
Assesing the Efficacy of Deep Learning Models
in the Context of Active Flow Control

Department of Cognitive Robotics

Sara Boby (4645588)

Supervised by:
Dr. Ir. Cosimo Della Santina

Dr. Ir. Angeliki Laskari

Technische Universiteit Delft
February 9th , 2024

Assessing the Efficacy of Deep Learning Models in the
Context of Active Flow Control

Sara Boby
TU Delft MSc Cognitive Robotics

ABSTRACT

In the field of fluid mechanics, there has been
a significant shift towards the integration of
machine and deep learning techniques to ad-
dress challenges in reduced-order modeling,
flow feature analysis, and control, especially
within the realm of active flow control (AFC)
for objectives such as lift optimization and
drag reduction. Deep learning has taken
a central role in advancing state-of-the-art
AFC methods by creating data-driven models
that mitigate the computational demands of
conventional Computational Fluid Dynamics
(CFD) simulations, enabling real-time fluid
control. Despite the predominance of mod-
els trained offline and focused on simple sce-
narios like laminar flow around bluff bodies,
the utility of sophisticated learning methods
in AFC has remained largely unexplored.

This research introduces a novel benchmark
in fluid dynamics—a soft robotic tentacle ac-
tuator—to evaluate the effectiveness of deep
learning architectures in complex flow con-
trol situations. Through the comparison of
online and offline learning frameworks for
predicting system behavior, the study eluci-
dates the strengths and limitations of deep
learning networks in AFC. The findings un-
derscore the constraints faced by deep learn-
ing architectures when dealing with aperiodic
motions and demonstrate the significant ben-
efits of adopting an online learning approach
over offline training methods, thereby high-
lighting the advantages of adaptive learning
strategies in complex AFC scenarios. The on-
line learning framework displays more stabil-
ity and increased quality of forecasts at larger
time horizons.

NOMENCLATURE

τ Threshold time constant

H Prediction horizon

Lx, Ly Fluid channel dimension, width and height respec-
tively

N Lookback horizon

Nb Buffer size

Nx, Ny Number of nodes in the respective directions in the
Eulerian fluid domain discritization

r(t) Developed metric to quantify mixing rate

T Measurement horizon for particle tracking

u1(t), u2(t) Control inputs

xs, ys Coordinate system of the fluid domain

xtent, ytent Local coordinate system of the soft robotic ten-
tacle

yr(t) Control output

1 INTRODUCTION

Fluid mechanics, a field traditionally reliant on extensive
data from experiments or simulations, is evolving through
the integration of machine and deep learning frameworks.
These modern approaches provide a flexible means to tackle
fluid mechanics’ challenges, including reduced-order model-
ing, enhancing experimental data resolution, and analyzing
fluid dynamics [1, 2, 3]. The shift towards data-driven analy-
sis in fluid mechanics mirrors the mid-20th century’s turn to
numerical methods for solving fluid dynamics equations [3].
Pollard et al.’s [4] emphasis on compiling fluid data archives
underscores this evolution, highlighting the importance of ac-
cessible data for understanding complex fluid behaviors, es-
pecially turbulence [3]. As machine learning intersects with
fluid mechanics, it not only advances the field but also serves
as a test-bed for deep learning paradigms, pushing the bound-
aries of algorithmic development in complex physical sys-
tems.

The manipulation of fluids for engineering objectives is a
field of research that has received increased attention in the
past decade due to the advances in computational power and
architectures. Thus far, the ability to control fluid behavior
passively or actively has proven to be of large importance
and has primarily been employed to achieve goals such as

1

?

t tt + H t + H

Complex actuation fluid scenario

simulation test case

Recursive feedforward

neural network

forecasting algorithm

Recursive feedforward

neural network

forecasting algorithm

The system takes a step

forward, from t to (t + 1)

t - N t - N

t + 1

Figure 1 An overview of the main steps in the deployments phase. This is how the developed offline and online frameworks
are evaluated. In the case of the online algorithm the green arrow is active, and indicated that during testing the online learning
algorithm updates its network weights based on the error et(t). In the deployment of the offline learning algorithm, this arrow
is not active as the neural network is trained offline on a separate training dataset.

delay of transition, drag reduction, lift enhancement, turbu-
lence management, separation postponement, noise suppres-
sion and more [5]. In more practical terms the applications
have ranged from optimizing UAV flight [6] , the optimization
of underwater robotic navigation [7] to a variety of medical
applications including lab-on-chip devices [8].

The shift towards leveraging data for actionable insights
underscores the complexities of fluid dynamics, marked by
intricate, multi-scale phenomena and nonlinear, unsteady
fluid fields. This is critical for designing energy-efficient
and reliable robotic devices in complex flow environments.
Deep learning in fluid mechanics focuses on three main ar-
eas: flow classification, modeling, and control. Flow classi-
fication employs techniques like Partial Orthogonal Decom-
position (POD) [9] and Koopman generator methods [10] for
dimensionality reduction and handling noisy data, essential
for advanced flow modeling and control strategies.

There are two overarching paradigms in flow control: pas-
sive and active flow control (AFC) [11]. Passive flow control
involves the physical or structural composition of the subject
or surface to influence its interaction with the flow. For exam-
ple riblets or surface roughness. Vortex generators on aircraft
wings for turbulence and drag management are an example of
passive flow control in practice. Conversely, active flow con-
trol is defined by the capability to influence fluid behavior by
means of an active control system. Typical actuation in AFC
are suck and blow actuators (SaOBAs, [12], Figure 3), that
involve the control of the addition or removal of flow pass-
ing points of actuation. While AFC requires energy input, it
offers more effective control than passive methods [11].

The concept of simplifying complex systems to their es-
sential features is crucial for real-time feedback control in
systems like fluid dynamics, where high-fidelity Computa-
tional Fluid Dynamics (CFD) simulations are too resource-

intensive. For example, controlling laminar flow around a
cylinder (Reynolds numbers 100-140) typically requires solv-
ing for 66,000 variables at each step. However, Peitz et al.
showed that a reduced order model with just 12 degrees of
freedom, instead of the full 150,000 in a CFD simulation,
can still achieve optimal control, boosting controller perfor-
mance significantly—up to five orders of magnitude faster,
akin to the difference between running simulations in Open-
FOAM versus MATLAB [13]. This highlights the ongoing
research effort into developing efficient surrogate models for
active fluid flow control, which has traditionally relied on of-
fline deep learning methods. Online learning presents a valu-
able strategy for real-time adaptation in models, using adap-
tive neural networks to adjust weights or architecture based
on new data. This approach aligns with continual learning,
focusing on long-term adaptability through incremental up-
dates. Despite its potential for handling systems with dy-
namic or uncertain behaviors, exploration of online learning
in the context of active flow control remains limited.

In this work, a complex fluid dynamic benchmark case
in the context of active flow control is developed to test and
identify the limitations of deep learning architectures in the
context of active flow control. An offline and online learn-
ing framework are developed to forecast the complex system
behavior and evaluated on the complex datasets created to as-
sess the efficacy of these deep learning architectures from two
different training approaches. Figure 1 displays the deploy-
ment phase of the two approaches.

2 RELATED WORK

State-of-the-art (SOTA) work in active flow control lever-
ages deep learning either to improve system modeling, to
derive optimal control policies, or to combine these meth-
ods within reinforcement learning (RL) and model predictive

2

control (MPC) frameworks. Deep RL is particularly noted
for its application in active flow control issues, such as vor-
tex shedding suppression and drag reduction in laminar flows
behind bluff bodies, necessitating high-fidelity simulations or
surrogate models for effective environment estimation[3, 11].
Rabault et al. were pioneers in using deep RL for controlling
vortex shedding behind a cylinder, utilizing data from 151 ve-
locity probes in CFD simulations, albeit achieving an almost
constant optimal control policy, which brings into question
the efficiency of learning given the rich domain information
used [14].

Similarly, Mudiyanselage and Gueniat aimed to develop a
RL controller based only on wall pressure sensor data, still re-
quiring extensive CFD simulations for training, highlighting
the computational demands of such approaches[15, 16].

MPC strategies, which involve solving fluid dynamics
equations at every timestep, face difficulties in optimizing
control for complex systems within a specific time window.
Various methods, including ensembles of Koopman Gener-
ators, RNNs, and CNNs, are utilized to construct surrogate
models. However, these traditionally assume complete do-
main knowledge, a largely impractical expectation for real-
world application. There is growing effort to enable effective
control based on sparse sensor data, aiming to alleviate the
computational costs associated with training these models,
though studies predominantly focus on simple CFD bench-
mark cases[17, 10, 18].

Limited research has explored the impact of an online
learning approach in this field. Noriega et al. developed a
control strategy leveraging neural networks’ adaptability for
managing unknown nonlinear dynamical systems, suggesting
a method where a feed-forward neural network learns the sys-
tem dynamics in real-time for more accurate and stable con-
trol by minimizing differences between goal set-points and
model predictions, offering a new research direction for effi-
cient control systems [19].

2.1 Research Gaps

Current research in the realm of fluid behavior modeling
and forecasting, has predominantly relied on deep learning
models that are both data-intensive and complex. These mod-
els are typically trained offline using high-fidelity data from
comprehensive Computational Fluid Dynamics (CFD) simu-
lations. However, there are significant limitations and gaps
in this approach, primarily due to the simplicity of the appli-
cation cases studied. The fluid dynamic cases addressed so
far have been limited to benchmark scenarios with Reynolds
numbers (Re) below 200, such as flow past a cylinder.

The simplicity of the application cases also means that the
advantages and limitations of using such complex deep learn-
ing models remain unclear. The types of actuation employed,
including suck and blow actuators or cylinder rotation, are
not particularly complex (see Figure 30). Similarly, the con-
trol objectives have been limited to tasks like vortex suppres-

sion or drag reduction. These are relatively straight forward
objectives,for flow past a cylinder in laminar flow, that have
been seen to often give steady state solutions. Given the actu-
ation, these objectives and the minimal latency between con-
trol input actions and the system’s response imply a lack of
temporal complexity in the relationship between inputs and
outputs. This simplicity in both the engineering objectives
and the mediums of actuation suggests that the fluid cases
considered thus far may not be challenging enough to fully
assess the true capabilities and limitations of these advanced
deep learning models.

Milana, et. al [20], provides an example of bio inspired
complex actuation for flow control. Micro-cilia are designed
for fluid propulsion at low Reynolds numbers. Evident from
nature, the asymmetric beating in micro-cilia can propel flu-
ids at low Reynolds numbers (< 10). The artificial micro-
cilia have two actuation points along its ‘spine’ that essen-
tially dictate its curvature and motion. While in this case,
the cilia have a fixed prescribed motion and do not evolve its
actuation based on feedback from the flow, it is still a com-
plex actuation that successfully actively manipulates the fluid.
This provides an example of complex actuation that needs to
be explored and might better illustrate the advantages or dis-
advantages of using deep learning based solutions for active
flow control.

Therefore, there is a pressing need for research that ex-
plores more intricate fluid dynamic cases and actuation meth-
ods, to provide a clearer understanding of the potential bene-
fits and drawbacks of using complex deep learning models in
the context of active flow control.

3 RESEARCH OBJECTIVES

The work has the leading research question : How can we
assess the efficacy of deep learning models in the context
of active flow control (AFC) ? This overarching research
objective is addressed by answering the following research
questions:

• What benchmark cases can be defined to evaluate the
efficacy of deep learning models

• Are deep learning models capable of learning relation-
ships in complex fluid dynamic scenarios in a purely
data-driven fashion ?

