractive interaction. Experimentally, because an unstable solution (black dotted
line) cannot be obtained, at the saddle-node point (black dot) a jump from one to the other stable branch takes place (arrow). For
very small oscillations the resonance can be approximated by a linear oscillator. MIDDLE: Purely repulsive interaction, showing similar
behaviour in the other direction. RIGHT: Result of an attractive-repulsive potential on the frequency response curve, showing both
softening and hardening.

3.3. Higher Modes & Higher Harmonics
So far, the effect of the nonlinear phenomena on the cantilever vibration have been discussed on the basis of
a SDOF model. The microcantilever, however, is a structure capable of multiple types of oscillation, such as
bending or twisting [78, 79]. If these higher modes of vibration are added to the model, accuracy is improved.
Higher order models are especially required if the cantilever is excited at multiple frequencies at once and are
able to predict the spectrum of higher harmonics of the cantilever response [80].

When subjected to nonlinear forces in tapping mode, the cantilever motion generates frequency compo-
nents above the driving frequency. Due to the periodic nature of the impact, the response is condensed in
harmonics, which are frequencies at integer multiples of the driving frequency. A frequency spectrum of an
AFM cantilever containing higher harmonics thus marks the presence of nonlinear interaction forces [35, 38–
41]. An example of a frequency spectrum containing higher harmonics is shown in Fig. 3.3. Higher frequen-
cies are sometimes deliberately introduced to sense the nonlinear interaction, which is often done in surface
topography measurements. The sample is then tracked by the fundamental mode while a higher mode or
harmonic oscillating with a smaller amplitude is used for mapping of the sample surface. Bimodal AFM is an
example of this, where the cantilever is excited at two eigenmodes at once [81, 82]. Higher harmonic/modal
imaging proves to be useful to monitor the imaging conditions in tapping mode and is often applied to in-
crease the material contrast [83, 84]. Higher harmonic imaging experiments and more information about its
working principle can be found in Appendix B.3.

Figure 3.3: Experimental frequency spectrum of an AFM cantilever during tapping mode operation. The highest red line signifies the
location of the driving frequency and the other red lines mark the integer multiples, i.e. harmonics.





4
Experimental Methodology

4.1. Experimental Setup
In order to perform an identification study on the tip radius, experiments need to be performed, for which
an experimental AFM set-up is required. The set-up consists of a commercially available AFM (Nanosurf
FLEX operated with the C3000 controller) and an external multi-frequency lock-in amplifier (Intermodulation
Products AB) directly connected to the AFM unit.

Figure 4.1: Overview of the complete experimental set-up placed on a vibration isolation platform. From left to right: the FLEX AFM
scanner, the signal acquisition module or breakout box, the C3000 controller and the multi-frequency lock-in amplifier.

4.1.1. The AFM Scanner and Controller
The FLEX AFM is a versatile system which can perform imaging and spectroscopy in both the static mode and
dynamic mode. Due to its smart design it allows for fast changing of cantilever and/or sample. The piezo-
electric scanner is attached to the probe stage and is moved over the stationary sample stage. The bandwidth
of the photodetector is 4MHz.

4.1.2. The Multi-Frequency Lock-In Amplifier
The multi-frequency lock-in amplifier (MLA) is able to calculate in real-time, the response from the system
input at 42 user-defined frequencies. It has a significantly higher bandwidth than the photodetector, making
it ideal for high frequency analysis in AFM. With an added software suite, its capabilities increase further. In
Fig. 4.2 the connections between AFM, controller, signal acquisition module and MLA are visualised. Inputs
to the MLA are the photodetector signal, end-of-line (EOL) and end-of-file (EOF) triggers. The MLA has a
built-in controller, with the same working principle as the AFM controller. With access on the external drive,
frequency sweeps can be performed to find the resonance frequency. Additional cantilever calibration based
on the non-invasive thermal noise method can be carried out. The amplitude and phase of the locked-in
frequencies can be visualized and synchronized with the host AFM, allowing for harmonic imaging.

17
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Figure 4.2: Overview of the connections between the AFM, controller, signal acquisition module (SAM) and MLA. The red line marks the
photodetector signal, the green lines represent the EOL and EOF triggers and the black line the cantilever drive signal (source: http:
//www.intermodulation-products.com/).

4.1.3. Experimental Environment, Conditions & Considerations
Tthe cantilever probes used in the experiments are commercially available (type NCLR and FMR, NanoWorldAG).
A complete specification of the used cantilevers are available in Appendix C.2. The manufacturer guarantees
a nominal tip radius of R < 12nm for both cantilever types. The experiments were performed at T ≈ 20◦C. For
each experiment the laser was positioned near the tip end of the cantilever, for the reason that the theoretical
considered amplitude is at the tip’s location. In order to minimize the effect of the capillary forces, during
quantitative experiments the relative humidity of the experimental environment was controlled (RH < 10%).
This was achieved by placing the AFM scanner in an enclosed environment with dry silica. In order to reduce
external vibrations the set-up is placed on a vibration isolation platform.

Figure 4.3: The AFM scanner surrounded by Petri dishes filled with dry silica. In this picture the chamber was removed, hence the
humidity is immediately increased to 13%, indicated by the sensor.

4.2. Probing the Attractive Forces
In order to find a method for tip identification, it is important to consider in which force regime the cantilever
vibration shall be measured. In regular tapping mode, the tip moves through both attractive and repulsive
regions of the tip-sample potential. The magnitude of repulsive interaction shows dependency on the local
sample elasticity. Recalling Eq. (2.8), the repulsive forces show a proportionality to

p
R, whereas the attractive

forces are directly proportional to R. Therefore, it would be beneficial to measure the cantilever vibration in
the attractive regime, maximizing the influence of R on the nonlinear response. Note that the van der Waals
forces are generally more delicate compared to the strong repulsive forces, with the consequence that the
nonlinearities are smaller in magnitude and therefore more difficult to extract. It is possible to achieve non-
contact operation in AM-AFM, but a low amplitude set-point needs to be maintained, which might cause
instability.

http://www.intermodulation-products.com/
http://www.intermodulation-products.com/
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4.2.1. Attractive Forces & Higher Harmonics
Previous studies have shown that higher harmonics are being generated due to tip-sample interaction [38,
85]. Another study has shown the presence of higher harmonics in the attractive regime should be directly
correlated to the van der Waals forces [41]. The results of this study suggest that systematic measurement
of higher harmonics in the attractive regime can lead to highly accurate methods of identification. The ex-
perimental set-up is suitable for extracting higher harmonics, since the MLA contains 42 individual lock-in
channels. With nonlinear system identification techniques, such as harmonic balance, the higher harmonic
signals can be used for tip quantification. Harmonic balance is a method to find the steady state solution of
free and forced nonlinear systems by assuming the response of the system is periodic and can be expressed
as a series of harmonics. The solution of Eq. (3.3) can be approximated with a truncated Fourier series as

ẑ ≈ ẑN = ẑ0 +
N∑

k=1
an coskt +bn sinkt , (4.1)

where N is the order of truncation and ẑN is the truncated Fourier Series representation of ẑ. The higher
the order of truncation, the better the approximation. For this reason, the aim is to find an experimental
frequency spectrum of the cantilever with a collection of higher harmonics excited above noise level.

