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Towards an accurate rolling resistance: Estimating intra-cycle load distribution 
between front and rear wheels during wheelchair propulsion from inertial sensors
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aDepartment of BioMechanical Engineering, Delft University of Technology, Delft, The Netherlands; bAssistive Technology for Mobility & Sports, The 
Hague University of Applied Sciences, The Hague, The Netherlands; cDepartment of Human Movement Sciences, Vrije Universiteit Amsterdam, 
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ABSTRACT
Accurate assessment of rolling resistance is important for wheelchair propulsion analyses. However, the 
commonly used drag and deceleration tests are reported to underestimate rolling resistance up to 6% 
due to the (neglected) influence of trunk motion. The first aim of this study was to investigate the 
accuracy of using trunk and wheelchair kinematics to predict the intra-cyclical load distribution, more 
particularly front wheel loading, during hand-rim wheelchair propulsion. Secondly, the study compared 
the accuracy of rolling resistance determined from the predicted load distribution with the accuracy of 
drag test-based rolling resistance. Twenty-five able-bodied participants performed hand-rim wheelchair 
propulsion on a large motor-driven treadmill. During the treadmill sessions, front wheel load was 
assessed with load pins to determine the load distribution between the front and rear wheels. 
Accordingly, a machine learning model was trained to predict front wheel load from kinematic data. 
Based on two inertial sensors (attached to the trunk and wheelchair) and the machine learning model, 
front wheel load was predicted with a mean absolute error (MAE) of 3.8% (or 1.8 kg). Rolling resistance 
determined from the predicted load distribution (MAE: 0.9%, mean error (ME): 0.1%) was more accurate 
than drag test-based rolling resistance (MAE: 2.5%, ME: −1.3%).
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Introduction

Rolling resistance is an important resistive force in hand-rim 
wheelchair propulsion and can vary significantly between 
wheelchairs, tyres and surface types (de Klerk et al., 2020; Ott 
& Pearlman, 2021; Rietveld et al., 2021; van der Woude et al.,  
2003). Accurately assessing rolling resistance is crucial to esti-
mate power output (de Klerk et al., 2020; van Dijk et al., 2024) or 
to optimize wheelchair settings (Ott & Pearlman, 2021). For this 
assessment, a drag or deceleration test is commonly used. 
During a drag test, the force required to pull a wheelchair 
across a surface is measured. Likewise, during a deceleration 
test, the wheelchair is accelerated to an initial velocity (at which 
air resistance can still be assumed negligible) and subsequently 
passively decelerated. When the deceleration is known and the 
wheelchair user does not move, the rolling resistance can be 
determined from this deceleration and the total mass. 
However, recent studies (van Dijk MP et al., 2024; van Dijk 
et al., 2024) report a difference between rolling resistance dur-
ing propulsion and that obtained during these commonly used 
tests.

The difference between rolling resistance during propulsion 
and that obtained during drag or deceleration tests can be 
explained by considering a four-wheeled wheelchair, which is 
typically used for court sports or everyday use (neglecting the 
anti-tip wheels, which only sporadically hit the ground), and 
a wheelchair user who actively moves the upper body during 
propulsion. As, in such wheelchairs, the front wheels are smaller 

than the rear wheels, the front wheels have a higher rolling 
resistance. Due to this difference, inclining the (relatively heavy) 
trunk – which will shift the mass forward and accelerate the 
centre of mass vertically – causes the rolling resistance to vary 
within a push cycle. In addition to upper body motion, 
a backward “tipping over” moment – that mainly occurs during 
wheelchair acceleration (van Dijk, van der Slikke, et al., 2021) – 
may also influence the load distribution between the rear and 
front wheels. Since intra-cyclical changes in load distribution 
are neglected by drag and deceleration tests, rolling resistance 
estimates based on these tests have been found to deviate up 
to 6% from the actual rolling resistance (Sauret et al., 2013; van 
Dijk MP et al., 2024) (see Figure 1). Note that the extent of upper 
body movement during wheelchair propulsion varies greatly 
among wheelchair users due to differences in trunk impairment 
(Altmann et al., 2015) or environmental demands. Therefore, the 
aforementioned deviation is only present and relevant for users 
and athletes who actively move their trunk during wheelchair 
propulsion.

