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Highlights
• Embedded reinforcement models are reviewed.
• Classical embedded reinforcement models show spurious oscillations in slip profiles.
• Improved versions of classical models are proposed.
• Weak discontinuity and order/regularity extension effectively reduce oscillations.

Abstract

We report the results of a comparative analysis of mesh independent discrete inclusion models and point out some
shortcomings of classical approaches in the approximation of the strain field across an inclusion (artificial continuity) and the
slip profile along an inclusion (oscillatory behavior). We also present novel embedded reinforcement models based on partition
of unity enrichment strategies, adaptive h-refinement, and order/regularity extensions. These novel models are assessed by
means of mesh convergence studies and it is shown that they improve the quality of the solution by significantly decreasing
local spurious oscillations in the slip profile along an inclusion.
c⃝ 2019 Elsevier B.V. All rights reserved.
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1. Introduction

A reliable prediction of the mechanical behavior of a reinforced composite can only be obtained with the aid of
modeling approaches that describe geometry and deformations of reinforcing agents with adequate precision and
are equipped with appropriate constitutive models. With reference to high aspect ratio inclusions such as platelets
or fibers (or, equivalently, rebars), the most accurate modeling approach for this task is the finite element method
(FEM) with conformal meshing of individual inclusions, an approach that might be (prohibitively) expensive if
done at an adequate resolution level [1, Figure 2]. Embedded reinforcement models, lifting the meshing constraints
typical of classical FEM approaches, are a viable alternative to conformal FEM discretizations. In this contribution
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we compare the performance of existing and novel embedded reinforcement models while highlighting some of their
limitations and suggesting strategies to improve their performance. Although in the examples we make reference
to thin (high aspect ratio) platelet inclusions in a two-dimensional setting for convenience, the results of this study
hold also for high aspect ratio fibers as both inclusions can be approximated as one dimensional objects under
planar conditions. Fibers and platelets are referred to as inclusions throughout the paper when discussing general
concepts.

Fibers or platelet inclusions as reinforcing agents can be modeled in several manners by borrowing approaches
originally developed for rebars in reinforced concrete structures or by means of dedicated approaches [2–13]. A
simplistic classification can be into two broad categories: implicit and explicit approaches. In the first approach, also
called continuous approach, the collective effect of the inclusions on the response of the composite is taken into
account in an indirect manner by means of suitable modifications to the constitutive model and material properties
of the composite, which is seen as a continuum with homogeneous properties; in the second approach, also known
as the discrete approach, each inclusion is directly taken into account either using solid finite elements or simplified
dimensionally reduced discretizations. In this study we focus on the latter.

In explicit inclusion models we distinguish between conformal and non-conformal approaches, depending on
the way the inclusion is discretized with respect to the discretization of the matrix material. Explicit approaches
can then be classified according to the fidelity of the discretization with respect to the actual geometry. In the
most accurate approaches, geometrical details of the inclusions are discretized using the standard conformal finite
element method with solid elements [1,3,14,15]. Similar studies have been conducted for high aspect ratio platelet
clay inclusions, represented by means of two-dimensional [16] and three-dimensional [17] finite element models.
Although very accurate, explicit inclusion models suffer from costly mesh generation procedures, hence making the
study of composites with a large number of inclusions difficult. An exception is the conformal method proposed
by Soghrati et al. [15] in which background elements cut by an interface are morphed to generate a conformal
discretization, thus simplifying the meshing procedure and reducing its cost. Based on advances in the use of
enriched basis functions in the finite element method [18], it is possible to describe intra-element discontinuous
fields, thus relaxing the mesh conformity restrictions of classical FEM approaches. Such an approach has been
pursued by Moës et al. [19] who adopted a material discontinuity enrichment function to represent the intra-element
perfectly bonded interface between matrix and inclusion. Related approaches include the work of Omerović and
Fries [20] and the interface-enriched generalized finite element method (IGFEM) [21,22].

Such methods however are not easily applicable to dense inclusion distributions and may require extremely fine
discretizations, especially for high aspect ratio fiber inclusions such as rebars, thin fibers, or carbon nanotubes. In
these cases, the geometrical configuration of the inclusion allows considerable modeling simplifications as it can
be represented as a one-dimensional object in a finite element discretization, similar to the approach employed in
early finite element analyses of reinforced concrete structures. A further simplification originates from the common
understanding that in composites with high aspect ratio fibers the axial deformation contribution to the strain energy
is significantly larger compared to that of other deformation mechanisms, thus allowing to represent a fiber by means
of kinematic quantities related to the axial deformation only. Phillips and Zienkiewicz [23] were the first to consider
these simplifications in a computational study of reinforced concrete by employing axially-deformable bar elements
to represent rebars. In their approach, rebars are perfectly bonded and discretized in a non-conformal manner with
respect to the matrix material mesh. Such non-conformal approaches are known as embedded reinforcement models.

The idea of adopting explicit degrees of freedom (DOFs) to represent the relative tangential displacement between
inclusion and matrix (slip) was first employed by Balakrishnan and Murray [2]. This approach, which will be referred
to as embedded reinforcement model with slip (ERS model) in this paper, can be understood as a generalization
of the embedded reinforcement model proposed by Phillips and Zienkiewicz [23] to imperfect interfaces and has
been successfully applied to numerous engineering problems [24–28].

One-dimensional fiber inclusions in a two-dimensional setting can also be represented by means of a partition of
unity enrichment strategy. The approach proposed by Radtke et al. [29] enriches the nodes of the elements crossed by
a fiber inclusion with DOFs representing the relative displacement between inclusion and matrix (including normal
and tangential components). Although the approach allows to incorporate a priori known enrichment functions
to improve the convergence rate of the numerical solution, the corresponding enrichment scheme is relatively
expensive, especially its extension to three-dimensions, as it effectively doubles the number of elemental DOFs when
an element is crossed by a fiber. This is in contrast with the ERS model, which only requires slip DOFs to be placed
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Fig. 1. (a) Schematic of a composite with several types of high aspect ratio inclusions (these inclusions can be described as line inclusions).
(b) Local coordinate system for an arbitrary two-dimensional inclusion segment.

at matrix-fiber intersection points. A related XFEM based approach was proposed by Pike and Oskay [30] who were
the first to consider both weak and strong discontinuity enrichments (referred to as fiber and debonding enrichments)
to represent the effect of a debonding fiber in the matrix displacement field. As shown in Section 2.2, these two
enrichments are necessary as a fiber inclusion introduces weak and strong discontinuities in the displacement field
of the matrix material. Both approaches [29,30] use the partition of unity enrichment strategy and therefore require
a distributed enrichment scheme (all nodes of elements crossed by a fiber are enriched, with one extra set of DOFs
for enrichment). In contrast, ERS models (Section 3) require dedicated DOFs along the fiber itself but cannot
properly represent the weak discontinuity (Section 4.1) because of the assumptions in the displacement field (i.e.,
artificial continuity of the strain field in the matrix across an inclusion). Incorporating such discontinuities adds
to the complexity in terms of implementation as it requires a dedicated independent conformal integration mesh
similar to that used by Pike and Oskay [30]. Also, a direct three-dimensional extension is not straightforward (Pike
and Oskay [31] have incorporated short fibers as deformable rectangular planar inclusions).

