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Abstract

Lifestyle management systems aim to provide per-
sonalized health guidance by interpreting patient’s
self-reported data. However, these systems often
overlook the temporal consistency of behavioral
patterns, risking inaccurate or misleading recom-
mendations. To address this, we present an adapted
version of a diabetes lifestyle management system
that integrates a conflict detection component into
its knowledge graph (KG) architecture. This ad-
dition enables the system to identify temporal in-
consistencies in patient data based on formally de-
fined rules. We developed handcrafted constraints
to capture clinically meaningful relationships, such
as the expected timing between physical activity
and glucose responses. A tunable threshold param-
eter, ¢, is introduced to account for minor fluctua-
tions and variability in activity intensity, enhancing
the physiological realism of constraint evaluations.
Handcrafted rules were favored over mined con-
straints due to the limited availability of real-world
data, though future work may incorporate mining
techniques when larger datasets become accessi-
ble. The system was tested on synthetic case stud-
ies that simulate typical lifestyle scenarios, demon-
strating its potential to flag inconsistencies and im-
prove the reliability of temporal reasoning. These
results contribute to the design of more trustworthy,
context-aware decision support tools for personal-
ized health management.

1 Introduction

Automated medical systems have the potential to increase the
quality of healthcare by offering accessible and rapid guid-
ance to patients based on self-reported information [1]. Some
of these systems utilize knowledge graphs (KGs) to structure
and analyze medical data, enabling complex reasoning about
symptoms and conditions [2, 3]. Their success depends on
the consistency and accuracy of patient’s self-reported data,
which can be affected by inconsistencies stemming from
misunderstanding, deception or non-adherence to medical
guidance. These discrepancies introduce conflicts within
KGs, potentially leading to misdiagnoses or inappropriate
treatment suggestions [4, 5].

KGs in healthcare play a crucial role in structuring medical
data, enabling advanced reasoning and improving diagnostic
processes [3, 6]. While significant efforts have been made to
store patient information within KGs [7], there still remains
research to be done in detecting and resolving inconsistencies
in KGs with patient’s self-reported data. Temporal conflicts,
semantic ambiguities, and factual contradictions can impact
the accuracy of automated healthcare systems, leading to
potential misinterpretations of symptoms and conditions.

The CHIP Modular System [8], developed by The Nether-
lands Organization for Applied Scientific Research (TNO)

and the Hybrid Intelligence Project (HI) [8, 9], provides a
structured framework for medical advice generation by pro-
cessing patient input through specialized modules that extract
relevant medical details. However, existing implementations
do not yet incorporate mechanisms for identifying contra-
dictions across multiple patient sessions. Strengthening
conflict resolution strategies within such systems is essential
for improving their reliability and ensuring more accurate
healthcare recommendations.

The current research focuses on enhancing conflict reso-
lution within knowledge graphs to improve the accuracy
of lifestyle management systems, specifically the CHIP
system. It examines temporal conflicts that can exist
throughout the system [10, 11]. However, it is impor-
tant to note that other conflicts exist as well such as:
semantic conflicts [12, 13] and fact-validation or mutex
conflicts (mutual exclusion) [14—16]. Addressing these chal-
lenges will refine medical knowledge graphs, to ensure more
consistent and reliable lifestyle guidance.

Temporal conflicts arise when a patient’s self-reported
data changes over time, creating inconsistencies in their
medical history. Such conflicts can impact the accuracy
of automated healthcare systems by leading to outdated
or misleading recommendations. For instance, a patient
using a continuous glucose monitor (CGM) may initially
report stable glucose levels but later experience frequent
fluctuations, contradicting earlier entries. Similarly, a user
of an automated insulin delivery system might alter their
dosage patterns without informing the system, leading to
mismatches between historical records and real-time health
status. To mitigate these conflicts, knowledge graphs must
incorporate longitudinal data tracking, enabling comparisons
across multiple interactions to identify evolving health trends.

Semantic conflicts occur due to variations in terminology
or differences in contextual understanding, leading to mis-
interpretations in medical assessments. Patients, healthcare
providers, and automated systems may use different de-
scriptions for the same condition or treatment, introducing
ambiguity into healthcare data. For example, a patient might
describe their insulin pump settings as ‘low-dose basal’,
while medical guidelines refer to it as ‘continuous subcuta-
neous insulin infusion’, causing discrepancies in treatment
plans. Additionally, a user reporting ‘sugar spikes’, might be
referring to postprandial hyperglycemia (a spike in glucose
levels after eating a meal), but if the system interprets it
incorrectly, medical guidance may be misaligned. A different
situation might be that one person describes their workout
to the system as ‘an intensive workout’, while someone else
might describe the same workout as ‘a simple workout’. Re-
solving semantic conflicts requires semantic decomposition
techniques to standardize input, detect variations in patient
descriptions, and ensure accurate data interpretation.

