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Removal of internal multiples with the common-focus-point (CFP)
approach: Part 1 — Explanation of the theory

A. J. Berkhout1 and D. J. Verschuur2

ABSTRACT

Removal of surface and internal multiples can be
formulated by removing the influence of downward-
scattering boundaries and downward-scattering layers.
The involved algorithms can be applied in a model-
driven or a data-driven way. A unified description is
proposed that relates both types of algorithms based on
wave theory. The algorithm for the removal of surface
multiples shows that muted shot records play the role of
multichannel prediction filters. The algorithm for the re-
moval of internal multiples shows that muted CFP gath-
ers play the role of multichannel prediction filters. The
internal multiple removal algorithm is illustrated with
numerical examples. The conclusion is that the layer-
related version of the algorithm has significant practical
advantages.

INTRODUCTION

In an article from the late 1970s, Kennett (1979) describes
a 1D forward model for surface-related multiples and pro-
poses a 1D inversion scheme. However, his algorithm con-
tains too many simplifications on both the data acquisition and
subsurface properties to be successful on real data. Riley and
Claerbout (1976) describe a 2D forward model for surface-
related multiples, but they do not arrive at a proper inver-
sion scheme. Berkhout (1982) has proposed a multidimen-
sional inversion algorithm for the removal of surface-related
as well as internal multiples. Essential in this formulation are
that any subsurface model can be handled and, above all, that
the data acquisition properties are taken into account. For in-
stance, Berkhout’s feedback model shows that the inverse of
the source wavelet must be included in the removal process.
The latter turns out to be an absolute necessity for success on
field data. In his doctoral thesis, Verschuur (1991) successfully
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demonstrates on field data that the inverse source wavelet
can be estimated by making use of a least-squares subtraction
process. Since then, many other authors have elaborated on
this approach. In fact, Weglein et al. (1997) propose an algo-
rithm to remove multiples with the aid of the inverse scatter-
ing theory.

In Berkhout and Verschuur (1997) the extension from sur-
face to internal multiples is reformulated by replacing shot
records with so-called common-focus-point (CFP) gathers. In
Berkhout (1999) this concept is generalized by also consider-
ing the internal multiples generated by a complete layer in-
stead of a single interface. In this paper, the theory for the
boundary and layer approach to internal multiple removal is
explained, and the advantages of using the CFP domain for the
implementation are discussed. The layer approach can also be
applied for surface-related multiples. This may have advan-
tages in the situation of irregular sampling. The paper starts
with summarizing the underlying theory of primary wavefield
measurements, often referred to as the WRW model, followed
by including the feedback path for multiples.

SUMMARY OF THE WRW MODEL

The so-called WRW framework is an attractive starting
point for the design of acquisition geometries and the deriva-
tion of seismic processing algorithms. In this 3D framework,
the discrete version of the model for primary wavefields is for-
mulated in the (x, y, ω) domain in terms of monochromatic
vectors and matrices (Berkhout, 1982). For a source wave-
field,

S+
j (zm, z0) = W(zm, z0)Sj (z0), (1a)

where the plus sign denotes downgoing waves. For reflected
wavefields,

�P−
j (z0, z0) =

∞∑

m=1

W(z0, zm)R(zm, zm)S+
j (zm, z0), (1b)
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where the minus sign denotes upgoing waves. For wavefield
measurements,

�Pj (z0, z0) = D(z0)�P−
j (z0, z0), (1c)

where matrix P contains all seismic measurements, with � in-
dicating that only primary reflection information is involved.
In equations 1, depth level zm may be generalized to depth
surface zm(x), where x = (x, y).

In equations 1, detector matrix D(z0) represents the angle-
dependent detector information for one shot record (one
row defining the angle-dependent detection properties at
one detector station), and source vector Sj (z0) represents
the angle-dependent emission information at source posi-
tion (xj , z0); matrices W(z0, zm) and W(zm, z0) quantify the
angle-dependent propagation properties among all individ-
ual gridpoints of surface z0 and depth level zm (each col-
umn represents an upgoing and downgoing impulse re-
sponse, respectively), and matrix R(zm, zm) quantifies the
angle-dependent reflection properties for downward-traveling
waves (each column representing one impulse response that
transfers a downgoing into an upgoing wavefield) at depth
level zm (see Figure 1). For a complex over burden, the
columns of W define multiarrival events. In addition, W may
contain frequency-dependent transmission effects (elastic ab-
sorption) from fine layering.

From equations 1, it follows that the primary reflection mea-
surements may also be written as

�Pj (z0, z0) = D(z0)�X(z0, z0)Sj (z0), (2a)

W(z0,zm) W(zm,z0)

R(zm,zm)

S j (z0)
∆P j (z0,z0)

-

D (z0)∆Pj (z0,z0)

m = 1, 2,…,∞ ∆X(z0,z0)

zm

z0

Snj (z0)
x

Dih(z0)

Rkl (zm,zm)

Wln(zm,z0)Whk(z0,zm)

a)

b)

Figure 1. (a) WRW model for primary reflections (m > 0) in
terms of vectors and matrices, where �Pj = D�XSj at z0.
Note that W and R may include frequency-dependent disper-
sion from fine layering interference. Note also that W may in-
volve multiple raypaths. (b) One basic element of the WRW
model for primary reflections, visualized in terms of a simple
raypath (m > 0), where �X = ∑

WRW at z0.

where the transfer matrix �X(z0, z0) defines the earth’s mul-
tidimensional impulse responses for primary reflections in a
half-space z > z0 (each column represents one impulse re-
sponse):

�X(z0, z0) =
∞∑

m=1

W(z0, zm)R(zm, zm)W(zm, z0). (2b)

If �G defines the two-way Green’s functions for primary re-
flections, then we may write

�X = δz�G, (2c)

the derivative being taken at the source positions. From a
physics point of view, equation 2c means that �G and �X re-
fer to a monopole and a dipole response, respectively.

Equations 2a and 2b, developed in the late 1970s, are gen-
erally referred to as the WRW model (Berkhout, 1982). The
WRW model facilitates a conceptual formulation of primary
wavefield measurements that includes the influence of acqui-
sition geometry and mode conversion. Note that for ocean-
bottom cable (OBC) data, the detector surface z0 should be
replaced by the sea bottom z1.

The WRW model is formulated in terms of medium op-
erators and not in terms of medium parameters. This means
that equations 2a and 2b may be considered as inverse imag-
ing equations. Much more than the classical forward-modeling
equations, the inverse imaging equations give valuable in-
sight in the design of stepwise inversion algorithms (Berkhout,
1989). It is also important to realize that reflection matrix R
represents full angle-dependent elastic scattering (as it occurs
in reality), meaning that it cannot be simplified to a diagonal
matrix.

From equation 2a it follows that one trace measured by a
detector (array) at position xi as a result of a seismic source
(array) at position xj is given by the scalar (Figure 1)

�Pij (z0, z0) = D†
i (z0)�X(z0, z0)Sj (z0), (3a)

where the dagger indicates we are dealing with a row vector,
and row vector D†

i (z0) represents the detector (array) at posi-
tion xi .

If the source vectors are combined into one source matrix S,
and the corresponding primary responses at detector (array)
position xi are combined into row vector �P†

i , then equation
3a may be extended to

�P†
i (z0, z0) = D†

i (z0)�X(z0, z0)S(z0). (3b)

Equation 3b formulates the expression of a detector gather
for detector (array) position i. Note that column vector
�Pj (z0, z0) in equation 2a and row vector �P†

i (z0, z0) in equa-
tion 3b define, respectively, one column and one row of
the so-called data matrix �P(z0, z0). If the responses of all
sources under consideration are measured by the same detec-
tor distribution, then it follows from the foregoing that matrix
�P(z0, z0) can be written as

�P(z0, z0) = D(z0)�X(z0, z0)S(z0), (3c)

where the primary transfer matrix �X(z0, z0) is given by equa-
tion 2b.
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If we include any type of multiple, equation 3c can be gen-
eralized to

P(z0, z0) = D(z0)X(z0, z0)S(z0), (4a)

with z = z0 representing a stress-free surface. If we include
only internal multiples, equation 3c can be extended to

{P(z0, z0)}0 = D(z0){X(z0, z0)}0S(z0), (4b)

where the subscript { }0 denotes that the multiples related to
z0 have been removed. Similarly, we can define

{P(z0, z0)}n = D(z0){X(z0, z0)}nS(z0), (4b)

where the subscript { }n denotes that all multiples related to
z ≤ zn have been removed and that only internal multiples
related to levels z > zn are still present in the data.