Among the discrete approaches described above, the techniques with an exact geometrical representation of
the inclusions are, obviously, the most accurate. Accuracy, however, comes with high computational costs even
for limited number of inclusions. Dimensionally reduced approaches of the ERS type combine adequate accuracy
with numerical efficiency. Their classical version and several novel formulations designed to improve specific
characteristics are assessed in Sections 4 and 5. It is shown that some formulations are more effective than others
in addressing the occurrence of oscillations in the slip profile but none can remove them.

2. Governing equations

Under the assumption of small deformations, the principle of virtual work for the two-phase reinforced composite
occupying the volume Ω in Fig. 1a reads∫

Ω

σ : ∇
sδu dΩ +

∫
Γint

tint · δw dΓint −

∫
Γt

t̄ · δu dΓt = 0 (1)

for every virtual displacement field δu, and with the displacement gap vector w a function of the displacement
vector u. In (1), we have neglected body forces, σ is the stress tensor, and ∇

s is the symmetric gradient operator.
The first integral has not been divided yet into matrix and inclusion components as they obey the same governing
equations. Since the inclusion is not perfectly bonded, the second term in (1) represents the virtual mechanical work
across the matrix-inclusion interface Γint due to the interface tractions tint and the corresponding matrix-inclusion
displacement gap vector w. The last term represents the work done by the external tractions t̄ on the external surface
Γt.

2.1. Discretization using conformal FEM

We now describe a reference model in the context of the standard finite element method and solve a benchmark
problem that will also be used later with the discretization techniques discussed in Section 3. The domain Ω is
subdivided into matrix and inclusion subdomains (Ω̄ = Ω̄m ∪ Ω̄i, with subscripts i and m indicating inclusion and
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matrix contributions, respectively). This reference model is based on the model by Ngo and Scordelis [32]. Here, the
discretized one-dimensional inclusion Ωi is linked to the underlying discretized matrix material Ωm by an interface
element that allows a relative displacement between inclusion and matrix. The inclusion has to be understood as
being superimposed on the matrix rather than being surrounded by it. A conformal discretization for matrix and
inclusion is assumed where standard four-node quadrilateral (Q4) or three-node triangular (T3) finite elements are
used for the matrix, and a one-dimensional discretization, described in the next section, is employed for inclusion
and corresponding matrix-inclusion interface contributions (the second term in (1)). The last term is discretized
following standard procedures.

Inclusion. The conformal discretization approach can be used for fiber based composites in two and three
dimensions and for platelet inclusions in a two-dimensional setup (under the plane strain assumption). All the
examples discussed in this paper make reference to platelets; we thus assume that inclusions are in the shape
of high aspect ratio platelets and are discretized by means of conventional two node truss elements (assuming
therefore plane strain conditions in all the examples). Consequently, each inclusion element is characterized by a
one-dimensional displacement field along its axis. The stiffness matrix in the global xy coordinate system for an
inclusion element of length L is then given by

Ki =
Ēi Ai

L

⎛⎜⎜⎝
l2 lm −l2

−lm
lm m2

−lm −m2

−l2
−lm l2 lm

−lm −m2 lm m2

⎞⎟⎟⎠ , with l =
x2 − x1

L
, m =

y2 − y1

L
, (2)

where Ēi = Ei − Em is the effective stiffness of the inclusion with Em and Ei the Young’s moduli of matrix
and inclusion, respectively. The inclusion effective stiffness has been introduced to remove the contribution of the
matrix material related to the inclusion region. The coordinates of an inclusion segment endpoints (points 1 and 2
in Figs. 1a and 2) are (x1, y1) and (x2, y2), and its cross sectional area is Ai = di ti, with di and ti = 1 µm the
in-plane and out-of-plane widths of the inclusion segment, respectively.

Inclusion–matrix interface. The relative displacement between an inclusion and the underlying matrix can be
represented with the aid of conventional zero-thickness conformal interface elements (Fig. 2a) that are equivalent
to the linkage elements proposed by Ngo and Scordelis [32]. Since the discretization of the matrix material is not
modified when an inclusion is superimposed on it, the continuity of the underlying matrix displacement field is not
influenced. The interface gap vector (this is the relative displacement between interface and matrix) in the coordinate
system local to the inclusion is discretized by

w = R Nint dint, (3)

where R is the conventional global-to-local rotation matrix, and the interface shape function matrix and interface
nodal displacement vector are defined as

Nint =

[
Ni 1 0 Ni 2 0 −Nm 1 0 −Nm 2 0
0 Ni 1 0 Ni 2 0 −Nm 1 0 −Nm 2

]
(4)

and

dint =
[
ui 1 ui 2 um 1 um 2

]T
, (5)

respectively, where subscripts 1 and 2 indicate corresponding inclusion endpoints, N indicates one-dimensional
shape functions (along the inclusion segment and along the edge of the matrix element next to it), and u are
displacement vectors in the global coordinate system.