Fig. 4.4 shows the experimental Fast Fourier Transform (FFT) from the time signal at different amplitude
reduction set-points. For this particular experiment the FMR type cantilever and a mica sample are used.
For a dynamic mode type, the FMR cantilever has a relatively low stiffness, therewith increasing its sensitivity

to the nonlinearities. The set-points are expressed as
zred

zfree
×100%, where zred is the reduced amplitude due

to tip-sample interaction and zfree the free vibration amplitude. At [75%,85%], there is little to no higher
harmonic excitation, except for 2ωd. In the interval [55%,65%], more harmonics are excited. Even a small
peak between 6ωd and 7ωd can be observed, indicating the second vibration mode. Within [35%,55%], there
is less generation of higher harmonics. Note that the amplitude of 2ωd reduces in these set-points, where it
remained proportional to the driving frequency for [55%,85%]. An additional experiment was carried out and
suggests the excitation of 2ωd is the result of other nonlinear effects, for more information see Appendix B.2.
As a result of the strong repulsive interaction, at set-points ≤ 65% multiple harmonics are being generated.
This suggests that for set-points ≥ 75% there is attractive interaction. As mentioned earlier, the attractive
forces are generally more gentle than the repulsive forces, hence the reason that hardly any higher harmonic
signals seem to rise above the noise floor.

Figure 4.4: Experimental frequency spectra of an FMR cantilever interacting with a mica sample at different amplitude reduction set-
points. The frequency and amplitude are normalized with respect to the driving frequency ωd = 71.7kHz.
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To get a better view at which point the harmonics are being generated a different experiment has been
performed. An A-d measurement is executed while the MLA locks in to the higher harmonics. The goal of
this measurement is to observe the behaviour of higher harmonics at the point of transition between the
attractive and repulsive regime. The following experiment was performed with the NCLR cantilever, which
has a higher stiffness and resonance frequency compared to the FMR type. Fig. 4.5 shows the A-d curve for
the driving frequency and 9 higher harmonics. Some harmonics such as 3ωd and 4ωd hardly rise above noise,
whereas others are clearly being excited. On the left side of the red line, which marks the attractive regime,
other than ωd only 2ωd has a significant magnitude. At the point of transition, 2ωd decreases but 6ωd, 7ωd

and 9ωd increase in a similar trend.
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Figure 4.5: Experimental dynamic approach measurement where the driving frequency and several higher harmonics are tracked si-
multaneously, starting from zc ≈ 50nm until the sample is reached (zc ≈ 0nm). The dashed line marks the transition from attractive to
repulsive regime. The signals are normalized with respect to the free vibration amplitude of the drive frequency ωd = 163.7kHz.

Even though both measurements were performed with different cantilevers, their results show similari-
ties. In the attractive regime there is little to no generation of higher harmonics, except for 2ωd. At the point of
transition there is a sudden excitation of 5ωd, 6ωd and 7ωd, and they decrease as the cantilever moves further
into the repulsive regime. The conclusion drawn from both experiments is that the magnitude of the higher
harmonics in the attractive regime are not high enough to be used for nonlinear parametric identification. On
the other hand, in the repulsive regime, the harmonics are high above noise. It is reasonable to assume that
nonlinear harmonic based parametric identification in the repulsive regime could be carried out successfully.

4.2.2. Influence of Attractive Forces on the Frequency Response
The possibility of extracting higher harmonics was explored first, because it is especially suited for numeri-
cal identification techniques. Experiments have pointed out that the higher harmonic signals are not strong
enough to be exploited. The peak in the cantilever’s oscillation cycle should approach the maximum attrac-
tive force, close to point B in Fig. 2.1, in order to obtain the highest possible nonlinearity rising solely from
the van der Waals forces. A disadvantage regarding the inspection of higher harmonics is that it’s difficult to
specify the proximity to this maximum attractive force. A method in which the measurement can indicate the
covered force potential is therefore preferred.
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The external drive access of the MLA allows for frequency sweeps to be performed in a controlled way. The
driving voltage, frequency range and interval can be specified with high precision. Additionally, the frequency
sweeps can be executed from low to high (forward sweep), or from high to low frequency (backward sweep).
With the combination of both forward and backward sweep, all stable solutions for a softening, hardening or
combined frequency response curve can be obtained. This is demonstrated for a combined case in Fig.4.6.
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Figure 4.6: Simulated frequency response curve of a SDOF har-
monic oscillator, turning from softening into hardening. The ex-
perimental forward sweep gives as a solution the blue lines. The
remaining parts of the stable solutions, coloured red, can be ob-
tained by performing a backward sweep. The unstable solutions
cannot be found experimentally.
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Figure 4.7: Frequency response for different values of the tip ra-
dius R (from blue to yellow R = {10, 130}nm). For the numeri-
cal simulation, zc = 20nm and a Hamaker constant between a
Silicon (Si) tip and a Highly Oriented Pyrolytic Graphite (HOPG)
sample HSi−HOPG = 2.9656×10−19J was considered. This figure is
adopted from a publication in Applied Physics Letters, for which
I have performed the numerical simulations [1].

The goal is to perform frequency sweeps in the attractive regime, maximizing the influence of the tip
radius. Recalling Eq. (3.2), the dimensionless equation of motion of the cantilever under sole influence of
van der Waals forces is

∂2 ẑ

∂τ2 + ĉ
∂ẑ

∂τ
+ ẑ =λcos(Ω̂τ)−β 1

(1+ ẑ)2 . (4.2)

The term
1

(1+ ẑ)2 characterizes a softening nonlinearity, whose magnitude is governed by β = HR

6z3
c kc

. It is

important to analyze the effect of the tip radius on the frequency response of the cantilever. Assuming R
as a sole varying parameter in Eq. (4.2), the frequency response as a function of the tip radius is reported
in Fig. 4.7. The frequency response in the attractive regime shows a softening behaviour, with a saturation
towards |ẑ| = 1, which indicates the position of the sample surface. The large values of the tip radius affect the
position of the saddle-node points (points A and B, respectively), bending the peak of the response towards
lower frequencies. In point B the biggest alterations are observed. Interestingly, it seems that for linear step
variations of the tip radius, the value of the resonance peak changes linearly as well.

In order to construct a frequency sweep that can be compared to numerical simulations, a lot of experi-
mental factors need to be considered. Inspection of Eq. (4.2) gives an insight that besides R, other parameters
contribute to the nonlinear response. Proper identification of the attractive regime is and added challenge
and depends on many aspects as well. It is necessary that an experimental operating region is found where
the softening in the frequency response is as high as possible. This region can be found by constructing an
experimental backbone curve.
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4.3. Experimental Procedure
Each time a quantitative experiment is performed, the stiffness kc, the first resonance frequency ωn and the
quality factor Q for the free vibrating cantilever are calibrated based on its Brownian motion. The Hamaker
constant defines the van der Waals body-body interaction between tip and sample, which can be derived from
the values of Hair−tip and Hair−sample. Let’s define H132 as the Hamaker constant for media 1 and 2 interacting
across medium 3. H132 can be approximated by

H132 = (
√

H11 −
√

H33)(
√

H22 −
√

H33), (4.3)

where H11, H22 and H33 are the Hamaker constant of medium 1,2 and 3, respectively, whose values can be
found in the literature [55, 86].