We show in this paper that the expression for removing all
multiples is

�P(z0, z0) = P(z0, z0) − M(z0, z0), (5a)

with

M(z0, z0) =
∑

n

Fpr(z0, zn){P̄(zn, z0)}n−1, (5b)

and that the removal of multiples related to boundary zn only
can be written as

{P(z0, z0)}n = {P(z0, z0)}n−1 − {δM(z0, z0)}n, (5c)

with

{δM(z0, z0)}n = Fpr(z0, zn){P̄(zn, z0)}n−1. (5d)

Note that Fpr represents a multidimensional prediction filter.
The overbar above P indicates a mute of all events up to
and including the deepest indicated depth level (see also Ap-
pendix A). Equations 5a–5d include both the predicted sur-
face (n = 0) and internal (n > 0) multiples. Each column of
{P̄(zn, z0)}n−1 represents a downward-extrapolated shot record
with upward-traveling reflections at level zn; all multiples re-
lated to levels z ≤ zn−1 and all primary reflections related to
levels z ≤ zn have been removed (see also Figure A-2). Each
row of {P̄(zn, z0)}n−1 represents a CFP gather with similar re-
flections (primaries for z > zn + internal multiples for z > zn−1.
Note that for n = 0 {P̄(zn, z0)}n−1 = P(z0, z0), being the input
data with all primaries and multiples.

In the remainder of this paper we show that multiples are
always predicted by applying a multiple-prediction operator
to the seismic data with multiples related to the boundary
or layer of consideration still included (the input data). The
multiple-prediction operator should only contain reflections
from below the multiple-generating boundary or layer, with-
out including multiples related to this boundary or layer. In
practice, in the model-driven implementation, this operator is
approximated by the primaries-only response of the subsur-
face; in the data-driven implementation, the data with multi-
ples are used in the first iteration.

In Appendix A, the operator formulation for seismic wave
theory is summarized, and wavefield operators are visual-
ized in the figures. For multiple scattering we need to distin-
guish between scattering operators that transfer downward-
traveling waves into upward-traveling waves, R(zm, zm) and

X(zm, zm), and scattering operators that transfer upward-
traveling waves into downward-traveling waves, R∧(zm, zm)
and X∧(zm, zm).

SURFACE-RELATED MULTIPLES

Using the feedback model, the expression for primary wave-
fields can be extended to include surface-related multiples.
The resulting extended expression is very suitable for the
derivation of effective multiple-removal algorithms, model
driven as well as data driven.

Feedback model for surface-related multiple reflections

The WRW model for primary reflections can be easily ex-
tended to include surface-related multiples by adding a feed-
back path at the surface (Berkhout, 1982). For this situation,
we may write for a shot record with its source at position xj

Pj (z0, z0) = D(z0)�X(z0, z0)

× [Sj (z0) + R∧(z0, z0)P−
j (z0, z0)] (6a)

or

P−
j (z0, z0) = �P−

j (z0, z0) + �X(z0, z0)

× [R∧(z0, z0)P−
j (z0, z0)]. (6b)

In equations 6, boundary operator R∧ transforms upgoing
into downgoing wavefields (from upgoing to downgoing wave-
fields), and half-space operator �X transforms downgoing
into upgoing wavefields (from downgoing to upgoing wave-
fields). Considering equations 6, it follows that the expression
for the surface-related multiples is given by

{δMj (z0, z0)}0 = D(z0)�X(z0, z0)[R∧(z0, z0)P−
j (z0, z0)],

(7a)
�X(z0, z0) being given by equation 2b. Figure 2a displays the
diagram of the feedback model (equation 6a), showing the
extra multiple-generating feedback loop with respect to Fig-
ure 1a. Figure 2b visualizes one element of equation 7a in
terms of raypaths. Note that multiplication of P−

j by �XR∧

causes an extra round trip in the subsurface, transforming
primaries into first-order multiples, first-order multiples into
second-order multiples, etc.

Using equation 3c, we can also write equation 7a as

{δMj (z0, z0)}0 = �P(z0, z0)A(z0, z0)Pj (z0, z0), (7b)

where

A(z0, z0) = S−1(z0)R∧(z0, z0)D−1(z0)

≈ −[D(z0)S(z0)]−1. (7c)

In our algorithm, A is estimated from the data and the inverse
of DS is not computed.

In equations 6 and equations 7a and 7b, the influence of in-
ternal multiples in the extra round trip is neglected. If we in-
clude these multiples as well, �X needs to be replaced by {X}0
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and �P needs to be replaced by {P}0:

P−
j (z0, z0) = {P−

j (z0, z0)}0 + {X(z0, z0)}0

× [R∧(z0, z0)P−
j (z0, z0)], (8a)

{δM−
j (z0, z0)}0 = {P−(z0, z0)}0A(z0, z0)Pj (z0, z0), (8b)

{P−
j (z0, z0)}0 = P−

j (z0, z0) − {δM−
j (z0, z0)}0. (8c)

Bear in mind that in equations 8, {X}0 and {P}0 refer to re-
sponses of a lower half-space (z > z0) with a reflection-free
upper half-space (z ≤ z0). Hence, {δM}0 = P − {P}0 represents
the surface-related multiples.

Note also that multiplication of Pj by {P−}0A causes an ex-
tra round trip in the subsurface, where this bounce includes
internal multiples (compare equations 7b and 8b). The full
model for surface-related multiples is shown in Figure 2c.

Sj (z0)

P j (z0,z0)
-

D(z0)Pj (z0,z0) +(z0,z0)

W(z0,zm) W(zm,z0)

R(zm,zm)

m = 1, 2,...,∞∆X(z0,z0)

zm

z0

Snj (z0)
x

Dih(z0) R∧∧∧∧

R∧

(z0,z0)

R(zm,zm)

x x x

Sj (z0)

P j (z0,z0)
-

D(z0)Pj (z0,z0) +

{X(z0,z0)}0

R∧∧∧∧(z0,z0)

a)

b)

c)

∧∧∧∧

Figure 2. (a) Feedback model for primary reflections (m > 0)
and surface-related multiples using the boundary formulation,
the multiple-generating boundary being given by z0 = z0(x,
y) and the downward-reflection operators of this boundary
being represented by the columns of the matrix R∧(z0, z0).
Here, P−

j = �P−
j + �XR∧P−

j at z0; Pj = DP−
j . (b) One ba-

sic element of the prediction process for surface-related mul-
tiples, visualized in terms of simple raypaths (m > 0), where
M−

j = �XR∧P−
j at z0; Mj = DM−

j . (c) Feedback model similar
to (a), but now internal multiples are included as well. Here,
P−

j = {P−
j }0 + {X}0R∧P−

j at z0; Pj = DP−
j .

Removal of surface-related multiples:
The boundary formulation

From equation 7a it follows that the surface-related multi-
ples are given by

{δMj (z0, z0)}0 = Fpr(z0, z0)P−
j (z0, z0), (9a)

with prediction filter

Fpr(z0, z0) ≈ D(z0)�X(z0, z0)R∧(z0, z0) (model driven).