Fact-validation conflicts or mutex (mutual exclusion)
conflicts arise when contradictory statements exist within
the knowledge graph. These conflicts occur when different



sources or data entries disagree on a direct fact (independent
of time), leading to inconsistencies in medical assessments
or treatment recommendations. For instance, one entry in the
graph may assert that a specific type of CGM provides real-
time blood sugar readings, while another entry states that the
same device only offers periodic measurements. Similarly, a
knowledge graph might contain conflicting records regarding
the effectiveness of automated insulin delivery systems,
one stating that a certain algorithm optimizes dosage based
on glucose trends, while another contradicts it by claiming
the algorithm functions on fixed timing alone. Resolving
fact-validation conflicts requires structured fact-checking
mechanisms, leveraging computational verification methods
that cross-check conflicting statements, determine authorita-
tive sources, and refine entries to preserve the integrity and
accuracy of the knowledge graph.

Effectively resolving different types of conflicts is crucial to
maintaining accurate and reliable medical advice in lifestyle
management systems. Addressing these requires structured
approaches that integrate longitudinal tracking, semantic
standardization, and computational fact-checking to ensure
consistency across patient’s self-reported data and medical
knowledge graphs. Given the impact of these conflicts on
medical advice, the research aims to explore the broader
question: “How can conflict resolution in knowledge graphs
enhance the accuracy and reliability of lifestyle management
systems?” This inquiry is further broken down into the fol-
lowing sub-questions:

* What types of conflicts can occur within Knowledge
Graphs relevant in lifestyle management systems, and
how might these conflicts affect the advice provided by
such systems?

* What are the most effective methods to detect different
types of conflicts within Knowledge Graphs in lifestyle
management systems?

* What are the most effective methods to resolve different
types of conflicts within Knowledge Graphs in lifestyle
management systems?

* What metrics and validation techniques are used to as-
sess the accuracy and reliability of lifestyle management
systems?

* How can the CHIP Modular System be extended such
that it detects conflicting information and possibly
solves the conflicts within the Knowledge Graphs?

e To what extent does conflict resolution in CHIP’s
Knowledge Graphs influence the accuracy and reliabil-
ity of patient advice?

By developing methods to detect temporal conflicts, this re-
search contributes to the advancement of hybrid intelligence
in healthcare. The findings will improve the consistency and
trustworthiness of lifestyle management systems, ensuring
patients receive more reliable guidance. The study also offers
insights into refining KG-based reasoning in healthcare
applications.

The structure of this paper is organized to systematically
explore conflict resolution within knowledge graphs for
medical advice systems. Section 2 presents the theoretical
background, outlining foundational principles relevant
to conflict detection. Section 3 details the methodology,
including the background, literature review, and a thorough
explanation of the system’s design, implementation, and
experimentation. Section 4 describes the experimental setup
and results, covering the specific experimental settings,
overall performance, and conflict detection analysis. Section
5 discusses the findings. Section 6 outlines identified
limitations and areas for improvement. Section 7 concludes
the study with key insights and proposes directions for future
research to advance conflict resolution strategies within
medical knowledge graphs. Finally, Section 8 addresses
responsible research, ensuring ethical considerations are
thoroughly integrated into the study.

2 Theoretical Background

Before delving into the methodology (see Section 3), it is
important to first establish a solid theoretical background by
examining the following concepts in more detail.

Knowledge Graphs (KGs) are structured representations
of information that store data in the form of triples: (s, p,
0). The subject s and the object o represent entities, while
the predicate p defines their relationship. These graphs
enable structured knowledge representation, supporting
applications such as semantic search, recommendation
systems, and automated reasoning [17]. However, they also
introduce challenges such as data inconsistencies, scalability
limitations, and semantic ambiguities [18]. Ensuring relia-
bility in KGs requires addressing these drawbacks through
efficient storage, validation mechanisms, and disambiguation
techniques.