• What are the limitations of deep learning models and
solutions being used to model or understand fluid dy-
namic relationships?

• How does an online learning solution compare to tradi-
tionally offline trained networks?

Note, data-driven means that information about the phys-
ical behavior of the system outside the the control parameters
are not used in the solution.

3

3.1 Contribution
• The development of benchmark datasets for active flow

control with higher complexity than addressed so far
with the introduction of complex actuation.

• A verified and validated offline learning algorithm
based on a feed-forward network to learn the relation-
ship between control input and control output, with no
apriori system information. The relationship is learned
in a completely data-driven fashion.

• A framework for a counterpart online learning algo-
rithm

• A comparison and analysis of the algorithms on the
complex benchmark case to critically assess the effi-
cacy of deep learning models in the context of active
flow control and the identification of limitations.

3.2 Overview
The paper will be structured such that the development of

the complex datasets and design choices in this process will
be delved into first, including an explanation of the complex
soft robotic tentacle, the fluid channel set up, and the con-
trol parameters. This will also expand on the development
of the metric to quantify the behavior we want to track in
this complex case. The offline learning algorithm and frame-
work is then introduced - with the focus on the structure of the
training and deployment phase, followed a the thorough ver-
ification of the architecture and framework used. The coun-
terpart online learning methodology will then be introduced.
An analysis of the neural network architecture in terms of
loss functions, width, depth, and structural details will be pre-
sented to justify the architecture finally chosen to test the on-
line and offline frameworks in the developed complex fluid
case. Finally, the results will be presented, along with the
conclusions derived from the work in this paper and a discus-
sion of limitations and further work.

4 SIMULATION CASE

A complex benchmark case in the context of active flow
control was designed to assess the efficacy of the offline and
online deep learning frameworks developed. There are three
main components to the design of the complex benchmark
case: the flow case, the actuation involved, and the metric
monitored. The design choices are made with the intention of
introducing an additional level of complexity to the flow cases
that SOTA intelligent AFC research has addressed thus far.
Introducing complex actuation is the primary way in which
the developed simulation case is more complex than the typi-
cal flow past bluff bodies addressed in this field thus far.

Note: the structural model of the soft robotic tentacle was
verified (subsection subsec:tentacle) during a preceding re-
search assignment. The trade-off and selection of a suffi-
ciently robust fluid-structure interaction (FSI) solver (subsec-
tion 4.2) was also done in the preceding research. All other

steps involving design, including design of the metric, inte-
gration of the model, and algorithms developed were done in
the thesis.

4.1 Flow Case Description

A 2D channel flow within the laminar flow regime is con-
sidered. In order to ensure that the complexity of the flow
does not increase during manipulation by the soft robotic
tentacle, a low Reynolds number of 20 is chosen. A low
Reynolds number was chosen to ensure that dynamic motion
in the soft robotic tentacle does not introduce flow transition
or turbulence. In addition to this, by maintaining a simple
flow case, the complexity introduced by the actuation can be
evaluated in a controlled approach. Past research, in the con-
text of active flow control, employed suck and blow actuators
(SaOBAs, [12], Figure 3). Furthermore, maintaining a low
Reynolds number is also more practical for generating data
as more complex flows take significantly more computational
power to resolve, especially when there is fluid-structure in-
teraction involved.

4.2 Fluid Solver

In order to effectively simulate the influence of actuation
in the soft robotic tentacle on a steady channel flow, it was
required to create a one-way coupling between a structural
model of the soft robotic tentacle and an FSI solver (Fluid
Structure Interaction). This makes it possible to retrieve fluid
domain information, such as the resulting domain velocity,
and the density field in every timestep. The fluid solver had to
be selected such that computations can successfully converge
in cases handling dynamic moving boundaries with ease. The
immersed structure in this case has a significantly complex
geometry and introduces complex motion in the fluid. Taking
this into consideration, through comparison with commercial
solvers such as Ansys and Openfoam [21], the LaBIB-FSI
(Lattice Boltzmann Immersed Boundary - Fluid Structure In-
teraction) solver [22] was chosen. LaBIB-FSI is the he prod-
uct of a TU Delft based Masters thesis from the Aerodynam-
ics department in Aerospace Engineering. This is an open-
source fluid dynamic solver that has been validated on multi-
ple fluid dynamics benchmark cases.

4.3 Design of the Complex Actuation : Soft Robotic Tenta-
cle

A soft robotic tentacle is chosen as the mode of actuation
for the complex fluid case. The curvature of the tentacle’s
central axis determines the deformation of the tentacle and
can be described as:

c(t) = q1(t) + q2(t)s (1)

Where q1(t) and q2(t) are time-dependent functions that
can be chosen altered and optimized. These act as the control
inputs to the soft-robotic tentacle.

4

Ly

Lx

Split channel
Measurement Point

Figure 2 All simulation components captured at one timestep t. The coordinate system of the fluid domain is indicated in the
bottom left corner, (xs, ys). The measurement point is indicated by the vertical dashed line. The simulated tracer particles
can be seen in green and the particles are injected at located at Ly/3 of the channel inlet. The fluid flow within the channel is
visualized in red and blue displays the vorticity of the flow at this time step, with high-density red being the maximum value of
10 [1/s] and high-density blue being the minimum value of -10 [1/s].

Figure 3 Coordinate system for the tentacle structural model
as defined in [23]; this is the structural model used to simulate
the soft robotic tentacle via the polynomial curvature model.

The structural model of the soft robotic tentacle immersed
in the fluid channel needs to provide sufficient information
about the tentacle motion and deformation such that the
LABIB-FSI solver can resolver can converge sufficiently at
each timestep, providing information about the resulting fluid
motion. Namely, the structural solver must be able to pro-
vide the following outputs at each time-step. xs, ys define
the horizontal and vertical coordinates in fluid channel. The
following information needs to be returned:

• The displacement in xs and ys direction at each point
of the discretized tentacle’s perimeter relative to the ini-
tial configuration of the tentacle (completely horizon-
tal, i.e central axis of the tentacle follows the linear line
at xtentacle = 0)

• The xs and ys velocity components at each point of the
tentacle’s perimeter

To model the soft robotic tentacle in simulation the Poly-
nomial Curvature model is employed, limiting the curve de-
scriptors to the first-order term. Polynomial curvature mod-
els are an effective and efficient way to represent continuous,
flexible strictures through a finite approximation.

4.4 Integration
For integration with the LABIB-FSI solver, the tentacle’s

attachment point within the fluid channel had to be consid-

ered. The tentacle is attached flush to a cylinder at a prede-
fined position with the fluid domain. The point of attachment
between the tentacle and the cylinder is required to be tan-
gential to ensure that disruptions due to discontinues in the
structure’s perimeter do not arise, risking additional complex-
ity to be introduced to the flow. Kinematics of the distrusted
perimeter of the tentacle-cylinder structure had to be derived,
building on the affine curvature model.

4.5 Design of the Engineering Objective: Particle Mixing
Rate Quantification

The introduction of the actuated soft-robotic tentacle im-
pacts the mixing of the flow. As a channel flow is being con-
sidered, motion in the immersed soft-robotic tentacle can alter
the natural trajectory of particles in the flow. Solid tracer par-
ticles are often used in experimental fluid dynamics to visual-
ize the flow for velocimetry applications. The idea behind this
being that, these tracer particles have densities close enough
to that of the flow that it can be tracked without influenc-
ing the fluid behavior. Taking inspiration from this, massless
point particles are injected into the proposed simulation set-
up at a fixed position. This will allow to track the trajectory
of the particles as the tentacle is actuated.

4.5.1 Tracer Particle Injection

The mass-less point particles were chosen to be injected at the
fixed inlet location at Ly/3, where Ly is the height of the fluid
channel. This was chosen because if the flow is uninterrupted
there is a clear trajectory for the particles released into the
channel as can be seen in Figure 4; the particles will cross
and exit the channel on the bottom half. If there is actuation
in the tentacle, it is possible to influence the flow such that
these particles could infact cross the channel on the top half
of the channel.

5

Figure 4 Steady state simulation with no actuation in the soft
robotic tentacle and fixed inlet location at Ly/3, where Ly is
the height of the fluid channel (see Figure 2).

4.5.2 Measuring Point Placement

To quantify this mixing that is possible, a split channel is in-
troduced with a corresponding measurement point placed in
the middle. These are positioned such that it takes a free-
flowing particle ≈ 4 seconds to reach this point. This gives
enough time and space for the tentacle to have an influence
on the trajectory of the particle downstream of its actuation,
introducing a time dependency to be learned between the con-
trol action and reaction. Placing the measurement point closer
to the soft-robotic tentacle would result in the particle mixing
being evaluated before the soft robotic tentacle influences its
trajectory, and it becomes harder to distinguish that the mix-
ing is a result of actuation in the tentacle.

4.5.3 Particle Tracker

To quantify the mixing in in the fluid channel in the xs direc-
tion, the simulated tracer particles need to be tracked.

Figure 5 In the opaque green is indicated a tracer particle at
time t. Nodes marked in red indicate the four closest noted
within the discretized fluid domain that enclose the particle.
Each of these nodes have x and y velocity components; the
vector arrows indicate this at each node in the uniform Eule-
rian mesh. The translucent green marker indicates the posi-
tion of the particle at the next timestep (Refer to Algorithm
1).

The fluid domain is discretized into a uniform mesh,
with Nx nodes in the ys-direction and Ny nodes in the
xs-direction. Therefore, for every time-step in the simu-
lation, the LABIB-FSI solver will return an array of size
(Nx + 1)× (Ny + 1)× 2, containing the xs and ys velocity
components at each node. By tracking the continuous posi-
tion of the tracer particle (in accordance with the coordinate

system visible in Figure 2), at each point in time, the closest
nodes in the fluid domain are located and their velocity val-
ues are interpolated to determine the velocity influencing the
tracer particle at that instant. Refer to algorithm 1 for further
clarification on the propagation of the tracer particles over
time. Algorithm 1 elaborates on how each particle is tracked,
where pxt and pyt indicate the position of the particle at time
t in the fluid channel coordinate system (xs, ys). Vx and Vy

are the corresponding velocities of the particles calculated in
the same coordinate system. Once a particle exits the fluid
domain, it is no longer tracked, this is indicated by the condi-
tion in line 1 of Algorithm 1.

Algorithm 1 Simulate & Track Tracer Particles in a Fluid

1: while (pxt, pyt) < (Lx, Ly) do
2: Identify the indices (ix, iy) of the four nodes that

form the cell enclosing the particle
3: Calculate the bi-linearly interpolated velocity at the

particle’s position (Vx, Vy):
Let V11, V21, V12, and V22 be the velocities at the

four enclosing nodes
Let (x1, y1) be the coordinates of the bottom-left

node, and (x2, y2) the coordinates of the top-right node
4: Compute the interpolation weights:

wx1 = x2−pxt

x2−x1
, wx2 = pxt−x1

x2−x1
, wy1 = y2−pyt

y2−y1
,

wy2 = pyt−y1

y2−y1
,

5: Perform bi-linear interpolation to find Vx and Vy:
Vx = wx1 · (wy1 · V11x + wy2 · V12x) + wx2 · (wy1 ·
V21x + wy2 · V22x)

Vy = wx1 · (wy1 · V11y +wy2 · V12y) +wx2 · (wy1 ·
V21y + wy2 · V22y)

6: Update the particle’s position using the interpolated
velocity:

pxt+1 = pxt + Vx · dt
pyt+1 = pyt + Vy · dt

7: return (pxt+1, pyt+1)
8: Set pxt = pxt+1 and pyt = pyt+1 for the next itera-

tion
9: end while

4.5.4 Control Output: the Metric

A continuous metric is constructed that quantifies the ratio
of particles crossing the measurement point above the split
channel to those crossing the measurement point below the
split channel. Monitoring fluctuations in this ratio essentially
monitors the mixing rate within the fluid channel. Actuation
in the soft robotic tentacle provides the possibility of control-
ling the concentration and by extension controlling the path
of particles entering the fluid channel.