(9b)
Alternatively, the surface-related multiples, as expressed in
equation 8b, can be rewritten as

{δMj (z0, z0)}0 = Fpr(z0, z0)Pj (z0, z0), (9c)

with prediction filter

Fpr(z0, z0) = {P(z0, z0)}0A(z0, z0) (data driven). (9d)

In equations 9b–9d, �X is given by equation 2b, {P}0 rep-
resents the measurements without surface multiples, and A
is given by equation 7c. Note that in the expression of the
model-driven version of Fpr, as given by equation 9b, the inter-
nal multiples have been neglected. If internal multiples can be
modeled, then �X must be replaced by {X}0 and equation 9b
becomes exact. From equations 2b and 9b we may conclude
that the prediction filter for surface-related multiples is far
from simple. First, it is not only a multichannel filter, but it
is also a multirecord filter (Fpr is not Toeplitz). Second, each
trace of the multirecord filter (one column of Fpr) represents
a scaled response of the subsurface that includes all primaries
and internal multiples.

Hence, for complex subsurfaces, the prediction operator
may become very complex. From equations 9c and 9d, it fol-
lows that one multiple trace is given by

{δMij (z0, z0)}0 = F†
pri

(z0, z0)Pj (z0, z0), (10a)

with

F†
pri

(z0, z0) = {Pi(z0, z0)}†0A(z0, z0). (10b)

In equations 10 the source (array) is located at xj and the re-
ceiver (array) is at xi . The inner product of the two vectors
in equation 10a describes a weighted summation of the oper-
ator wavefield and the total wavefield along the downward-
reflecting surface locations (Figure 2b). It means that the
source locations of the prediction operator are combined with
receiver locations of the data.

If we want to compensate for small errors in the prediction
result, the straightforward subtraction,

{Pij (z0, z0)}0 = Pij (z0, z0) − {δMij (z0, z0)}0, (11a)

must be replaced by an adaptive subtraction,

{Pij (z0, z0)}0 = Pij (z0, z0) − F†
lsi

(z0, z0){δMij (z0, z0)}0,

(11b)
F†

lsi (z0, z0) being a gentle least-squares filter that minimizes the
difference in the subtraction (Verschuur, 1991). Note that the
extension to adaptive subtraction, as formulated in equation
11b, can be used in any prediction-error process.
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Equation 9b shows that in the model-driven version, a sub-
surface model must be specified, and �X(z0, z0) must be com-
puted according to equation 2b. This model may be simplified
by including the strong reflectors only. Also, the spatial sam-
pling interval of �X is user controlled. This is an important ad-
vantage of the model-driven version for 3D data. Equation 9d
shows that, in the data-driven version, response {P(z0, z0)}0

must be available. It has been shown that {P(z0, z0)}0 may be
replaced by the total response P(z0, z0), leading to an iterative
application (Berkhout and Verschuur, 1997). It is our expe-
rience that, in practice, three iterations at most are needed.
In the last decade, many successful field-data examples have
been shown on surface-related multiple removal. For recent
illustrations see Hadidi et al. (1995, 2002), Verschuur and
Berkhout (1997), Dragoset and Jeričević (1998), Guitton and
Cambois (1999), and Verschuur and Prein (1999).

Removal of surface-related multiples:
The layer formulation

The distribution of sources and detectors in 3D seismic ac-
quisition is not well suited for data-driven, surface-related
multiple removal as given by equation 8b: source and/or de-
tector distributions are relatively sparse, and source and de-
tector locations generally do not coincide. This makes it diffi-
cult in equation 8b to estimate transfer operator A(z0, z0) in
a meaningful way. An interesting solution is obtained by re-
placing surface boundary z0 by surface layer (z0, z1), meaning
that the downward-scattering operators R∧(z0, z0) must be re-
placed by the downward-scattering operators �X∧(z1, z1) —
from boundary operator to layer operator. If z1 is situated in
the water layer, then �X∧(z1, z1) simplifies to

�X∧(z1, z1) = W(z1, z0)R∧(z0, z0)W(z0, z1). (12a)

Equation 12a formulates upward propagation from z1 to z0,
reflection against the surface (z0), and downward propagation
from z0 to z1. These simple responses should be provided by
the user. Figure 3a diagrams this extended feedback model.
The 4D operator �X∧(z1, z1) connects the source and detector
positions of the source and detector gathers at depth level z1

(Figure 3b):

{δMj (z0, z0)}0 = {P(z0, z1)}0�X∧(z1, z1)P−
j (z1, z0),

(12b)
�X∧(z1, z1) being given by equation 12a. In equation 12b,
P−

j (z1, z0) is the shot record with its source position at (xj , z0)
and its detectors at z1:

P−
j (z1, z0) = Γ(z1, z0)P−

j (z0, z0), (13a)

with Γ(z1, z0) containing the downward extrapolation opera-
tors on the detector side. Similarly, {P(z0, z1)}0 is the data with
detectors at z0 and sources at z1:

{P(z0, z1)}0 = {P(z0, z0)}0Γ(z0, z1), (13b)

with Γ(z0, z1) containing the downward extrapolation opera-
tors on the source side.

SURFACE-RELATED AND INTERNAL MULTIPLES

The expressions obtained for the process of surface-related-
multiple removal can be extended to include the case of
internal-multiple removal. For the input of the internal-
multiple-removal procedure, we assume that all multiples
related to levels z ≤ zn−1 are removed in a previous
multiple removal step, resulting in the data {Pj (z0, z0)}n−1.
Let {Pj (zn, z0)}n−1 represents a downward-extrapolated shot
record of such input data,

{Pj (zn, z0)}n−1 = Γ(zn, z0){Pj (z0, z0)}n−1, (14a)

with its source position at (xj , z0) and its detector positions at
zn. If we define, in accordance with equation 2b,

�X̄(z0, zn) =
∞∑

m=n+1

W(z0, zm)R(zm, zm)W(zm, zn),

(14b)
then equation 7a can be generalized to (model-driven ver-
sion):

{δMj (z0, z0)}n ≈ D(z0)�X(z0, zn)

× [ R∧(zn, zn){P̄−
j (zn, z0)}n−1] (14c)

and equation (8b) can be generalized to (data-driven version)

{δMj (z0, z0)}n = {P̄(z0, zn)}nA(zn, zn){P̄j (zn, z0)}n−1,

(14d)
where n = 0, 1, 2, . . . ∞. Note that n = 0 represents the surface-
related case.

W(z1,zm) W(zm,z1)

Sj (z0)

Pj (z1,z0)
-

m = 2, 3,…,∞ 

∆X∧∧∧∧(z1,z1) +Pj (z0,z0) D(z0)W(z0,z1) W(z1,z0)

∆X(z1,z1)

R(zm,zm)

Sj (z1,z0)
+

zm

z0

Snj (z0)
x

Dih(z0)

z1

∆X∧∧∧∧(z1,z1)

∆X(z1,z1)

R(zm,zm)

a)

b)

Figure 3. (a) Feedback model for primary reflections (m > 1)
and surface-related multiples using the layer formulation, the
multiple-generating layer being given by z0 ≤ z ≤ z1, and
the downward-scattering operator of this layer being given
by �X∧(z1, z1). Here, P−

j = �P−
j + �X�X∧P−

j at z1; Pj =
DWP−

j . (b) One basic element of the prediction process for
surface-related multiples, visualized in terms of simple ray-
paths (zm > z1). Here, �M−

j = �X�X∧P−
j at z1; �Mj =

DW�M−
j .
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In equation 14d, A(zn, zn) is a scaled version of R∧(zn, zn),
{P̄−

j (zn, z0)}n−1 is a muted version of {P−
j (zn, z0)}n−1, and

{P̄(z0, zn)}n is the muted version of {P(z0, zn)}n. Muting in both
cases means removing the reflections for z ≤ zn. This is consis-
tent with the notation introduced in equation 4a and further
explained in Appendix A.

