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ABSTRACT
Installation and maintenance operations of offshore assets are impacted by local
environmental conditions such as wave height and period, wind speed and current
velocity. These parameters are substantially of influence for the asset planning (time
and costs) given the uncertainty of operational windows. In this article, a method is
proposed to construct realistic time series of the aforementioned dependent condi-
tions using a vine copulas approach. This method makes it possible to obtain a large
number of realizations of these conditions at a certain location. It is shown that the
operational windows remain persistent with the original limited dataset. Moreover,
this method enables the incorporation of environmental uncertainties in the oper-
ational planning processes. To illustrate the value of this method, an application
regarding replacement maintenance of a tidal energy infrastructure is examined.
For this purpose, the maintenance activities are represented as a semi-Markov de-
cision process. For every synthetic environmental time series, the algorithm finds
the optimal set of decisions and the corresponding maintenance plans, including
replacement costs and revenue losses. It is shown that the proposed method is ef-
fective in replacement maintenance decision making, while taking into account the
environmental uncertainties.

KEYWORDS
Offshore energy infrastructure; Uncertain operational windows; Vine copulas;
Environmental time series; Probabilistic planning; Tidal Energy Converter;
Replacement maintenance

1. Introduction

To address the steadily increasing energy demand worldwide (U.S. Energy Information
Administration, 2017), offshore infrastructure for the extraction of oil and natural
gas are usually required. Moreover, over the last years, due to the depletion of fossil
fuels, the development of technologies which harness renewable energy sources has
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flourished (Ellabban, Abu-Rub, & Blaabjerg, 2014). Several promising technologies
among these are also located offshore (International Renewable Energy Agency, 2014).
Some examples are offshore wind energy, offshore wave and tidal energy and recent
offshore developments such as floating solar panels (Patil (Desai) Sujay, Wagh, &
Shinde, 2017).

It is a fact that there are significant differences between the aforementioned technolo-
gies. Oil and gas technologies are well established, offshore wind energy is approaching
maturity while one could argue that the others are still in early development stage.
However, all of these offshore energy generating technologies have one common char-
acteristic. The required installation and or maintenance operations are very much
dependent on the local environmental conditions: i.e., wave, wind and tidal condi-
tions, which will impact these operations severely with significant financial impacts on
both the operational expenditures and the work schedules.

The environmental conditions that usually hinder the majority of the offshore oper-
ations concern stochastic variables such as wind speed, wave height and wave period.
The wind and wave influence on the uncertainty of the operational window (i.e., the
period in which offshore works can be executed) is a well-known problem and has
been extensively studied for installation and maintenance activities of offshore wind
farms (St̊alhane, Vefsnmo, Halvorsen-Weare, Hvattum, & Non̊as, 2016; Kikuchi et al.,
2009; Martin, Lazakis, Barbouchi, & Johanning, 2015; Leontaris, Morales-Nápoles, &
Wolfert, 2016). Probabilistic models have been developed to cope with uncertainties
of the duration of the operational windows and its effect on offshore infrastructural
assets planning (time and costs).

However, offshore infrastructure operations often also require subsea activities such
as installation of submarine cables or pipes and drilling support of oil and gas industry.
These operations often require Remote Operated Vehicles (ROVs: tethered underwa-
ter mobile devices) which besides wind and wave, are also stalled by the velocity of
currents. Furthermore, in tidal energy infrastructures, consisting of Tidal Energy Con-
verters (TECs), the fast flowing currents impact the economic efficiency of the assets in
direct relation with the limitation for performing (corrective) maintenance activities.
Station-keeping capabilities of the maintenance vessel are generally not sufficient to
perform an on-site replacement operation. The recurring character of the tidal current
further reduces the possibility of extensive operational windows. Hence, the combi-
nation of the tidal current, waves and wind limits offshore infrastructure operational
processes drastically.