Temporal Knowledge Graphs (TKGs) are extensions
of traditional knowledge graphs in which each triple is
enriched with a temporal dimension, typically represented as
a timestamp or a time interval ¢. This allows the graphs to
model dynamic knowledge that evolves over time, capturing
facts that are only valid during certain periods. Formally, a
temporal quad can be denoted as (s, p, o, f), where t may
refer to a point or interval in time. TKGs are especially
useful for applications such as event tracking, temporal
reasoning, historical analysis, and real-time decision-making
in domains like healthcare, finance, and social networks
[19] . However, the temporal aspect also introduces unique
challenges, such as temporal conflicts, data sparsity, and
increased computational complexity in reasoning tasks [19].
As such, effective temporal modeling, conflict detection, and
resolution strategies are crucial for maintaining the integrity
and usefulness of TKGs.

Building on this, various strategies have been investigated
to address temporal conflicts within knowledge graphs.
Two prominent approaches include the use of handcrafted



constraint rules and data-driven constraint mining. Hand-
crafted constraints rely on expert-defined logical structures to
enforce temporal coherence between events, often reflecting
medically grounded expectations, such as the anticipated
timing between physical activity and glucose fluctuations.
In contrast, constraint mining leverages large datasets to
automatically uncover frequently occurring temporal patterns
[20]. While the former offers interpretability and domain
alignment, the latter provides adaptability and scalability,
especially in data-rich environments.

There are several ways to formulate constraint rules, depend-
ing on the specific temporal relationships being modeled.
Common types include Precedence, Overlap, Inclusion,
Disjointedness, and Mutex [16].

Precedence describes the relationship in which one task
must be completed before another begins. Overlap occurs
when two intervals share a portion of time, mathematically
expressed as s; < s; < f; < f;, where s and f denote start
and finish times. Inclusion implies that one time interval is
fully contained within another, as in s; < s; < f; < fi.
Disjointedness, on the other hand, indicates that two intervals
do not intersect at all [16].

Another important type is mutex (mutual exclusion), which
refers to logical facts that are inherently contradictory and
therefore cannot coexist, independent of any temporal con-
text. In this work, such constraints are also used to model
fact-validation conflicts (see Section 1), situations where the
presence of one fact logically invalidates another [16]. This
concept is referred to under a different name in this context,
because it applies irrespective of time.

3 Methodology

The methodology section outlines the structured approach
of this research, starting with the background in Section
3.1, which provides context on the CHIP system and its
integration of knowledge graphs in automated medical
advice. The literature review, in Section 3.2, examines
existing research on conflict detection and resolution within
knowledge graphs, highlighting gaps and opportunities for
improvement. The design, in Section 3.3 presents tailored
strategies for identifying temporal conflicts, explaining key
methodological choices, including the use of handcrafted
constraints over constraint mining. The implementation,
in Section 3.4, details how conflict resolution mechanisms
are embedded within CHIP, describing the integration of
temporal data constraints, the development of new modules,
and modifications to system architecture. Finally, the experi-
mentation, in Section 3.5, defines the evaluation framework,
specifying the data used and validation techniques used to
assess the accuracy and reliability of the proposed conflict
resolution methods through testing.

3.1 Background

The CHIP system provides a conversational user interface
that allows users to engage in text-based interactions (see

Figure 1). When a user inputs a query or medical informa-
tion, the Text2Triple Module processes the text, extracting
relevant information and converting it into structured triples.
These triples are then stored in the Patient Knowledge Graph,
ensuring patient-specific data is organized effectively.

o)
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Figure 1: The CHIP system overview illustrates how patient inputs
are processed through modular reasoning components and knowl-
edge graphs to generate accurate medical advice.

On the medical side, doctors interact with their own inter-
face, which allows them to input information directly into
the Domain Knowledge Graph. This graph stores expert
knowledge, clinical guidelines, and medical best practices,
complementing the patient-specific data.

Decision-making within CHIP relies on two reasoning
modules. The Missing Information Reasoner identifies
gaps in patient data and requests additional details when
necessary to ensure accurate advice. The Advice Selection
Reasoner determines whether sufficient information has been
gathered to provide guidance. Once a decision is made,
both reasoners communicate with the Response Generator,
which formulates a clear and concise message for the user.
The generated response is then delivered through the user
interface, completing the cycle of interaction.

The Web Ontology Language (OWL) [21] is a widely
adopted standard for representing ontologies. OWL provides
a formal, structured framework for defining relationships
within KGs, allowing for precise reasoning and automated
inference. Ontologies defined using OWL enable interoper-
ability by ensuring that different systems share a common
vocabulary, reducing ambiguity and inconsistencies in
structured data.