Figure 4a displays the diagram for this version of the feed-
back model, showing the multiple-generating feedback loop.
Figure 4b shows one element of equation 14c in terms of ray-
paths.

Considering equations 14c and 14d, the expression for all
types of multiples can be easily established:

Mj (z0, z0) ≈ D(z0)
∞∑

n=0

�X(z0, zn)

× R∧(zn, zn){P̄−
j (zn, z0)}n−1, (15a)

or

Mj (z0, z0) =
∞∑

n=0

{P̄(z0, zn)}nA(zn, zn){P̄j (zn, z0)}n−1,

(15b)
where {P̄(z0, zn)}n and {P̄j (zn, z0)}n−1 are computed by down-
ward extrapolation followed by muting. Note that for n = 0,
{P̄j (zn, z0)}n−1 = Pj (z0, z0).

If we substitute equation 14b into equation 15a and inter-
change the two summations, we obtain:

Mj (z0, z0) = D(z0)
∞∑

m=1

W(z0, zm)R(zm, zm)P+
j (zm, z0),

(16a)
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Figure 4. (a) Feedback model for primary reflections (m >
n) and internal multiples using the boundary formulation,
the multiple-generating boundary being zn = zn(x, y) with
n > 0, and the downward reflecting operators at this bound-
ary being given by the columns of the matrix R∧(zn, zn). Here,
P−

j = �P−
j + �XR∧P−

j at zn; Pj = DWP−
j . (b) One basic el-

ement of the prediction process for boundary-related internal
multiples (n > 0), visualized in terms of simple raypaths (m >
n). Here, δM−

j = �XR∧P−
j at zn; δMj = DWδM−

j .

with

P+
j (zm, z0) =

m−1∑

n=0

W(zm, zn)R∧(zn, zn)X(zn, z0)Sj (z0)

(16b)
for m = 1, 2, . . . , M . Note that equation 16a can be directly
obtained from the WRW model for primary reflections if we
replace in equation 1b the primary-source wavefield S+

j (zm, z0)
by a multisource wavefield P+

j (zm, z0). Therefore, equations
16 represent the WRW model for multiple reflections. Note
also that our multiple removal algorithms are not based on
multiple scattering equations 16 but on feedback equations 15.

Removal of internal multiples: The boundary formulation

For the removal of internal multiples, we assume that the
relatively strong surface-related multiples have been removed
already. If we replace in equation 9a the multiple-generating
surface z0 by the internal multiple-generating surface zn, then
it follows from equations 14c and 14d that the algorithm for
the internal multiples can be formulated as

{δMj (z0, z0)}n = Fpr(z0, zn){P̄−
j (zn, z0)}n−1 for n > 0,

(17a)
with prediction filter

Fpr(z0, zn) ≈ D(z0)�X(z0, zn)R∧(zn, zn)

(model driven), (17b)

or as

{δMj (z0, z0)}n = Fpr(z0, zn){P̄j (zn, z0)}n−1 for n > 0,

(17c)
with prediction filter

Fpr(z0, zn) = {P̄(z0, zn)}nA(zn, zn) (data driven).

(17d)
In equations 9b–9d, �X(z0, zn) is given by equation 14b, and
A(zn, zn) represents the scaled version of R∧(zn, zn). Note that
the algorithm for surface-related multiples, based on equa-
tions 9a and 9b, is very similar to the algorithm for internal
multiples, based on equations 17a and 17b: shot records with
detectors at the surface must be replaced by shot records with
detectors at depth level zn. Similarly, comparing equations 9c
and 9d with equations 17c and 17d, shot records with sources
at the surface must be replaced by shot records with sources
at depth level zn. In marine data, internal multiples are gen-
erally weaker than surface multiples. This means that in the
data-driven algorithm, based on equations 17c and 17d, one
iteration is often sufficient.

The first synthetic example of internal multiple removal
based on equation 17d is shown in Berkhout (1982). A first
field-data study was reported by Hadidi and Verschuur (1997).
Based on the inverse-scattering approach, Matson et al. (1999)
also demonstrated the internal-multiple removal on a field-
data example.

Downloaded 05 Nov 2012 to 131.180.130.198. Redistribution subject to SEG license or copyright; see Terms of Use at http://segdl.org/



Internal Multiple Removal — Part 1: Theory V51

Removal of internal multiples: The layer formulation

Similar to what was proposed for the surface-related mul-
tiples from boundary to layer, see equations 12a and 12b, we
also extend internal-multiple removal to the layer approach,
replacing boundary operator R∧(zn, zn) in equation 17b with
layer operator �X∧(zn, zn). To show this, we extend equa-
tion 17b in three steps. First, we define a single downward-
scattering boundary at zn (n > 0):

Fpr(z0, zn) = D(z0)�X(z0, zn)R∧(zn, zn). (18a)

Then we define a single downward-scattering boundary at
zk < zn (n > 0):

Fpr(z0, zn) = D(z0)�X(z0, zn)

× [W(zn, zk)R∧(zk, zk)W(zk, zn)] (18b)

Finally, we define multiple downward-scattering boundaries
between zl and zn (l < n):

Fpr(z0, zn) = D(z0)�X(z0, zn)

×
n∑

k=l

[W(zn, zk)R∧(zk, zk)W(zk, zn)]. (18c)

If we define

{�X∧(zn, zn)}ln =
n∑

k=l

[W(zn, zk)R∧(zk, zk)W(zk, zn)],

(19a)
then equation 18c can be rewritten as

Fpr(z0, zn) = D(z0)�X(z0, zn){�X∧(zn, zn)}ln, (19b)

leading to the expression of the internal multiples generated
by a downward-scattering layer:

{�Mj (z0, z0)}ln ≈ D(z0)
[
�X(z0, zn){�X∧(zn, zn)}ln

]

×{P̄−
j (zn, z0)}n−1, (model driven) (19c)

with �X(z0, zn) given by equation 14b, {�X∧(zn, zn)}l
n given

by equation 19a, and n > 0. Note that in equation 19b, predic-
tion filter Fpr is model driven and is O(r2), where r is the av-
erage reflection strength in the data. This means the predicted
internal multiples are O(r3).

Figure 5a displays the diagram for this version of the feed-
back model. Note the similarity between Figures 5a and 3a.
Note also that {�X∧(zn, zn)}l

n contains the primary reflections
from the reflectors at zl ≤ z < zn, measured at depth level zn

and seen from below. If a model of the subsurface is available
(only main reflectors are required), {�X∧(zn, zn)}l

n can easily
be computed by equation 19a. If this model is not available,
the following data-driven version is proposed.

First, start with {P(zn, z0)}l−1, meaning that sources are situ-
ated at the surface and detectors at depth level zn, from which
multiples to depth level zl−1 have already been removed, and
downward extrapolate the sources to depth level zn, i.e.,

{P(zn, zn)}l−1 = {P(zn, z0)}l−1Γ(z0, zn). (20a)

Next, use the causal part of the time-reversed version of
{P(zn, zn)}l−1 as an estimate for the downward-scattering op-

erator, i.e.,

{�X∧(zn, zn)}ln ≈ −{�Q(zn, zn)}ln, (20b)

with {�Q(zn, zn)}l
n containing only primary reflection events

between levels zl ≤ z < zn, as seen from depth level zn. This
leads to the expression of the internal multiples generated by
the downward-scattering layer (zl, zn):

{�Mj (z0, z0)}ln ≈ −{P̄(z0, zn)}n{�Q(zn, zn)}ln
×{P̄j (zn, z0)}n−1 (data driven) (20c)

for n > 0.
Note that in equations 20b and 20c, the internal multiples

in layer (zl, zn) are not included in the prediction operator.
This means that, in practice, this layer is always chosen around
one major reflecting boundary (see Berkhout and Verschuur,
2005; hereafter referred to as part 2). In practice, it is also ad-
visable to choose for zl = zl(x, y) and zn = zn(x, y) virtual
boundaries in areas of weak reflectivity to avoid sensitivity
for errors in the causal-noncausal separation process, caused
by the kinematic errors in the downward-extrapolation oper-
ators.