Therefore, in this article a method is proposed to make use of vine copulas for
describing the dependence between the aforementioned environmental variables, in-
cluding the current velocity, and generating time series. Copulas theory has been used
in numerous studies over the past few years. Some of these studies also focus on infras-
tructure engineering applications: e.g., design optimisation of different infrastructural
assets (Attoh-Okine, 2013; Liu, Wu, Zhang, & Wang, 2017), reliability engineering of
geotechnical structures (Li, Phoon, Wu, Chen, & Zhou, 2013; Tang, Li, Rong, Phoon,
& Zhou, 2013) and modelling of flood risk (Masina, Lamberti, & Archetti, 2015; Joyce,
Chang, Harji, & Ruppert, 2018). The main reason for the application of copula theory
in a variety of applications is that this allows the construction of joint distributions of
variables using their marginal probability distributions and measures of dependence,
achieving the description of dependence among multivariate data (Clemen & Reilly,
1999; Tang, Li, Zhou, & Phoon, 2015). Moreover, this approach makes it possible to
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investigate and to describe asymmetries in the joint distributions because there are
families of copulas which satisfy different tail behaviour (Joe, 2015). In this article,
proper description of these asymmetries and especially that of the upper tail depen-
dence is crucial for offshore operations because these are mainly influenced by extreme
environmental conditions. Previous studies on the application of vine copulas for de-
scribing sea states have already showed the relevance of modelling the dependence
between wind and wave conditions (Montes-Iturrizaga & Heredia-Zavoni, 2016; Leon-
taris et al., 2016; Jäger & Nápoles, 2017). This article extends these studies including
the tidal velocity as an extra important environmental condition parameter.

Lastly, it is worth mentioning that other methods were also used to represent the
environmental conditions, such as creating a full numerical model for the location of
interest (e.g., at EMEC’s tidal testing site, see (Lawrence, Kofoed-Hansen, & Cheva-
lier, 2009)). However, developing these types of numerical models requires accurate
information for long periods of observation to determine the boundary conditions.
Moreover, it is computationally heavy to run the required simulations. Consequently,
the complexity of the problem could be reduced by following the method proposed in
this article.

2. Vine copulas: theory and application

2.1. Theoretical background

The first publication on copulas was by (Sklar, 1959), who developed a theorem
which states that the joint distribution of random variables can be described by
their marginal distributions and a copula that describes their depedence structure.
Hence, copulas are functions that couple multivariate distribution functions to their
one-dimensional marginal distributions. These marginal distributions are uniformly
distributed in the range of [0,1] (Genest & Favre, 2007). The use of copulas enables
studying the dependence structure of multivariate distributions by means of decou-
pling the marginal properties of the random variables and the dependence structures.

Indepth studies on copula dependence modeling (Joe, 2015; Aas & Berg, 2009) have
compared the set of available copula construction methods which can be placed into
two distinct groups, constructions which are described by multivariate copulas and
those which can also fully describe the overall dependence by using bivariate copulas.
Initially, Joe (Joe, 1996) gave a probabilistic construction of multivariate distributions
functions based on simple building blocks called pair-copulas, which model multivariate
data sets by using a cascade of lower-dimensional bivariate copulas. Bedford and Cooke
(Bedford & Cooke, 2001, 2002) organized these constructions in a graphical way called
regular vines. A detailed description of the components is described in (Aas, Czado,
Frigessi, & Bakken, 2009). Fitting a Canonical vine might be advantageous when a
particular variable is known to be a key variable that governs the interactions between
the variables in the data set. In such a situation one may decide to locate this variable
at the root of the Canonical vine. On the other hand, the D-vine is mostly preferred
if no key variable can be identified in the data and the bivariate combinations have
a more or less equal level of dependence. A formal description of the density of an
n-dimensional distribution for a C-vine and D-vine is given in (Bedford & Cooke,
2001).
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Whilst the base level copula parameters of the vine are directly derived from the
input variates, the higher level copulas require the use of the so-called h-function to
determine its parameter. The h-function is thus defined as the conditional distribution
function of a bivariate copula. In (Joe, 1996) the following relation is derived (under
certain regularity conditions) and given that v is univariate,