CHIP leverages OWL to maintain logical consistency across
its Patient and Domain Knowledge Graphs. By using OWL-
based reasoning, CHIP ensures that medical data is properly
structured, enabling precise entailment of new information
based on predefined relationships.



3.2 Literature Review

Google Scholar and Scopus were used as the primary aca-
demic databases to identify relevant literature. For sources
with a stronger medical and clinical focus, PubMed was
additionally consulted. Together, these platforms provide
comprehensive coverage of publications related to knowl-
edge graphs (KGs) and healthcare, facilitating a systematic
and well-rounded review.

The search terms included ‘conflict types in knowledge
graphs,” ‘KG inconsistencies,” ‘ontology conflicts, and
‘semantic reasoning for conflict detection.” The first phase
of the literature review focused on identifying different
types of conflicts present in KGs. Initial searches targeted
fundamental papers discussing conflict classification in
KGs [12-14], followed by an analysis of methodologies for
detecting them [10, 16, 20, 22]. The prioritization of conflicts
was then determined based on their impact on data integrity,
reasoning validity, and the computational resources required
for resolution. Higher-priority conflicts were those that had
the potential to identify the largest group of conflicts in the
KG in CHIP.

A second phase of the literature review was executed to
explore conflict detection and resolution techniques. Terms
such as ‘knowledge graph conflict resolution,” ‘automated
inconsistency handling,” and ‘temporal reasoning for conflict
detection’ guided the process. This phase examined tools and
algorithms developed to automatically identify and resolve
conflicts within KGs.

The final phase involved evaluating when and how different
conflict resolution methods were chosen. The selection
criteria included availability of structured data, applicability
of reasoning frameworks, and computational feasibility of
different approaches. If no sufficient data was available for
a resolution technique, alternative inference strategies were
considered, ensuring flexibility in handling KG inconsisten-
cies.

3.3 Design

An overview of the modified CHIP system architecture is
presented in Figure 2. Compared to the original framework
shown in Figure 1, this adapted design incorporates an
additional component responsible for conflict detection
within the patient KG. This addition enables the system to
identify temporal inconsistencies in the data using predefined
rules. Specifically, Equations 1-3 define the constraints
used to detect temporal conflicts. These serve as examples
of how formal logic can be operationalized within lifestyle
management systems to ensure better alignment between
patient behavior and modeled expectations.

p Text2Triple Domain
KG
»|User Interface

| Reasoner 1: Advice Selection |a—

Patient
[Reasonerz: Missing Informaﬂon}(

Response
Generator

Reasoner 3: Conflict Detection |/

Figure 2: Schematic overview of CHIP system overview illustrates
how the system is adapted using a conflict detection reasoner (in
blue).

Several methods for detecting temporal conflicts were
explored, as outlined in Section 2, to guide the integration of
constraints into the system design.

A key design decision was to incorporate temporal informa-
tion directly into the knowledge graph by associating each
triple with a timestamp. This structure enables time-aware
reasoning over patient data, forming the foundation for
conflict detection as further detailed in Section 2.

Another of the design choices that needed to be made
was whether to use handcrafted constraints or constraint
mining. Handcrafted constraints were chosen due to the
data requirements for effective mining. Constraint mining
relies on extensive real-world datasets to identify meaningful
patterns and relationships. Without sufficient high-quality
data, mined constraints may be incomplete, unreliable,
or unrepresentative of real-world interactions. As shown
in studies such as [20, 22], successful constraint mining
demands a large volume of structured data, which is often
unavailable or difficult to obtain in certain domains.

However, constraint mining could yield more optimal results
if sufficient data were available [22]. Unlike handcrafted
constraints that rely on predefined rules and expert knowl-
edge, mined constraints are derived directly from the data,
capturing temporal relationships that emerge from patterns.
This approach enhances flexibility and accuracy, making
constraint mining a potentially superior method in data-rich
environments. If large-scale, well-curated datasets were
accessible, constraint mining could provide more precise and
context-aware constraints, improving temporal reasoning in
KGs.

There are multiple types of temporal constraints used in
temporal reasoning [16]. Among these, precedence was
specifically chosen to demonstrate causal relationships
within the KG. This constraint type ensures that events
follow a causal order and interact meaningfully based on



their time intervals.

Precedence constraints [16] enforce a strict sequence, guar-
anteeing that one fact finishes before another begins. This
approach is essential for illustrating causality, ensuring that
dependent events unfold in a structured manner. As shown in
Figure (to be added), precedence constraints help maintain
the logical flow of temporal data, preventing inconsistencies
that could arise from disordered sequences.