Furthermore, the distance between the probe rest position and the sample zc is an important parameter,
due to the fact that magnitude of the softening nonlinearity β has a dependency on z−3

c . For this reason,
experimentally it is necessary to maintain a known constant zc or know it’s value at every measurement point.
Control of zc in theory might seem an elementary task, but turns out to be very hard in practice. A simple
option to maintain a constant rest position from the sample is not available in the FLEX AFM system. In
order to obtain the frequency response curves accurately and in a repeatable manner, a systematic method
needs to be defined.

4.3.1. Procedure 1: ’Tip Lift’
The first method that was developed is based on a novel feature available in the FLEX AFM. There are a num-
ber of imaging modes available in the AFM, shown in Fig. 4.8. A topographic image is obtained by means of
raster scanning the sample. The operating modes consist of a forward and a backward scan. In the standard
mode, the Z-controller is enabled during both forward and backward scan. With the dual scan mode, the
first forward and backward scan is made in the standard setting, but then a second scan is made with the
Z-controller disabled. In the interlaced mode the Z-controller is enabled in the forward scan and disabled in
the backward scan. In the second scan only mode, the Z-controller is only enabled before the start of each
scan. The C3000 controller of the FLEX AFM contains an option called ’second scan tip lift’, making it possible
to move the cantilever base upwards after the first scan with a specified distance. In the first scan, the sample
finds a certain set-point and during the second scan, the tip moves to a specified distance above the sample
and a scan is performed.

Figure 4.8: The available imaging modes in the AFM. The operating modes consist of a forward (1) and a backward (2) scan. The standard
mode follows the sample in both the first and second scan. The dual scan mode allows the user to follow a slope or the sample contour
during the second scan. With the interlaced mode the forward and backward scan can be decoupled. In the second scan only, the surface
is found with the first scan, and the second scan is carried out following a slope.

Using the second scan tip lift, a systematic method was developed to perform frequency sweeps at a
specified distance above the sample. The image scan size was set to 0×0nm, with the purpose to maintain a
constant position in the X-Y plane and to perform repetitive scans at a single point on the sample. The scans
are carried out in the static mode and a deflection set-point is found during the first scan. The amount of time
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it takes to complete a point measurement was adjusted to be slightly longer than time it takes to perform a
single sweep. A frequency response measurement with the ’tip lift’ is executed as follows:

1. An imaging measurement in the static mode was started;

2. After the Z-controller has found the set-point in the first scan, the cantilever was moved upwards and
the second scan started;

3. As soon as the second scan was started, the forward frequency sweep was performed;

4. After the frequency sweep had finished, step 3 was repeated and the backward sweep was carried out;

5. The imaging measurement was stopped.

The way to validate the procedure is to check its repeatability and accuracy. Accuracy is analyzed by con-
structing an experimental backbone curve, created by performing multiple frequency sweeps for increasing
values of the excitation amplitude. The repeatability was investigated by carrying out multiple frequency
sweeps while keeping all parameters constant.
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Figure 4.9: Experimental backbone curve obtained with the ’tip
lift’ procedure, performed on a mica sample, zc ≈ 30nm. The
color code indicates an increase in excitation.
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Figure 4.10: Multiple forward (blue) and backward (red) sweeps
performed with the ’tip lift’ procedure and a constant driving
force.

The backbone curve in Fig. 4.9 constructed from the sequential frequency sweeps shows a clear softening
turning into hardening. The force steps can be controlled very accurately, as can be in observed in the plot.
One can notice that when there is nonlinear interaction between tip and sample, the instability increases.
There even is overlap between certain curves in these regions, which does not cohere with theory. Due to the
fact that the Z-controller is switched off during the second scan the cantilever base is free to be influenced
by external effects, causing drift in the Z-direction. Especially when the scan time is increased, the drift in-
creases. It was also observed in other experiments that, probably due to the interaction forces, the drift shows
a clear direction. More examples of the drift in the sequential frequency response curves are available in Ap-
pendix B.6.

The repeatability of the method, at least for short scan times, is fairly acceptable. In Fig. 4.10, multiple
forward and backward sweeps with constant excitation in a single session are plotted. The large jumps are
associated with the backward sweep and the smaller jumps with the forward sweep. There are many possi-
ble causes for the small variation in the location of the saddle node points between the different sweeps, the
most likely being the alterations in zc, due to the absence of control in the Z-direction. Once again, it is clear
that in the nonlinear region of Fig. 4.9, where the resonance curve flattens, there is a lot variation between
the curves. It is speculated that the deviations are a result of the attractive forces affecting zc. For these rea-
sons this method is incapable of maintaining a consistent defined distance from the sample and is discarded.
However, the method could be useful in further research, as new developments and upgrades from the AFM
manufacturer’s side can provide more advanced and different techniques to aid the ’tip lift’ technique. Better
control on the Z-axis could contribute to a successful experimental methodology. A previous study success-
fully implemented a similar procedure to achieve noncontact operation and performed a parametric study
[52].
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4.3.2. Procedure 2: ’Z-Axis Closed-Loop-Control’
The results from the ’tip lift’ method pointed out that control over zc during the frequency sweep is required.
In the AFM software, the static force-spectroscopy allows for specification of the approach and retract dis-
tance from the sample. Static force-spectroscopy can serve as a tool to find the ’zero’ value, i.e. the sample,
and can also be used to retract with a certain distance. An added advantage of using force-spectroscopy is
that the amount of force with which the tip indents the sample can be specified, and thus be set very low,
limiting the amount of damage that is done to the tip. The retract distance can be maintained by using a
feature of the AFM system, called the ’Z-closed-loop’, which can keep a steady position if the AFM is not
scanning or moving in the Z-direction during spectroscopy. In other words the last value of the Z-position
of a spectroscopy can be maintained with this feature. After the cantilever base has retracted the specified
distance from the set-point, the closed loop can be activated instantly and the current Z-position will act as
the reference value. When the closed loop is activated, the AFM is operating in an idle mode, where the AFM
scanner can’t perform scanning or spectroscopy. With the external drive however, frequency sweeps can still
be performed. With addition of the closed loop control on the Z-axis a new systematic procedure is defined:

1. In the static mode, the cantilever was approached (approach phase);

2. a force-distance curve was acquired recording the effective deflection of the cantilever. The forward
motion was stopped at a small cantilever deflection set-point;

3. The cantilever was pulled back from the sample with a fixed backward length (retract phase);

4. The closed-loop controller on the Z-axis motion was activated to avoid drifting away from the specified
position;

5. The frequency was swept forward and backward in the specified neighbourhood of the estimated reso-
nance frequency and the vibrational amplitude was measured.
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Figure 4.11: Experimental frequency response curve with increasing excitation amplitude. The color code indicates an increase in exci-
tation (2mV steps were made). The solid line indicates the backbone curve, and the sample is at zc = 20nm. This figure is adopted from
a publication in Applied Physics Letters [1]. The experiments have been performed by E. Rull Trinidad and myself.