The velocity independence of internal-multiple prediction
has been stated by Araujo et al. (1994) using an inverse-
scattering-series formulation (see also Weglein et al., 1997).
In Appendix B, we confirm this statement but indicate some
limitations of this property in complex geology.
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Figure 5. (a) Feedback model for primaries and internal mul-
tiples, the multiples being generated by upward scattering in
the lower half-space (z > zn), quantified by the feed-forward
operators WRW and the downward scattering in the upper
half-space (z1 ≤ z < zn), quantified by the feedback operators
WR∧W. Here, P−

j = �P−
j + �X�X∧P−

j at zn; Pj = DWP−
j .

(b) One basic element of the data-driven prediction process
for layer-related internal multiples (n > 0), visualized in terms
of simple raypaths (m > n). Here, �M−

j = �X�X∧P−
j at zn;

�Mj = DW�M−
j .
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Iterative application

Similar to the surface-multiple removal algorithm, internal
multiples can be removed in an iterative way. This allows us
to replace {P̄(z0, zn)}n by {P−(zn, z0)}T

n−1 in equation 20c in the
first iteration, with T indicating the adjoint. Generally, one it-
eration is sufficient.

IMPLEMENTATION OF THE ALGORITHM

Looking at the expressions that describe the data-driven
prediction of surface-related multiples in the layer formula-
tion (equation 12b) and the prediction of internal multiples in
the boundary formulation (equations 17c and 17d), as well as
the layer formulation (equations 20), we observe that seismic
data are required with sources at the surface and receivers in
the subsurface, or vice versa. Except for ocean-bottom seismic
data, such gathers are not directly available in practice. There-
fore, these gathers must be constructed from the measured
surface data. Looking at the construction of layer-related in-
ternal multiples (referring to Figure 5b for the model-driven
case and equation 20c for the data-driven implementation) for
one source-receiver location, this can be written as (omitting
the multiple removal level indications)

�Mij (z0, z0) = −P̄†
i (z0, zn)�Q(zn, zn)P̄j (zn, z0). (21a)

This requires the time-reversed, muted double-focused gath-
ers �Q(zn, zn); a downward-extrapolated common-receiver
gather P̄†

i (z0, zn) with its receiver at surface position xi and
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Figure 6. (a) The data-driven prediction process shown for
layer-related internal multiples, organized for one pair of grid-
points at the surface (i and j are fixed) and many gridpoints in
the subsurface (k and l are variable). This leads to an algo-
rithm that handles downward-extrapolated shot records. (b)
The data-driven prediction process shown for layer-related in-
ternal multiples, organized for one pair of gridpoints in the
subsurface (k and l are fixed) and many gridpoints at the sur-
face (i and j are variable). This leads to an algorithm that han-
dles CFP gathers.

the source locations at depth level zn; and a downward-
extrapolated common-source gather P̄j (zn, z0) with its source
at surface position xj and the detector locations at depth level
zn. Equation 21a describes two spatial convolutions at level zn,
which can be rewritten more explicitly as

�Mij (z0, z0) = −
∑

k,l

P̄ik(z0, zn)�Qkl(zn, zn)P̄lj (zn, z0),

(21b)
showing how the layer-related internal multiples for one out-
put trace are generated. For boundary-related internal-mul-
tiple prediction, the layer-related reflectivity is replaced by a
boundary-related reflectivity. The latter is generally simplified
to a scalar.

Thus far, we have organized the algorithm per surface grid-
point, i.e., in equation 21b, surface locations i and j are fixed
and subsurface locations k and l vary. However, the algorithm
can also be organized per subsurface gridpoint, meaning that
subsurface locations k and l from equation 21b are now fixed
and surface locations i and j vary. This is illustrated in Figure 6.
For the second implementation, the downward-extrapolated
surface data are re-sorted into gathers with one point in the
subsurface and many points at the surface. The partial con-
tributions per shot record are thus replaced by partial contri-
butions per so-called CFP gather (see also part 2). Berkhout
(1997a) describes this by a focusing-in-detection process to ob-
tain gathers with sources at the surface and one common re-
ceiver in the subsurface and by a focusing-in-emission process
to obtain gathers with receivers at the surface and one com-
mon source in the subsurface. The resulting seismic gathers
are referred to as CFP gathers.

By considering the multiple-prediction process in terms of
CFP gathers, muting becomes a straightforward process be-
cause the involved focusing operator acts as the mute line (see
next section). Furthermore, in the case of boundary-related
multiple removal, operator updating can easily be applied to
correct for operator errors (see part 2). The actual implemen-
tation has therefore been done in terms of CFP gathers, i.e.,
according to Figure 6b. This means that all CFP gathers are
created along the desired level first, followed by convolving
the CFP gathers for each subsurface gridpoint pair. Hence,
the total contribution of each subsurface gridpoint pair to the
final predicted internal multiples is computed for all source–
receiver combinations at the surface.

Muting in the CFP domain

Our algorithm shows that, for the removal of internal mul-
tiples, a muting process must be applied to the focused seis-
mic data to remove all reflections that have their downward
bounce above and including depth level zn — from Pj (zn, z0)
to P̄j (zn, z0). Earlier we argued that, in the CFP domain,
muting becomes a rather straightforward process because the
time-reversed focusing operator can be used to separate the
events from below and above this level. This can be under-
stood easily by considering the principle of equal traveltime
as stated in Berkhout (1997a): If the focusing operator is cor-
rect, the time-reversed focusing operator will coincide in time
with the corresponding reflection event in the CFP gather.
Therefore, this time-reversed focusing operator defines the
mute curve for removing events from above the depth level of
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interest. This important feature will be demonstrated in the
examples in the Numerical Illustrations section.

Focusing operator updating for
boundary-related multiple prediction

In the situation of boundary-related internal-multiple re-
moval, it is important that the CFP gathers be constructed
with correct focusing operators. Erroneous CFP gathers lead
to an erroneous multiple-prediction result. Berkhout (1997a)
shows that correct operators can be achieved in a velocity-
independent manner using the focusing operator updating
procedure. Examples of this updating process are shown by
Morton (1996), Thorbecke (1997), Bolte et al. (1999), and
Berkhout and Verschuur (2001). In part 2, the subject of fo-
cusing operator updating is treated more extensively.

Construction of gridpoint gathers for
layer-related multiple prediction

For the layer formulation of multiple prediction, the
downward-scattering operators of the chosen layer need to
be specified. For surface-related multiples, this is surface layer
(z0, z1); the involved operators �X∧(z1, z1) describe the down-
ward reflection against the surface with sources and receivers
positioned at depth level z1. Assuming that level z1 is located
in the water layer, these scattering operators are easily con-
structed in a model-driven manner (see equation 12a). In the
case of internal multiples, the downward-scattering operators
�X∧(zn, zn) can also be constructed in a model-driven way,
assuming that a model of the multiple-generating reflectors is
available. Equations 20a and 20b show how �X∧(zn, zn) can
be obtained in a data-driven manner. It requires application
of a second focusing step to the CFP gathers, resulting in fully
redatumed shot records, each record having its source and
receivers at depth level zn. In Berkhout (1997b) these gath-
ers are called gridpoint gathers. Each gridpoint gather con-
tains the angle-averaged reflection information of its gridpoint
at zero time and zero offset. The angle-dependent reflect-
ing properties can be obtained by applying a linear Radon
transformation and looking at zero intercept time (τ = 0).
Furthermore, in this domain, the reflections from above and
below depth level zn can be separated easily by consider-
ing the negative and positive τ -values, respectively. There-
fore, the downward-scattering from above level zn can be
obtained by reversing the τ -axis and muting the data for
τ < 0.