The end times of the precedence relationship between the
two components must be carefully considered, because
according to Allen’s interval algebra [23], the temporal
relation precedes requires that the end of the first interval
occurs strictly before the start of the second. Moreover, it
is also important that there is not a gap that is biologically
implausible between the end time of the first interval and the
start time of the second. For instance, detecting a glucose
spike 24 hours after food consumption becomes irrelevant
in establishing a direct causal relationship. To define these
expectations formally, a set of temporal constraints was
developed, to capture causal patterns such as meal-glucose
or activity—glucose relationships. These constraints are used
to determine whether observed event sequences fall within
biologically meaningful time windows. The implementation
of this approach is detailed in Section 3.4.

Constraint 1. The constraint represents the physiological
principle that glucose levels decrease following exercise
[24]. This constraint can be broken by the patient, for
example when they reported they exercised, but did not see
through with it and instead stayed on the couch and ate
something.

precedes(t1,t2) := (z, glucoseMeasurement, a, 1)

(z, activity, y, t2)
(H

(z, glucoseMeasurement, b, t5)
a>b+e

Constraint 2. The constraint represents the physiological
expectation that after consuming sugar, blood glucose levels
should rise [25]. However, this assumption can be violated
if, for example, a patient fails to report their food intake
while exhibiting an unexplained spike in glucose levels.
Such discrepancies highlight the importance of accurate
self-reporting and continuous monitoring to ensure proper
medical assessment.

precedes(t1,t2) := (z, glucoseMeasurement, a, 1)
x, consumption, y, ¢
( p y, 2) (2)

(z, glucoseMeasurement, b, t5)
a+e<b

Constraint 3. The constraint illustrates the principle that
insulin intake should lead to a reduction in blood glucose

levels [26]. If this expected decline does not occur, possible
explanations include a patient misreporting their insulin
usage or experiencing complete insulin resistance. Both
scenarios pose serious medical risks, requiring close obser-
vation and intervention to prevent potential complications.
Detecting such inconsistencies is essential for maintaining
effective glucose regulation and ensuring appropriate treat-
ment responses.

precedes(t1, t2) := (z, glucoseMeasurement, a, t1)
(z, treatment, insuline, t5 )

3)

(z, glucoseMeasurement, b, t5)
a>b+e

As seen in Equations 1, 2 and 3, a variable ¢ is added. This
epsilon accounts primarily for measurement errors, or acts as
a threshold for the measurements in the constraint.

For example, in Equation 1, glucose levels are expected to
decrease following an activity. However, if the equation does
not specify the magnitude of the drop, this can result in minor
fluctuations, such as from 5.4 mmol/L to 5.39 mmol/L, being
treated as a valid drop, which is unlikely to be physiologi-
cally meaningful. The inclusion of ¢ helps to address this
ambiguity.

Another justification for the presence of ¢ is the variability
in activity intensity. For instance, revisiting Equation 1,
activities can be categorized as high-intensity (e.g., running,
swimming) or low-intensity (e.g., walking, yoga). High-
intensity activities generally lead to a more pronounced
glucose drop compared to low-intensity ones [24]. By tuning
¢ accordingly, larger for high-intensity and smaller for low-
intensity, we can better align the model with physiological
expectations.

The value of ¢ can potentially be optimized in future work
through hyperparameter tuning using machine learning tech-
niques, see Section 7.

3.4 Implementation

OWL-Time [27] is an ontology designed to represent a
standardized vocabulary to describe the temporal property
of resources. It is used for describing ordering relations
among time intervals, durations, and positions using different
reference systems, such as the Gregorian calendar and
Unix-time. By making CHIP use OWL-Time, it can maintain
logical consistency in time-based reasoning, supporting
applications like event scheduling, historical data tracking,
and knowledge inference.

SPARQL [28] is employed as the rule language in our system,
leveraging its powerful query capabilities to define, manage,
and execute reasoning rules over our ontology. By adopting
SPARQL for constraint specification, we ensure seamless in-
tegration with existing semantic web standards, which in turn



enables sophisticated semantic querying and inference. This
choice not only enhances the expressiveness and granularity
of our constraint definitions but also facilitates interoperabil-
ity and scalability within our KG management framework.
For the management and design of the knowledge graph, we
employed Protégé [29]. This is a robust and user-friendly
ontology editor. Protégé facilitated the efficient construction
and visualization of complex relationships among data
entities. Its comprehensive toolset supported effective main-
tenance and consistency throughout the ontology, thereby
enhancing the overall clarity and robustness of our KG.