This procedure is evaluated with a similar approach as before. The accuracy is checked by constructing
the experimental backbone curve. With the new procedure the backbone looks much smoother. There is less
instability in the nonlinear regions, and there is a clear gradual transition from softening turning to harden-
ing. Note that this backbone was made at zc = 20nm in contrast to the backbone in Fig. 4.9, which was made
at zc = 30nm. The transition between softening and hardening compresses for increasing values of zc, which
adds to the difference between the two experiments. The repeatability is comparable to the ’tip lift’ method,
but especially in the nonlinear regions this procedure provides more stability, as it is repeatedly able to follow
the upper part of the resonance curve without any large alterations.

A single force-spectroscopy covers steps 1, 2 and 3 of the procedure. The sample is approached statically
until a certain deflection set-point is found. The value of this deflection is chosen by compromise. On one
hand it must not be too large, as the risk of initial tip damage is then further increased. On the other hand it
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may not be too small. The sample needs to be identified, so the set-point must be higher than the deflection
caused by the peak attractive force. If this condition is not satisfied, a set-point could be found somewhere
above the sample. Also, the deflection must be high enough to be controllable, as too small set-points can
cause instability in the control.

4.4. Identification Process
For the identification process, the properties of the cantilever and sample are assumed to be known. Exper-
imentally obtained frequency curves will be compared to simulations, using a nonlinear fitting procedure.
The regions I and III in Fig. 4.7 are primarily determined by the excitation force F0 and region II, the width
of the curve, is dominated by the quality factor Q. Next, the positions of the saddle node points connecting
the stable and unstable motion were matched considering the tip radius as the sole fit parameter. Due to the
softening nature of the frequency response, obtaining the data from the backward sweep was crucial for the
fitting. This permits to find the saddle node point B, corresponding to the maximum amplitude. A precise
match of saddle node B is prioritized due to the fact that B shows a more significant change for changing val-
ues of R than point A. It has to be remarked that the implemented model analyzes the cantilever motion only
for attractive interaction (d > a0). The quality factor of a nonlinear fitting would be lower with respect to its
calibrated value, this is due to the effect of nonlinear energy dissipation [87]. An estimated uncertainty in zc

of ±1nm was taken into account. Additionally a fitting error of around F0 ±4% is considered. An estimation
of the tip radius with reasonable accuracy while accounting for these uncertainties and error margins would
demonstrate the robustness of the method.

The bifurcation analysis package AUTO is not easily compatible with other programming languages and
sequential simulation data cannot be stored efficiently. Consequently, the implementation of an iterative,
numerically based and time-efficient fitting procedure is a difficult task. The possibility of implementing
an automated identification algorithm based on harmonic balance in MATLAB has been investigated. The
theoretical analysis is found in Appendix A.2. For these results a brute force approach has been chosen. The
uncertainties for zc were selected at the boundaries, 5 or 6 values between F0 ±4% are defined and the range
of quality factors Q1, ...Qn are rounded to integer values with the purpose to decrease the computational time
by maintaining an acceptable accuracy.
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Figure 4.12: Branch diagram, visualising the brute force fitting procedure, starting from the optimal fit Szc,F0
. In a typical fitting pro-

cedure 4 values for Q are found where the saddle node points can be matched properly. Often, more than 60 simulation iterations are
performed before a single fitting procedure is completed.
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4.5. Validation with SEM
The proposed method is verified by comparing the results to SEM. A limitation of the SEM is that only semi-
quantitative information of the tip shape can be collected. By reviewing research on tip wear characteristics,
it is found that it is customary to obtain a value for the tip radius in SEM by means of fitting a circular shape
to the tip apex. However, values for tip radii extracted from SEM images have been reported without further
clarification on how these are retrieved [45]. Because the circles are drawn by naked eye, fits with different
radii can be made. The range of R with which these circles are composed will be used as a comparison to the
fitting procedure. Note that the circular fits are not obtained by constructing a circle inside the tip apex but
rather by following the outer contour of tip that interacts with the sample, as demonstrated in Fig. 4.13.

Figure 4.13: SEM image of the cantilever tip. The proposed circu-
lar fit follows the part the tip that interacts with the sample.

Figure 4.14: SEM image of an AFM tip with contamination at its
sharp end.

The SEM can give an indication of the tip apex shape, if it is indeed (hemi-)spherical or not. More im-
portantly one can observe if there are any signs of breakage or contamination on the tip, as shown in Fig.
4.14. The latter is especially relevant, as with non-optical procedures it’s complicated to predict if the tip is
contaminated. More information about experiments with contaminated tips can be found in Appendix B.1.
When fragments of the sample remain on the tip apex, the Hamaker constant between the two bodies will
change, modifying the van der Waals interaction.



5
Results

The experiments used for the fitting procedure were performed with new cantilevers and thus ’fresh’ tips. It
has to be stated that initial measurements and calibrations which require contact between tip and sample
cannot be avoided. To minimize further dangerous tip damage and to maximize the influence of the tip ra-
dius it is important to identify the noncontact, or attractive regime. This is done by sweeping the excitation
frequency at constant zc from below to above resonance for increasing values of the excitation force F0, un-
til right before the point where repulsive forces influence the response, herewith maximizing the softening
nonlinearity. After the decisive experiments have been performed, the cantilever was removed from the AFM
scan-head. It was made sure that additional contact with the sample or any other surface was avoided. For
the definitive experiments, the NCLR type cantilever and a Highly Oriented Pyrolytic Graphite (HOPG) sam-
ple was used. The main motivation for picking this sample is that compared to other samples, the combined
Hamaker constant of HSi−HOPG = 2.9656×10−19J is relatively high, which as a result maximizes the nonlinear
interaction β. (The results presented in this section led to a publication in Applied Physics Letters, for which
I have performed the numerical simulations [1]. The authors jointly used them to interpret the experimental
data measured by E. Rull Trinidad. The SEM images shown in this section are acquired by E. Rull Trinidad.
Complete tables of the fitting results can be found in Appendix B.4.)