6

In discreet form, the metric can be defined as follows:

r(t) =
number of particles passing lower boundary

total number of particles passing measurement point
(2)

However for control applications, and more so when con-
sidering the metric as a feature for neural networks, con-
tinuous signals are preferred. This is primarily to ensure
smooth derivatives when learning relationships between fea-
tures and/or the signal over time.

Using the discreet form of the metric, Equation 2, would
result in abrupt step changes in the metric value even with just
one additional particle crossing the measurement point. The
metric is inversely proportional to the total number of tracer
particles passing the measurement point. This can be seen in
the top graph in Figure 28.

It was taken into account that there won’t be particles
crossing the measurement point in every time step. This
needs to be considered because the simulated tracer particles
are released in a single line from a fixed position. This means
that for the metric to be continuous, a measurement horizon
needs to be defined, T . For the simulation run in this research,
T = 1.0s. The metric works as a sliding window moving for-
ward in time, constructing its value based on the number of
particles crossing the measurement point in the defined time
window relative to that instant in time. The continuous metric
constructs its value at each time step as follows, only consid-
ering particles acting within the measurement horizon T :

r(t) =

∑
wl∑

wl +
∑

wu
(3)

Algorithm 2 Calculate Weight for Tracer Particles

1: Input: δt, the time since the particle passed the measure-
ment point.

2: Input: T , the defined measurement horizon.
3: Input: τ , the threshold time constant.
4: Output: Weighting value for tracer particle.
5: if δt < τ then
6: return 0.5 · (1− cos(πτ · δt))
7: else if δt > T − τ then
8: return 0.5 · (1 + cos(πτ · (δt− (T − τ))))
9: else

10: return 1
11: end if

Where wl and wu are the weighted particle values. Each
particle is weighted according to what point in the measure-
ment horizon, τ , the particle crossed the measurement point.
Particles that cross the measurement point at the start and end
of the measurement horizon are weighted less to ensure con-
tinuity in the metric, while particles passing the boundary in
the middle of the measurement horizon are weighted 1. This
results in a smooth continuous distribution of the changes

in particle concentration over time; the result of a weight-
ing function is applied to the discreet metric. This can be
seen in Figure 28. The weight assigned to each particle is
determined by δt, the time since the particle passed the mea-
surement point, T , the defined measurement horizon τ , the
threshold time constant. The algorithm employed can be seen
in Algorithm 2.

4.6 Control Parameters

The control parameters of the problem will be the fea-
tures used to train the neural network. The control inputs de-
scribe the actuation applied to the soft robotic tentacle. The
scalar metric designed to quantify the mixing of the fluid in
the xs direction becomes the control output The table below
summarizes the control parameters of the developed complex
benchmark fluid case:

Simulation Parameter Symbol

Control Input
Soft robotic
tentacle actuation
polynomials : q1(t), q2(t)

u1(t), u2(t)

Control Output
Custom metric to
monitor fluid
mixing behavior : r(t)

yr(t)

Table 1 Summary of control parameters to be considered for
forecasting simulation behavior

5 DATASETS

Two datasets, with independent experiments to act as test
data, were constructed from the complex benchmark case (see
Section 4). The datasets were created to test the forecasting
algorithm’s capacity to understand regular, periodic motion
and to what extent this performance could extend to complex,
less predictable behaviors. evaluating the developed frame-
works on these two datasets, the neural network is exposed to
a wide range of data characteristics. This will help to identify
the limitations of the models.

5.1 Periodic Motion Dataset

Periodic motion is a fundamental class of behavior in dy-
namic systems; despite their repetitive motion, in the context
of the fluid dynamic problem, due to the complexity in the
mode of actuation and the system being controlled, even pe-
riodic signals produce complex control output signals. The
periodic dataset will serve as a baseline to test the network’s
capability to capture and predict regular and predictable be-
havior in the complex dynamic system.

Figure 6 displays the control output signals from the peri-
odic motion training dataset. The corresponding control input
signals can be seen in Table 2.

7

u1(t) u2(t)
2.10 sin(t) sin(t)
2.11 2 sin(t) 2 sin(t)
2.12 0.5 sin(t) 0.5 sin(t)
2.13 sin(2t) sin(2t)
2.14 sin(4t) sin(4t)
2.15 sin(5t) sin(5t)
2.16 sin(6t) sin(6t)
Test Data sin(3t) sin(3t)

Table 2 Control inputs for generating periodic motion dataset

0

1
2.10

0

1
2.11

0

1
2.12

0

1
2.13

0.5

1.0
2.14

0.0

0.5
2.15

0.25
0.50
0.75 2.16

10 20 30 40 50
t [s]

0.5

1.0
Test Data

Training Data

y(
t)

[-
]

Figure 6 Periodic motion dataset: the control inputs u1(t)
and u2(t) are limited to sinusoidal signals to produce a range
of periodic motion in the tentacle. The training data is indi-
cated in blue and the test data experiment is indicated in red.

5.2 Aperiodic and Asymmetric Motion Dataset
It was crucial to develop the aperiodic/asymmetric motion

dataset as this will explicitly test the generalization ability of
the developed algorithm and architecture. If the developed
model can extend its performance to the more complex prob-

lems posed by aperiodic and asymmetric motion in the ten-
tacle, it becomes possible to verify whether the model learns
underlying system dynamics or simply memorizes data pat-
terns. In addition to this, aperiodic and asymmetric data can
represent cases where there are higher levels of noise or un-
expected changes. This makes it possible to identify the edge
cases of the network performance.

The control inputs used to generate the complex motion
in the tentacle are listed in Table 3. These correspond to the
output signals displayed in Figure 7. Experiment 2.21, in Ta-
ble 3, uses a smoothing function S to ensure that the input
signal remains continuous, Equation 4.

S(t, start, end, width) =
tanh(t−start

width)− tanh(t−end
width)

2
(4)

2.20 u1(t) = sin(4t)
u2(t) = sin(2π(0.1t1.5))

2.21
u1(t) = sin(t)S(t, 0, 10, 0.1)+
sin(3t)S(t, 2, 8, 0.1)+
sin(5t)S(t, 4, 6, 0.1)
u2(t) = sin(2π(0.1t1.5))

2.22 u1(t) = sin(tπ(0.1 + 0.05 sin(0.1t)))e−0.1t

u2(t) = sin(πt(0.2 + 0.1 sin(0.05t)))e−0.05t2

2.23 u1(t) = sin(2πt+ sin(0.5
√

(t))2

u2(t) = sin(2π0.5t)−0.05t + sin(2π0.05t2)e−0.05t

2.24 u1(t) = sin(tπ(0.15 + 0.1 sin(0.05t)))e−0.2t

u2(t) = sin(2π(0.2t+ 0.02t sin(0.02t)))e−0.2t

2.25 u1(t) = sin(2π0.2t+ 2 cos(0.2t))e−0.05t

u2(t) = sin(2πt(0.1 + 0.01t))−0.05t

2.26 u1(t) = sin(2π(0.1 + 0.02t)t)e−0.1t

u2(t) = sin(2π0.2t) + sin(2π0.1t+ π
4))e

−0.1t

Test
Data u1(t) = sin(2π(0.1t1.2))e−0.1t

u2(t) = sin(2π0.1t) + sin(2π0.02t2))e−0.02t

Table 3 Control inputs for generating aperiodic motion
dataset

6 METHODOLOGY

An offline and online framework for a feed-forward neu-
ral network to forecast the behavior of the control output (the
developed metric, subsection 4.5.4) is designed. To find the
most suitable network for the task, performance error was
evaluated when increasing network complexity (systemati-
cally increasing the width and depth of the network in the
range 3-20), different loss functions and different activation
functions (see Section 7). The tuned architecture is then em-
bedded into an offline and online framework, to ultimately
compare the performance gain/loss. The goal of the network
(embedded in the chosen framework) is to replace the dy-
namic model of the complex physical system designed. The

8

0

1
2.10

0

1
2.11

0

1
2.12

0

1
2.13

0

1
2.14

0

1
2.15

0

1
2.16

10 20 30 40 50
t [s]

0

1
Test Data

Training Data

y(
t)

[-
]

Figure 7 Aperiodic dataset: indicated in blue is the training
data, composed of seven experiments. The test data is indi-
cated in red and is a separate experiment.

algorithm must forecast the system behavior for H timesteps
into the future.

This network aims to test whether N past input-output
data pairs of a complex non-linear system is sufficient infor-
mation to forecast the system behavior H time-steps into the
future. To demonstrate the feasibility of this concept we con-
sider the simulation and parameters described in Section 4
and Table 1. Both the online and offline frameworks take
past control input-output pairs of the complex system, and
use this data to forecast the system behavior in each timestep.
The stark difference between the two approaches is that the
offline framework trains the embedded neural network offline
on approximately 30,000 data points for each case (periodic
and aperiodic), whereas the online learning framework im-
mediately deploys the network on the test data with no pre-
training on other datasets. The network updates its weights as
it forecasts during deployement.

This approach builds on the assumption that the system

can be described as follows:

yr(t+ 1) = f(yr(t), yr(t− 1), . . . , yr(t−N),

u(t),u(t− 1), . . . ,u(t−N))

where

u(t) =

(
u1(t)
u2(t)

)
Where yr(t) is the control output of the designed sys-

tem and u(t) is the control input vector that actuated the soft
robotic tentacle, see Table 1.

This means assuming that future system behavior will be
a function of the past control inputs and outputs [19]. The
goal of the neural network is to become an approximator of
this function. By using a one-step approximator recursively,
it becomes possible to forecast system behavior H time-steps
ahead. The frameworks use deep learning networks to ap-
proximate this function, and will be noted by f̂ .

The look-back horizon N is determined by the delay
between a control input being applied and a corresponding
change becoming visible in the control output. In the simula-
tion case designed, there is approximately a 4s delay between
actuation in the soft robotic tentacle and a control output re-
action. It is also observed that in free flow, with no actua-
tion provided to the tentacle, it takes 5.642s for a particle to
reach the measurement point from the moment it makes con-
tact with the leading edge of the soft robotic tentacle.

The fluid simulation uses dt = 0.00115547s; this is suffi-
ciently small enough to ensure convergence in the FSI solver
even with dynamic actuation in the soft robotic tentacle. A
data filter is implemented to increase learning speed. The data
filter allows you to specify a ’skip’ parameter. This parameter
was set to 15 for the experiments that follow, this means that
the network sees every 15th data-point from the simulation.
dtfs is the dt after the filtering by the algorithm i.e ‘skip‘
factor. In addition to reducing the amount of computation,
this also helps the network learn relatively more global trends
without losing too much information (the small dt allows for
this). It also means that fewer data points are needed to cap-
ture the same history horizon. With a ’skip’ factor defined, a
minimum of 200 time-steps of past input-output pairs need to
be fed to the network in order to capture the aforementioned
4s delay in the action-reaction of this fluid dynamic system.