CHIP has also been adapted to expect continuous input from
a continuous glucose monitor. When a patient reports an
activity at a specific time, for example, as referenced in
constraint 1, the system checks the corresponding glucose
measurements to verify whether the constraint holds. This
validation process is applied to all constraints.

A continuous glucose monitor was chosen as an additional
input to the system (not only user text input), because
accurate timestamps are crucial for validating constraints. If
there is a delay between the reported activity and the glucose
measurement, other factors may have influenced the patient’s
glucose levels in the meantime. Ensuring that timestamps
closely match actual activities helps maintain the integrity of
the analysis.

3.5 Experimentation

The evaluation is based on a series of handcrafted scenarios
designed to test the system’s ability to detect temporal
conflicts. Each scenario is embedded within a larger pa-
tient knowledge graph to verify that the conflict detection
mechanism functions reliably even as the graph scales in
complexity. The scenarios simulate synthetic patient time-
lines composed of structured, timestamped events, such as
blood glucose measurements, physical activities, meal intake
and insulin intake. For each constraint type (see Section 3.3),
one scenario is created, each containing a patient message
that intentionally conflicts with corresponding glucose
measurements. Upon processing this information, the system
is expected to identify the inconsistency and return a conflict
message that explains the nature of the detected violation.
Subsequently, the scenario includes a corrected patient
message with updated information, after which the system
should confirm that the data is valid and no longer conflicting.

4 Experimental Setup and Results

The  implementation  supporting the  findings of
this  study is publicly available on GitHub at
https://github.com/JochemvanP/chip-conflict-detection.

This section outlines the experimental performance analysis
of CHIP in identifying temporal inconsistencies within pa-
tient data. The results highlight the system’s ability to enforce
patient knowledge through constraint validation.

4.1 Experimental Settings

In our experiment, the tolerance parameter ¢ is carefully cali-
brated based on the expected metabolic responses to physical
activity. For the first constraint, which differentiates activity
intensity, € is set to 0.14 mmol/L for high-intensity activi-
ties and 0.09 mmol/L for low-intensity activities. The second
constraint employs an € value of 2.3 mmol/L, corresponding
to the expected rise in glucose levels within one hour. Sim-
ilarly, for the third constraint, ¢ is set to 2.0 mmol/L, which
reflects the anticipated drop in glucose levels over the same
time period.

4.2 Overall Performance

CHIP successfully detected all designed conflicts across the
three scenarios, with no false positives on valid records. The
system precisely adhered to the boundary margins defined
by the parameter ¢, ensuring realistic modeling of glucose
responses relative to activity intensity. In our experiments,
data generated from a variety of patient scenarios, each as
closely as possible representing realistic behavioral patterns,
was rigorously processed to validate the system’s reasoning
performance.

The detection performance is exemplified by the results for
Constraint 1. As shown in Figure 3, CHIP flagged a conflict
when an insufficient glucose drop was observed following a
reported high-intensity exercise session. The conflict mes-
sage clearly indicated the discrepancy between the expected
physiological response and the recorded data. This instance
is representative of the overall performance, as similar out-
comes were observed in all experimental cases.

Bot
1 have the following recordings, John:

2025-06-08 08:00:00 level: 5.4 mmol/L
2025-06-08 08:30:00 level: 5.3 mmol/L
2025-06-08 09:00:00 level: 5.4 mmol/L
2025-06-08 09:30:00 level: 5.3 mmol/L

Did you perform any exercise or physical activity this morning?

John
| was running from 8 to 10

Conflict: The measured glucose drop range of 0.10 mmol/L is
not consistent with high intensity activity.

Figure 3: Example scenario with CHIP detecting a conflict due to a
violation of Constraint 1.

Moreover, when a corrected input was provided, the system
reliably validated the new record as conflict-free. Figure 4
illustrates this updated scenario, where the patient’s revised
data, now consistent with expected outcomes, was accepted
without triggering any conflict.



John
Oh, | was walking from 8 to 10

Bot
The measured glucose range 0.10 mmol/L is consistent with low intensity activity.

Figure 4: Example scenario with CHIP accepting a scenario conflict
with regard to Constraint 1.

4.3 Conflict Detection

CHIP was methodically evaluated by deliberately injecting a
single targeted conflict in each scenario. These conflicts ac-
counted for errors such as insufficient glucose declines. This
approach enabled a clear assessment of CHIP’s reasoning
mechanism under controlled, yet realistic conditions.