As previous studies reported that a 30% difference in tyre 
pressure in wheelchair tennis resulted in a 3.3% difference in 
rolling resistance (Rietveld et al., 2021), and a power difference 
(determined from rolling resistance times velocity) up to 7% 
between different wheel configurations (Mason et al., 2015), 
a deviation of 6% is too much to accurately calculate power 
output or optimal wheelchair settings. Therefore, more accu-
rate rolling resistance estimates are needed.
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To estimate rolling resistance accurately, a continuous 
determination of load distribution is required. This might be 
done by measuring the vertical force on the (front and/or 
rear) wheelchair wheels. However, implementing force sen-
sors is complex, expensive and not sufficiently robust for 
wheelchair (sports) practice. An alternative is to measure 
kinematics and derive the instantaneous load distribution 
from that. Whereas marker-based motion capturing has pre-
viously been used for this (Chénier et al., 2023; van Dijk et al.,  
2024), and inertial sensors (inertial measurement units 
[IMUs]) are preferred as they are less invasive, inexpensive 
and readily used in wheelchair (sports) practice. Upper body 
motions can be approximated by IMU-based trunk motion 
(ignoring arm movements), and wheelchair kinematics can 
be obtained from a wheel-mounted IMU (van der Slikke et al.,  
2015; van Dijk et al., 2022; van Dijk, Kok, et al., 2021). 
However, a model that predicts load distribution from (IMU- 
based) trunk and wheelchair kinematics is yet to be 
developed.

The first aim of this study was to investigate the accuracy 
of using trunk and wheelchair kinematics to predict the 
instantaneous load distribution, more particularly front 
wheel loading, during straight-line hand-rim wheelchair pro-
pulsion in a four-wheeled wheelchair. With this prediction, 
a more accurate (and instantaneous) estimate of rolling 
resistance may be obtained. Therefore, the second aim of 
this study was to compare the accuracy of rolling resistance 
determined from the predicted load distribution with the 
accuracy of drag test-based rolling resistance. In addition, 
the robustness of this method was investigated for varia-
tions in wheelchair and subject characteristics and trunk use. 
If the method appears to be accurate and robust, it can be 
applied in each wheelchair (sport) situation to obtain accu-
rate rolling resistance estimates and, eventually, e.g., power 
output.

Materials and methods

Data collection protocol

Experimental data from a previous study on wheelchair pro-
pulsion were used in this study (van Dijk MP et al., 2024). 
Twenty-five able-bodied participants (19 females, mean (SD) 
age: 30 (11) years, mean body mass: 68 (11) kg, body height: 
170 (7) cm) with no wheelchair experience were included in 
the study. Participants propelled the hand-rims of 
a wheelchair on a large (3.0 × 5.0 m) motor-driven treadmill, 
while their kinematics were measured with three IMUs 
(attached to the participant’s sternum, the wheelchair’s 
frame and right wheel axle), and the front-wheel load was 
measured using custom-made load pins (in both front wheel 
axes). Before the treadmill sessions, participants received 
a 10-min overground wheelchair training to get familiar 
with the wheelchair and a 10-min training on the treadmill 
(see Figure 2). In addition, drag tests were performed on the 
treadmill to obtain rolling resistance coefficients of the 
(small) front and (large) rear wheels.

To simulate different wheelchair characteristics and 
pushing styles, the treadmill session was repeated 6 
times with different tyre pressures (1.75 bar, 3.5 bar, 5.25  
bar) (de Groot et al., 2013) or added mass (0 kg, 5 kg, 15  
kg) (van der Slikke et al., 2018, see Figure 2) and with three 
pushing styles (no trunk motion at 1.2 m · s−1 [style 1], 
unrestricted trunk motion at 1.2 m · s−1 [style 2], unrest-
ricted trunk motion at 1.7 m · s−1 [style 3] (Marie et al.,  
2014; Veeger et al., 1989)). By following a metronome (25 
beats · min−1 in pushing style 2 and 40 beats · min−1 in 
pushing styles 1 and 3), participants were encouraged to 
make effective pushes, which – in styles 2 and 3 – were 
accompanied by forward–backward trunk motion. Each 
treadmill session consisted of 30-s familiarization to the 
new situation, after which participants propelled 60 s in 

Figure 1. Image of “actual” rolling resistance (black line) and rolling resistance based on a static drag test (blue line). This image is adapted from the image reported by 
Sauret et al. (2013). Note that – in this example – the drag test-based rolling resistance is similar to the average “actual” rolling resistance. However, depending on the 
upper body pose during deceleration or drag test, this value may be higher or lower.
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each pushing style. In this way, a dataset was composed of 
18 (three pushing styles and 6 treadmill sessions) 60-s time 
trials per participant. The order of the treadmill sessions 
differed per participant.