Fu|v =
∂Cu,v

∂Fv
(1)

and when u and v are uniform, this is defined as the h-function (Aas et al., 2009).

h(u, v, θ) = Fu|v =
∂Cu,v(ux, v, θ)

∂v
(2)

In Equation (2), θ is the set of parameters for the current copula, and the second
parameter of h(·) is the conditioning variable. The inverse of the h-function is defined
as h−1(u, v, θ) = F−1

u|v , which is as the inverse of h(u, v, θ) with respect to u. The inverse

h-function is required when simulating from a vine construction.

Thus, to determine the parametric shapes of the vines one could use the following
procedure (Aas et al., 2009):

Step 1 Select the base level factorisation of the D-vine, based on the highest rank
correlation combinations.

Step 2 Determine which copula families to use at level 1 by plotting the observa-
tions, and/or applying a Goodness-of-Fit test (Huang & Prokhorov, 2014;
Genest, Quessy, & Rémillard, 2006).

Step 3 Estimate the parameters of the selected copulas.
Step 4 Determine the observations required for level 2 as the partial derivatives,

using the h-function (eq. 2) of the copulas from level 1.
Step 5 Determine which copula families to use at level 2 in the same way as at level

1.
Step .. Repeat Steps 1-3 for all levels of the construction.

Once the vine has been constructed and all copula families and their respective
parameters has been selected, it is possible to simulate new samples. This simulation
method is applied to generate synthetic time series which are based on the original en-
vironmental measurement data. Figure 1 visualizes a single simulation loop of a D-vine
with 4 variables, producing four variates, including the multivariate dependence. The
individual nodes are labeled as v(i, j) to correspond with the mathematical simula-
tion algorithm, as is described in (Aas et al., 2009). It should be noted that using vine
copulas to simulate synthetic time series requires the input dataset to be time indepen-
dent and identically distributed (Aas et al., 2009; Nævestad, 2009; Montes-Iturrizaga
& Heredia-Zavoni, 2016), since each set of samples is generated independently from
previous simulations.
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(a) Calculate U1 (b) Calculate U2

(c) Calculate U3 (d) Calculate U4

Figure 1. Visualisation of D-vine simulation for one sample set

2.2. Developed simulation algorithm

In an offshore application regarding tidal infrastructure, due to the diurnal recurring
character of the tidal currents, the required time interval between time samples has
shown to be too small to obtain the aforementioned time independence. Hence, the
previously presented procedure can not be directly applied to generate synthetic time
series which represent the dependence between the environmental variables as well as
their time dependence. It is to the authors’ best beliefs that the vine copula theories
have in fact not, or very limited, been applied for describing both types of dependence
by means of an algorithm. So the following approach is proposed to realistically model
the environmental conditions including uncertainty.

First, the simulation process is presented to construct time series for a single variable
with a time dependence similar to the original time series. This univariate time series
simulation process is as follows:

Step 1 Build the D-vine by using N lagged sets of the univariate time series (N = 3
in Figure 2).

Step 2 Simulate the full D-vine once using the method described in section 2.1 (Fig-
ure 2a).

Step 3 Shift all generated variates and D-vine parameters one time lag (Figure 2b).
Step 4 Simulate a new sample using only one random input and the shifted vine

parameters (Figure 2c).
Step 5 Repeat Steps 3 and 4 Tsim times to generate the full set of samples in the

[0,1] range.
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(a) Simulate full D-vine (b) Shift variates one lag (c) Simulate a new sample

Figure 2. Sampling algorithm for univariate time series

Step 6 Transform the samples back to real values using the empirical distributions
of each variable.

By plugging lagged versions of the original univariate time series into the D-vine,
the copulas in the vine are used to describe the time dependence between the lags.
Simulation of a new sample, as seen in Figure 2c, includes the identified time de-
pendence between the included lags and thus the persistence of the sea state can be
modelled. The final step for an accurate representation of the environmental conditions
is to expand the simulation method to also describe multivariate dependence between
the environmental variables. This requires the univariate dependence of individual
variables to be combined by one more vine copula structure.