As stated in Appendix B, the layer-related approach to
multiple prediction does not require accurate focusing oper-
ators as long as events from above and below the bottom
of the layer can be separated by muting. This is illustrated
by the numerical examples in the Numerical Illustrations
section.

Recursive application of internal-multiple removal

Both the boundary-related and layer-related approaches to
internal-multiple removal can be applied in a recursive man-
ner, such that all relevant multiple-generating structures are
included. For the boundary-related approach, the subsurface
is scanned boundary by boundary. Equations 17c and 17d can

be repeated, each recursion using the output of the previous
process as input for the next. Optionally, this can be imple-
mented as part of the migration process, as formulated by
Berkhout (1982). In the case of the layer-related approach, the
subsurface model is scanned layer by layer. The output of the
previous recursion is again used as input for the next process,
according to equations 20.

NUMERICAL ILLUSTRATIONS

In the following, the theory of the boundary-related and
layer-related approaches to internal-multiple removal is illus-
trated with numerical examples. For this purpose, two syn-
thetic data sets are used from 2D subsurface models with one
and two (closely spaced) internal-multiple-generating reflec-
tors, respectively. Data are simulated using ray tracing. The
source and receiver spacing is 25 m, and the maximum fre-
quency within the source signal is 30 Hz.

Example with one internal-multiple-generating reflector

The first subsurface model under consideration is depicted
in Figure 7; it consists of three reflectors, the upper two be-
ing dipping (+3◦, and −5◦, respectively). In this example we
concentrate on the internal multiples generated by downward
reflection at the first reflector. In Figure 8, the zero-offset
section is displayed. There are no surface multiples. Internal
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Figure 7. Subsurface model with three dipping reflectors.
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multiples for the subsurface model of Figure 7.
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Figure 9. Shot record {Pj (z0, z0)}0 with its source at x = 2100
m, showing primaries and internal multiples for the subsurface
model of Figure 7.
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Figure 10. CFP gather for one focus point at reflector 1. (a) CFP gather before muting
{Pi(z1, z0)}†0; (b) time-reversed focusing operator [Γ∗

i (z1, z0)]†; (c) CFP gather after
muting {P̄i(z1, z0)}†0. The arrow points to a muting problem.
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Figure 11. Internal-multiple-removal result for the boundary-related approach, the
boundary being reflector 1. (a) Input shot record {Pj (z0, z0)}0; (b) predicted internal
multiples {δMj (z0, z0)}1; (c) result after adaptive subtraction {Pj (z0, z0)}1. The upper
arrow points to a remaining multiple at far offset, caused by the muting problem
indicated in Figure 10c. Of course, the internal multiples generated by reflector 2 are
still present (see lower arrow).

multiples, the majority of them being related to the first re-
flector, are clearly visible. They have been indicated in the
figure by a sequence of bounces (upward–downward–upward,
etc.). With this data set, the two data-driven internal-multiple-
removal approaches are illustrated: first, the boundary-related
formulation is used; then, the layer-related formulation. The
results are shown for a shot located at x = 2100 m. Figure 9
shows this shot record with internal multiples. The two peg-leg
internal multiples (events 3-1-2 and 2-1-3) coincide in the zero-
offset section (Figure 8), but they are two separated events in
the shot record (Figure 9).

For all boundary-related examples, we consider the use of
focusing operators without errors. The aspects of erroneous
operators, together with operator updating, are treated in
part 2.

Boundary-related approach with
correct operators

For the boundary-related approach, the
CFP gathers with focus points along the
boundary of interest (reflector 1 for our
example) must be calculated. The CFP
gather for a selected focus point at the
first reflector (x = 2100 m) is shown in
Figure 10a. Figure 10b displays the time-
reversed focusing operator that was used
to calculate this CFP gather. Since the
depth of the first reflector and the velocity
above this reflector were correct, this op-
erator indeed coincides with the first re-
flection event in the CFP gather (principle
of equal traveltime). Therefore, the oper-
ator times can be used to apply an auto-
matic mute to this CFP gather (see Fig-
ure 10c). After automatically muting all
CFP gathers, a prestack multigather con-
volution is applied according to equations
17c and 17d. The result for the shot of
Figure 9 (repeated in Figure 11a) is dis-
played in Figure 11b, showing the pre-
dicted (unscaled) internal multiples. An
adaptive least-squares subtraction from
the input yields the multiple-free estimate
(Figure 11c).

Note some remaining multiples for
large offsets below the third reflection (at
the upper arrow in Figure 11c). They oc-
cur because during the muting process
(see Figure 10a,b), part of the second pri-
mary event was removed. This results in
an incomplete predicted multiple with re-
spect to the multiple events that have
bounced at the second reflector. This in-
terference problem could be accommo-
dated by replacing muting along the oper-
ator by a least-squares subtraction of the
operator from the data. As expected, the
internal multiple related to the second re-
flector (event 3-2-3 in Figure 9) has not
been predicted and consequently is still
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visible around 3.0 s in the multiple-free esti-
mate. Note also that the second-order mul-
tiple has not been fully removed because
the first iteration does not predict second-
order multiples (event 2-1-2-1-2 in Figure 9)
with correct amplitudes. To fully remove this
second-order multiple, a second iteration of
equations 17c and 17d is required, using the
output of the first iteration as the multiple
prediction operator, similar to the algorithm
for surface multiples (see Berkhout and Ver-
schuur, 1997).

Layer-related approach
with correct operators

The same multiple-removal result can be
obtained if an arbitrary depth level be-
tween reflectors 1 and 2 is chosen for con-
structing the focusing operators. However,
as described by equation 18b, not the downward-reflection op-
erators (in the previous example assumed to be a scalar) but
the full downward-scattering operators must included now.
For the subsurface model under consideration, a horizontal
level A at 800 m depth (i.e., between the first two reflectors) is
chosen. First, CFP gathers related to this datum level are cal-
culated (as shown in Figure 12a). In this display, the operator
(Figure 12b) has traveltimes between the first two reflections,
as expected. The muted version of these CFP gathers (Figure
12c) is used in the multiple prediction. Note that Figure 12c
uses a different time axis for display, by which deeper events
become visible.

The computed CFP gathers describe the wavefield for
sources at the datum level and receivers still at the surface
(first focusing step). Next, a second focusing step is applied
to these CFP gathers (without muting): both sources and re-
ceivers are now at the datum level. The resulting data vol-
ume consists of so-called gridpoint gathers: fully redatumed
shot records at datum level A. For the lateral location under
consideration (x = 2100 m), the gridpoint
gather is shown in Figure 13a. The anti-
causal part of this gridpoint gather contains
the scattering from above; the causal part
contains the scattering from below. By se-
lecting the anticausal part and reversing the
time axis (see Figure 13b), the operators
are retrieved that form the required scaled-
downward scattering matrix �Q(zn, zn). Ac-
cording to equations 18a and 18b, the
CFP gathers and the downward-scattering
matrix are combined in a lateral convolu-
tion process to predict the internal mul-
tiples, as displayed in Figure 14b. After
adaptive subtraction, a multiple-free shot
record is obtained (Figure 14c). Note the
strong resemblance (as expected) to the re-
sult obtained by considering reflector 1 as
the datum level (Figure 11c). Note also
that the layer-related result is better for the
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Figure 12. CFP gather for one focus point at depth level A (see Figure 7).
(a) CFP gather before muting {Pi(zA, z0)}†0; (b) time-reversed focusing operator
[Γ∗