Substituting (3) into the second term in (1) and following standard procedures yield the interface stiffness
contribution

Kint = Ci

∫
L

Nint
T RT Db R Nint dr (6)

in which L is the length of the inclusion–matrix interface element (known also as bond element and with length
equal to that of the inclusion element), Ci = 2 ti is a factor, together with L , taking into account the actual surface
of the inclusion–matrix interface region, and r is the local coordinate along the bond element. A linear traction
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Fig. 2. (a) Schematic of the reference composite model with conformal discretization of the inclusion. Blue and black dots represent matrix
and inclusion nodes, respectively. Zero-thickness interface elements (red shaded region) are placed between inclusion (solid black line)
and matrix elements. Strain discontinuity is naturally achieved because of the standard FEM displacement field approximation. (b) An
arbitrarily-located inclusion discretized with the ERS model (Section 3.1.1); strain discontinuity is achieved by enriching the nodes of the
elements crossed by the inclusion (marked with a red squares) with a weak discontinuity enrichment function as discussed in Section 3.2 .
(For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

separation law is considered (tint = Dbw), with the elastic interface constitutive matrix Db = diag (Kbt, Kbn),
where the constants Kbt and Kbn represent the stiffness of the interface in the directions tangential and normal to
the inclusion axis, respectively. In this conformal model, we only allow the relative displacement in the tangential
direction (slip) by constraining the normal relative displacement by using large values of the interface normal
stiffness Kbn. Preliminary analyses of the global stiffness matrix for the case of one inclusion indicate that its
condition number does not significantly change by changing the interface constants. The condition number is in
any case higher than the original system without inclusion, and this can be attributed to the augmented structure of
the stiffness matrix when inclusions are considered. In these situations, a direct numerical solver is to be preferred;
iterative solvers could also be used, but require appropriate preconditioners.

2.2. Benchmark problem

The benchmark problem discussed in this section is used to evaluate the performance of the numerical models
presented throughout the paper. Fig. 3 shows geometry and boundary conditions of a 4 µm × 4 µm polymer-clay
nano-composite sample [16]. Young’s moduli of matrix and inclusion are taken as Em = 3 GPa and Ei = 300 GPa,
respectively. In this benchmark problem, one horizontal (θ = 0) 2 µm long inclusion with di = 5 nm and aspect
ratio equal to 400 is placed in the middle of the specimen. The matrix Poisson’s ratio νm is equal to 0.35.

For the reference numerical calculations, a 600 × 600 uniform grid of bilinear quadrilateral elements is employed.
The right-hand side edge is uniformly displaced by δ̄ = 0.05 µm (Fig. 3). Unlike similar studies [16,17], the
inclusion is not perfectly bonded to the matrix and elastic sliding is therefore allowed (the interface tangential
stiffness Kbt is set equal to 0.025 N/µm3).

Analysis of the strain field in the matrix material. While the displacement field in the matrix across the inclusion
is continuous, some of the components of the strain field can be discontinuous.

The strain tensor components along the vertical lines shown in Fig. 4a are plotted in Fig. 4b-d. The vertical lines
are aligned with the location of the integration points in the finite elements used to discretize the matrix material,
thus allowing the direct sampling of the strain field. As shown in Fig. 4c, the shear component εxy of the matrix strain
tensor is not continuous across the inclusion unlike the other two components εxx and εyy (Fig. 4b,d). These results
have been confirmed with the double interface model presented in Ref. [33] which describes a fiber surrounded by
the interface in a two-dimensional setting—this model is to be understood as the dimensional reduction of a solid
fiber embedded in a three-dimensional body. As shown later, the classical ERS model [2] (Section 3.1.1) cannot
reproduce this discontinuity in the gradient of the matrix displacement field.
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Fig. 3. Schematic of the benchmark problem with one inclusion.

Fig. 4. (a) Schematic of the single inclusion problem with sampling lines for the strain tensor components reported in the other panels:
εxx (b), εxy (c), and εyy (d). The problem is solved using the conformal FEM model with a uniform 600 × 600 Q4 discretization.

3. Mesh-independent models

In the reference model introduced in the previous section the inclusion was modeled using a conformal
discretization. In principle, this is restrictive when handling a large number of inclusions. In this section, various
numerical models that allow the inclusion to be positioned anywhere in the composite domain with respect to the
underlying matrix discretization are discussed. At variance with the reference model, inclusion endpoints can be
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placed within an element, and there is no theoretical limit on the number of inclusions that can be included in an
element.

3.1. Embedded reinforcement models

Embedded reinforcement models cannot reproduce the discontinuity in the strain field discussed in the previous
section. In these models, the displacement of an inclusion is usually determined indirectly, by means of the
relative displacement urel between inclusion and matrix which is taken as an additional field. This implies that
the displacement field u is decomposed into matrix component um, valid in the matrix domain Ωm, and inclusion
displacement component ud + urel, valid in the inclusion domain Ωi, where the component ud is called concrete
displacement [2] or duct displacement [27]; this quantity is later expressed as a function of the matrix displacement
field um of the elements crossed by the fiber. The matrix and inclusion stress tensors are defined as σ m and σ i,
respectively. With this decomposition, the principle of virtual work, valid for many embedded reinforcement
models [2,24,26,29], reads⎧⎪⎪⎨⎪⎪⎩

∫
Ωm

∇
sδum : σ m dΩm +

∫
Ωi

∇
sδud : σ i dΩi =

∫
Γt

δum · t̄ dΓt,∫
Ωi

∇
sδurel : σ i dΩi +

∫
Γint

δurel · tint dΓint = 0.
(7)

Note that there are only two independent fields in the above relations: um and urel.
As already mentioned in the introduction, with reference to high aspect ratio inclusions (Fig. 1a), the integrals

over inclusion volume Ωi and inclusion–matrix interface Γint can be simplified to line integrals along the inclusion
length li. With these modifications, and introducing Hooke’s law for matrix and inclusion constituents, the principle
of virtual work (7) reads⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

∫
Ωm

∇
sδum : Dm : ∇

sum dΩm + Ai

∫
li

∇
sδud : (Di − Dm) : ∇

sud dli + Ai

∫
li

∇
sδud : Di : ∇

surel dli

=

∫
Γt

δum · t̄ dΓt,

Ai

∫
li

∇
sδurel : Di : ∇

sud dli + Ai

∫
li

∇
sδurel : Di : ∇

surel dli + Ci

∫
li

δurel · (D̄burel) dli = 0,

(8)

where D̄b = RT Db R is the rotated elastic interface tensor. The first integral is evaluated over the whole domain Ω
and, as a consequence, the effective stiffness Di − Dm is introduced in the inclusion contribution (second integral)
with Dm and Di the matrix and inclusion isotropic elasticity tensors, respectively. This formulation is analogous to
that by Radtke et al. [29] discussed in Section 3.1.5. The components ud and urel of the inclusion displacement can
be approximated in different manners as discussed next.