In this study a special case arises for implementing the current velocity. The mag-
nitude and occurrence in time of Vcurr does not depend on random processes and can
to a high accuracy already be predicted, based on the major driving forces behind
it, namely the Earth’s rotation and the influence of the sun and moon. Therefore, to
preserve the consistency of the recurring tidal velocity profile, it is decided that the
synthetic time series of this variable will not be simulated using the D-vine. Alterna-
tively, the entire Vcurr time series will be copied from the existing dataset and plugged
into the D-vine for each time step, using a randomly selected starting point in the
original time series. Figure 3 shows how the range is determined in which the starting
point is randomly selected. This ensures that the sinusoidal character of the current
velocity is maintained and the current velocity acts as the simulation input for the
other environmental variables in the D-vine.
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Figure 3. Copying a fraction of the original Vcurr time series

Hence, the proposed method (’Univariate time dependence (×3) → Multivariate
dependence’) works as follows. First, it starts with using random numbers to simulate
from each of the three univariate D-vines. This creates three independent synthetic
time series (excluding Vcurr), which are then plugged into the multivariate D-vine as
w2, w3, w4 input, sample per sample. The variable w1 is plugged by the samples of the
Vcurr dataset. Finally, the time series which have been generated by the multivariate
D-vine are the final output of this approach and describe the environmental time
series (Hs,Tp,Vcurr and Vwind), which contain both time dependence and multivariate
dependence.

3. Construction of environmental time series for a given location

3.1. Observed locations

The environmental measurements from two fast flowing offshore locations, the Fundy
Ocean Research Center for Energy (FORCE) and European Marine Energy Centre
(EMEC) tidal field, are used to demonstrate how synthetic time series can be gener-
ated by using vine copulas. Whilst both locations are characterized by a high current
velocity, the bathymetry and sea state are different. The results from the FORCE data
set are presented in this section, whilst the EMEC results can be found in Appendix A.

FORCE’s tidal location at the Minas Passage, Canada, has two sensors which have
been logging environmental data (Ocean Networks Canada, 2017). A bottom-founded
Acoustic Wave and Current (AWAC) is used to log the wave and current data and a
meteorological (MET) station measures the wind speed. The AWAC is located at the
position of the red dot in Figure 4.

The synchronized measurement datasets for both locations consist of 874 samples
with a one hour interval, which describes a 36 days period during the Spring season. No
additional data was available for this research, so the seasonality of the environmental
conditions could not be observed. It is therefore important to state that the dependence

1Source: Google Maps
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Figure 4. Geographical location of FORCE1

results in this article cannot be extrapolated for long-term yearly statistics without
additional research on the effects of seasonality. However, in case more data become
available in the future, the proposed methodology can be used to produce synthetic
time series including the seasonality.

3.2. Bivariate dependence

The first step in constructing the vine is determining the factorisation of the variables
at the base level. This is done by calculating the Kendall’s Tau rank correlation and
connecting the strongest bivariate pairs to function as the vine’s base. The calculated
Kendall rank correlations, regarding FORCE data set, can be found in Table 1. A
value of rank correlation equal to zero implies full independence while values equal to
+1 or -1 imply full positive and negative dependence respectively.

Table 1. Kendall’s Tau rank correlations of FORCE data

Vwind Hs Tp Vcurr

Vwind 1.000 0.292 0.062 0.060
Hs 0.292 1.000 0.229 0.196
Tp 0.062 0.229 1.000 0.393
Vcurr 0.060 0.196 0.393 1.000

Having performed several analyses on the available environmental datasets, it can
be observed that no single key variable is present. Hence, it can be concluded that
a D-vine is most suitable for representing the multivariate dependence at the tidal
locations. Therefore this article limits itself to using D-vines exclusively.