6.1 Objectives
The goal of the offline and online learning frameworks

are as follows:

1. Forecast system behavior at least 1 second into the fu-
ture

2. Develop forecasts in a completely data-driven fashion,
with the neural network inputs being a function of the
control parameters seen in Table 1.

9

6.2 Offline Learning Framework
The offline learning framework is composed of two com-

ponents: training the one-step predictor, and deployment.
The one-step predictor is designed to at time t, predict yr(t+
1) using the past N control input-output pairs. During de-
ployment, this one-step predictor is used recursively, so that
its predictions can be used to forecast the system output be-
havior H timesteps.

6.2.1 Training: the One-Step Predictor

The one-step predictor is a feed-forward neural network that
aims to approximate the function that models the ’unknown’
non-linear dynamic system, f̂ :

ŷr(t+ 1) = f̂(yr(t), yr(t− 1), . . . , yr(t−N),

u1(t), u1(t− 1), . . . , u1(t−N)),

u2(t), u2(t− 1), . . . , u2(t−N)),

The exploration to find the optimum architecture can be
seen in Section 8. The architecture of the embedded neural
network can be seen in Table 4.

The training regime uses early stopping [24], with the ‘pa-
tience‘ parameter set to 20; this means that when the valida-
tion loss doesn’t improve for 20 consecutive epochs, the train-
ing is halted as past this point the model will risk overfitting.

Each training sample is composed of X(t), the input sam-
ple, and Y (t) the corresponding label. In this case, each train-
ing sample is composed of the control inputs and correspond-
ing system outputs for the past N = 200 timesteps, Equation
5, and the label would be the true system output at the next
timestep t = t+ 1, Equation 6.

X(t) =

u1(t), u1(t− 1),u1(t−N)
u2(t), u2(t− 1),u2(t−N)
yr(t), yr(t− 1),yr(t−N)

 (5)

Y (t) = yr(t+ 1) (6)

During training the network updates its weight such that
the loss, Equation 7, is minimized. ns is the total number
of training samples available, and ŷ(t + 1) represents the
output of the neural network. The loss is composed of the
mean squared error in prediction with an additional penalty
term η which penalizes the network for predictions of val-
ues outside the range training data. I.e as yr(t) will always
assume a value between [0, 1], the network will get an addi-
tional penalty when it predicts values outside this range. The
first term in Equation 8 penalizes predictions greater than 1,
while the second term penalizes negative predictions. The ef-
fectiveness and motivation for the custom loss function can
be seen in Section 7.3.

et(t) =
1

ns

ns∑
n=0

(yr(t+ 1)− ŷr(t+ 1))2 + η (7)

η = max(0, ŷr(t)− 1) + max(0,−ŷr(t)) (8)

6.2.2 Deployment: Forecasting Algorithm

The offline trained one-step predictor can then be used recur-
sively to build a forecast horizon, predicting the system’s con-
trol output’s behavior for H timesteps ahead. At each time
step, the control sequence [(u1(t + 1), u2(t + 1) . . . (u1(t +
N), u2(t+N)] for the next H timesteps is assumed are avail-
able. In practice, a controller would be querying these po-
tential control sequences before choosing the optimal control
based on the performance implied by the forecasts. The com-
plete algorithm for one timestep can be seen below,

Algorithm 3 Recursive Forecasting Algorithm

1: current input← X(t)
2: forecast← []
3: for i = [0, H] do
4: ŷr(t+ i)← f̂(current input)
5: forecast.append(ŷr(t+ i+ 1))

▷ remove first entry in current input
6:

7: remove

u1(t−N)
u2(t−N)
yr(t−N)

▷ Append next control input and network

prediction to the current input
8:

9: append

u1(t+ i)
u2(t+ i)
ŷr(t+ i)

10: end for

6.3 Online Learning Framework
The online learning framework is designed to employ the

same feed-forward neural network architecture of the same
complexity as that in the offline learning framework. The on-
line learning framework does not have a training phase before
deployment. It is not shown the training data indicated in Fig-
ures 6 and 3 as the offline learning network. Instead, the on-
line framework has a buffer incorporated that becomes a form
of memory handling. While the online learning framework
employs the same architecture and forecasting algorithm out-
lined in Section 6.2.2, the difference is that the network’s
weights are updated during deployment as opposed to during
a separate offline training phase.

The buffer, B, has size Nb = 500 with dimension di-
mension (Nb, 3) , and is initialized to zeros. It is composed

10

of the past Nb control system input and corresponding out-
puts, see Equation (9); once initialized, at the end of every
timestep, the control output and corresponding control inputs
of the system are appended to the buffer, and the oldest en-
try in the buffer is deleted. The online learning framework
will not calculate system forecasts until it has been deployed
long enough that the buffer is full, i.e Nb timesteps need to
pass before forecasts are produced, this would happen when
t = Nbdtfs where dtfs is the filtered dt. This timestamp is
denoted by tBA, the time of buffer activation.

B(t) =

u1(t), u1(t− 1),u1(t−Nb)
u2(t), u2(t− 1),u2(t−Nb)
y(t), y(t− 1),y(t−Nb)

 (9)

Algorithm 4 Deployment : Online Learning Framework

1: B(t)← zeros(Nb, 3)
2: if t ≤ tb then:
3: B(t)← [u1(t+ 1), u2(t+ 1), yr(t+ 1)]
4: else if t = tb + dtfs then
5: Create X(t, · · · t−Nb),Y(t, · · · t−Nb)
6: Train one-step predictor for 100 epochs on batch 1
7: Update and save network weights
8: Recursively build H step forecast (see Algorithm 3)
9: else if t > tBA + dtfs then

10: Create X(t · · · t−Nb),Y(t · · · t−Nb)
11: Train one-step predictor on new batch
12: Update and save weights
13: Recursively build H step forecast (see Algorithm 3)
14: end if
15: Remove oldest entry in the buffer ▷ Actual system takes

a step forward
16: B(t)← [u1(t+ 1), u2(t+ 1), yr(t+ 1)]

X(t) and Y (t) remain the same as described for the one-
step predictor in Section 6.2.1. The online learning algorithm
is outlined in Algorithm 4; this algorithm summarized the be-
havior of the online learning framework in each time-step,
t, that the simulation is active. The following points can be
clarified:

1. While t ≤ tBA, the true system outputs are added to
the buffer until it is full (lines 2-1).

2. When t ≥ tb, a sliding window is used on the buffer of
size Nb to create training samples, with each training
sample X(t) sample being a (N, 3) vector of the past
N control inputs and outputs, see Equation 5. The cor-
responding label, Y (t), would be the (t + 1)th control
output, see Equation 6 (line 5-6, 10-11 in Algorithm 4).
When the buffer is full, ns = (Nb− 2N −H), training
samples with corresponding labels can be made.

3. In the first time-step where the buffer is full (t = tBA+
dtfs), the one-step predictor network is trained on the
samples created from the buffer for 100 epochs.

4. In the time-steps to follow, t > tBA + dtfs , the buffer
is used to create training samples, and the model is
trained for 10 epochs per time-step on these new sam-
pled. The weights are updated and saved (lines 9-12,
Algorithm 4).

5. The network is then used recursively to build a forecast
H steps ahead

6. At the end of each time-step, the control inputs and
corresponding control output are added to the buffer
and the oldest entry in the buffer is removed. In this
way, the buffer size is maintained at Nb (lines 15-16,
Algorithm 4). Note that the online weight update still
employs the custom loss function (Equation 7)

6.4 Evaluation Metrics
To evaluate the frameworks’ performance the following

metrics will be prioritized, in addition to the one-step predic-
tion error, Equation 7; Equation 11 is the forecast error. This
is the mean squared error for a given H step forecast built
with Algorithm 3. This helps forecast quality at each time-
step. Certain behavior in data is harder for the network to
learn, such as unexpected turn-points and step responses; this
metric will make it possible to easily observe this.

e(t) = y(t+ 1)− ŷ(t+ 1) (10)

FMSE =

∑H
n=1 e(t)

2

N
(11)

Equation 12 is the average forecasting mean squared er-
ror; this metric quantifies the average forecasting perfor-
mance of the network in a given experiment of duration td.

AFMSE =

td∑
n=0

∑H
n=1 e(t)

2

N
(12)

7 NETWORK ARCHITECTURE & HYPERPARAMETER
TUNING

The achirecture of the feedforward neural network used
when testing the online and offline methodology (6.2.2) was
tuned by evaluating the influence of different baseline settings
and architecture complexities on validation data derived from
the periodic and aperiodic datasets (see Figure 6 and Figure
7).

7.1 Base Settings
The base setting of the network includes the activation

function, the learning rate, and the use of early stopping. To
evaluate the most suitable setting for the complex fluid sim-
ulation case, the forecasting error on the validation data was

11

evaluated. The different settings were tested on a network
with 1 layer of 16 neurons each so that the performance with
different activation functions and base settings.

0 50 100 150
Validation Sample Number

0.00

0.05

0.10

0.15

0.20

0.25

F
M

S
E

[-
]

LeakyReLU (- ES)

LeakyReLU (- ES)

Softmax (- ES)

ReLU (- ES)

Softmax (+ ES)

LeakyReLU (+ ES)

Figure 8 Baseline model performance with different activa-
tion functions and with and without early stopping applied.
(+ES) indicates early stopping is applied, and (−ES) is
where it is not applied. Best performance is achieved with
LeakyReLU couples with early stopping.

This ’control’ baseline network was evaluated with the
different settings employed; the two activation functions that
had the least average forecasting error were Softmax and
LeakyReLU. Figure 8 shows the results of these activation
functions when coupled with early stopping and without it,
with a setting of 500 epochs of training. As is visible from
the plot, the best performance is achieved when using the
LeakyReLU activation function with early stopping applied.

7.2 Impact of Model Complexity
To analyze the impact of network complexity on this task,

the network architecture was tested in two stages: manual and
automated tuning. The manual tuning was used to determine
the approximate range of network depth and width to explore
when using the more complex automated tuning.

Figure ?? shows the results of the manual tuning; the
model performance was first tested by increasing the width
per layer of the neural network. The same architecture used
to tune the activation functions were used as a starting point.
As can be seen from Figure 9a, an average width of 8 neurons
displayed the best performance. This becomes the starting
point for testing the impact of network depth on validation
performance. Keeping a layer width of 8 neurons, the depth
was increased i.e the number of layers were increased. As
can be seen in Figure 9b, a depth of 3 layers provided the
best performance. These were used as a ball mark estimate to
then use Optuna to tune the learning rate, per layer network
width and depth. The manual tuning was used to estimate the

0 100 200 300 400 500 600 700
Validation Sample Number

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

F
or

ec
as

et
L

os
s

[-
]

4 Neurons

8 Neurons (baseline)

16 Neurons

32 Neurons

(a) Manually testing the imapact of increasing the network width (i.e
neurons per layer) on the network performance on the validation sam-
ples. The best performing width was at 8 neurons and is indicated by
the black line in the graph. This becomes the width with which the
network depth will be varied.