5.1. Experiment 1
The first experiment was performed at zc = 20nm. The experimental curves in Fig. 5.1 could be fitted with
a (hemi-)spherical tip radius of R = 19±6nm. The value found in the fitting is in good agreement with the
obtained value from the SEM image, which gives R = 18±2.7nm.
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Figure 5.1: LEFT: Forward (blue dots) and backward (red dots) experimental frequency response curves with a proposed numerical
fitting (black line) of R = 19nm. The small inset graph targets the saddle node points (light blue dots) and contains simulated curves of
the upper and lower bound retrieved from the fitting. RIGHT: SEM image of the corresponding AFM tip. The numerical simulation for
R = 19nm was performed with Q = 387, F0 = 1.325nN, zc = 20nm, ωn = 166878Hz and kc = 26Nm−1.
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5.2. Experiment 2
The second experiment was performed at zc = 25nm. The SEM image in Fig. 5.2 reveals that the tip apex
is blunted. For this case a flat-circular tip model would provide a better approximation of the tip-sample
geometry. Recalling from Table 2.1, the van der Waals forces for a flat-circular tip with radius r and a flat
sample surface is equal to

FvdW(z, zc) =− Hr 2

6(zc + z)3 . (5.1)

The dimensionless equation of motion for this tip-sample geometry is

∂2 ẑ

∂τ2 + ĉ
∂ẑ

∂τ
+ ẑ =λcos(Ω̂τ)−β 1

(1+ ẑ)3 , (5.2)

where the magnitude of the nonlinear interaction is governed by β = Hr 2

6z4
c kc

. The tip radius estimation of

r = 12± 1.5nm in Fig. 5.2 was obtained accounting for the flat-circular (blunted) tip interaction, which is
good agreement with the SEM image, where a flat-circular tip with r = 10±2nm could be found. Note that,
by applying the (hemi-)spherical model to this set of experiments, a radius of R = 60±18nm was obtained.
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Figure 5.2: LEFT: Forward (blue dots) and backward (red dots) experimental frequency response curves with a proposed numerical
fitting (black line) of r = 12nm. The small inset graph targets the saddle node points (light blue dots) and contains simulated curves of
the upper and lower bound retrieved from the fitting. RIGHT: SEM image of the corresponding AFM tip. The numerical simulation for
r = 12nm was performed with Q = 312, F0 = 1.95nN, zc = 25nm, ωn = 164973Hz and kc = 25.3Nm−1.



6
Discussion

6.1. Evaluation of the Results
Both results show good agreement with their corresponding SEM image. The first experimental curves could
be fitted with the (hemi-)spherical tip model, and the other tip estimation could be obtained accounting for a
blunted tip (flat-circular) interaction. By applying the (hemi-)spherical model to the last set of experiments,
a discrepancy between the SEM image and the identified tip radius is observed. However, the order of mag-
nitude remains preserved (R ≈ 60nm). This emphasizes that the (hemi-)spherical model could serve as a
precautionary model if an in-situ estimation of the tip is to be performed, it provides a more secure limit for
avoiding excessive tip deterioration.

6.2. Validation of the Method
The amount of experimental data acquired is not sufficient to properly analyze the accuracy and repeatabil-
ity of the proposed methodology. The lack of result is related to experimental conditions and the extreme
sensitivity of AFM tips. It is very difficult to determine the specific experimental environment where the AFM
tip remains intact. It is found that even a slightly too deep indentation into the sample can cause excessive
deterioration, contamination or even breakage of the tip. Some of the current methods for tip characteri-
zation which demand further tip-sample contact after definitive measurement do not take these potential
consequences into account.

Throughout the course of the experiments, it was observed that the response of some cantilevers was
somewhat irregular, even linear frequency response curves without softening or hardening were difficult to
match with numerical simulations, for examples see Appendix B.5. The asymmetry in the curves could be
related to improper positioning of the laser, imperfect mounting of the cantilever on the scan head or irreg-
ularities in its geometry. The fitting procedure is difficult to apply when the cantilever response is noticeably
affected, as the model assumes symmetry in the shape, and it does not yet incorporate the physical effects of
laser positioning and cantilever mounting on the cantilever response.

The proposed method is verified by comparing the results to SEM, where information of the tip shape
is only semi-quantitative. In one of the experiments the static force-spectroscopy measurement was also
obtained and a fit could be achieved that was within the tolerances of the dynamic method [1]. It would
be desired to determine the size of a single tip with multiple characterization methods and compare the
outcome. However, most of these require additional dangerous tip-sample contact, hence their results will
be incomparable.
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7
Recommendations & Conclusion

7.1. Recommendations
7.1.1. Implementation of a Nonlinear System Identification Algorithm
A brute force fitting approach was followed instead of a nonlinear system identification method such as har-
monic balance, which is at the expense of accuracy. A proper numerical algorithm with a defined error func-
tion could provide a more precise and robust estimation. The lock-in amplifier is not yet capable of obtaining
the frequency response for multiple modes simultaneously, thus for numerical identification methods, only
frequency-amplitude data near the first mode or driving frequency would be available. Realisation of an so-
phisticated system identification algorithm will provide the next step towards true in-situ tip estimation.

7.1.2. Exploiting Higher Harmonics & Intermodulation Products
The implemented experimental procedure could also be applied for the extraction of higher harmonics. The
harmonic signals could also be amplified by using a more compliant type of cantilever. In order to find a more
universal approach, this option was not explored in this work.

Deliberate excitation of multiple frequencies at once might also lead to new insights about the tip-sample
interaction. It has been shown that other frequencies, known as intermodulation products, are generated
when the cantilever is perturbed by the nonlinear tip-sample interaction. The multi-frequency lock-in am-
plifier is especially suited for the acquisition of these intermodulation signals, which is why it could be an
interesting direction for further research.

7.1.3. True Tip Shape Determination
It is fairly accepted in the AFM field that the tip geometry is approximated as a continuum body. This assump-
tion allows one to describe the interaction forces with relative ease by using continuum mechanics models.
For most applications in AFM a more rigorous determination of the tip shape is no necessity, as long as the
tip is sharp enough. But as future research will advance to even smaller scale, precise characterization of the
tip apex will be required. In the proposed method a certain tip geometry is assumed and the optimal charac-
teristic value for that shape is found. But the tip shape itself could also serve as a source of optimization. The
Blind Tip Reconstruction is roughly based on this principle and could be a source of inspiration to further
research. Instead of assuming a predefined tip geometry in the model, the tip shape could be determined
with topology optimization. Besides continuum mechanics, a model based on molecular dynamics could be
implemented to describe the tip-sample interaction on a true atomic level.
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7.1.4. Future Research and Outlook
It is known that the repulsive forces in AFM are generally stronger than the attractive forces. For this reason
it is realistic that parameter estimation in the repulsive regime is feasible. This would require the inclusion of
contact forces in the theoretical model. In order to reach true noncontact in-situ tip identification, additional
tip-sample contact needs to be avoided.

Using higher harmonics as a source of the nonlinearity is still a promising solution, as they could be
extracted whilst performing other measurements, and could be a focus point for further research. A novel
approach that could be explored is to assemble a tip with a known geometry on the AFM cantilever. This takes
away uncertainty about the tip shape. Furthermore, the future of AFM is tending towards the development
of AFM probes capable of true 3D measurement, where instead of a cantilever a membrane is used. Because
tips need to be fabricated on these membranes, preliminary research on conventional AFM cantilevers can
contribute to new insights.