It should be noted that the the identified bivariate dependence is significantly lower
than existing research results (Montes-Iturrizaga & Heredia-Zavoni, 2016), which anal-
yses dependence between Hs,Tp and Vwind at sea. This difference can be explained due
to the following reasons:

(1) The tidal locations are geographically different than the location of the reference
study. The values from the reference study correspond to the open sea, where
the wind is prevalent as the driving force. As is seen in Figure 4, the wind
fetch is very limited and it can thus be assumed that wind-driven waves are less
occurring at the shallow water tidal location:
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(2) The inclusion of the high current velocities as an additional environmental driv-
ing force, besides the wind, creates a different situation in which the waves are
not exclusively wind-driven at the tidal location. As these current forces will
never occur at open water locations, it does give a possible explanation why the
bivariate dependence does not correspond well.

(3) In (Montes-Iturrizaga & Heredia-Zavoni, 2016) multi-year datasets are used.
During these years, differences due to seasonality as well as extreme environ-
mental conditions are observed. The tidal locations are only described by short-
term measurement data and therefore do not contain extreme weather events,
in which a stronger (upper tail) dependence can possibly be observed.

3.3. Base level factorisation

The four variables have to be factorized in such way that the highest Kendall Tau rank
correlation pairs are observed at the base level. An effective method is proposed in
this article, which maximizes the sum of the absolute Tau values of the three bivariate
pairs. The result of choosing the optimal factorisation pairs from the FORCE dataset
are listed in Table 2, using the notation of Figure 1.

Table 2. Base level factorisation of FORCE data

U1 U2 U3 U4

FORCE Vcurr Tp Hs Vwind

3.4. Copula selection

Once the factorisation is known it is possible to determine which copula families best
describe the three pairs of bivariate dependence at the base level. There are different
bivariate copula types available, depending on the dependence between the variables.
In this article, five popular Archimedean and Elliptical one-parameter bivariate copulas
were considered to be able to represent cases of upper, lower and no tail dependence
(Nelsen, 2006; Embrechts, Lindskog, & Mcneil, 2003; Sibuya, 1960). These copulas are
the Clayton, Frank, Gumbel, Gaussian and Student-t and are visualized in Figure 5.

To determine the best fitting copula, first the processed measurement data need to
be converted to its corresponding pseudo-observations, defined as normalized ranks, in
order to enable the representation using copulas. The method has been performed in
this study by using the ”VineCopula” package (Schepsmeier et al., 2016) from the ”R”
software (R Core Team, 2016). The resulting pseudo-observations plots are depicted
in Figure 6.

The visual inspection of the pseudo-observations already gave a hint about which
copula families best describe the dependence of the three pairs. Still, to ensure the
best fitting copula family is selected, a Goodness-of-Fit (GoF) test is conducted which
determines the best fit using the AIC (Akaike, 1973) and BIC (Schwarz, 1978). In
this research the standard functions of the ”VineCopula” (Schepsmeier et al., 2016)
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(a) Gaussian (b) Student-t (c) Clayton

(d) Gumbel (e) Frank

Figure 5. Contour plots of copulas with standard normal marginals (τ = 0.60)

(a) Vwind - Hs (b) Hs - Tp (c) Tp - Vcurr

Figure 6. Scatter plots of FORCE pseudo-observations

package are used for this purpose. The best fitting copulas for the bivariate pairs are
listed in the rightmost column of Table 3.

The semi-correlations of the bivariate pairs are also analysed, as this is an effective
measure to validate the choice of copulas based on the presence of tail dependence.
It concerns the calculation of Pearson correlation for the upper-right and lower-left
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quadrant which are transformed to the standard normal (Joe, 2015). The calculated
upper and lower semi-correlations (of the standard normal scores Za and Zb of two
random variables a and b) are defined as: ρne = Cor[Za, Zb|Za > 0, Zb > 0] and
ρsw = Cor[Za, Zb|Za < 0, Zb < 0]. It can be observed in Table 3 that the calculated
best fitting copulas correspond to the outcome of the semi-correlation analysis, as the
tail dependence properties fully match.