0 200 400 600
Validation Sample Number

0.00

0.02

0.04

0.06

0.08

0.10

F
or

ec
as

et
L

os
s

[-
]

1 layer

2 layers

3 layers

4 layers

(b) The best result from the manual width analysis is used as the aver-
age width to vary the depth of the network and evaluate performance
on the validation samples.

Figure 9 Summary of the manual evaluation of the impact of
varying network complexity in terms of average number of
neurons per layer and depth of the network. Plot a displays
the impact of increasing the network width and plot (b) the
impact on increasing network depth.

12

ranges within which to iterate the network width and depth
combinations: the network depth was varied from 3 to 9 and
the per layer width was varied in the range of 7-15. The best
performing network architecture and base settings are sum-
marized in the table below:

Network Architecture and Training Parameters

Input shape (N,3)
Output shape (1,)
Early stopping 20
Optimizer ADAM
Learning rate 0.001
Network depth 4
Width per layer [12, 12, 9, 8]
Activation Function Leaky ReLU
Offline learning epochs 500
Online learning epochs 100 warm start,

10 online updates

Table 4 Overview of one-step predictor network architecture,
training parameters and base settings

7.3 Custom Loss Function

Section 6.2.1 proposed a custom loss function with an ad-
ditional penalty added for predictions outside the range of the
training data. I.e all the input data and label are in the range
[0,1] (for the tentacle fluid simulation case), therefore predic-
tions outside this range should be discouraged. Due to the na-
ture of feed-forward neural networks, extrapolation tasks are
especially difficult when given non-linear data; without the
custom loss function applied, there was a significant amount
of overshooting in the forecasts generated for the validation
data.

This can be seen in Figure 10, displaying the absolute
forecast error per validation sample from models trained with
the proposed custom loss samples, versus a model trained
with the default mean squared error loss. There is a signif-
icant reduction in forecast error when trained with the addi-
tional penalty term. The final architecture embedded in the
the online and offline learning frameworks will use the cus-
tom loss function.

8 VERIFICATION & BENCHMARKING

In order to verify the network architecture’s and the de-
veloped forecasting algorithm (see Algorithm 3) capability
to capture system dynamics, the proposed recursive forecast-
ing algorithm is tested on benchmark control systems where
the forecasts can be compared to results from dynamic mod-
els. The benchmark cases increase in complexity, from linear
time-invariant systems to seconds order systems with multi-
ple control inputs. The cases considered are detailed in sec-
tions 8.1 to 8.3, and a summary of the results can be seen in

0 50 100 150
Validation Sample Number

0.00

0.02

0.04

0.06

0.08

F
M

S
E

[-
]

Plain MSE

Custom Loss Function

Figure 10 Performance of baseline architecture in the pro-
posed algorithm with and without the custom loss function
(see Equation 7) used for training. Absolute forecast error per
validation data sample is displayed. The custom loss function
reduces error significantly.

Table 5. Plots and further details of the cases considered can
be seen in Appendix B.

AFMSE [-] H (s) N (s)

V1 2.3868e-06 10 20
V2 1.1978e-05 10 20
V3.1 3.1487e-05 5 20
V3.2 4.4950e-05 10 40
V3.3 2.3343-04 20 80

Table 5 Forecasting performance on benchmark verification
cases V 1− V 3.3. The corresponding prediction horizon and
history captured in the network input are also recorded.

8.1 V1 Linear Time Invariant Case: First Order Integrator

A linear time-invariant control system was considered.
The system was a first-order integrator, and the performance
of the proposed offline learning neural network architecture
was tested.

The output of the system y(t) is the integral of the con-
trol input u(t). A constant value control input was applied to
allow for manual verification of the network weight updates.
For all t, a constant control input u(t) = U is applied.

y(t) =

∫
u(t) =

∫
Udt = U · t+ Cwhere C = 0 at t = 0

(13)
The proposed architecture is tested with a prediction hori-

zon of 10 seconds, with network input capturing the past 20
seconds of data.

13

8.2 V2 First Order System: Thermal Control System
A simple thermal control system is considered: heating a

room, with the control input being the heating power and the
control output being the room temperature.

y(t) = Ku(t)(1− e−t/τ) (14)

Where the gain K = 0.5 and the time constant τ = 10.
The exponential term ensures the output response is gradual
to mimic the room temperature response to a gradual increase
in heating. The proposed architecture is tested with a predic-
tion horizon of 10 seconds, with network input capturing the
past 20 seconds of data.

8.3 V3 Second-Order System: Mass-Spring Damper System
The mass-spring-damper system is characterized by three

primary components: mass (m), spring constant (k), and the
damping coefficient (c). To test the developed algorithm, the
second-order system is simulated with the following parame-
ter values: m = 1.0, K = 1.0, c = 0.1. The system dynamics
can be modeled by the second-order differential equation:

ẍ+
c

m
ẋ+

k

m
x = u(t) (15)

Where x is the displacement of the mass; ẋ and ẍ are the
derivatives of the displacement, the velocity and acceleration
of the mass and u(t) is the control input to the system. The
control inputs are time-varying external forces applied to the
system and are composed of two signals:

u(t) =
[
u1(t) = sin(t)
u2(t) = cos(t)

]
(16)

In order to thoroughly evaluate the performance of the
designed algorithm on the second order system, the perfor-
mance for increasing prediction horizons was recorded: pre-
dicting a quarter period into the future (V3.1), a half period
into the future (V3.2), and a full period into the future (V3.3).
While the performance decreases as the prediction horizon is
increased, it can be seen that even when the prediction hori-
zon is a full period ahead (20 seconds of motion in this case),
the proposed architecture can maintain performance with an
average forecasting error in the order of 10−4. The network
input captures four times the prediction horizon (the ’skip’
factor, 6 is used to capture more time in relatively fewer time-
steps).

9 RESULTS

The results of the performance of the neural network em-
bedded in the online and offline framework are also com-
pared to three developed relatively much less complex fore-
casting algorithms. These simple forecasting algorithms be-
come heuristics to assess how much performance is gained by
using a deep learning-based approach for this task. This will
also illuminate to what extent the deep learning architecture

are learning the relationship between the features compared
to a numerical trend.

In addition to this, to assess the forecasting capability and
by extension, the ability of the deep learning-based frame-
work the following tests were performed:

• The performance of both online and offline learning
frameworks are evaluated on periodic and aperiodic
data

• The performance is evaluated at different prediction
horizons (for both periodic and aperiodic datasets):
H = 0.25s, 0.5s, 1.0s

• For each test (different value of H), the performance
is compared to that of three heuristic forecasters (): a
simple average predictor S1), a numerical linear extrap-
olator and a machine learning linear regressor

• For each time horizon, density plots are created to eval-
uate the ability of the deep learning architectures to
comprehend global behavior of the system

9.1 Defining Heuristics
Three heuristics are developed that are numerical fore-

casters to discern the extent to which the deep learning archi-
tectures learn a relationship and to critically evaluate the per-
formance gain from employing learning based methods for
forecasting complex system behavior.

9.1.1 S1: Simple average predictor

The simple average predictor assumes that the next N control
outputs in time can be estimated by the average of the past N
control outputs. For i = 1, 2, · · ·N ,

ŷr(t+ i, · · · t+N) =

∑
yr(t), · · · yr(t−N)

N
(17)

9.1.2 S2: Simple linear extrapolator

The simple linear extrapolator uses the last two control output
values in the time-series data to calculate the gradient of a
linear line and extrapolate it N steps into the future. For i =
1, 2, · · · , N ,

ŷr(t+ i) = yr(t) +

(
yr(t)− yr(t− 1)

2

)
yr(t) (18)

9.1.3 S3: Linear regressor

A linear regression model is fitted to the time series data
(looking as far as the samples provided to the network). The
model is then used to predict values from i = 1, · · ·N that
build the forecast. The linear regression model can be repre-
sented as :

14

ŷr(t+ i) = β0 + β1t (19)

Where β0 and β1 are the coefficients estimated by the linear
regression.

9.2 Points of Evaluation
The types of plots considered to aid the evaluation of the

network performance include forecast density plots and plots
comparing the FMSE (see Equation 11) of the heuristics.
Density plots overlay all forecasts from a test experiment; if
the network successfully learns a relationship, overlaying all
consecutive forecasts would reconstruct the ground truth sig-
nal. The density plot allows us to evaluate accuracy as well
as gain an understanding of the stability in predictions. Oscil-
lating predictions are not desirable, as this means the network
has little certainty in the learned relationship or that the train-
ing data was insufficient.

9.3 Periodic Motion
Table 6 displays a summary of the results when the net-

work is trained and tested on the periodic motion dataset, with
the AFMSE (see Equation 12) recorded for the heuristics and
the neural model. The model with the best performance has
its results bolded. Figures 12 to 14 display the comparison of
the forecasting error per test sample of the developed heuris-
tics against the developed neural model. Figure 11 displays
the desnity plot when H = 0.5s; the neural model’s predic-
tions are overlayed with the forecasts of the best performing
heuristic, in this case S2-the numerical linear extrapolator.
Desity plots for H = 0.25, 1, 0s can be seen in Appendix
A.2.1.

AFMSE [-]

H (s) S1 S2 S3
Offline Neural
Model

0.25 0.00244 0.0027 0.0180 0.0023
0.50 0.01503 0.0122 0.0536 0.0066
1.00 0.0177 0.1069 0.0265 0.0097

Table 6 Summary of results on the periodic motion dataset.
The best performance is bolded. The table records the
AFMSE (see ref Equation 12).

9.4 Aperiodic Motion
Table 6 displays a summary of the results when the net-

work is trained and tested on the aperiodic motion dataset,
with the AFMSE (see Equation 12) recorded for the heuristics
and the neural model. Figures 23a to 18 display the compar-
ison of the forecasting error per test sample of the developed
heuristics against the developed neural model. Figure 25b is
the corresponding forecast density plots for H = 0.5s, with
the most comparably performing heuristic’s forecasts over-
layed, which in this case was S2-the numerical linear extrap-

AFMSE [-]

H (s) S1 S2 S3
Offline Neural
Model

0.25 0.00473 0.01837 0.0038 0.0012
0.50 0.007557 0.09168 0.00977 0.0068
1.00 0.01060 0.28709 0.01334 0.0467

Table 7 Summary of results on the aperiodic motion dataset.
The best performance is bolded. The table record the AFMSE
(see ref Equation 12).

olator. Refer to Appendix A.1.2 and Appendix A.2.2 to see
all the plots.

9.5 Online Learning vs Offline

Tables 8 and 9 summarize and allow for the comparison
of the performance of the online and offline framework at
the different values for H . Figure 22d plots the error for
H = 1.0s on the periodic test data in comparison to the
performance of the offline learning framework for the same
case and Figure 20 displays the corresponding desity plot.
Figure 21 visualizes the error of the online learning and of-
fline learning framework for the aperiodic data test case when
H = 1.0s. Density plots for H = 0.25 and H = 1.0s can
be found in Appendix Appendix A.2.2. The density plot for
aperiodic motion at H = 1.0s can be seen in Appendix A.2.2.