7.2. Conclusion
To conclude, nonlinear dynamics can certainly be used to estimate the tip condition in AFM. Analysis of the
tip-sample mechanics and nonlinear dynamics pointed out that the influence of the tip radius is predom-
inant in the attractive regime. A methodology to determine the tip radius in AFM has been presented and
consists of the acquisition of frequency response curves in this attractive regime and a nonlinear fitting pro-
cedure is used to match the experimental curves in order to estimate the tip radius. There are still enough
areas that require improvement. Experimental uncertainties need to be minimized or either considered in the
model and a deterministic fitting procedure has to be implemented, which would make the method more ac-
curate and robust. Moreover, approximation of the tip geometry in the theoretical model is a limitation for
true tip shape determination. The presented methodology is a first step towards automated in-situ tip iden-
tification, estimation of material properties and could serve as an inspiration for novel techniques in future
AFM systems.



A
Analytical Descriptions

A.1. Dimensionless Equation of Motion
In this section the dimensionless equation of motion for an AFM cantilever subjected to tip-sample interac-
tion forces is derived. The following assumptions are made:

• The cantilever-tip ensemble is modelled as point-mass spring system;

• The quality factor is independent from tip-sample separation;

• The tip-sample geometry is approximated with a (hemi-)sphere and a flat surface;

• The cantilever is excited by means of a singular periodic excitation;

• The cantilever base is stationary with a distance zc separated from the sample.

 d

 sample

 z
 z

c

Figure A.1: Free body diagram of the AFM cantilever and the sample. The rest position of the cantilever acts as a reference for the
deflection z.

The general equation of motion for the one-dimensional system is:

m
∂2z

∂t 2 + c
∂z

∂t
+kcz = F0 cos(Ωt )+Fts. (A.1)

Here m, kc, F0 and Fts are the tip mass, cantilever stiffness, excitation force and the net tip-sample interaction
force, respectfully. The damping c is equal to

c = mωn

Q
, (A.2)

where ωn is the cantilever’s first resonance frequency and Q it’s quality factor. Assuming the DMT model, the
tip sample forces can be described by

Fts(d) =


− HR

6d 2 , d > a0

−HR

6a2
0

+ 4

3
E∗pR(a0 −d)

3
2 , d ≤ a0.

(A.3)
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Here H , R, d , E∗ and a0 are Hamaker constant, the tip radius, the instantaneous tip-sample separation, the
effective Young’s modulus and the intermolecular distance, respectfully.

The above equation can be made dimensionless. The characteristic length is ẑ = z

zc
and the characteristic

time is τ=ωnt . The equation can then be made dimensionless as

mω2
nzc

∂2 ẑ

∂τ2 + mω2
nzc

Q

∂ẑ

∂τ
+kczc ẑ = F0 cos(Ω̂t )+Fts, (A.4)

where λ is the dimensionless excitation force. Recall that for a linear mass spring system ωn =
√

kc

m
. Divide

by kczc and express the spatial parameters in ẑ and zc:

∂2 ẑ

∂τ2 + 1

Q

∂ẑ

∂τ
+ ẑ = F0

kczc
cos(Ω̂t )+ Fts

kczc
, (A.5)

with

Fts(ẑ, zc) =


−HR

6z2
c

1

(1+ ẑ)2 , ẑ > a0

zc
−1

−HR

6a2
0

+ 4

3
E∗pR

(
a0 − zc(1+ ẑ)

) 3
2 , ẑ ≤ a0

zc
−1.

(A.6)

The dimensionless equation of motion can then be written as

∂2 ẑ

∂τ2 + ĉ
∂ẑ

∂τ
+ ẑ =λcos(Ω̂τ)+ F̂ts. (A.7)

The non-dimensional dissipation coefficient is governed by ĉ = 1

Q
, whereas λ = F0

zckc
represents the sinu-

soidal excitation with frequency Ω̂= Ω

ωn
. The tip-sample interaction force is then governed by

F̂ts(ẑ, zc) =


− HR

6z3
c kc

1

(1+ ẑ)2 , ẑ > a0

zc
−1

− HR

6a2
0 zckc

+ 4E∗pR

3zckc

(
a0 − zc(1+ ẑ)

) 3
2 , ẑ ≤ a0

zc
−1.

(A.8)
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A.2. Nonlinear Identification Algorithm
In this section a nonlinear identification algorithm is presented, which is largely based on the work of Amabili
et al. [87]. The method comprises of a least-squares technique to reconstruct frequency response curves and
identify unknown parameters. In order to obtain the amplitude and frequency of the non-linear system the
harmonic balance method is used. An attempt has been made to implement the numerical algorithm in
MATLAB. In the next section the algorithm is explained analytically. The use of harmonic balance implies the
assumption that:

• The response of the system is periodic;

• The response can be expressed as a series of harmonics.

Harmonic balance approximates the solution of Eq. (3.2) with a truncated Fourier series:

ẑ ≈ ẑN = z0 +
N∑

k=1
an coskt +bn sinkt . (A.9)

Here N is the order of truncation and ẑN is the truncated Fourier series representation of ẑ.

A.2.1. Approximated Solution Using a Truncated Taylor Series
The dimensionless time is now chosen as t̂ = Ωt and the equation of motion is spatially normalized using

ẑ = z

zc
. Because the nonlinear term does not consist of simple polynomials of the generalized coordinate ẑ

and trigonometric terms, the equation must be rewritten. If the nonlinear term originating from the attractive
forces is approximated using a truncated Taylor Series, the system is simplified:

r 2 ¨̂z + r ĉ ˙̂z +q +β(1−2ẑ +3ẑ2 −4ẑ3) =λcos t̂ , (A.10)

in which r = Ω

ωn
. By substituting the truncated Fourier series into this equation and equating the coefficients

of each of the harmonics, a system of algebraic equations is obtained which relates the frequency ratio r to
the amplitudes ẑN :

r 2D2Sz + r ĉDSz +Sz +β(1−2Sz +3Pz −4Qz ) = S f , (A.11)

where

Sz =



ẑ0

ẑ1

ẑ2
...

ẑN


, Pz =



p0

p1

p2
...

pN


, Qz =



q0

q1

q2
...

qN


, S f =



0
0
λ
...
0


, (A.12)

with

p0 = 1

2π

∫ 2π

0
(ẑN )2dt , p2k−1 =

1

π

∫ 2π

0
(ẑN )2 sin(kt )dt , p2k = 1

π

∫ 2π

0
(ẑN )2 cos(kt )dt , (A.13a)

q0 = 1

2π

∫ 2π

0
(ẑN )3dt , q2k−1 =

1

π

∫ 2π

0
(ẑN )3 sin(kt )dt , q2k = 1

π

∫ 2π

0
(ẑN )3 cos(kt )dt . (A.13b)

Substituting for ẑ2
N and ẑ3

N :

ẑ2
N = p0 +

N∑
k=1

p2k−1 sinkt +p2k coskt , (A.14a)

ẑ3
N = q0 +

N∑
k=1

q2k−1 sinkt +q2k coskt , (A.14b)

with

D =


0 0 · · · 0
0 D1 · · · 0
...

...
. . .