Table 3. Semi-correlations and selected copula factorisation (FORCE)

Data set ρsw ρtotal ρne Tail dependence Copula

Vwind −Hs -0.158 0.415 0.648 Upper Gumbel
Hs − Tp 0.358 0.329 0.053 Lower Clayton
Tp − Vcurr 0.289 0.503 0.658 Upper Gumbel

3.5. Synthetic time series validation

For the purpose of validation of the synthetic time series that were constructed us-
ing the ’Univariate time dependence (×3) → Multivariate dependence’ method, two
comparisons were performed. First, the Kendall’s tau correlation coefficient of the
synthetic time series were compared to those of the original dataset and secondly the
persistence of the operational windows in both cases was examined.

The values of Kendall’s tau rank correlation coefficient for one simulation of the
FORCE data is presented in Table 4 and shows good correspondence with the rank
correlation of the original time series, noted in Table 1. Thus, this is the first indication
that the synthetic time series represent the dependence observed in the original data
set.

Table 4. Kendall’s Tau rank correlations of one FORCE synthetic time series realiza-
tion

Vwind Hs Tp Vcurr

Vwind 1.000 0.314 0.101 0.059
Hs 0.314 1.000 0.344 0.229
Tp 0.101 0.344 1.000 0.355
Vcurr 0.059 0.229 0.355 1.000

To further investigate whether or not the produced synthetic time series are realistic,
more tests were performed. First, a visual comparison between the synthetic time
series and the original dataset was performed. Figure 7 presents the results of this
comparison. It can be seen that the synthetic times series present a behaviour similar
to the original dataset. Please note, that the values concerning the current velocity
have been excluded from this comparison because the initial dataset was used, as
explained in section 4.2, resulting in identical time series.

Furthermore, statistical measures such as the mean and the standard deviation
for 1000 synthetic time series were calculated and compared to those of the original
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dataset for every environmental variable. Table 5 presents these measures. It can be
seen that these measures present insignificant differences.

(a) Vwind comparison (b) Hs comparison (c) Tp comparison

Figure 7. Synthetic - Original dataset comparison

Table 5. Comparison of statistical measures

Original Synthetic
Vwind (m/s) Hs (m) Tp (s) Vwind (m/s) Hs (m) Tp (s)
µV w σV w µHs σHs µTp σTp µV w σV w µHs σHs µTp σTp

4.53 3.12 0.193 0.123 3.94 1.89 4.525 3.16 0.19 0.122 3.89 1.9

However, for offshore installation and maintenance activities the duration of the op-
erational windows is crucial. Therefore the synthetic time series were also validated in
terms of the operational window persistence. This validation is based on a comparison
of the cumulative distributions of the length of operational windows in the original and
synthetic time series. This approach has also been used in a similar study (Leontaris
et al., 2016), that concerns the modelling of dependence between wind velocity and
significant wave height.

For validation purposes, the operational window persistence is observed for an off-
shore activity with the following arbitrary operating limits:

• Hs limit: 2.0 m
• Vwind limit: 7.0 m/s
• Vcurr limit: 2.5 m/s

Figure 8 shows the cumulative distribution functions of the persistence for 1000
simulated time series, using the newly developed algorithm, and compares it with the
operational window persistence in the original time series. It can be observed that the
results from the synthetic time series are well clustered around the original time series.
This is a strong indication that the synthetic time series have similar characteristics
to the original data set, whilst including randomness to represent the environmental
uncertainty.

Therefore, it can be concluded that the developed algorithm for simulating syn-
thetic time series with both multivariate dependence and time dependence can be
effectively implemented in offshore infrastructure planning models, as these show a
strong resemblance to the operational window persistence of the original time series.