i (zA, z0)]†; (c) CFP gather after muting {P̄i(zA, z0)}†0. Note the different time axes
used for display in (a) and (b) versus (c).
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Figure 13. Gridpoint gather for one focus point at depth
level A (see Figure 7). (a) Gridpoint gather without mute
{Pj (zA, zA)}0; (b) gridpoint gather after time reversing and
muting at t = 0, i.e., causal response {�Qj (zA, zA)}A.
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Figure 14. Result of internal-multiple removal for the layer-related approach at
level A (see Figure 7). (a) Input shot record {Pj (z0, z0)}0; (b) predicted internal
multiples {�Mj (z0, z0)}A; (c) result after adaptive subtraction of the internal multi-
ples {Pj (z0, z0)}A. Compare with Figure 11.
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rightmost offsets (compare Figure 14c with Figure 11c). The
reason for this is the improved CFP muting process in the
layer-related approach. It shows the importance of the mut-
ing step in internal-multiple removal.
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Figure 15. Homogeneous subsurface model for testing layer-
related internal-multiple removal with incorrect operators.
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Figure 16. Erroneous CFP gather for one focus point at depth level B (see Fig-
ure 15), using the data of the model in Figure 7. (a) CFP gather {Pi(zB, z0)}†0 for
x = 2100 m; (b) time-reversed focusing operator [Γ∗

i (zB, z0)]†; (c) CFP gather
after muting, i.e., {P̄i(zB, z0)}†0. Note the different time axes used for display in
(a) and (b) versus (c).
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Figure 17. Erroneous gridpoint gather for one focus point
at depth level B (see Figure 15). (a) Gridpoint gather
{Pj (zB, zB)}0 for x = 2100 m; (b) gridpoint gather after
time reversing and muting at t = 0, i.e., causal response
{�Qj (zB, zB)}B .

Layer-related approach with incorrect operators

From our theory, it follows that the exact subsurface model
does not need to be known. Any subsurface model is allowed,
as long as a suitable time level can be chosen such that mut-
ing can be applied in the CFP gathers and gridpoint gath-
ers to distinguish between events from above and below the
multiple-generating boundary. In practice, the chosen effec-
tive medium should not have higher velocities than the true
medium, as this will limit the angles in the predicted multiples.
Therefore, we now consider a homogeneous medium with a
velocity of 1800 m/s and define a depth level B at z = 1000 m
(see Figure 15). This means that the operators used to cre-
ate the CFP gathers are simple hyperbolic operators with a
zero-offset, one-way time of 0.56 s. With these operators, CFP
gathers can be constructed for all focus points located along
the virtual boundary B.

Figure 16a shows one CFP gather for lateral location
x = 2100 m. Figure 16b displays the hyperbolic travel-
times of the time-reversed focusing operator. As expected,

the operator does not coincide with any of the
reflection events because the operator was cre-
ated using a wrong model. The CFP gathers
are muted along the operator times (Figure
16c). Next, gridpoint gathers are constructed
for all points along level B. One example
of such a gridpoint gather is shown in Fig-
ure 17a. Note that the erroneous CFP gathers
and erroneous gridpoint gathers can no longer
be interpreted as actual physical experiments.
However, the operators in the homogeneous
model have the property that muting causes
the desired time separation of events. From
the gridpoint gathers, only the time-reversed,
noncausal part is needed (Figure 17b). Next,
a convolution of the three data sets is ap-
plied: the muted CFP gathers with the time-
reversed, muted gridpoint gathers and again
with the muted CFP gathers, in accordance
with equations 18a and 18b. The resulting pre-
dicted multiples are shown in Figure 18b. Note
the resemblance to the previous multiple–

prediction results, showing that the layer-related approach can
accommodate velocity errors.

Example with a multiple-generating reflector pair

All of the foregoing experiments have been repeated for
a more complex subsurface model, as depicted in Figure 19.
The difference from the previous model is that the first re-
flector is replaced by two closely spaced reflectors. The inter-
nal multiples under consideration are now generated by this
complex reflector. In Figure 20, the zero-offset section is dis-
played. Again, surface-related multiples were not included in
the modeling. Furthermore, the thin-layer multiples between
the reflector pair are neglected. Compared to Figure 8, inter-
nal multiples now appear in pairs. They are indicated in Figure
20 by the sequence of bounces (upward–downward–upward,
etc.), where the top two reflectors are called 1a and 1b.
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Again, the boundary-related and layer-related
approaches of internal-multiple removal will be
demonstrated.

Boundary-related approach
with correct operators

For the boundary-related approach, reflec-
tor 1b is chosen, i.e., the lower of the reflec-
tor pairs. First, the CFP gathers related to fo-
cus points along this boundary are calculated.
The CFP gather for one lateral position (x =
2100 m) is shown in Figure 21a. The time-reversed
focusing operator used to calculate this CFP
gather is displayed in Figure 21b. The princi-
ple of equal traveltime is fulfilled for the sec-
ond event in the data. Next, the first two events
are muted along the operator times (see Figure
21c). After muting all CFP gathers, a multigather
convolution is applied according to equations 17a and 17c. The
result for the lateral position under consideration (x = 2100 m)
is shown in Figure 22b, defining the predicted (unscaled) in-
ternal multiples. An adaptive least-squares subtraction from
the input yields the multiple-free estimate (Figure 22c). Note
that only internal multiples related to boundary 1b are
predicted.

Layer-related approach with incorrect operators

Theory shows that the layer-related approach should fully
remove the complete effect of the two multiple-generating re-
flectors. Results can be obtained with incorrect operators as
a result of velocity errors (see Appendix B). To demonstrate
this, we use operators based on the virtual boundary at level
B in the homogeneous medium of Figure 15. With these erro-
neous operators, CFP gathers can be constructed for all focus
points located along the virtual boundary at level B (see Fig-
ure 15). The muted CFP gathers (displayed in Figure 23b) will
be used in the multiple-prediction step.

To construct the gridpoint gathers, a second focusing step
is applied to the CFP gathers (without muting): both sources
and receivers are now at the datum level. By selecting the
anticausal part and reversing the time axis,
the required scaled, downward-scattering matrix
�Q(zn, zn) is obtained. For the lateral position
under consideration (x = 2100 m), the time-
reversed, muted gridpoint gather is shown in Fig-
ure 23b. The convolution of three data sets —
the muted CFP gathers with the time-reversed,
muted gridpoint gathers and again with the muted
CFP gathers — produces the predicted multiples.
Figure 24b shows the result for the shot under
consideration. After adaptive subtraction (Figure
24c), an excellent multiple-removal result is ob-
tained: all multiples against the two upper reflec-
tors have been properly removed. The result con-
firms that the layer-related approach can handle
complex multiple-generating boundaries. In addi-
tion, the results also confirm that the approach
can accommodate velocity errors. These two
properties are very important for practical use.
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Figure 18. Internal-multiple-removal result for the layer-related approach us-
ing the erroneous CFP gathers and erroneous gridpoint gathers. (a) Input
shot record {Pj (z0, z0)}0; (b) predicted internal multiples {�Mj (z0, z0)}B ; (c)
result after adaptive subtraction of the internal multiples {Pj (z0, z0)}B . Com-
pare with Figure 14.
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Figure 21. CFP gather for one focus point at reflector 1b in the model of Figure
19. (a) CFP gather {Pi(z1b, z0)}†0 at x = 2100 m; (b) time-reversed focusing
operator [Γ∗

i (z0, z1b)]†; (c) CFP gather after muting {P̄i(z1b, z0)}†0. The arrow
points to a muting problem.
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Figure 22. Internal-multiple removal result for the boundary-related approach at
reflector 1b. (a) Input shot record {Pj (z0, z0)}0; (b) predicted internal multiples
{δMj (z0, z0)}1b; (c) result after adaptive subtraction of the internal multiples. Note
the remaining internal multiples related to reflector 1a.
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Figure 23. CFP gather and time-reversed, muted gridpoint
gather for one focus point at depth level B (see Figure 15).
(a) CFP gather after muting {P̄i(zB, z0)}†0; (b) gridpoint gather
after time reversing and muting {�Qj (zB, zB)}B .
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Figure 24. Result of internal-multiple removal for the layer-related approach us-
ing the erroneous focusing operators based on level B (see Figure 15). (a) Input
shot record {Pj (z0, z0)}0; (b) predicted internal multiples {�Mj (z0, z0)}B ; (c) re-
sult after adaptive subtraction {Pj (z0, z0)}B .