AFMSE [-]

H (s) Offline Learning Online Learning

0.25 0.0024 0.0046
0.50 0.0066 0.0042
1.00 0.0097 0.0052

Table 8 Performance on periodic motion dataset

AFMSE [-]

H (s) Offline Learning Online Learning

0.25 0.0012 0.0089
0.50 0.0068 0.0100
1.00 0.0467 0.0239

Table 9 Performance on aperiodic motion dataset

10 EVALUATION

The results of the two proposed frameworks are evaluated
with the its capacity to learn a relationship, generalize and
the impact of the length of the prediction horizon as points of
focus.

15

2.5 5.0 7.5 10.0 12.5 15.0 17.5
Timestamp [s]

−0.5

0.0

0.5

1.0

1.5

r(
t)

Neural Model Forecasts

Numerical Linear Extrapolator Forecasts

True System Outout

Figure 11 The density plot for qualitative evaluation of the offline learning neural model on the periodic motion test set.
Consecutive forecasts from the offline neural network model overlayed along with the forecasts from the most comparable
heuristic (S2) to create a density plot when H = 0.5s. The y-axis of the plot is the control output, yr(t) = r(t).

0 5 10 15 20
Timestamp [s]

0.00

0.02

0.04

0.06

0.08

0.10

0.12

F
M

S
E

[-
]

S1: Simple Average Forecaster

S2: Numerical Linear Extrapolator

S3: Linear Regressor Forecaster

Neural Forecaster

5 10 15
0.00

0.02

0.04

Figure 12 Comparison of the forecast error, FMSE[-], of the
heuristics and the offline neural model for the periodic motion
test case when H = 0.25s. The neural model outperforms all
heuristics by an order of magnitude.

10.1 Offline Learning Framework : Periodic Motion
Dataset

Looking at Table 6, it can be seen that the neural model in
the offline learning framework surpasses the heuristic models
by an order of magnitude reduction in the average forecasting
error for the periodic motion dataset.

The increased layering in the turn points of the signal in
the density plots (Figure ??, also indicates that these turn
points are difficult for the network to gauge the location and

10 15 20 25
Timestamp [s]

0.00

0.05

0.10

0.15

0.20

0.25

F
M

S
E

[-
]

S1: Simple Average Forecaster

S2: Numerical Linear Extrapolator

S3: Linear Regressor Forecaster

Neural Forecaster

Figure 13 Comparison of the forecast error, FMSE[-], of the
heuristics and the offline neural model for the periodic motion
test case when H = 0.5s. The neural model outperforms all
heuristics by an order of magnitude.

magnitude off, however, the error at these points still does
not exceed 0.02 FMSE, and this is a peak error. At prediction
horizons set to 0.25s and 0.5s, Figures 12 and 13 shows the
neural model having significantly better performance than the
heuristics, having errors up to two orders of magnitude lower
for certain test samples. The consistent improvement in per-
formance when using the offline neural model, and its per-
formance consistency across increasing prediction horizons,
suggests that the offline neural model is indeed learning and

16

0 2 4 6 8 10 12
Timestamp [s]

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

F
M

S
E

[-
]

S1: Simple Average Forecaster

S2: Numerical Linear Extrapolator

S3: Linear Regressor Forecaster

Neural Forecaster

5.0 7.5
0.0

0.1

0.2

Figure 14 Comparison of the forecast error, FMSE[-], of the
heuristics and the offline neural model for the periodic motion
test case when H = 1.0s. The neural model outperforms all
heuristics by an order of magnitude.

gauged an understanding of the deeper, non-linear, relation-
ship between the control input and output. There is a perfor-
mance advantage when using the offline neural model for this
forecasting task.

10.2 Offline Learning Framework: Aperiodic Motion
Dataset

It can be seen that for the aperiodic motion, the offline
learning neural model does not have as large a reduction in
error as with the periodic motion data, and even in the case of
a 1s prediction horizon, the local linear regressor model (S3)
has better performance than the neural model. Looking at the
density plot, Figure 25a, even with only a prediction horizon
of 0.25s, it becomes clear that the network has difficulty esti-
mating the irregular inflections. With a prediction horizon of
0.25s, despite these limitations, the neural model can be seen
to still have notably less forecast error, Figure 23a. However,
when the prediction horizon is increased to 0.5s, while the av-
erage forecasting error is still lower than the simple heuristic
predictors, there is much more oscillation in the error, indicat-
ing significant uncertainty in successive forecasts. It struggles
to reconstruct the ground truth signal.

It can be seen that the deterioration in performance with
increasing prediction horizon is more significant in compar-
ison to the periodic motion dataset. With a prediction hori-
zon of 1s, the S3 simple heuristic forecaster even outperforms
the model. With increasing prediction horizon, in the case of
aperiodic motion, the network needs to capture more irregu-
lar inflections in a single forecast and the task becomes more
difficult; more complexity is embedded in each forecast.

This disparity in performance of the offline learning neu-

ral model between periodic motion and aperiodic motion is
largely potentially due to a lack of training data. Aprox-
imately 300,000 training data points were used in both the
periodic and aperiodic motion case. While this was sufficient
to give the neural model competitive performance in the case
of periodic motion data, the complexity of the aperiodic mo-
tion dataset demands for a larger training dataset to be able to
draw conclusive results on the aperiodic test data.

While the periodic motion dataset deals with only sinu-
soidal control inputs, it can be seen in Table 3 that the aperi-
odic dataset had significantly more varied input signals. The
complexity introduced was underestimated and not enough
training data was generated to produce a comparable model
for this data.

10.3 Relative Performance of the Online Learning Frame-
work

On the periodic motion dataset, Table 8, at the shortest
time horizon the offline learning framework outperforms the
online learning framework. This is because at shorter time-
horizons, the offline learning framework gains the advantage
of having seen and been trained on a dataset of samples apri-
ori. Online learning frameworks are designed to adapt and
learn from new data incrementally. This is why in Figure 22d,
the online learning framework initially has a large error that
quickly drops to average less than the offline learning frame-
work. For very short prediction horizons, the online learning
model may not have adjusted adequately to the nuances of
the data. In contrast, offline learning models are trained on a
comprehensive dataset from the start, potentially giving them
a better initial understanding of the data patterns. Further-
more, at smaller prediction horizons, the online model may
be more sensitive to noise and data sparsity. Online learning
continuously updates its parameters, which can be beneficial
for capturing long-term trends but may lead to over-fitting or
reacting too quickly to short-term noise in the data.

As the prediction horizon increases the online learning
framework performs better. Figure 20 shows that the even at
the largest time horizon, the online learning framework shows
more stability in consecutive forecasts and a stronger correla-
tion with the global trend of the signal than the offline learn-
ing model at relatively shorter time horizons. At H = 1.0s.
the offline learning framework also displays a lag developed
in it’s forecast that can be seen in Appendix A.2.1, Figure
24c. Especially worth noting is that this lag is not apparent
in the online learning framework’s performance at the same
time horizon.

While the performance of the online and offline learn-
ing frameworks remain within the same order of magnitude
across the different time horizon’s for the periodic motion
dataset, the online learning framework displays less degrada-
tion in performance, with the FMSE at the largest time hori-
zon only≈13% worse than at the shortest, whereas the offline
learning framework performs 3 times as worse at the largest

17

12 13 14 15 16 17 18
Timestamp [s]

0.2

0.4

0.6

0.8

1.0

1.2

r(
t)

Neural Model Forecasts

Numerical Linear Extrapolator

True System Outout

Figure 15 The density plot for qualitative evaluation of the offline learning neural model on the aperiodic motion test set.
Consecutive forecasts from the offline neural network model overlayed along with the forecasts from the most comparable
heuristic (S2) to create a density plot when H = 0.5s. The y-axis of the plot is the control output, yr(t) = r(t).

0 5 10 15 20
Timestamp [s]

0.00

0.02

0.04

0.06

0.08

0.10

F
M

S
E

[-
]

S1: Simple Average Forecaster

S2: Numerical Linear Extrapolator

S3: Linear Regressor Forecaster

Neural Forecaster

6 8 10
0.000

0.005

0.010

Figure 16 Comparison of the forecast error, FMSE[-], of the
heuristics and the offline neural model for the aperiodic mo-
tion test case when H = 0.25s. The neural model outper-
forms all heuristics by an order of magnitude.

time horizon. This is clearly visible from Figure 22d
As can be seen from Table 9, on the aperiodic motion

dataset, the online learning model only displays better per-
formance at the largest time-horizon. Despite this, the den-
sity plots reveal that both frameworks struggle dealing with
the irregularities of aperiodic data. While the online learning
framework displays better performance at the large time hori-
zon, it still severely oscillates around the true signal, strug-
gling to capture the turn points and trends.

0 5 10 15
Timestamp [s]

0.00

0.05

0.10

0.15

0.20

0.25

F
M

S
E

[-
]

S1: Simple Average Forecaster

S2: Numerical Linear Extrapolator

S3: Linear Regressor Forecaster

Neural Forecaster

5.0 7.5
0.00

0.02

0.04

Figure 17 Comparison of the forecast error, FMSE[-], of the
heuristics and the offline neural model for the aperiodic mo-
tion test case when H = 0.5s. The average forecasting error
of the neural model remains lower than that of the heuristics
but oscillation is visible.

Aperiodic data lacks regular, repeating patterns, making
it more challenging for both online and offline models to pre-
dict future values. The models may struggle to find a stable
representation of the data that can generalize well to unseen
instances. In addition to this, periodic data may contain more
noise and outliers, which can mislead the learning process,
especially in offline models that cannot adapt after their ini-
tial training phase. Online models can also be affected as they

18

0.0 2.5 5.0 7.5 10.0 12.5 15.0
Timestamp [s]

0.0

0.1

0.2

0.3

0.4

0.5

F
M

S
E

[-
]

S1: Simple Average Forecaster

S2: Numerical Linear Extrapolator

S3: Linear Regressor Forecaster

Neural Forecaster

Figure 18 Comparison of the forecast error, FMSE[-], of the
heuristics and the offline neural model for the aperiodic mo-
tion test case when H = 1.0s. Degradation in the perfor-
mance of the neural model is visible with the larger predic-
tion horizon, with S3 heuristic now outperforming the offline
neural model.

10 12 14 16 18 20
Timestamp [s]

0.00

0.01

0.02

0.03

0.04

0.05

F
M

S
E

[-
]

Online Learning Framework

Offline Learning Framework

Figure 19 The error of the online learning framework and
the offline learning framework for comparison on the periodic
motion test set for H = 1.0s. At the largest time horizon, the
average error of the online learning framework is seen to be
lower.

might over-adjust to recent noise.

10.4 Limitations

• Performance on periodic motion dataset is not trans-
ferred to the aperiodic motion dataset. This was ap-
parent in both online and offline learning frameworks

which raises the issue that aperiodic motion might be
an edge case for statistical A.I models like deep learn-
ing neural networks. The reason than these networks
could capture the dynamics when tested on periodic
motion data could be because periodic motion ampli-
fies the system dyanmics.

• The results indicate that as the complexity of a scenario
or system increases when dealing with offline models, a
significantly larger amount of training data is required.
However, it needs to be further evaluated whether in-
creasing the training data would sufficiently address all
of the model’s shortcomings.

• The offline learning framework displayed significant
performance degradation in both periodic and aperi-
odic motion datasets when the prediction horizon was
increased, with a lag developing and the stability of the
forecasts decreasing. While this could be because of
the error accumulation native to the recursive predic-
tion algorithm, it could also be a shortcoming of the
offline learning approach in that it is not able to cap-
ture and forecast global trends in non-linear systems.