3.1.1. Embedded reinforcement model with slip (ERS model)
In classical embedded reinforcement models with slip [2,24,26], slip DOFs are located along an inclusion axis

(they are therefore defined in a coordinate system local to the inclusion) and at their intersections with matrix
element edges. As it is assumed that an inclusion works mainly under axial deformation, the component of the
displacement normal to the inclusion are neglected. Thus the inclusion displacement components ud and urel in (8)
are replaced by corresponding scalar quantities ud and us in the direction of the inclusion axis leading to⎧⎪⎪⎨⎪⎪⎩

∫
Ωm

∇
sδum : Dm : ∇

sum dΩm + Ai(Ei − Em)
∫

li

δud,r ud,r dli + Ai Ei

∫
li

δud,r us,r dli =

∫
Γt

δum · t̄ dΓt,

Ai Ei

∫
li

δus,r ud,r dli + Ai Ei

∫
li

δus,r us,r dli + Ci

∫
li

δus Kbtus dli = 0,

(9)

where us is the slip of the inclusion, and the subscript r indicates a derivative with respect to the inclusion local
axis.
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3.1.2. p-Enriched matrix embedded reinforcement model with slip (pERS model)
In an attempt to improve the performance of the ERS model, an enriched finite element discretization is employed

to approximate the matrix displacement field close to an inclusion. To this end, the high-order generalized finite
element method (GFEM) approximation

um(x) =

n∑
α=1

Nm α(x)ustd
m α +

n∑
α=1

Nm α(x)
nenr∑
β=1

uenr
m αβ Pβα(x) = Nmd (10)

is adopted, where Nm α are standard element nodal shape functions, n is the number of element nodes, nenr is the
number of enrichment terms, ustd

m α and uenr
m αβ are the standard and enrichment components of the matrix displacement

vector, respectively, and Nm and d are the total (i.e., including standard and enrichment terms) shape function matrix
and displacement vector at the element level, respectively. The enrichment terms of the matrix displacement vector
are defined following a hierarchical enrichment approach [34,35] using the generalized basis function vector{

Pβα

}nenr
β=1 =

{
(x − xα)

hα

,
(y − yα)

hα

,
(x − xα)2

h2
α

,
(x − xα)(y − yα)

h2
α

,
(y − yα)2

h2
α

, . . .

}
. (11)

In this study, and in the equation above, we have used up to 5 enrichment terms (nenr = 5) thus enriching the solution
space with polynomials up to the second order. This enrichment leads to a quadratic approximation of the matrix
displacement field with the first two terms (nenr = 2) and to a cubic approximation when all the terms (nenr = 5)
are used. The scaling factor hα [35], usually taken as the diameter of the largest finite element sharing node α, is
here taken equal to unity for convenience. Since the hierarchical enrichment scheme is not stable for quadrilateral
elements [36], a versatile technique based on the p-version of the finite element method [37] is employed to locally
increase their approximation order in a similar manner as discussed in Section 5.2.

3.1.3. Discretization of the inclusion and displacement approximations
Inclusions are discretized into segments using the non-uniform sequence of points obtained from their intersection

points with matrix element edges (if an inclusion ends within an element, the inclusion tip is taken as one of the
inclusion segment endpoints). As defined earlier, the inclusion displacement is defined by ud + us. We now discuss
the approaches we follow to approximate both components.

Inclusion displacement: Nonslip component. With reference to an arbitrary inclusion segment with endpoints 1
and 2 (Fig. 1b), the nonslip component ud of the inclusion displacement is written as

ud = Ni 1a1 + Ni 2a2, (12)

where a1 and a2 are the inclusion axial displacements at the two endpoints and Ni 1(r ) and Ni 2(r ) are linear Lagrange
shape functions related to the segment endpoints and defined along the inclusion segment local axis.

Eq. (12) is expressed in terms of displacements in the global coordinate system as

ud =
[
Ni 1 cos θx Ni 1 cos θy Ni 2 cos θx Ni 2 cos θy

]
ad, (13)

where θx and θy are the directional angles defined in the global xy coordinate system (Fig. 1b), and the displacement
vector

ad =
[
ax1 ay1 ax2 ay2

]T (14)

is obtained from the interpolation of the nodal displacement vector at the elemental level (matrix element) to end-
points (x1, y1) and (x2, y2) of the inclusion element related to that matrix element (i.e., using the approximation (10)
evaluated at the inclusion endpoints).

The displacement ud and its derivative are therefore

ud = NdHd and ud,r = BdHd, (15)

with

Nd =
[
Ni 1 cos θx Ni 1 cos θy Ni 2 cos θx Ni 2 cos θy

]
(16)

and

Bd =
[
Ni 1,r cos θx Ni 1,r cos θy Ni 2,r cos θx Ni 2,r cos θy

]
, (17)
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where the transformation matrix

H =
[
Hstd Henr

β=1 . . . Henr
β=nenr

]
, (18)

with standard component

Hstd
=

⎡⎢⎢⎢⎢⎢⎢⎣
Nm 1

⏐⏐
1 0 · · · Nm n

⏐⏐
1 0

0 Nm 1
⏐⏐
1 · · · 0 Nm n

⏐⏐
1

Nm 1
⏐⏐
2 0 · · · Nm n

⏐⏐
2 0

0 Nm 1
⏐⏐
2 · · · 0 Nm n

⏐⏐
2

⎤⎥⎥⎥⎥⎥⎥⎦ (19)

and enrichment component

Henr
β =

⎡⎢⎢⎢⎢⎢⎣
Pβ,1 Nm 1

⏐⏐
1 0 · · · Pβ,n Nm n

⏐⏐
1 0

0 Pβ,1 Nm 1
⏐⏐
1 · · · 0 Pβ,n Nm n

⏐⏐
1

Pβ,1 Nm 1
⏐⏐
2 0 · · · Pβ,n Nm n

⏐⏐
2 0

0 Pβ,1 Nm 1
⏐⏐
2 · · · 0 Pβ,n Nm n

⏐⏐
2

⎤⎥⎥⎥⎥⎥⎦ , (20)

links ad to the matrix nodal displacements vector d at the element level. In these expressions, the matrix shape
functions are evaluated at the discontinuity segment endpoints. The above derivations therefore show that the ud

component of the inclusion displacement is computed using information from the matrix displacement field.