Drag tests were performed at 1.7 m · s−1, while the 
participants were instructed to sit as still as possible for 
a period of 30 s in 6 conditions to evoke varying load 
distributions. The drag test conditions consisted of sitting 
with an upright trunk and sitting bent forward while no 
mass was added, while 10 kg was added at the footrests 
and while 10 kg was added on the upper legs. The drag 
test-based rolling resistance forces, measured by an S-beam 
load cell, were obtained by averaging the final 10 s of each 
drag test condition. Subsequently, the rear (r) and front (f) 
wheel rolling resistance coefficients, cr and cf , were numeri-
cally determined by solving Equation 2 based on the aver-
age drag force (which equals FIR in static situations) and 
average load pin force (FN;f ) of the series of drag tests, 
which is similar to previous studies (Bascou et al., 2013; 
Sauret et al., 2012). Accordingly, cf and cr were used to 
estimate the gold standard rolling resistance during all 
treadmill sessions. FN;tot was assumed to be equal to total 
mass times 9.81 m · s−2.

This study was approved by the ethical committee of 
Delft University of Technology (Nr. 1530), and written 

informed consent was obtained from all participants prior 
to data collection. 

Instrumentation

All treadmill measurements took place on a large 
(3.0 × 5.0 m) motor-driven treadmill (Bonte, Zwolle, the 
Netherlands) at the Vrije Universiteit Amsterdam. A large 
treadmill was used to make participants feel safe to move 
forwards, backwards and sideways on the belt. An S-beam 
load cell (Revere Transducers, Lisse, the Netherlands) was 
used to measure the horizontal (drag) forces during the 
drag tests. An RGK Chrome all-courts wheelchair (13.5 kg, 
camber angle of 13°) was used for the measurements. Load 
pins (Batarow Sensorik, Germany) were integrated in the 
front wheel axes of the wheelchair to measure the vertical 
load on the front wheels. Three IMUs (NGIMU, X-io 
Technologies, Colorado Springs, CO, USA) were used to 
collect 3D inertial sensor data with a sample frequency of 
100 Hz. In addition, the NGIMU analog input channels of the 

Figure 2. Schematic overview of measurements during different sessions. The “original” treadmill session refers to the condition with no added mass (0 kg) and fully 
inflated rear wheel tyres (5.25 bar). Mass (i.e., total mass of participant and wheelchair) was assessed on a 1.0 × 1.0-m force plate.
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frame-mounted sensor were connected to the load pins to 
act as power source and data logger. The load cell was 
calibrated with known masses at the start of each 
measurement day. The load pins were calibrated before 
each measurement session by positioning the front wheels 
on a custom-made 1.0 × 1.0-m strain gauge force plate 
(while the rear wheels were positioned on a dummy plate 
at the same height) (Kingma et al., 1995).

Predicting load distribution between front and rear 
wheels

Preprocessing
After data collection, the force plate calibration data were 
used to convert voltage of the two individual load pins to 
vertical force. Subsequently, the summed vertical force on 
the front wheels was normalized to percentage of the total 
vertical force on all 4 wheels (i.e., total mass times gravita-
tional force). As vertical accelerations of the upper body 
were previously shown to have no effect on rolling resis-
tance (van Dijk MP et al., 2024), vertical accelerations were 
assumed to be zero.

In addition, predictor features that represented different 
aspects of trunk and wheelchair motion were generated 
based on IMU data (see Table 1). Subsequently, all data 
were second-order low-pass filtered with a cut-off frequency 
of 3 Hz. This cut-off frequency was chosen based on the 
assumption that load is influenced mainly by trunk motion, 
which has a maximal frequency of around 2 Hz. The last 
60 s in each pushing style were analysed.

To generate the final dataset, all treadmill session data 
were sequenced into one large dataset consisting of the 
“outcome” feature (relative front wheel load, or F̂N;f ), “pre-
dictor” features (vwc, awc;φtr , _φtr;φ

tr
, atr;?, atr;k, atrj j) and 

“descriptive” variables (participant number, pushing style 
and session type) (see Table 1). The outcome and predictor 
features were standardized to a z-score. Since the best 
predictive model could contain linear or non-linear rela-
tions, both linear methods and (non-linear) machine learn-
ing methods were examined for predicting the relative front 
wheel load from the predictor features.

Training, validation and test set
From the full dataset, three random participants and two test 
configurations (+5 kg and −1.75 bar, see Figure 2) were 
removed to act as “test” set for model evaluation in a later 
stage. The reduced dataset based on 22 participants and 4 
configurations was split randomly – while each treadmill ses-
sion was kept in the same set – a training set (80% or 66 
treadmill sessions) and a validation set (20% or 17 treadmill 
sessions). The training set was used to determine the best set of 
predictive features to predict the relative front wheel load (F̂N;f ) 
and to “train” all models. The validation set was used to select 
the best model and the best model hyperparameters. Finally, 
the test set was used once the final model was obtained to 
determine how well the model performs on unseen data (i.e., 
data that were not previously used to train the model or to 
make decisions). This was done by comparing the predicted 
relative front wheel load (and resulting rolling resistance) with 
the measured relative front wheel load (and resulting rolling 
resistance). The test set was assumed to be representative for 
any new dataset.