• The offline learning algorithm, being trained prior to
testing offline, the model’s ability to generalize is con-
fined to the subspace it was trained in. Attempts to ex-
trapolate beyond this trained subspace result in reduced
performance, increased instability, and heightened un-
certainty; these are the shortcomings in performance
see when compared to the online learning framework’s
performance.

• The error metric FMSE[-] indicates the quality of the
forecasts but should be further evaluated with corre-
lation metrics. Because the metric is constructed by
looking at the absolute error in each forecast; this met-
ric could be aided and be more representative if the cor-
relation between the network forecasts and the ground
truth was also quantified. For example, the R2 metric
could be used - however the R2 is designed to quan-
tify the correlation in linear data, so would need to be
developed further or other metrics explored to try and
account for signal correlation in the non-linear data.

11 CONCLUSION

In this work, it was observed that both online and of-
fline learning frameworks significantly outperformed tradi-
tional numerical heuristics when applied to datasets of pe-
riodic motion, maintaining a consistent magnitude of error
across extended prediction horizons. Notably, the online
learning framework demonstrated superior stability and lesser
degradation in performance over longer prediction intervals.
However, at the shortest prediction horizon, it was noted that
the online algorithm’s performance was not as robust as that

19

15 20 25 30 35
Timestamp [s]

0.2

0.4

0.6

0.8

1.0

1.2

r(
t)

Online Neural Forecasts

True System Output

Figure 20 The density plot for qualitative evaluation of the online learning neural model on the periodic motion test set.
Consecutive forecasts from the offline neural network model overlayed to create a density plot when H = 1.0s. The y-axis of
the plot is the control output, yr(t) = r(t).

10 12 14 16 18
Timestamp [s]

0.00

0.02

0.04

0.06

0.08

0.10

F
M

S
E

[-
]

Online Learning Framework

Offline Learning Framework

Figure 21 The error of the online learning framework and the
offline learning framework for comparison on the aperiodic
motion test set for H = 1.0s. At the largest time horizon, the
average error of the online learning framework can be seen to
be lower.

of the offline algorithm. This could be attributed to the on-
line algorithm’s requirement for a greater volume of data or
more time within the system to fine-tune its parameters to
the specifics of the dataset. As the prediction horizon de-
creases, the look-back horizon diminishes proportionally, po-
tentially explaining the observed behavior. Despite these ad-
vancements, neither learning framework successfully trans-
lated their efficacy from periodic to aperiodic datasets, high-

lighting a significant limitation in using deep learning models
for forecasting behaviors in complex systems. This limitation
was evident as both frameworks struggled with stability in
consecutive forecasts and accurately predicting irregular turn-
ing points in aperiodic data, despite the online model showing
a relative performance advantage at the longest time horizon
examined.

The findings suggest that hybrid models, which combine
the strengths of both offline-trained models and the adaptabil-
ity of online learning during deployment, hold promising po-
tential, particularly in the context of active flow control. This
approach could address the noted limitations by leveraging
offline models’ robust initial performance and enhancing it
with online learning’s dynamic adaptability to changing con-
ditions, offering a comprehensive solution for forecasting in
complex systems.

12 FURTHER WORK

• Enhanced Training for Offline Learning: Investigating
the impact of augmenting the training dataset for the of-
fline learning framework, particularly focusing on ape-
riodic motion datasets, is crucial. An increased vol-
ume of training data may improve the model’s ability
to capture and predict complex flow dynamics, offering
insights into scalability and performance optimization
in AFC.

• Online Learning with Complex Systems: Extending
the application of the online learning algorithm to
other complex nonlinear dynamical systems could pro-
vide valuable data on the algorithm’s convergence rate.
Testing across a broader spectrum of systems will
help refine the algorithm’s generality and applicabil-

20

ity, paving the way for more adaptive and robust AFC
solutions.

• Regularization in Online Learning: Implementing
weight update regularization and establishing specific
rules within the online learning algorithm are essential
steps to prevent catastrophic forgetting. Such measures
will ensure that the model retains previously learned
information while adapting to new data, maintaining
a delicate balance between stability and plasticity in
learning.

• Feedback Control Loop Stability: Embedding the on-
line learning algorithm within a feedback control loop
to evaluate stability presents an exciting avenue for re-
search. This will assess the algorithm’s real-world ap-
plicability and reliability in dynamic control settings,
where maintaining system stability is paramount.

• Hybrid Architectural Developments: The development
of a hybrid architecture that integrates a pretrained neu-
ral model with the online learning framework during
deployment offers a promising approach to enhance
AFC adaptability. This strategy could leverage the
strengths of both offline and online learning paradigms,
ensuring rapid initial adaptation followed by continu-
ous improvement and adjustment to new or evolving
flow conditions.

21

APPENDIX A ADDITIONAL VISUALS FOR RESULTS

Appendix A.1 Heuristic Error Comparison Plots

Appendix A.1.1 Periodic Motion

0 5 10 15 20
Timestamp [s]

0.00

0.02

0.04

0.06

0.08

0.10

0.12
F

M
S

E
[-

]
S1: Simple Average Forecaster

S2: Numerical Linear Extrapolator

S3: Linear Regressor Forecaster

Neural Forecaster

5 10 15
0.00

0.02

0.04

(a) Comparison of the forecast error, FMSE[-], of the heuristics and the offline neural model for
the periodic motion test case when H = 0.25s. The neural model outperforms all heuristics by an
order of magnitude.

10 15 20 25
Timestamp [s]

0.00

0.05

0.10

0.15

0.20

0.25

F
M

S
E

[-
]

S1: Simple Average Forecaster

S2: Numerical Linear Extrapolator

S3: Linear Regressor Forecaster

Neural Forecaster

(b) Comparison of the forecast error, FMSE[-], of the heuristics and the offline neural model for
the periodic motion test case when H = 0.5s. The neural model outperforms all heuristics by an
order of magnitude.

22

0 2 4 6 8 10 12
Timestamp [s]

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

F
M

S
E

[-
]

S1: Simple Average Forecaster

S2: Numerical Linear Extrapolator

S3: Linear Regressor Forecaster

Neural Forecaster

5.0 7.5
0.0

0.1

0.2

(c) Comparison of the forecast error, FMSE[-], of the heuristics and the offline neural model for
the periodic motion test case when H = 1.0s. The neural model outperforms all heuristics by an
order of magnitude.

10 12 14 16 18 20
Timestamp [s]

0.00

0.01

0.02

0.03

0.04

0.05

F
M

S
E

[-
]

Online Learning Framework

Offline Learning Framework

(d) The error of the online learning framework and the offline learning framework for comparison
on the periodic motion test set for H = 1.0s. At the largest time horizon, the average error of the
online learning framework is seen to be lower.

23

Appendix A.1.2 Aperiodic Motion

0 5 10 15 20
Timestamp [s]

0.00

0.02

0.04

0.06

0.08

0.10

F
M

S
E

[-
]

S1: Simple Average Forecaster

S2: Numerical Linear Extrapolator

S3: Linear Regressor Forecaster

Neural Forecaster

6 8 10
0.000

0.005

0.010

(a) Comparison of the forecast error, FMSE[-], of the heuristics and the offline neural model for
the aperiodic motion test case when H = 0.25s. The neural model outperforms all heuristics by
an order of magnitude.)

0 5 10 15
Timestamp [s]

0.00

0.05

0.10

0.15

0.20

0.25

F
M

S
E

[-
]

S1: Simple Average Forecaster

S2: Numerical Linear Extrapolator

S3: Linear Regressor Forecaster

Neural Forecaster

5.0 7.5
0.00

0.02

0.04

(b) Comparison of the forecast error, FMSE[-], of the heuristics and the offline neural model for
the aperiodic motion test case when H = 0.5s. The neural model outperforms all heuristics by an
order of magnitude.

24

0.0 2.5 5.0 7.5 10.0 12.5 15.0
Timestamp [s]

0.0

0.1

0.2

0.3

0.4

0.5

F
M

S
E

[-
]

S1: Simple Average Forecaster

S2: Numerical Linear Extrapolator

S3: Linear Regressor Forecaster

Neural Forecaster

(c) Comparison of the forecast error, FMSE[-], of the heuristics and the offline neural model for
the aperiodic motion test case when H = 1.0s. The neural model outperforms all heuristics by an
order of magnitude.

10 12 14 16 18
Timestamp [s]

0.00

0.02

0.04

0.06

0.08

0.10

F
M

S
E

[-
]

Online Learning Framework

Offline Learning Framework

(d) The error of the online learning framework and the offline learning framework for comparison
on the aperiodic motion test set for H = 1.0s. At the largest time horizon, the average error of the
online learning framework can be seen to be lower.

25

Appendix A.2 Density plots

Appendix A.2.1 Periodic Motion

2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Timestamp [s]

0.4

0.6

0.8

1.0

r(
t)

Neural Model Forecasts

Numerical Linear Extrapolator Forecasts

True System Outout

(a) The density plot for qualitative evaluation of the offline learning neural model on the periodic motion test set. Consecutive forecasts from
the offline neural network model overlayed along with the forecasts from the most comparable heuristic (S2) to create a density plot when
H = 0.25s. The y-axis of the plot is the control output, yr(t) = r(t).

2.5 5.0 7.5 10.0 12.5 15.0 17.5
Timestamp [s]

−0.5

0.0

0.5

1.0

1.5

r(
t)

Neural Model Forecasts

Numerical Linear Extrapolator Forecasts

True System Outout

(b) The density plot for qualitative evaluation of the offline learning neural model on the periodic motion test set. Consecutive forecasts from
the offline neural network model overlayed along with the forecasts from the most comparable heuristic (S2) to create a density plot when
H = 0.5s. The y-axis of the plot is the control output, yr(t) = r(t).

26

0 2 4 6 8 10 12
Timestamp [s]

−1

0

1

2

r(
t)

Neural Model Forecasts

Numerical Linear Extrapolator Forecasts

True System Outout

(c) The density plot for qualitative evaluation of the offline learning neural model on the periodic motion test set. Consecutive forecasts from
the offline neural network model overlayed along with the forecasts from the most comparable heuristic (S2) to create a density plot when
H = 1.0s. The y-axis of the plot is the control output, yr(t) = r(t).

Appendix A.2.2 Aperiodic Motion

12 13 14 15 16 17 18 19
Timestamp [s]

0.4

0.5

0.6

0.7

0.8

0.9

r(
t)

Neural Model Forecasts

Numerical Linear Extrapolator Forecasts

True System Outout

(a) The density plot for qualitative evaluation of the offline learning neural model on the aperiodic motion test set. Consecutive forecasts from
the offline neural network model overlayed along with the forecasts from the most comparable heuristic (S2) to create a density plot when
H = 0.25s. The y-axis of the plot is the control output, yr(t) = r(t).

27

12 13 14 15 16 17 18
Timestamp [s]

0.2

0.4

0.6

0.8

1.0

1.2

r(
t)

Neural Model Forecasts

Numerical Linear Extrapolator

True System Outout

(b) The density plot for qualitative evaluation of the offline learning neural model on the aperiodic motion test set. Consecutive forecasts
from the offline neural network model overlayed along with the forecasts from the most comparable heuristic (S2) to create a density plot
when H = 0.5s. The y-axis of the plot is the control output, yr(t) = r(t).