...
0 0 · · · DN

 , DN =
[

0 −k
k 0

]
. (A.15)
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We assume that the amplitude ẑN , the frequency ratio r and the harmonic excitation force λ are already
known for every frequency step. Now the following system can be solved for every j -th frequency step r ( j ):

[
r ( j )DSz( j ) 1−2Sz( j ) +3Pz( j ) −4Qz( j )

] ·[ ĉ
β

]
=

[
−r 2( j )D2Sz( j ) −Sz( j ) +S f ( j )

]
. (A.16)

The system of Eq. (A.16) is essentially in the form of Ai x = Bi . The system is over-constraint since we have
(2N +1)× j equations, where N is the order of truncation and j the number of frequency steps. In order to
solve this, the linear squares technique can be used, but both the amplitudes and the parameters need to be
optimized. This can be done by calculating the pseudo inverse of matrix Ai as follows

X = (AT
i Ai )−1 AT

i ·Bi , (A.17)

and minimizing the norm of the error

E = (Ai ·X −Bi ) · (Ai ·X −Bi )T . (A.18)

A.2.2. Analytical Solution
If the nonlinear term originating from the attractive forces is approximated using a truncated Taylor Series,
the system is simplified, but another solution is to multiply the whole equation with the nonlinear term (1+
ẑ)2 instead. This leaves:

r 2 ¨̂z(1+ ẑ)2 + r ĉ ˙̂z(1+ ẑ)2 + ẑ +2ẑ2 + ẑ3 +β=λcos(t̂ )(1+ ẑ)2. (A.19)

To be continued...



B
Additional Results

B.1. Contamination of AFM Tips
B.1.1. Experiments on a Mica Sample
In this section, experiments carried out on a mica sample are discussed. The experiments could be fitted
with very large (hemi-)spherical tip radius (R ≈ 1100nm). Close inspection of the cantilever under the SEM
provided an explanation on why this result was obtained.

Figure B.1: Two SEM images taken from different sides of the cantilever used in the experiments on the mica sample. The left image
shows a clear patch of contamination on the tip. The right image reveals that the tip is blunted.

The SEM images in Fig. B.1 reveal that a patch of contamination has formed on the tip and that the tip
apex is far from (hemi-)spherical. In the simulation the tip shape was approximated with a (hemi-)sphere.
Similar as the experiment discussed in section 5.2, a flat-circular tip would provide a better approximation
for the tip geometry. The proper value for H requires further analysis, because the tip is contaminated with
parts of the sample. The tip apex might consist of both mica and Si, further complicating the result and a
Hamaker constant of HSi−mica = 2.4862× 10−20J might be an oversimplified approximation for the van der
Waals body-body interaction.

37



38 B. Additional Results

B.1.2. Experiments on a HOPG Sample
Similar problems were observed on the HOPG sample. In one particular experiment, the SEM images were
especially intriguing, they are shown in Fig. B.2. Much alike the mica sample, there is a patch of contamina-
tion visible on the tip, but also there are flakes of HOPG on its side. This type of contamination could be an
outcome of the cleaving procedure of the HOPG sample, which is usually done by sticking a piece of adhesive
tape gently to the graphite and then pulling it of again, demonstrated in Fig. B.3. The topmost layer of the
sample should then stick to the tape. Large loose flakes can then be removed with tweezers. It is probable that
some micro-sized flakes were left on the sample and later picked up by the tip. Due to the many uncertainties
this cantilever was considered inapplicable for further analysis.

Figure B.2: SEM images of the cantilever contaminated with a patch of contamination and larger flakes of HOPG.

Figure B.3: Cleaving of graphite (source: FLEX AFM operating manual).

These two examples highlight once again that the AFM tips are extremely sensitive. A safe experimental
procedure is very hard to find, in some cases the specific cause of contamination or excessive deterioration
could not even be traced back.
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B.2. Frequency Spectrum of the FMR Cantilever in Different Operating Con-
ditions

Figure B.4: Experimental frequency spectra of the same FMR cantilever used for the experiment in Fig. 4.4, whilst it scans a sample in
the static mode, in the dynamic mode and in free air dynamically.

In Fig. B.4 the frequency spectrum of the FMR cantilever of Fig. 4.4 is plotted whilst scanning the sample
in the static mode, in the dynamic mode and whilst scanning in free air in the dynamic mode. In the static
mode, no harmonics are being generated, as expected. Interestingly there is little to no difference between the
dynamic scanning of the sample and the scanning in free air. The second harmonic is excited for both cases.
The conclusion can be drawn that excitation of the second harmonic does not depend on the tip-sample
interaction. It has been pointed out in literature that the position of the laser on the back of the cantilever is
positioned such that it induces excitation of higher harmonics [41].
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B.3. Higher Harmonic Imaging

Figure B.5: AM-AFM topography images of PS-LDPE of the driven frequency and several of the higher harmonics. The feedback was
performed on the amplitude of ωd. The higher harmonic images clearly show contrast between the two materials.

The generation of higher harmonics has been investigated in this work in order to find a methodology for
tip identification. It was found that the higher harmonic signals were too low and were not suitable for tip
estimation, at least for the considered cantilever-sample configurations. However, higher harmonic imag-
ing proves to be useful to monitor the imaging conditions in tapping mode and is often applied to increase
the material contrast [83, 84]. Experiments have been performed to demonstrate the working principle of
harmonic imaging and are shown in Fig. B.5. The sample used in this experiment consists of two materi-
als, a blend of Polysterene and Polyolefin Elastomer, these materials have a high contrast in elastic modulus
(PS-LDPE). The image from the driven frequency ωd gives a clear indication of the two materials.

Figure B.6: AM-AFM topography images of PS-LDPE of the driven frequency and its sixth harmonic. One of the scanning lines is high-
lighted to show the change in the amplitude for both cases. Where the amplitude of ωd is monitored by the feedback, the amplitude of
6ωd is free to change.

The feedback is performed on the amplitude of ωd. In Fig. B.6 it can be observed that the amplitude
is more or less constant, except in the part where transition to an other material occurs. No feedback is
performed on the higher harmonics thus their amplitude is governed by the tip-sample properties. In the
left region the amplitude of 6ωd is high, but in the right region the amplitude drastically reduces. Te same
behaviour is also seen in 2ωd, 5ωd and 7ωd. This shows that higher harmonics are very useful to increase
contrast between different materials in topographic measurements.
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B.4. Fitting Results
B.4.1. Experiment 1

Table B.1: Results of the numerical fitting procedure of the first experiment, discussed in section 5.1. LEFT: zc − 1 = 19nm, MIDDLE:
zc = 20nm, RIGHT: zc +1 = 21nm. The tip radii for which a good fit of the saddle node points was obtained are colored green. The tip
radii colored red provided a good fit for saddle node B, but saddle node A and the nonlinear part of the curve could not be fitted properly.