Feature, model and hyperparameter selection
As the inclusion of outcome-unrelated features may result in 
overfitting, a feature selection was performed to select the best 
feature combination. In this study, an exhaustive feature selec-
tion method based on a random forest regressor (RFR) and 
7-fold cross-validation (leaving one-seventh of the subsets out 
during each iteration) was used. An RFR was used as this model 
is fast and robust to overfitting. According to the results of the 
exhausting feature selection, the best trade-off between max-
imal accuracy (more features) and chance of overfitting (less 
features) was found with three features: linear wheelchair velo-
city, linear wheelchair acceleration and linear acceleration per-
pendicular to the trunk (i.e., vwc, awc and atr;?, see Table 1).

With the aforementioned three-feature combination, five 
different model types were trained on the training set: 
a simple linear regression (LR), an RFR, a multilayer percep-
tron (MLP), a long short-term memory (LSTM) and a gate 
recurrent unit (GRU) models. The LR model was used to 
investigate whether a linear relation may be used to solve 
the relation between trunk and wheelchair motion and front 

Table 1. Overview of the abbreviations and calculation method of all predictor features and outcome feature that were used in the predictive model.

Predictor feature Determined by

vwc Wheelchair velocity in m/s−1 (Gyroscope signal of IMU around wheel axis ⋅ rear wheel diameter ⋅ π)/360 (van der Slikke et al., 2015)a

awc Wheelchair acceleration in m/s−2 Derivative of vwc
φtr Trunk inclination angle in rad Based on extended Madgwick filter (van Dijk, Kok, et al., 2021), with β-value being 0.0015 (if |wheelchair 

acceleration| <0.1 m · s−2 for at least five consecutive samples) or 0.9635 (otherwise)
_φtr Angular velocity of trunk (around sagittal axis) in 

rad/s−1
Gyroscope signal (around sagittal axis) of trunk-mounted IMU

φ
tr Angular acceleration of trunk (around sagittal 

axis) in rad/s−2
Derivative of _φtr

atr;? Trunk acceleration perpendicular to the frontal 
plane of the trunk in m/s−2

Acceleration signal (directed perpendicular to frontal plane) of trunk-mounted IMU

atr;k Trunk caudal-cranial acceleration in m/s−2 Acceleration signal (in caudal-cradial direction) of trunk-mouned IMU
atrj j Magnitude of trunk acceleration vector in m/s−2 Euclidean norm of the three-dimensional acceleration signal of the trunk-mounted IMU subtracted by 9.81

Outcome feature Determined by
F̂N;f Normalized relative front wheel-load in % Force data from the front wheels’ load pins, calculated as FN;f /FN;tot × 100%

aIn case of curves and turns, the linear velocity obtained from the wheel should be corrected for turning using the algorithm described by van der Slikke et al. (2015).
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wheel-load. The RFR has been known as a robust and fast 
algorithm and may therefore be suitable to predict front 
wheel-load. In addition, three (deep) neural networks have 
been tested. LSTM and GRU models both take previous time 
samples into account, which might yield good results as well. 
MLP, LSTM and GRU have all been proven useful to predict 
ground reaction forces from IMU data in walking and running 
(Alcantara et al., 2022; Davidson et al., 2019; Leporace et al.,  
2015, 2018; Pogson et al., 2020; Sharma et al., 2021). After 
training, the most predictive model was selected by applying 
the five models to the validation set data and determining 
the mean error (ME; i.e., the mean difference between the 
observed and predicted relative front wheel load), mean 
absolute error (MAE) and root-mean-squared error (RMSE). 
The model with the overall best performance was assumed 
to be the best model type. To maximize performance of the 
final model, hyperparameters were tuned based on the vali-
dation set. Lastly, the best model type with selected hyper-
parameters was trained again based on all data from the 
training set. The predictions from the final model were eval-
uated hereafter. Based on the final model, the relative front 
wheel load was predicted for all test set data.

Evaluating predicted load distribution

1– How well does the final model predict relative front 
wheel load?
To determine the accuracy of the model predictions, the rela-
tive front wheel load was predicted for all test set data and 
compared with the measured relative front wheel load. 
Differences between the two values were expressed in ME, 
MAE and RMSE. To assess whether the model was prone to 
overfitting, a second version of the final model was obtained 
based on the training dataset and a Gaussian noise layer that 
was added to the original model architecture. A large difference 
between the results of both models indicates that the model’s 
output is influenced by white noise on the input data, and thus 
overfits the data.