Additional validation has been performed in which the operational limits were ad-
justed. Due to the recurring character of the tidal current, the maximum operational
window is strongly bounded by the Vcurr limit. Still, when increasing the Vcurr limit,

12



0 5 10 15 20 25 30 35

Weather window length [h]

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P
ro

b
a

b
ili

ty

Original time series

Synthetic time series

Figure 8. Comparison of the CDF of the persistence in the original and synthetic time
series (Nsim = 1000)

it was observed that the operational window persistence showed a similar shape as in
Figure 8, albeit with longer operational window lengths in the upper tail, depicted in
Appendix D. So, the multivariate dependence is of added value for offshore infrastruc-
ture planning models, because the operational windows for different operations may
vary substantially. To further investigate the synthetic time series, the persistence of
the synthetic time series was also calculated and compared to the persistence of the
original data set, when only one environmental variable is considered at a time. Figure
9 presents the persistence of the synthetic time series and that of the original dataset
when considering the following environmental limits: Vwind < 7m/s in Figure 9a,
Hs < 0.3m in Figure 9b and Tp < 7s in Figure 9c. It can be seen that the persistence
of synthetic time series are clustered around the persistence of the original dataset.
This was expected since more possible weather realizations are taken into account.
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(a) Vwind limit = 7m/s
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(b) Hs limit = 0.3m
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(c) Tp limit = 7s

Figure 9. CDF of the weather windows’ persistence when only one environmental
variable is considered, in the original and synthetic time series (Nsim = 1000)

4. Replacement maintenance of tidal energy infrastructures

The management of maintenance of infrastructures (Crespo Márquez, 2007) can be
split in two main processes, the definition of the strategy and the implementation of
the strategy, often referred to as the maintenance policy. This should answer the ques-
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tion of what activities should be performed, by whom and with what intention. In the
case of early stage technology, such as tidal energy infrastructure, there is lack of op-
erational experience (Strategic Initiative for Ocean Energy, 2013; Magagna & Uihlein,
2015), that introduces an uncertainty about the frequency and cost of maintenance
interventions. Therefore, despite the numerous existing maintenance strategies, it is
key to first use optimized corrective strategies to obtain operational insight, before
moving on to complex preventive strategies which may require extensive knowledge of
the tidal energy infrastructure.

In the past, tidal maintenance models have been developed (Y. Li & Florig, 2006)
or are derived from the offshore wind industry (Mérigaud & Ringwood, 2016) to pre-
dict the overall maintenance costs, but little research has been done on the policy
optimization of corrective maintenance models. Generic policy optimization models
(Okumoto & Elsayed, 1983; Popova & Wilson, 1999; Assaf & Shanthikumar, 1987)
can be applied, but these cannot describe the environmental uncertainty and cannot
realistically describe the equipment failures and maintenance activities due to the large
number of simplifications to be made to be able to solve it analytically.

At this point, it should be mentioned that one could also apply alternative ap-
proaches to solve the problem at hand. First, environmental conditions can be de-
scribed by the use of Markov chains as presented in (Anastasiou & Tsekos, 1996).
However, using discrete states for continuous variables might result in inaccuracies.
Second, an alternative approach could be to use Markov theory again in order to
describe the workable conditions. This approach translates the combination of envi-
ronmental conditions into binary states (i.e workable and non-workable) which are also
usually represented by Markov chains. In this case, using discrete binary sea states to
describe a set of continuous variables, may again lead to inaccuracies. Moreover, this
approach can quickly prove inefficient when more activities with different environmen-
tal limits are considered. Of course there are ways of dealing with this problem, but
then the complexity of the model will increase with the number of operations with
different limits. These approaches can be effective for scheduling of offshore operations,
however there are the aforementioned limitations. The proposed approach using vine
copulas overcomes these obstacles.