CONCLUSIONS

Based on the feedback model for seismic
wavefields, an expression for primary and
multiple reflections has been derived. The
feed-forward path of this model describes
the contribution of upward reflection in the
lower part of the subsurface (z > zm), and
the feedback path describes the contribution
of downward reflection in the upper part of
the subsurface (z ≤ zm). For the special sit-
uation of m = 0, downward reflection de-
scribes the surface-related multiples.

The expression of multiple reflections can
be interpreted as the output of a space-
variant, multitrace prediction filter. The ex-
pression of this prediction filter describes a
spatial convolution process between the up-
going reflection response of the lower part of
the subsurface (z > zm) and the downgoing

reflection response of the upper part of the subsurface (z ≤
zm). This convolution generates one extra round trip between
the lower and upper parts of the subsurface.

Computation of the prediction filter is model driven or data
driven. Data-driven prediction of the relatively strong surface
multiples requires an iterative process, typically two or three
iterations. For the weaker internal multiples, one or two iter-
ations appear sufficient.

In the algorithm for internal multiples, a separation process
(muting) needs to be applied between events from above (z ≤
zm) and below (z > zm) the multiple-generating level. In the
CFP domain, muting becomes a straightforward process.

In the boundary-related approach to internal-multiple re-
moval, a fully data-driven procedure can be followed. This
procedure includes updating the focal operators. This means
that the need for explicit velocity-depth model information is
avoided.

In the layer-related approach to internal-multiple removal,
the multiple-generating properties of a complete layer can be
addressed in one step. The involved focal operators do not
have to be accurate: the only requirement is proper separa-

tion between events from above and below
the chosen depth level.

The layer-related approach to multiple re-
moval is prefered for internal multiples. We
expect that this conclusion is also valid for
surface multiples. This issue is currently un-
der investigation.
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APPENDIX A

WAVEFIELD OPERATORS

The notation for the wavefield operators and data types
used in this paper is explained in the following overview.

APPENDIX B

INSENSITIVITY TO EXTRAPOLATION ERRORS

The velocity independence of internal multiple prediction
is stated by Araujo et al. (1994) using an inverse-scattering-
series formulation (see also Weglein et al., 1997). To show this,
let us look at the errors in the downward-extrapolated data
(single extrapolation):

〈{Pj (zn, z0)}n−1〉 = �V(zn){Pj (zn, z0)}n−1 (B-1a)

and

〈{P(z0, zn)}n〉 = {P(z0, zn)}n�VT (zn), (B-1b)

with �V(zn) representing the errors in the extrapolation oper-
ators resulting from erroneous velocities. Similarly, the error
in the time-reversed, causal part of the double extrapolated
data is given by

〈�Q(zn, zn)〉 = �V∗(zn)�Q(zn, zn)�VH (zn). (B-1c)

If we substitute equation B-1a–B-1c in the expression for the
internal multiples,
�Mj (z0, z0) = −{P̄(z0, zn)}n�Q(zn, zn){P̄j (zn, z0)}n−1,

(B-1d)
we conclude that the kinematics of the predicted internal mul-
tiples are insensitive to velocity errors to a limited extent. Our
theory shows that errors may occur in the causal-noncausal
separation process as a result of defocusing. Note that the
least-squares subtraction process may help to compensate for
amplitude and phase differences:

{Pij (z0, z0)}n = {Pij (z0, z0)}l−1

−
∑

F†
lsi

(z0, z0){�Mj (z0, z0)}ln, (B-2)

Table 1. Notation for wavefield operators and data types.

Operator/type Explanation

�P (z0, z0), P(z0, z0) Matrix representing a full 3D data set with primary reflections only (�P) or with primary reflections
and all multiples (P) (see Figure A-1).

{P (z0, z0)}n Matrix representing a full 3D data set with all primary reflections and internal multiples for levels z >
zn only. The data are the output of multiple removal up to level zn and are used as the input for
internal-multiple removal for depth level zn+1 (see Figure A-1). For n = 0, this represents the data
after surface-related–multiple removal.

P+, P− Seismic wavefields traveling downward (P+) or upward (P−) at the receiver side.
{Pj (zn, z0)}m Column vector representing a shot gather with its source positioned at (xj , z0) and the receivers

positioned at depth level zn, with all multiples up to level zm removed [see Figure A-2 for one
element, {Pij (zn, z0)}m].

P̄j (zn, z0) Column vector representing a shot gather with its source positioned at (xj , z0) and the receivers
positioned at depth level zn, containing only upgoing events at level zn. This can be achieved by
muting all reflections from depth levels (z ≤ zn) from wavefield Pj (zn, z0) [see Figure A-2 for one
element, P̄ij (zn, z0)].

P̄†
i (z0, zn) Row vector representing a detector gather with its detector position at (xi , z0) and the sources

positioned at depth level zn, with all reflections (primaries and multiples) up to level zn removed [see
Figure A-2 for one element, P̄ij (z0, zn)].

{P(zn, zn)}m Matrix representing a full 3D data set with sources and receivers downward extrapolated toward depth
level zn and all multiples up to level zm removed.

{�Q(zn, zn)}l
m Matrix representing a full 3D data set with sources and receivers downward extrapolated toward depth

level zn, after time reversing and keeping only primary reflections related to depth levels zl ≤ z < zm.
R(zm, zm), R∧(zm, zm) Boundary-related reflection operator transferring a downgoing incident wavefield into an upgoing

response R or an upgoing incident wavefield into a downgoing response R∧ (see Figure A-3a).
W(zn, zm) Layer-related propagation operator transferring an incident wavefield at depth level zm into a

transmitted wavefield at depth level zn, excluding any multiple reflections but including fine layering
effects. For zn < zm, W describes downward propagation; for zn > zm, W describes upward
propagation.

�X, X Half-space operator transferring an incident wavefield into a response with primary reflections only
(�X) or with primary reflections and all multiples (X).

{X}n Half-space operator transferring an incident wavefield into a response with primary reflections and
multiples related to depth level z > zn only.

X(zm, zm) Half-space operator transferring a downgoing incident wavefield into an upgoing response, where
sources and detectors are situated just below zm (see Figure A-3b).

X∧(zm, zm) Half-space operator transferring an upgoing incident wavefield into a downgoing response, where
sources and detectors are situated just above zm (see Figure A-3b).

�X(z0, zn) Half-space operator transferring an incident wavefield at depth level zn into a response at depth level
z0 that contains all primary reflections related to depth level z > zn only.

{δM}n, {�M}l
n, M Matrix representing a full 3D data set with multiples related to one boundary at zn only (δM), with

multiples related to one layer between depth levels zl ≤ z < zn only (�M), or with all multiples (M).
Γ(zn, zm) Layer-related inverse extrapolation operator, removing the primary propagation effect between level

zn and zm. For zn < zm,Γ describes inverse extrapolation from zn to zm at the source side; for
zn > zm,Γ describes inverse extrapolation from zm to zn at the receiver side.
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Figure A-1. (a) Primaries (�P), (b) primaries plus all multi-
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primaries plus multiples related to level z > zn only ({P}n).
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Figure A-3. (a) Definition of reflection operators for a single
boundary, angle dependent. (b) Definition of reflection opera-
tors for a complete layer, primaries only. Each operator is rep-
resented by a matrix, and one element of this matrix is shown
here by simple raypaths.

with row vector F†
lsi (z0, z0) representing the least-squares filter

for lateral position i and the summation being carried out over
all layers involved. If the thickness of the layers approaches
zero, the layer formulation approaches the boundary formu-
lation and �M becomes δ M.
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