2 – Does adding a trunk-mounted IMU and a prediction 
model result in a more accurate rolling resistance estimate 
than drag test-based rolling resistance estimates?. To con-
vert proportions (%) to absolute normal forces, the proportions 
were multiplied by FN;tot , and subsequently, rolling resistance 
was calculated according to Equations 1 and 2. To evaluate 
whether the model improves the rolling resistance estimates, 
the predicted rolling resistance was compared to the “gold 
standard” load pin-based rolling resistance. Secondly, the pre-
dicted rolling resistance was compared to the drag test-based 

rolling resistance. Therefore, the drag test-based rolling resis-
tance was determined based on the rolling resistance coeffi-
cients that were determined previously and the load 
distribution corresponding to the drag tests in upright position.

3 – Is the model robust for different wheelchair character-
istics and pushing styles?. To evaluate model robustness, the 
final prediction model was used to predict load distribution 
in situations that were not used to train the model, with only 
the participants who were not included to train the model (i.e., 
unseen conditions and unseen subjects, so 6 treadmill ses-
sions). Subsequently, these load distributions were used to 
determine rolling resistance force. ME, MAE and RMSE were 
reported for different propulsion styles and for different wheel-
chair configurations (averaged over three “unseen” 
participants).

Results

In the present study, 143 treadmill sessions were included, of 
which 83 were used to train and select the final machine 
learning model (i.e., training and validation set) and 60 were 
used to evaluate the results (i.e., the test set). Seven sessions 
were left out due to incompleteness (caused by empty bat-
teries or connection errors). As expected, the largest variation 
(and largest value) in front wheel load was found for the third 
pushing style that was characterized by the largest trunk 
motion (see Table 2 and Figure 3). The average front wheel 
load differed considerably between participants (see “Range” in 
Table 2). The total mass (participant + wheelchair) in the test set 
was on average 76.9 ± 9.1 kg. Overall, the test set seems 
a decent reflection of the training dataset.

1 – How well does the final model predict relative front 
wheel load?

Exhaustive feature selection resulted in wheelchair velocity, wheel-
chair acceleration and trunk acceleration (perpendicular to the 
frontal plane of the trunk) being the most predictive features for 
relative front wheel loading. With these features, five different 
model types were trained. Overall, LSTM turned out to yield the 
most accurate predictions (see Table 3). The hyperparameter 
combination that resulted in the lowest MAE value consisted of 
one hidden layer, 50 neurons, a learning rate of 0.01, a batch size 
of 128, a dropout rate of 0.1 and 20 time steps. This final model 
showed an MAE of 3.8% ± 1.8% relative front wheel load corre-
sponding to about (68 kg × 3.8) 2.6 ± 1.2 kg on an average com-
pared to the actual measured load on the front wheels and an 
RMSE of 4.4% ± 1.6% (see Table 3).

Table 2. Mean (variation) and range of relative front wheel loads (expressed as percentage (%) of the total load) for all participants per pushing style 
(characterized by the amount of trunk motion, i.e., TM) in the training and validation set and test set. The range consists of the average front wheel 
load of the participant with the lowest load and the average front wheel load of the participant with the highest load. The variation is determined by 
the average of the standard deviations per person. The values are based on 60 s of propulsion per pushing style per person.

Style 1: No 
trunk motion Style 2: Moderate trunk motion Style 3: Full trunk motion

Mean (training and validation set) (%) 20.0 (4.9) 24.9 (6.9) 27.1 (9.2)
Range (training and validation set) (%) 12.8–26.3 14.0–32.1 17.5–35.4
Mean (test set) (%) 20.7 (4.4) 24.0 (6.4) 24.9 (7.6)
Range (test set) (%) 15.2–26.2 16.3–31.5 17.0–31.2
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The final model and the second version of the final model in 
which a Gaussian noise layer was added resulted in comparable 
accuracies (see right side of Table 3), indicating that the model 
does not overfit the data.

2 – Does adding a trunk-mounted IMU and a prediction 
model result in a more accurate rolling resistance 
estimate than drag test-based rolling resistance 
estimates?

As the third pushing style (unrestricted trunk motion at 1.7 m · s−1) 
showed larger variations in normal force and has previously been 
shown to deviate more from drag test-based rolling resistance 
estimates, data are reported for the third pushing style in Table 4. 
The rolling resistance estimates based on the final (LSTM) model 

had a similar shape as those based on the gold standard load pin 
force (Figure 4). Whereas drag test-based rolling resistance tends 
to be underestimated (ME of −1.3), with the application of the 
prediction model, these underestimations were absent (ME of 0.1). 
A similar trend was seen for MAE and RMSE (see Table 4).