Inclusion displacement: Slip component. The displacement slip component us and its derivative can be approxi-
mated as

us = Nsbs and us,r = Bsbs, (21)

where bs = [b1, b2]T is the vector of endpoint slip DOFs, and

Ns = [Ni 1 Ni 2] and Bs =
[
Ni 1,r Ni 2,r

]
. (22)

3.1.4. Discretized system of equations
Introducing the discretized expressions (10), (15) and (21) into the principle of virtual work (9) yields the system

of equations[
Kmm Kmi
Kim Kii

] [
d
b

]
=

[
fm
0

]
(23)

valid at the element level for the case of a single inclusion. The vectors d and b contain matrix and slip DOFs,
respectively, fm is the external force vector, and the stiffness matrix submatrices are

Kmm =

∫
Ωe

Bm
TDmBm dΩe + Ai

∫
L

HTBd
T ĒBdH dr,

Kmi = Ai

∫
L

HTBd
T EiBs dr,

Kim = Ai

∫
L

Bs
T EiBdH dr,

Kii = Ai

∫
L

Bs
T EiBs dr + Ci

∫
L

Ns
T KbtNs dr,

(24)

where Ωe is the domain of the element and L is the length of the inclusion segments within it. This discretized
system of equation is valid for the ERS and pERS models. For cases with more than one inclusion, the system of
equations is modified as shown in [27] or [29].
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3.1.5. Slip enriched partition of unity model (slipPoU)
Radtke et al. [29] proposed an approach alternative to the ERS model. In their formulation, in which the

displacement field is decomposed as in Section 3.1, the partition of unity property of finite element shape functions is
employed to enrich the matrix displacement field with information about the inclusion kinematics. Matrix-inclusion
relative displacement DOFs expressed in the global coordinate system are assigned to all the nodes of elements
intersected by an inclusion. Following the procedure described in [29] yields a global system of equations that can
be written as (23) with submatrices

Kmm =

∫
Ωe

Bm
TDmBm dΩe + Ai

∫
L

Bm
T (Di − Dm) Bb dr,

Kmi = Ai

∫
L

Bm
TDiBb dr,

Kim = Ai

∫
L

Bm
TDiBbH dr,

Kii = Ai

∫
L

Bm
TDiBb dr + Ci

∫
L

Nb
TD̄bNb dr,

(25)

where Nm and Bb = Bm are the standard FEM shape function and derivative matrices, respectively. In this model,
the number of DOFs in an element intersected by an inclusion doubles to take into account the additional relative
displacement DOFs defined at each node, thus yielding a larger system of equations compared to that obtained with
the ERS model described in the previous section. The relative displacement is approximated by making reference to
the shape functions of the parent element. In the applications discussed later in this paper, the results of this model
are provided only for the sake of comparison with the more efficient ERS model. As discussed in Section 2.1, we
do not allow the relative displacement in the normal direction by choosing large values of the interface normal
stiffness Kbn.

3.2. Strain discontinuity enriched embedded reinforcement model with slip (sdERS model)

A simple approach to allow a strain discontinuity in an embedded formulation is to enrich the displacement
approximation of the matrix material with a weak discontinuity enrichment function using the partition of unity
enrichment method [18,34,38,39]. This approach is applied to the embedded reinforcement model proposed
by Goudarzi and Simone [33]. The governing equations for the inclusion depicted in Fig. 2b can be obtained
by a modification of the equations derived for the conformal model in Fig. 2a. The goal of this modification is to
design a kinematic field in which the displacement is continuous and its gradient can be discontinuous, similar to
the strain fields obtained with the conformal model described in Section 2.1. This can be achieved by adopting the
enriched approximation

um(x) =

n∑
α=1

Nm α(x)ustd
m α +

n∑
α=1

Nm α(x)Υ (x)uenr
m α (26)

for the matrix displacement field expressed at the elemental level in the global coordinate system, where ustd
m α and

uenr
m α are the standard and enrichment matrix displacement vectors, respectively. To ensure continuous displacements

with discontinuous gradients, the enrichment function [19]

Υ (x) =

n∑
α=1

Nm α(x) |ζα| −

⏐⏐⏐⏐⏐
n∑

α=1

Nm α(x)ζα

⏐⏐⏐⏐⏐ (27)

is employed, where ζα is the level-set function that measures the shortest distance between an element node and
the inclusion. This enrichment function ensures that the displacement approximation can reproduce the strain fields
in Fig. 4. The displacement vector dint in (3) and the interface shape function matrix Nint in (4) are modified
accordingly as

dint =
[
ui 1 ui 2 ustd

m 1 · · · ustd
m n uenr

m 1 · · · uenr
m n

]T (28)

and

Nint =
[
Ni 1 I Ni 2 I −Nm 1 I · · · −Nm n I −ΥNm 1 I · · · −ΥNm n I

]
, (29)
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respectively, where I is the 2 × 2 identity matrix and the other quantities have been defined earlier. For the
discretization of the inclusion we make reference to Section 2.1.

4. Comparative analysis of the performance of embedded reinforcement models

As mentioned in Section 2.2, a discontinuity in the matrix strain field is expected across embedded inclusions.
The discrete models described in Section 3.1 do not capture intra-element discontinuities. Those simplified models
are however significantly cheaper when dealing with large inclusion volumes compared with the conformal or
discontinuous approaches described in Sections 2.1 and 3.2, respectively. The approximation features of these
discrete models is assessed by repeating the analysis of the strain field in Section 2.2; a further assessment is
performed by means of convergence studies on one or multiple inclusion composites. Reference is made to the
material parameters and geometrical properties of the polymer/clay nanocomposite discussed in Section 2.2.

4.1. Single inclusion

The case of a single inclusion is considered first. A detailed study of the strain components and a mesh
convergence study are provided.

4.1.1. Strain distribution across the inclusion
The study presented in Section 2.2 is repeated here by comparing strain fields obtained with conformal FEM

model (Section 2.1), ERS model (Section 3.1.1), and strain discontinuity enriched ERS (sdERS) model (Section 3.2).
The FEM reference solution (thin cyan line) is obtained with a uniform 600 × 600 Q4 conformal discretization,
while a uniform 100 × 100 (Q4) mesh is used for both ERS models. Strains are sampled at integration point
locations along a vertical line located near the tip of the inclusion (Fig. 5a). The most evident difference in the
results obtained with the two ERS models lies in the continuity of the mixed component of the strain tensor (εxy),
with the ERS model (red line) being clearly unable to represent the discontinuity reported by the reference conformal
FEM model (Fig. 5c). Other notable difference is the overall resemblance of the solutions obtained with the enriched
model (blue line) and the reference FEM solution around the inclusion (see insets in Fig. 5b,d), where the ERS
model shows a piecewise constant strain profile. Differences are however minute far from the inclusion.

4.1.2. Convergence study
To assess the quality of the strain discontinuity enriched ERS model (Section 3.2), a mesh convergence study

is performed. The role of the bond stiffness is evaluated by adopting three different tangential stiffness values Kbt
(0.025, 0.05, and 0.25 N/µm3). Fig. 6 shows the resulting slip profiles obtained with a conformal FEM analysis
using a 600 × 600 uniform grid of bilinear quadrilateral elements.