Q[−] / F0[nN] 1.200 1.225 1.250 1.275 1.300

371

372 31

373 26

374 21

375 16

376 12

377 8

378 5

379 33

380 27

381 22

382 17

383 14

384 9

385 6

386 35

387 29

388 24

389 20

390 16

391 12

392 8

393

394 35

395 29

396 24

397 20

398 16

399 12

400 8

401

402

403 30

404 26

405 21

406 16

407 13

408 10

409 7

Q[−] / F0[nN] 1.200 1.225 1.250 1.275 1.300

371 31

372 25

373 20

374 15

375 11

376 7

377

378 31

379 25

380 20

381 15

382 11

383 6

384

385 32

386 26

387 21

388 16

389 11

390 7

391

392 34

393 28

394 23

395 18

396 13

397 9

398

399

400 32

401 27

402 21

403 17

404 12

405 8

406

407

408

409

Q[−] / F0[nN] 1.275 1.300 1.325 1.350 1.375

371

372 36

373 30

374 23

375 17

376 12

377 8

378

379 32

380 27

381 21

382 14

383 11

384 6

385

386 33

387 26

388 20

389 15

390 10

391

392

393 33

394 26

395 21

396 16

397 11

398 7

399

400 35

401 28

402 23

403 17

404 12

405 8

406

407

408

409

B.4.2. Experiment 2

Table B.2: Results of the numerical fitting procedure of the second experiment, discussed in section 5.2. LEFT: zc −1 = 24nm, MIDDLE:
zc = 25nm, RIGHT: zc +1 = 26nm. The tip radii for which a good fit of the saddle node points was obtained are colored green. The tip
radii colored red provided a good fit for saddle node B, but saddle node A and the nonlinear part of the curve could not be fitted properly.

Q[−] / F0[nN] 1.860 1.880 1.900 1.920 1.1940 1.960

296 14.2
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B.5. Irregularities in the Frequency Response
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Figure B.7: Experimental forward (blue dots) and backward (red dots) frequency response curves of two different NCLR cantilevers with
softening nonlinearity. The height and width of these curves are difficult to fit, due to the discrepancy between the outer parts of the
curves.

It was observed that the response of some cantilevers was somewhat irregular, even linear frequency re-
sponse curves without softening or hardening were difficult to match with numerical simulations. The asym-
metry in the curves of Fig. B.7 could be related to improper position of the laser, imperfect mounting of the
cantilever on the scan head or irregularities in its geometry. The fitting procedure is difficult to apply when
the cantilever response is noticeably affected, as the model assumes symmetry in the shape, and it does not
yet incorporate the physical effects of laser positioning and cantilever mounting on the frequency response.

B.6. Backbone Curves Indicating Drift in zc
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Figure B.8: Experimental backbone curve obtained with the ’tip
lift’ procedure, performed on a mica sample, zc ≈ 30nm. The
backbone indicates that the cantilever base moves away from the
sample
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Figure B.9: Experimental backbone curve obtained with the ’tip
lift’ procedure, performed on a mica sample, zc ≈ 30nm. The
backbone indicates that the cantilever base moves towards the
sample in the repulsive regime.

The backbone curves from the sequential frequency sweeps shows softening turning into hardening. The
force steps can be controlled very accurately, as can be in observed in the plot. Due to the fact that the
Z-controller is switched off during the second scan the cantilever base is free to be influenced by external
effects, causing drift in the Z-direction. Especially when the scan time is increased, the drift increases. In Fig.
B.8, the amplitude continues to increase even when the sample is reached (characterized by the hardening),
which indicates that the cantilever base is retracting from the sample. In Fig. B.9, it is the other way around.
The backbone shows a short softening turning into hardening, with in the end a decrease in the amplitude,
which indicates that the base-sample distance has decreased.



C
Supplementary Information

C.1. Preparing an Experiment
C.1.1. Cantilever Mounting
For each experiment, the laser needs to be placed on the correct position on the cantilever. The cantilever
holder of the FLEX AFM ensures that the compatible cantilevers are always positioned in the same manner,
even after cantilever exchange. There are grooves in the holder which ensure that compatible cantilevers are
always identically aligned. In order to verify that the cantilever is placed properly on the holder, one can tap
carefully on the chip with tweezers. If the cantilever moves, it is not inserted correctly, see Fig. C.1. After
correct mounting the tweezers can be used to push the clipping mechanics which holds the cantilever in
place.

Figure C.1: LEFT: Correct alignment of the cantilever chip on the holder. CENTER & RIGHT: Incorrect alignment (source: FLEX AFM
operating manual).

C.1.2. Laser Alignment
The FLEX AFM comes with 4 holes in its top cover, see Fig. C.3, that provide access to alignment screws that
change different aspects of the laser beam’s optical pathway. With a small key the screws in the holes can be
turned in order to modify the mirror angles.

Figure C.2: Aligning the laser on the cantilever should start from the base edge (green area), followed by lateral centering on the cantilever
(blue dot), and should finish near the tip end (orange dot)(source: FLEX AFM operating manual).

43
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The laser alignment should always be carried out in the following order:

1. Identify the current laser position (screw 1 & 2);

2. Locate the base edge of the cantilever chip (screw 1 & 2);

3. Align the laser in the lateral center of the cantilever (screw 1 & 2);

4. Position the laser near the tip end (screw 1 & 2);

5. Center the laser on the photodetector (screw 3 & 4).

The centering of the laser on the photodetector is done by checking the laser alignment dialog, which displays
the current position of the AFM laser spot on the photodetector and the used laser power (see Fig. C.4).

Figure C.3: Schematic top view of the FLEX AFM, in-
dicating the 4 holes with the screws, which can be ad-
justed to align the laser (source: FLEX AFM operating
manual).

Figure C.4: The laser alignment dialog, dis-
playing the current position of the laser spot
on the detector (green dot) (source: FLEX
AFM operating manual).

It was found in some cases a laser spot which was approved in the laser alignment dialog is not always
optimal. The non-invasive calibration method in the MLA was used to check that the cantilever amplitude
has a decent signal to noise ratio.
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C.1.3. Calibrations
The thermal tuning dialog in the controller software can be used to determine the spring constant and reso-
nance frequency of the cantilever. The dialog (displayed in Fig. C.5) is also useful for checking noise sources
and the overall performance of the AFM scan head.

Figure C.5: Thermal tuning dialog of the controller software.

The calibration in the MLA is similar to the AFM calibration and relies on the same principle. Because
the measurements were acquired with the MLA, the cantilevers were calibrated by that system as well. There
was often a slight discrepancy in the stiffness and quality factor between the two calibrations, due to so far
unknown reasons. Therefore, it was made sure that the operations carried out within the FLEX AFM were
carried out with calibrated values done in the AFM software. The experimental frequency response curves
were evaluated based on the calibrations of the MLA.

Figure C.6: Thermal tuning dialog of the MLA.

For the static approach step in the systematic procedure, discussed in Chapter 4 a deflection calibration
needs to be carried out. This calibration uses several spectroscopy measurements to find the deflection sen-
sitivity of the cantilever. This procedure needs to be performed with great care, since excessive indentation
will cause unwanted tip deterioration. The start point and the range of the Z-scanner position need to be
chosen carefully to avoid burying the tip too deep in the sample.
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C.2. Cantilever Specifications

Figure C.7: Specification sheets of the AFM cantilevers used in this work, LEFT: FMR cantilever. RIGHT: NCLR cantilever (source: https:
//www.nanoandmore.com/.

https://www.nanoandmore.com/
https://www.nanoandmore.com/
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