3 – Is the model robust for different wheelchair 
characteristics and pushing styles?

Looking at different wheelchair characteristics and pushing 
styles, again, the deviations with the gold standard are consid-
erably smaller for the prediction model compared to the drag 
test-based rolling resistance (see Figure 4 and Table 5). The 
errors are similar for the different conditions. Therefore, the 
model seems to be robust for different unseen characteristics.

Figure 3. Typical example of the relative load on the front wheels of the wheelchair (expressed as percentage of the total mass of the wheelchair and user) of 
a representative subject in the original wheelchair condition during one propulsion cycle (0% representing the start of the push) for propulsion style 1 (no trunk motion 
at 1.2 m · s−1), style 2 (unrestricted trunk motion at 1.2 m · s−1) and style 3 (unrestricted trunk motion at 1.7 m · s−1).

Table 3. The results in terms of mean error (ME), mean absolute error (MAE) and root-mean-squared error (RMSE) of the five model types that were trained to 
predict the front wheel load as a percentage of the total mass of wheelchair and user (i.e., RFWL). Models were trained on the training set (with default 
hyperparameters) and evaluated on the validation set for which the results are shown.

Evaluated on validation set Evaluated on test set

LR RFR MLP LSTM GRU LSTM (final) LSTM (final) + noise

ME (RFWL) 1.9 1.8 1.6 1.0 1.2 0.5 0.5
MAE (RFWL) 4.4 3.8 3.4 2.7 2.9 3.8 3.8
RMSE (RFWL) 5.9 5.1 4.6 3.5 3.6 4.4 4.4
Comp. time E−03 (s) 0.0 0.1 0.4 1.8 1.8 - -

Table 4. Comparisons between the accuracies of the load distribution model-based rolling resistance (Froll,LD model) and the drag test-based rolling resistance (Froll,drag) 
based on the “original” condition-data from the test set (pushing style: full trunk motion). Accuracies were determined by comparison with the “gold standard” load 
pin-based rolling resistance (Froll,gold standard) and expressed in mean error (ME), mean absolute error (MAE) and root-mean-squared error (RMSE). The actual gold 
standard rolling resistance values are also reported. The measures are given for each subject in the test set.

Froll,gold standard (N) Froll,LD model − Froll,gold standard (%) Froll,drag − Froll,gold standard (%)

ME MAE RMSE ME MAE RMSE

Subject 1 8.6 (1.0) 0.5 0.7 0.9 −1.1 1.4 1.8
Subject 2 9.9 (1.0) −0.4 1.0 1.3 −0.4 3.3 4.0
Subject 3 9.4 (0.9) 0.3 1.0 1.4 −2.3 2.8 3.9
Mean 9.3 0.1 0.9** 1.2* −1.3 2.5 3.2

* p < 0.05, ** p < 0.01.
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Discussion

The aim of this study was to investigate the accuracy of using 
trunk and wheelchair kinematics to predict the instantaneous 
load distribution, more particularly front wheel loading, during 
hand-rim wheelchair propulsion, such that – eventually – rolling 
resistance estimates could be improved. Based on two inertial 
sensors (one at the trunk and one at the wheelchair wheel), and 
a machine learning model (which is publicly accessible – see 
Appendix A), the front wheel load could be predicted up to 2.6% 
(or 1.8 kg) accuracy (MAE). When this front wheel load is subse-
quently used to estimate rolling resistance, rolling resistance 
estimates have an accuracy of about 0.9% (MAE) and ME of 
0.1%, which was significantly lower than the rolling resistance 
estimates without the model. Moreover, the robustness of the 
model was tested for different wheelchair characteristics and 
pushing styles. As the accuracy did not differ between different 
wheelchair characteristics and pushing styles (i.e., MAE ranging 
from 0.8 to 1.5 and ME ranging from −0.5 to 0.2), we assumed the 
model to be robust for different circumstances.

The average front wheel loads in the present study (24.9%  
± 6.9%) were lower than the average front wheel loads of 
about 40% reported by Sauret et al. (2013) and Brubaker 
(1986). This may have to do with the different types of 
wheelchairs used. In wheelchairs designed for everyday use, 
stability of the wheelchair (not falling over) is often regarded 

as more important than the rolling resistance of the wheel-
chair (by limiting the weight on the front wheels), such that 
the seat (and thus the centre of mass) is put more forward 
deliberately. Hence, sports wheelchairs typically exhibit lower 
rolling resistances in comparison to everyday-use wheel-
chairs. Besides these differences, the front wheel load devel-
opment over a push cycle in the present study is similar to 
those reported by Sauret et al. (2013). Overall, our results are 
well in line with previously reported values and patterns of 
front wheel load.