In every case, even when input values approached the preset
€ boundaries, CHIP accurately identified the conflict. The
logical rules embedded in the system were able to distinguish
between innocuous fluctuations and medical deviations,
ensuring that only genuine inconsistencies were flagged.
This level of precision was maintained across all targeted
tests.

5 Discussion

The experimental results validate that CHIP effectively
identifies temporal inconsistencies in patient data. By
reliably detecting all injected conflicts without generating
misclassifications, the system demonstrates robust symbolic
reasoning and confirms the correctness of the constraint-
based approach.

CHIP’s current design assumes inputs from continuous glu-
cose monitoring devices, which allows for high-frequency,
real-time data collection. This shift to automated, continuous
measurement enhances the system’s ability to generate
accurate and timely advice. The process capitalizes on CGM
data to accurately capture glucose variability (GV), a critical
factor determining the magnitude of physiological responses,
such as post-exercise glucose declines or increases in glucose
after eating.

The constraint rules applied in this study serve as a proof-
of-concept for using rule-based logical frameworks in
healthcare. While the current rules perform well within
a controlled experimental environment, questions remain
about their direct applicability in more complex, real-world
scenarios, where variability and noise are significantly higher.

In summary, the results presented herein illustrate the poten-
tial of constraint-based reasoning in enhancing the reliability
of lifestyle management systems. Although further valida-
tion in real-world settings is necessary, especially with di-
verse populations and more varied data inputs, this work lays
a solid foundation for the integration of symbolic logic with
advanced data analytics in personalized health monitoring.

6 Limitations

Although the system demonstrates promising results in con-
flict detection within structured health data, several limita-
tions must be acknowledged. These reflect the current scope
of the implementation and identify opportunities for further
refinement and scalability. The following subsections high-
light key challenges regarding data representativeness, con-
straint diversity, and parameter adaptability.

Limited Number of Evaluation Scenarios. While the sys-
tem performs well across the scenarios tested, the number of
evaluation scenarios is currently too limited to make general
claims about robustness. A broader set of test cases would
be necessary to confirm performance consistency across edge
cases, complex situations, and different patient profiles.

Use of Handcrafted Data. The experimental data used in
this study was synthetically generated and manually tailored
to reflect constraint violations. While this allows for tar-
geted testing, it introduces a sampling bias and may not fully
capture the unpredictability and noise inherent in real-world
patient data. Consequently, performance on actual clinical
datasets remains to be validated.

Assignment of the Epsilon Parameter. The epsilon (¢)
threshold, used to define tolerances in constraint checks, was
manually specified rather than learned or estimated from data.
This introduces subjectivity and reduces adaptability. In prac-
tical applications, data-driven approaches, such as using ma-
chine learning to infer optimal thresholds, would provide
more dynamic and patient-specific constraint tuning. Ad-
ditionally, individual differences in glucose variability (GV)
may significantly influence how much a patient’s glucose lev-
els fluctuate in response to various triggers such as exercise
or meals. Factoring GV into the determination of ¢ could
improve the sensitivity of conflict detection by tailoring ex-
pectations to each patient’s metabolic profile.

Limited Constraint Coverage. The current implementa-
tion includes only a small subset of possible constraints. They
all focus now on causal relationships. However, health data is
semantically rich, encompassing a wide range of clinical be-
haviors, physiological trends, and treatment guidelines. Ex-
panding the constraint set to reflect this complexity would
significantly enhance the system’s expressiveness and practi-
cal utility.

Restricted Vocabulary for Constraints. In the first con-
straint related to activity-induced glucose change, only a lim-
ited set of predefined activities (e.g., running, walking, swim-
ming) are supported. Patients may engage in a much broader
range of physical tasks, and the system’s ability to generalize
across unlisted or nuanced activities is currently constrained.
Similarly, for the second constraint concerning food con-
sumption, the current implementation supports only a fixed
set of meal types and nutrition labels. However, real-world
dietary behavior is far more diverse and context-dependent.
Incorporating a richer ontology of physical activities and food
intake, or integrating external classifiers could substantially
improve the adaptability and expressiveness of the constraint
model.