As a closed-form analytical solution is not available for this problem, the reference strain energy values used
in the convergence study are estimated. Following [40], an estimate of the exact strain energy is extracted using
hierarchical sequences of finite element spaces by means of the expression

π3 − π

π2 − π
=

(
π2 − π

π1 − π

)Q

with Q = log
N2

N3

(
log

N1
N2

)−1

, (30)

with N1 < N2 < N3 the numbers of degrees of freedom and π1, π2, and π3 the corresponding strain energy values.
For the numerical solutions, uniformly refined unstructured T3 meshes with 9013, 34,901 and 138,571 nodes are
employed. Eq. (30) is then solved for the estimated exact strain energy π that is used as the reference value in the
mesh convergence study.

Fig. 7 compares the results obtained with the strain discontinuity enriched ERS (sdERS) model against those
obtained with the ERS model (Section 3.1.1) with T3 and Q4 discretizations, the p-enriched matrix ERS (pERS)
model (Section 3.1.2) with local quadratic (nenr = 2) and cubic (nenr = 5) approximations, and the slip enriched
partition of unity (slipPoU) model (Section 3.1.5) for three values of the bond stiffness.

The performance of the ERS model with both discretizations and that of the slipPoU model are indistinguishable.
Expectedly, the strain discontinuity enriched ERS model performs better compared to the ERS model. This is
attributed to the appropriate representation of the strain field in elements crossed by the inclusion. As discussed
earlier, the ERS model cannot represent discontinuities in the strain field across an inclusion. To improve the quality
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Fig. 5. (a) Schematic of the single inclusion problem with sampling line for the strain tensor components reported in the other panels:
εxx (b), εxy (c), and εyy (d). The problem is solved using the conformal FEM, ERS, and strain discontinuity enriched ERS (sdERS) models
with a uniform 100 × 100 Q4 discretization . (For interpretation of the references to color in this figure legend, the reader is referred to
the web version of this article.)

Fig. 6. Slip profiles corresponding to various interface tangential stiffness values adopted in the mesh convergence study (Section 4.1.2).



M. Goudarzi and A. Simone / Computer Methods in Applied Mechanics and Engineering 355 (2019) 535–557 547

Fig. 7. Relative errors in strain energy for the single inclusion problem under uniform mesh refinements. Results are shown for the ERS
model with T3 and Q4 discretizations, the p-enriched matrix ERS (pERS) model with local quadratic (nenr = 2, p = 2) and cubic (nenr = 5,
p = 3) approximations, the slip enriched partition of unity (slipPoU) model, and the strain discontinuity enriched ERS (sdERS) model for
three values of the bond stiffness.

of the solution, the displacement field in the elements crossed by an inclusion is therefore enhanced by elevating
its approximation order. The results show the improved performance of the pERS model compared to that of the
ERS. Although the strain discontinuity enriched ERS model provides the most accurate solution, it can considerably
increase the complexity of the numerical implementation. Indeed, this model requires the integration of the weak
enrichment function (27) using integration subdomains, and this task can be prohibitively expensive when dealing
with dense inclusion distributions. A simpler strategy, although less effective, is to use high order displacement
approximations (pERS).

4.2. Randomly dispersed inclusions

The goal of this section is to show the effectiveness of the models described in the previous section in the analysis
of a composite with a relative large number of interacting inclusions. This is a situation in which ERS models are
key to this type of numerical exercise as conformal FEM and strain discontinuity enriched ERS models are very
expensive options.

Fig. 8 shows a typical periodic square unit cell setup used in this mesh convergence study with 367 randomly
dispersed and non-intersecting clay platelets with a spatial arrangement similar to that reported in Ref. [17]. The
periodic boundary conditions described in Ref. [41] are imposed on the unit cell, with the horizontal displacement
δ set equal to 0.05 µm at the lower right-hand side node (Fig. 8). As in the previous case, the inclusions are not
perfectly bonded and the elastic interface tangent Kbt is set equal to 0.05 N/µm3. The inclusions have all the same
length li = 0.52 µm. The approximated reference strain energy is extracted with the procedure described earlier for
the single inclusion case using the ERS model (Section 3.1.1) with the matrix discretized using uniform grids of
250 × 250, 500 × 500 and 1000 × 1000 bilinear quadrilateral elements.

Fig. 9 shows the results obtained with the finest ERS discretization for the distribution in Fig. 8 in terms of
the von Mises stress field together with axial stress and slip fields for three inclusions. These results indicate that
solution fields local to an inclusion vary depending on its position in the composite, an information that mean-field
approaches cannot predict.

4.2.1. Mesh convergence study with uniform mesh refinement
Fig. 10a shows the relative error plots for the strain energy obtained with the ERS model (Section 3.1.1)

and the slip enriched partition of unity (slipPoU) model (Section 3.1.5). The domain is discretized using bilinear
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Fig. 8. Periodic random distribution of 367 non-intersecting inclusions used in the multiple inclusion problem.

Fig. 9. (a) von Mises stress distribution for the problem with 367 randomly-distributed inclusions. (b) Axial stress and slip fields for the
three labeled inclusions in panel (a).

quadrilateral elements uniformly refined. Both models rely on similar assumptions, the major difference being the
allocation of slip DOFs—slip DOFs are assigned to all the nodes of a crossed element in the slipPoU model, while
in the ERS model they are only assigned to the intersection points between inclusion and element edges and are
aligned along the inclusion axis. Unlike the case of the single inclusion problem discussed in the previous section
(Fig. 7), the curves for a given number of inclusions do not overlap and the error produced by the slipPoU model
is larger.

The same study is now repeated using the p-enriched matrix ERS (pERS) model proposed in Section 3.1.2 with
a T3 discretization generated by splitting each quadrangular element in a regular structured grid into two triangles.
Linear (nenr = 0, equivalent to ERS) and cubic (nenr = 5) approximations are considered. This enrichment strategy
is advantageous over traditional Lagrange cubic elements because it can be applied locally to certain element groups
(those crossed by the inclusions), while keeping the order of the approximation unchanged in the rest of domain
(we refer to this enrichment scheme as local). For a fair comparison, the same approximation is also employed
throughout the whole domain (global enrichment scheme). Fig. 10b shows the error plots for different cases. Using
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Fig. 10. Plots of the relative error in strain energy for the problem with the randomly-distributed inclusions for two inclusion distributions
(number of inclusions shown between parentheses). Results are shown for (a) the ERS model and the slip enriched partition of unity (slipPoU)
model using uniform Q4 discretizations, (b) the ERS model and the p-enriched matrix ERS (pERS) model with cubic (nenr = 5, p = 3)
approximation for all elements (uniform) or for elements intersected by the inclusions (local) using uniform T3 discretizations. Element and
domain size are h and W = 4 µm, respectively.

a cubic approximation leads in any case to lower errors compared to the results obtained with the ERS model. The
use of a global enrichment strategy does not seem to be advantageous as the error is close to that obtained with the
local enrichment. Although the rate of convergence is improved for pERS compared to ERS, the improvements are
not significant due to artificial continuity of the strain fields.