Based on the results of the present study, the front wheel load 
can continuously be determined during wheelchair propulsion. 
In this way, the effects of upper body motion and wheelchair 
accelerations on rolling resistance can be incorporated such that 
accurate rolling resistance estimates can be obtained. As the 
presented model makes the rolling resistance values sensitive 
to different circumstances (i.e., large vs. small upper body 
motions and high vs. low accelerations), the estimates are 
more accurate and more individualized than rolling resistance 
values determined based on drag or deceleration tests.

An important implication of this higher accuracy and 
more individualized rolling resistance is that comparisons 
between and within wheelchair athletes are much fairer. 
Traditional drag test-based estimates lead to unfair compar-
isons, especially when trunk motion varies between athletes. 
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Figure 4. Gold standard rolling resistance (black line), load distribution model-based rolling resistance (purple line) and drag test-based rolling resistance (dotted line) 
for the “original” condition, condition with −3.5 bar tyre pressure and condition with +5 kg added mass.

Table 5. Comparisons between the accuracies of the load distribution model-based rolling resistance (Froll,LD model) and the drag test-based rolling resistance (Froll,drag) 
based on the “−3.5 bar” and “+5 kg” condition-data from the test set (for each pushing style). Accuracies were determined by comparison with the “gold standard” load 
pin-based rolling resistance (Froll,gold standard) and expressed in mean error (ME), mean absolute error (MAE) and root-mean-squared error (RMSE). The actual gold 
standard rolling resistance values are also reported.

Pushing style Froll,gold standard (N)

Froll,LD model − Froll,gold standard (%) Froll,drag − Froll,gold standard (%)

ME MAE RMSE ME MAE RMSE

−3.5 bar condition
Style 1 8.5 (0.7) −0.5 0.8 1.0 0.4 1.5 1.9
Style 2 8.7 (0.8) −0.4 1.0 1.3 −1.1 2.3 2.8
Style 3 8.7 (0.8) −0.1 1.0 1.3 −1.2 2.7 3.4

+5 kg condition
Style 1 8.4 (0.5) 0.2 1.1 1.3 1.6 2.7 3.3
Style 2 8.5 (0.5) −0.1 1.5 2.0 −0.2 3.2 3.8
Style 3 8.6 (0.6) 0.2 1.4 1.8 −0.9 3.7 4.5
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For instance, during a sprint, the initial pushes involve 
higher rolling resistance due to acceleration and larger 
trunk inclination, contrasting with periods of constant velo-
city with less trunk inclination. Ignoring these variations (as 
is done during deceleration or drag tests) results in inaccu-
rate power comparisons within a wheelchair sports team. 
The present load distribution model offers more accurate 
estimates of rolling resistance and power, ensuring fairer 
comparisons between and within wheelchair users and ath-
letes compared to traditional drag test-based methods.

For wheelchair (sports) practice, the presented method is 
ready to be applied. When trunk and wheelchair kinematics 
are obtained (e.g., using inertial sensors), and a set of 
deceleration tests are performed to obtain the rolling resis-
tance coefficients, accurate estimates of rolling resistance 
can be determined. Subsequently, accurate rolling resis-
tance estimates can be used to monitor mechanical power 
or to optimize wheelchair set-up and/or tyre pressure. 
However, it should be noted that the improved rolling 
resistance estimates with the prediction model come with 
extra information that is required about trunk motion and 
a machine learning model that should be executed. As the 
error based on drag or deceleration tests only – without 
incorporating changes in load distribution – is on average 
3% (see right side of Table 4) and differs from 1% to 6% (as 
reported in our previous study (van Dijk MP et al., 2024)), 
this may be accurate enough for some purposes such as for 
recreational wheelchair sports or everyday wheelchair use. 
Therefore, depending on the required accuracy, one may 
choose to base the rolling resistance on drag or decelera-
tion tests only – instead of applying the load distribution 
model – and accept some inaccuracies.

Limitations

For this study, some limitations should be noted. First, 
wheelchairs with different front-to-rear wheel distances or 
different seat positions were not tested in the present 
study. However, as front-to-rear wheel distances are 
assumed to differ <20 cm in general, and a similar front 
wheel load pattern was observed in the study of Sauret 
et al. (2013) with a “general use” wheelchair, we assume 
the model is suitable for other wheelchair dimensions. 
Second, the participants who were tested in the present 
study had no disabilities. The model should ideally be 
tested with wheelchair users with different movement stra-
tegies or different physique (e.g., missing body parts) to 
assess whether the model is robust for movement strate-
gies (e.g., non-symmetrical trunk motion) used by this 
group. Lastly, participants in this study had no wheelchair 
experience, which may affect their propulsion technique. 
However, the estimation of load distribution is expected to 
be independent of propulsion technique as it reflects trunk 
motion and the resulting centre of mass displacement. 
Therefore, the experience level of participants will not 
influence the translatability of our model to experienced 
wheelchair users.