7 Conclusions and Future Work

This research demonstrates how conflict detection in knowl-
edge graphs can enhance the accuracy and reliability of
lifestyle management systems. Through the successful
implementation of temporal constraints, the system was
able to validate patient behavior against clinically grounded
expectations.  The handcrafted scenarios confirmed the
correctness of the constraints and showcased the system’s
robustness in handling structured, timestamped data within a
knowledge graph. By embedding constraints into a lifestyle
management system, this work improves the accuracy and
reliability of health monitoring tools and strengthens patient
data validation. Although the evaluation was limited to
synthetic data, the controlled design allowed for precise
inspection of system behavior and offered valuable insights
into constraint-driven reasoning.

Future research could focus on learning optimal values for the
¢ threshold using machine learning techniques. By analyz-
ing historical patient data and outcome trends, models could
adaptively calibrate € to align with individual physiological
variability and context-specific sensitivity. Another promis-
ing direction is to explore constraint mining from large-scale
lifestyle or clinical datasets. This approach could uncover
previously unrecognized temporal patterns and personalize
constraint sets, increasing system adaptability in diverse pop-
ulations. Future work could explore the use of uncertain tem-
poral knowledge graphs [16], to account for imprecise or in-
complete temporal information in patient data. This would
allow the system to reason probabilistically over temporal re-
lationships, improving flexibility and robustness when exact
timestamps are unavailable, noisy, or ambiguous. Integrating
uncertainty aware logic could enhance real-world applicabil-
ity, especially in domains like lifestyle monitoring where data
may be self-reported or sporadic.

8 Responsible Research

This research was designed with an emphasis on transparency
and methodological clarity; however, several elements war-
rant reflection regarding the reproducibility and integrity of
the work.

One component that needs to be mentioned is the use of
Al tools to assist in language and structure. In this case,
Microsoft Copilot (an Al language model) was used during
the writing and refinement process. A typical prompt used
to guide rewriting included: “Can you improve the clarity
and fluency of this academic paragraph without changing
the technical content?” This tool was leveraged primarily for
stylistic enhancement and clarification, not for ideation or
content creation.

A challenge lies in the assignment of hyperparameters such
as the epsilon (¢) threshold, within the constraints. Since
€ was manually tuned in this study, different values, par-
ticularly in systems with more granular glucose variability
(GV) or alternative activity types, could yield different
constraint outcomes. This raises the need for careful sen-

sitivity analysis or automated tuning strategies in future work.

In terms of the scope of evaluation, the scenarios presented
are intentionally narrow and designed to isolate specific
constraint violations. While this aids clarity, it risks limiting
generalizability. A different researcher, using alternative but
valid scenarios, may encounter different system behaviors
depending on how edge cases are represented.

From an integrity standpoint, all modeled constraints have
been tailored to the domain of diabetes lifestyle management
and are explicitly defined in the paper. The theoretical basis
is transparent, and constraints are grounded in cited literature
and physiological rationale. No results have been omitted or
filtered beyond the deliberate scope of evaluation. Releasing
both the engine and scenarios publicly alongside this paper
(see Section 4) further supports ethical and reproducible
research practices.

Moreover, this project engages in the development and
enhancement of CHIP through innovative Al-driven features
including adaptive user interfaces, automated decision
support, and personalized dialogue systems based on user
profiling and behavioral data. Our approach is built upon
a strong commitment to ethical integrity and regulatory
compliance, placing us in strict alignment with the EU
Artificial Intelligence Act (Al Act) [30].

Chapter II, Article 5, Paragraph 1, outlines prohibited
practices such as manipulative or exploitative Al, has been
a guiding framework in defining our ethical boundaries
and design constraints. The systems does not manipulate
or exploit the patients in any way. So would the scenario
evaluation, see Section 3.5, be done with real patients it
would still follow the constraints, thus it respects both legal-
and ethical mandates.

Furthermore, as we consider the inclusion of components like
Al-based diabetes support, we recognize that such health-
related applications are likely to be classified as high-risk.
This classification is rooted in several factors:

¢ Critical Impact on Health: Al-powered diabetes support
systems handle sensitive health data and directly influ-
ence treatment decisions. Erroneous recommendations,
such as misinterpreted blood sugar trends or incorrect
insulin dosing, could lead to severe adverse health out-
comes.

* Safety Risks: In healthcare, the margin for error is ex-
tremely low. Inaccuracies may result in life-threatening
situations, underscoring the need for rigorous validation
and precise risk management.

e Regulatory Oversight: Given their potential impact,
health-related Al systems fall under stricter regulatory
oversight. This necessitates comprehensive risk man-
agement strategies, extensive testing, and real-time mon-
itoring to ensure both patient safety and data protection.
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