10 12 14
Timestamp [s]

0.5

0.6

0.7

0.8

r(
t)

Neural Model Forecasts

Linear Regressor Forecasts

True System Outout

(c) The density plot for qualitative evaluation of the offline learning neural model on the aperiodic motion test set. Consecutive forecasts from
the offline neural network model overlayed along with the forecasts from the most comparable heuristic (S3) to create a density plot when
H = 1.0s. The y-axis of the plot is the control output, yr(t) = r(t).

28

9 10 11 12 13 14 15 16
Timestamp [s]

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

r(
t)

(d) The density plot for qualitative evaluation of the online learning neural model on the aperiodic motion test set. Consecutive forecasts from
the online neural network model overlayed to create a density plot when H = 1.0s. The y-axis of the plot is the control output, yr(t) = r(t).

APPENDIX B VERIFICATION CASES AND DATA DETAILS

Figure 26 Verification benchmark control systems (from left to right): linear time-invariant first order integrator, first order
thermal system, seconds order mass spring damper system with two degrees of freedom.

Figure 27 Density plots of the neural network forecasts of the verification cases. From left to right: Forecasting 10 seconds
ahead at every time-step for a linear-time invariant first order integrator, forecasting 10 seconds ahead for a first-order thermal
heating system , and forecasting 20 seconds ahead (a full period) for a seconds order mass spring damper system.

29

APPENDIX C SIMULATION CASE FURTHER DETAILS

Appendix C.1 The metric

Figure 28 Top: Discreet metric over time window, Bottom: Continuous metric, a weighted version of the discreet metric across
the measurement horizon T .

Appendix C.2 FSI Solver

Figure 29 An example of the discritization for dynamic boundary handling with the LaBIB-FSI solver. A cylinder with aribtrary
boundary markers is positioned in the regular fluid domain. A Eulerian mesh discritizing the entire fluid domain is indicated by
the open circles, and he Lagrangian mesh definind the solid boundary nodes are indicated with the solid circles [25][21][22]

30

APPENDIX D RELATED WORK

Figure 30 Example of actuation and flow cases considered in current SOTA AFC, Top: Single cylinder set-up. Control input
is the angular velocity of the cylinder (u). Bottom: Fluidic pinball set-up [26]; control inputs are the angular velocities, u1 and
u2, for cylinders 1 and 2 in the displayed configuration. [18]

APPENDIX E ACKNOWLEDGEMENTS

I want to thank my supervisors Cosimo and Angeliki first and foremost for giving me such a positive first experience with
research. We have worked together for almost two years now, and I am so grateful for the constructive discussions we had and
always constructive feedback that I received. They have become people that I truly look up to in a professional context. I am
lucky to have had such a safe environment to grow and explore my potential in a research context, and I have to say that despite
the challenges, I really did enjoy working on this. Regardless of the final outcome, I am proud of this work.

I would like to thank Sam; he has been my unofficial mentor for almost my entire career as a student at TU Delft. He pushed
me to produce some of my best work and the discussions we have had have been invaluable to me. In the past five years, he has
become somebody that I, both, look up to as well as consider a close friend. I want to especially thank him for handling my
vents and spirals about my internal battles with the institution.

I could not have gotten through the last year without my best friend Mariano. Our morning coffee at the library is possibly
half the reason I am motivated to go to the library every day. Quite frankly, it shocks me that we have anything left to talk about
over coffee considering we’ve been doing this since we were 17. But I can’t wait till our next coffee anyway. I want to thank
Efe, who has been my rock through this last leg of my journey. He has dealt with me through the hardest period of my academic
journey, and I was far from pleasant to be around. Thank you for making me laugh and dance despite all the hardship, these
will be some of my core memories.

I want to thank my soulmate Cat, my closest friend since highschool. For all the sanity checks and scream cry calls and
cynical spirals about society - thank you above all for being there for me after all these years. To my honourary motherfigure
Karolina, it was absoloute kismat that we met. I don’t know if I could have done this without you. Knowing that you carry my
worry with and for me, gave me a reason to keep trying my best even when I could not anymore.

Thank you to all my girls, Eilidh, Mahima, Momo (and my bro Tristan) and Fernando. My first real friends in Delft, and
the people who have become my family here.

I hope I make you proud.
Thank you to everybody who has been a part of my journey here. Let’s hope I graduate after this sappy letter lol.

31

REFERENCES

[1] Isabel Scherl, Benjamin Strom, Jessica K Shang, Owen Williams, Brian L Polagye, and Steven L Brunton. Robust
principal component analysis for modal decomposition of corrupt fluid flows. Physical Review Fluids, 5(5):054401,
2020.

[2] Maximilian Werhahn, You Xie, Mengyu Chu, and Nils Thuerey. A multi-pass gan for fluid flow super-resolution. Pro-
ceedings of the ACM on Computer Graphics and Interactive Techniques, 2(2):1–21, 2019.

[3] Steven L. Brunton, Bernd R. Noack, and Petros Koumoutsakos. Machine learning for fluid mechanics. 52(1):477–508.
eprint: https://doi.org/10.1146/annurev-fluid-010719-060214.

[4] C Meneveau and I Marusic. Whither turbulence and big data in the 21st century, 2017.

[5] Mohsen Jahanmiri. Active flow control: a review. 2010.

[6] Won Tae Joe, Tim Colonius, and Douglas G MacMynowski. Feedback control of vortex shedding from an inclined flat
plate. Theoretical and Computational Fluid Dynamics, 25:221–232, 2011.

[7] Mohamad Alsalman, Brendan Colvert, and Eva Kanso. Training bioinspired sensors to classify flows. Bioinspiration &
biomimetics, 14(1):016009, 2018.

[8] Simona Colabrese, Kristian Gustavsson, Antonio Celani, and Luca Biferale. Flow navigation by smart microswimmers
via reinforcement learning. Physical review letters, 118(15):158004, 2017.

[9] Kunihiko Taira, Steven L Brunton, Scott TM Dawson, Clarence W Rowley, Tim Colonius, Beverley J McKeon, Oliver T
Schmidt, Stanislav Gordeyev, Vassilios Theofilis, and Lawrence S Ukeiley. Modal analysis of fluid flows: An overview.
Aiaa Journal, 55(12):4013–4041, 2017.

[10] Jeremy Morton, Antony Jameson, Mykel J Kochenderfer, and Freddie Witherden. Deep dynamical modeling and control
of unsteady fluid flows. In Advances in Neural Information Processing Systems, volume 31. Curran Associates, Inc.

[11] Feng Ren, Hai-bao Hu, and Hui Tang. Active flow control using machine learning: A brief review. 32(2):247–253.

[12] A Seifert, O Stalnov, D Sperber, G Arwatz, V Palei, S David, I Dayan, and I Fono. Large trucks drag reduction using
active flow control. The Aerodynamics of Heavy Vehicles II: Trucks, Buses, and Trains, pages 115–133, 2009.

[13] Sebastian Peitz and Stefan Klus. Feedback control of nonlinear pdes using data-efficient reduced order models based
on the koopman operator. The Koopman Operator in Systems and Control: Concepts, Methodologies, and Applications,
pages 257–282, 2020.

[14] Jean Rabault, Miroslav Kuchta, Atle Jensen, Ulysse Réglade, and Nicolas Cerardi. Artificial neural networks trained
through deep reinforcement learning discover control strategies for active flow control. Journal of fluid mechanics,
865:281–302, 2019.

[15] Jean Rabault and Alexander Kuhnle. Accelerating deep reinforcement learning strategies of flow control through a multi-
environment approach. Physics of Fluids, 31(9):094105, 2019.

[16] P Mudiyanselage and F Gueniat. Deep reinforcement learning for the reduction of the drag in the flow past bluff bodies.

[17] Sebastian Peitz, Samuel E. Otto, and Clarence W. Rowley. Data-driven model predictive control using interpolated koop-
man generators. 19(3):2162–2193.

[18] Katharina Bieker, Sebastian Peitz, Steven L. Brunton, J. Nathan Kutz, and Michael Dellnitz. Deep model predictive
control with online learning for complex physical systems.

[19] J.R. Noriega and Hong Wang. A direct adaptive neural-network control for unknown nonlinear systems and its application.
9(1):27–34. Conference Name: IEEE Transactions on Neural Networks.

[20] Edoardo Milana, Benjamin Gorissen, Sam Peerlinck, Michael De Volder, and Dominiek Reynaerts. Artificial soft
cilia with asymmetric beating patterns for biomimetic low-reynolds-number fluid propulsion. 29(22):1900462. eprint:
https://onlinelibrary.wiley.com/doi/pdf/10.1002/adfm.201900462.

32

[21] Sara Boby. Simulation environment for intelligent active flow control. Technical report, 2021. Unpublished manuscript.

[22] Samuel van Elsloo. Proposal and validation of immersed interface method applied to the lattice boltzmann method.

[23] Francesco Stella, Nana Obayashi, Cosimo Della Santina, and Josie Hughes. An experimental validation of the polynomial
curvature model: Identification and optimal control of a soft underwater tentacle. 7(4):11410–11417. Conference Name:
IEEE Robotics and Automation Letters.

[24] Keras Team. Keras documentation: EarlyStopping.

[25] Timm Krüger, Halim Kusumaatmaja, Alexandr Kuzmin, Orest Shardt, Goncalo Silva, and Erlend Magnus Viggen. The
lattice boltzmann method. Springer International Publishing, 10(978-3):4–15, 2017.

[26] Nan Deng, Luc R Pastur, Marek Morzyński, and Bernd R Noack. Route to chaos in the fluidic pinball. In Fluids
Engineering Division Summer Meeting, volume 51555, page V001T01A005. American Society of Mechanical Engineers,
2018.

33

	Introduction
	Related Work
	Research Gaps

	Research Objectives
	Contribution
	Overview

	Simulation Case
	Flow Case Description
	Fluid Solver
	Design of the Complex Actuation : Soft Robotic Tentacle
	Integration
	Design of the Engineering Objective: Particle Mixing Rate Quantification
	Tracer Particle Injection
	Measuring Point Placement
	Particle Tracker
	Control Output: the Metric

	Control Parameters

	Datasets
	Periodic Motion Dataset
	Aperiodic and Asymmetric Motion Dataset

	Methodology
	Objectives
	Offline Learning Framework
	Training: the One-Step Predictor
	Deployment: Forecasting Algorithm

	Online Learning Framework
	Evaluation Metrics

	Network Architecture & Hyperparameter Tuning
	Base Settings
	Impact of Model Complexity
	Custom Loss Function

	Verification & Benchmarking
	V1 Linear Time Invariant Case: First Order Integrator
	V2 First Order System: Thermal Control System
	V3 Second-Order System: Mass-Spring Damper System

	Results
	Defining Heuristics
	S1: Simple average predictor
	S2: Simple linear extrapolator
	S3: Linear regressor

	Points of Evaluation
	Periodic Motion
	Aperiodic Motion
	Online Learning vs Offline

	Evaluation
	Offline Learning Framework : Periodic Motion Dataset
	Offline Learning Framework: Aperiodic Motion Dataset
	Relative Performance of the Online Learning Framework
	Limitations

	Conclusion
	Further Work
	Additional Visuals for Results
	Heuristic Error Comparison Plots
	Periodic Motion
	Aperiodic Motion

	Density plots
	Periodic Motion
	Aperiodic Motion

	Verification cases and data details
	Simulation Case Further Details
	The metric
	FSI Solver

	Related Work
	Acknowledgements