Conclusion

In hand-rim wheelchair propulsion, the estimation of the 
continuous intra-cyclic load distribution between front and 
rear wheels could be determined with an accuracy of 3.8% 
MAE (or 1.8 kg) based on two inertial sensors and a machine 
learning model. Rolling resistance determined from the pre-
dicted load distribution (MAE: 0.9%, ME: 0.1%) was more 
accurate than the rolling resistance based on drag tests only 
(MAE: 2.5%, ME: −1.3%). Since the model is based on 
a relatively large number of participants, a considerable 
variation in front wheel load between participants, and 
different wheelchair characteristics and pushing styles, the 
model is considered valid to estimate rolling resistance in 
a wide range of wheelchair (sports) situations and for 
a wide range of wheelchair users.
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Appendix A: Instruction on how to apply the LD 
model on kinematic data

Step-by-step explanation on how to collect and pre-process IMU data, 
use the LD model to predict load distribution and export the full 
dataset to a CSV file is presented. The dataset used for the current 
study is publicly available at https://data.4tu.nl/datasets/bc9a8588- 
5e50-4dff-aa77-5114ff7626f7.

1. Download model from: https://data.4tu.nl/authors/60e44636-eb8f 
-43f9-a9f4-436bfde4872c

2. Collect kinematic data
- of coast-down tests with different (known) load distributions
- of the situation/actions of interest (if IMUs are used to collect the 

data, attach one IMU to the wheelchair wheel axle, one IMU to the centre 
of the wheelchair frame and one IMU around the chest against the 
sternum)

3. Determine from the data:
The rolling resistance coefficients per pair of wheels
- The acceleration vector perpendicular to the trunk
- The wheelchair velocity
- The wheelchair acceleration
- Time
4. Save the above-mentioned variables in the following order:
i.e., df[“samples”,“time”,“v_wc”, “a_wc”, “trunk_acc_3”]
5. Run the code below in Python
6. Done

“””
Created on Fri Nov 17 14:12:28 2023
Predict Relative Front Wheel Load (RFWL) during wheelchair 

propulsion
@author: L.H.A. Heringa & M.P. van Dijk
“””
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
from keras.models import load_model

# Run functions
def standardize(signal):

size_temp = np.asarray(signal.shape)
size = size_temp[0].item()
standarized_signal =np.zeros((size,3))
i = 0
while i < 3:

z_score = (signal[:,i]-mean[i])/std[i]

standarized_signal[:,i] = z_score
i = i + 1

return standarized_signal
def load(x_data, num_steps):

#x_data = data.iloc[:,[2,3,4]].to_numpy()

X = list() #reshape the 2d data into 3d sliding window shape

for i in range(x_data.shape[0]):
end_ix = i + num_steps # compute a new (sliding window) index

if end_ix ≥ x_data.shape[0]: # if index is larger than the size of the 
dataset, stop

break
seq_X = x_data[i:end_ix] # Get a sequence of data for x
x. append(seq_X)

x_array = np.array(X)
return x_array

# Load model
model = ”/./final_lstm.h5”

# Load IMU data
df_full = pd.read_csv(r’/./IMU_Data.csv’)

df = df_full[[“samples”,“time”,“v_wc”, “a_wc”, “trunk_acc_3”]]. 
to_numpy()

mean = np.mean(df, axis = 0)
std = np.std(df, axis = 0)df_new = standardize(df[:,2:5])

# Run and plot LSTM model
num_steps = 20
X = load(df_new,num_steps)
lstm = load_model(model)
y = lstm.predict(X)
plt.plot(y)

#Add force output to initial dataset
RFWL_Output = pd.DataFrame(y)

df_full_new = df_full[num_steps:df_full.shape[0]]
df_full_new[“RFWL_Output”] = y

# Export dataset to csv
df_full_new.to_csv(r’/./IMU_Data_plus_predictedFrontWheelLoad. 

csv’)
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https://data.4tu.nl/datasets/bc9a8588-5e50-4dff-aa77-5114ff7626f7
https://data.4tu.nl/authors/60e44636-eb8f-43f9-a9f4-436bfde4872c
https://data.4tu.nl/authors/60e44636-eb8f-43f9-a9f4-436bfde4872c
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