4.2.2. Mesh convergence study with adaptive refinement
The uniform refinement case just discussed is not efficient as it leads to the refinement of regions where steep

gradients are absent. Also, close to the elements crossed by an inclusion, inaccurate intra-element strains are
present and a finer discretization would be preferred. To address these problems, we employ an adaptive refinement
procedure based on a strain energy error estimator. For the local mesh refinement in regions with high stress
concentration, the technique of Zienkiewicz and Zhu [42] is used. Reference (enhanced) strain fields are predicted
using the super-convergent patch recovery technique [43]. For the local refinement of triangular element meshes we
use the longest edge bisection algorithm by Rivara [44], while for quadrilateral meshes we use a non-conformal
adaptive mesh refinement technique with hanging nodes. A hanging node is treated by constraining it to surrounding
matrix element nodes, with the multifreedom constraint relations satisfied by the use of the master–slave elimination
technique.

Strain energy convergence plots are shown in Fig. 11 for quadrilateral and triangular element discretizations and
for different numbers of inclusions. Compared with the uniform refinement, h-adaptivity reduces the computational
costs in all cases by eliminating unnecessary mesh refinement. Additionally, as shown in Fig. 11b, if h-adaptivity
is combined with a local high order enrichment scheme (pERS) applied only in elements crossed by an inclusion,
the numerical performance is enhanced and errors are considerably reduced.

Fig. 12 shows typical discretizations obtained with the adaptive refinement scheme for the case with 367
inclusions. Note how the adaptive refinement algorithm identified the regions around the inclusion where mesh
refinement is most needed—compare the different discretizations around inclusions 1 and 2 (labeled in Fig. 9) with
the corresponding stress field.
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Fig. 11. Relative error in strain energy for the problem with the randomly-distributed inclusions for two inclusion distributions (number of
inclusions shown between parentheses). Results are shown for (a) the ERS model with uniform and adaptive Q4 discretizations, and (b) the
ERS model and the p-enriched matrix ERS (pERS) model with cubic (nenr = 5, p = 3) approximation for elements intersected by the
inclusions using uniform and adaptive T3 discretizations.

Fig. 12. Adaptively refined meshes using Q4 and T3 discretizations for the case with 367 randomly distributed inclusions.
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Fig. 13. A situation of near perfect bonding between matrix and inclusion can be achieved by increasing the interface tangential bond
stiffness value. The normalized effective elastic Young’s modulus of the composite with 21 aligned inclusions is plotted as a function of the
interface tangential stiffness . (For interpretation of the references to color in this figure legend, the reader is referred to the web version of
this article.)

5. Slip profiles

So far the embedded techniques were assessed in terms of their global response. In this section we demonstrate
that the slip is, under certain conditions, not smooth due to the presence of unphysical oscillations and provide some
remedies to reduce them. In all the simulations performed with an embedded reinforcement approach, each inclusion
segment contained in a matrix element has been uniformly refined in eight segments. A Newton-Cotes integration
scheme is used, and the reported slip values are sampled at the integration point locations (and these coincide with
the inclusion elements nodes in each matrix element). As the inclusion segments are sufficiently refined, the slip
profiles do not noticeably change by including more sampling points along each inclusion segment.

5.1. Slip oscillations

The problem of the oscillations in the slip profile is illustrated with reference to the two-dimensional one-
inclusion composite depicted in Fig. 3 with θ = 0.7 rad with input parameters and boundary conditions described
in Section 2.2.

Before performing slip tests on the single inclusion problem, the effect of the interface stiffness Kbt on the
homogenized Young’s modulus Ec x of the composite is studied in Fig. 13; for a sensible increase of Ec x , 21
aligned inclusions are considered. The profile of the homogenized Young’s modulus plateaus for Kbt > 10 N/µm3.
This means that for those values of the bond stiffness, the inclusion can be regarded as perfectly bonded to the
matrix with negligible slip; for all other values of the bond stiffness, the slip is physically meaningful.

With reference to the single inclusion problem, Fig. 14 shows the slip profiles obtained for the bond stiffness
values marked by the red squares in Fig. 13. The profiles are extracted from solutions obtained with relatively
coarse and fine discretizations with bilinear quadrilateral elements and are accompanied by predictions obtained
with a conformal 600 × 600 uniform grid of bilinear quadrilateral elements. The results indicate that oscillations
in the slip profile emerge for relatively large values of the bond stiffness, while the reference conformal FEM
predictions remain smooth for the whole range of interface stiffness values.

The results in this subsection are obtained with the embedded reinforcement model proposed in Ref. [33],
which is endowed with inclusion displacement DOFs. Results not reported here indicate that the inclusion
displacement is a smooth function, irrespective of material parameters and underlying mesh quality, therefore
implying that the non-smoothness of the slip profile is due to the non-smoothness of the interpolated matrix
displacement field at the inclusion nodes. Identical oscillatory results, not reported here, are also obtained with
all the embedded reinforcement models discussed in Section 3.1, which are endowed with slip DOFs—some mild
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Fig. 14. Slip profiles for the single inclusion problem obtained with the ERS model corresponding to the bond stiffness values marked by
the red squares in Fig. 13. The results are shown for relatively coarse and fine Q4 discretizations and are accompanied by the reference
slip profiles obtained with a conformal FEM approach (uniform 600 × 600 Q4 discretization).

oscillations are indeed present in the results discussed earlier in the paper (slip profile of the second inclusion
in Fig. 9b). Both models share the inability to reproduce a discontinuity in the matrix strain field across an
inclusion, thus suggesting that slip oscillations are related to the matrix strain field. As discussed earlier in
Section 3.2 enriching the matrix displacement field with a weak discontinuity function endows the model with
a discontinuous strain field across an inclusion (its effectiveness in addressing this problem is discussed next). The
strain discontinuity enriched ERS model is however expensive, and in the next section we explore the effectiveness
of alternative solutions using the models described in Section 3.1. As a side note, oscillations in the slip profile were
observed using either Gauss or Newton-Cotes quadrature schemes and therefore are not of the type discussed in
Ref. [45].

Although the results in this section are specific to an example and a set of material parameters, results not reported
here indicate that similar oscillatory results are obtained with very different material properties. Our numerical
evidence seems to imply that oscillations are an intrinsic feature of these models, rather than a feature triggered by
a special combination of material parameters. As of now, we can only suggest to produce a study similar to that
in Fig. 13 and verify the existence of oscillatory slip profiles if the chosen value of the bond stiffness is close to
that considered as the perfect bond threshold. Needless to say an erroneous prediction of the slip profile might have
adverse consequences in the interpretation of the results or in nonlinear analyses as nonlinearity might be artificially
triggered.
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5.2. Approaches to improve the slip profiles

As the quality of the matrix displacement field in elements crossed by an inclusion seems to dictate the quality of
the slip profile along that inclusion, the strategies discussed next rely on improvements of the approximation of the
matrix displacement field when needed. An optimal solution requires the development of intra-element discontinuous
displacement gradients in elements crossed by inclusions. Such weak displacement discontinuity can be reproduced
with the strain discontinuity enriched ERS model proposed in Section 3.2. An alternative approach consists in the
approximation of the discontinuity in the strain field by means of more sophisticated displacement approximations
that do not introduce a weak discontinuity enrichment in the displacement field but have the necessary flexibility to
represent it in an appropriate manner. To obtain a model with such capabilities, we have considered the embedded
reinforcement model proposed in Ref. [33] and replaced its shape functions with moving least squares (MLS) [46,47]
functions over the entire domain (this is an element free discretization for the matrix domain similar to that proposed
by Nayroles et al. [48]). With reference to the sdERS model in Section 3.2, the enrichment component in (26) is
removed and the matrix shape functions are replaced with MLS shape functions constructed using a linear basis. A
regular cubic spline weight function is used [49], while the size of support domain is set equal to three times the
nodal spacing to ensure a smooth stress profile.

We also tested our hypothesis on the quality of the displacement field in the matrix by employing a model based
on the p-version of the finite element method (p-FEM) [37,50]. This model, conceptually similar to the p-enriched
matrix ERS model presented in Section 3.1.2, employs hierarchical Legendre polynomials and arbitrary selective
order elevation (up to order 7 in this study) in elements crossed by an inclusion. Its implementation is similar to
that described for the MLS shape functions.

As a measure of the quality of the improved approximations, we perform a convergence study on the slip profile
by measuring the absolute error through its L2 norm defined as

∥es∥ =

√∫
li
∥sref − sh∥

2 dr√∫
li
∥sref∥

2 dr

, (31)

where sh and sref are the approximated and reference slip values, respectively. The integrals are evaluated along
the inclusion axis, li, and the reference slip solution sref is extracted from a reference FEM solution (Section 2.2)
obtained with a 600 × 600 uniform grid of bilinear quadrilateral elements.

The results of this study are reported in Fig. 15 in terms of the error convergence plots for three different
Kbt values, and in Figs. 16 and 17 in terms of the slip profiles for the two largest Kbt values. An improved
approximation of the displacement field in the matrix material has a positive impact on the solution. In terms of
local quantities, a visual inspection of the slip profiles clearly shows that compared to a basic ERS formulation all
proposed approaches reduce the oscillations in the slip profiles, with the p-FEM based approximation performing
better. The least improvement seems to be related to the strain discontinuity enriched ERS model. The results in
terms of a global measure however (Fig. 15) indicate that the MLS based model performs the worse. Noteworthy,
the p-FEM based approximation performs better than the strain discontinuity enriched ERS model only for p ≥ 4.

Although slip oscillations are attributed to the poor quality of intra-element displacements related to the artificial
continuity of the strain field in the ERS model, oscillations are still present in the sdERS model where the
strain discontinuity is explicitly described. At present we cannot give a definite answer about the origin of these
oscillations.

6. Conclusions

When modeling high aspect ratio inclusions, ERS models are considered to be efficient replacements for
conformal discretization approaches. The main shortcomings of these non-conformal approaches were demonstrated
in this study and impair their general applicability. Although not reported here, the limitations reported in this study
hold also under plane stress conditions and have been observed in three-dimensional simulations. These limitations
are attributed to the continuity of field derivatives (i.e., the matrix displacement gradients) across an inclusion.

Inaccuracies in the slip profile can become a limiting factor depending on the adopted material parameters.
Inclusion stiffness, interface tangent stiffness, and inclusion cross sectional area are the model parameters which
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Fig. 15. Relative error in slip profiles for the single inclusion problem for different mesh densities and using various interface tangential
stiffness values. The results are shown for the ERS model, the strain discontinuity enriched ERS (sdERS) model, the moving least squares
(MLS) based model, and the p-version of the finite element based model (p-FEM with p equal to 4 and 7) using uniform Q4 discretizations.

Fig. 16. Slip profiles for the single inclusion problem corresponding to the bond stiffness Kbt = 0.25 N/µm3 obtained with the ERS model,
the strain discontinuity enriched ERS (sdERS) model, moving least squares (MLS) based model, and p-version of the finite element based
model (p-FEM with p = 7). The results are shown using a uniform 280 × 280 Q4 discretization and are accompanied by the reference
slip profile obtained with a conformal FEM approach (uniform 600 × 600 Q4 discretization).
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Fig. 17. Slip profiles for the single inclusion problem corresponding to the bond stiffness Kbt = 1 N/µm3 obtained with the ERS model,
the strain discontinuity enriched ERS (sdERS) model, moving least squares (MLS) based model, and p-version of the finite element based
model (p-FEM with p = 7). The results are shown using a uniform 280 × 280 Q4 discretization and are accompanied by the reference
slip profile obtained with a conformal FEM approach (uniform 600 × 600 Q4 discretization).

were found to have the most adverse effect when relatively large values are used. To minimize these inaccuracies,
one expensive treatment would be to use the proposed strain discontinuity enriched embedded reinforcement model
with slip (sdERS). This model however requires the generation of a background integration mesh, an expensive task
that is not advised in situations when an element is crossed by more than an inclusion. Besides, the complexity of a
three-dimensional implementation does not make this model competitive. A relatively simpler strategy is the local
elevation of the approximation order using either polynomial enrichments or the p-version of the finite element
method. This strategy is preferred to the sdERS approach due to its simplicity. A more effective strategy might
consist in improving the sdERS model with high order matrix displacement approximations but its generalization
to higher dimensions is not straightforward.
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