Therefore, this case study describes a methodology to reduce the cost of corrective
maintenance of tidal energy infrastructures by assisting in optimal decision making.
The developed model is applied to a tidal energy infrastructure concept by Damen
Shipyards and uses environmental measurement data from FORCE, a tidal hotspot in
Canada. The developed decision support tool enables the simulation of environmental
time series with uncertainty and calculates whether a maintenance activity should
be initiated for any of the tidal energy infrastructure’s unique failure combinations
in order to minimize the total cost of maintenance. The implemented maintenance
strategy therefore describes the replacement of one or multiple failed Tidal Energy
Converters (TECs) in the tidal energy infrastructure.

4.1. Tidal energy infrastructure description

The conceptual tidal energy platform developed by Damen Shipyards is visualized
in Figure 10 and is used in this case study with the properties listed in Table 6. It
consists of multiple Darrieus type TECs per tidal platform, which can each operate

14



and fail independently. Hence, failure of a TEC does not directly affect the others,
except for when maintenance is to be performed. The entire platform is then emerged
to the water surface after which failed TEC(s) can be replaced. A process flow of
the individual vessel related tasks has been developed for describing the maintenance
activity, as is seen in Figure 11.

Table 6. Maintenance model parameters

Tidal energy infrastructure
Nr of platforms Nplatform 5
Nr of TECs/platform NTEC 16
TEC rated power Prated 110 kW
Feed-in Tariff FiT 0.11 e/kWh

TEC failure

TEC failure rate† λTEC 0.29 year−1

TEC replacement cost CTEC e104 · 102

Maintenance vessel
TEC capacity of vessel NTEC,vessel 3

Figure 10. Concept design of the Damen tidal energy platform

In Figure 11 several loops can be observed. Based on the conditions of the main-
tenance activity and the tidal array, these loops are initiated. The loops describe the
following:

Loop A More than one TEC is loaded, since multiple failed TECs will be replaced at
once.

Loop B Multiple failed TECs at the same tidal platform will be replaced sequentially.
Loop C Failed TEC(s) at another platform will be replaced if the vessel still has TECs

left.
Loop D More than one failed TEC has been replaced and is sequentially unloaded at the

port.

†No data is available on tidal assembly failure rates, so reference values from offshore wind turbines are applied

(Yu, Starke, Tolbert, & Ozpineci, 2007; Pudjianto et al., 2007; Arabian-Hoseynabadi, Oraee, & Tavner, 2010).
The TEC failure rate is composed by including the following assemblies: Blades, generator, brake, gearbox,

shaft and convertor.
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Loop E The maintenance activity requires more TECs to be replaced than the vessel’s
deck capacity.

Figure 11. Process flow diagram of the maintenance vessel

For a safe and successful execution of a number of tasks a weather window is required
since operational limits apply, which are dependent on the harshness of the weather
conditions.

The included operational limits are determined by three criteria, namely:

Limit 1 Vessel sea-keeping performance.
Limit 2 Vessel station-keeping by using Dynamic Positioning when interacting with

the tidal platform.
Limit 3 Motions of the vessel and tidal platform during the TEC lifting operation.

The task durations and operational limits are listed in Appendix B and have been
determined by using expert judgments from Damen Shipyards.

4.2. Replacement maintenance model

The model which has been developed consists of two main processes, namely the
generation of environmental time series with multivariate dependence and the opti-
mization of the corrective maintenance policy maintenance. In Figure 12 the model’s
main framework is visualized.

Figure 12. Model framework
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The corrective maintenance model is run with 1000 generated synthetic time series,
which are simulated by using the method described in section 2.2. It has been assumed
that the number of simulations is large enough to represent any possible random
occurrence of sea states. This implies that this probabilistic approach fully describes
the uncertainty that is introduced by the randomness of the environmental conditions
and therefore introduces the uncertainty of operational window in the model.

The collection of all possible maintenance decisions in the tidal energy infrastructure
are described in a semi-Markov decision process (SMDP), first introduced by (Jewell,
1963) and (Cani, 1964) and also discussed in (Grabski, 2015). For a SMDP the optimal
stationary policy with maximum gain can be found by applying the Howard algorithm
(Howard, 1971; Mine & Osaki, 1971). The gain is the average reward per unit of time
for the entire system. An infinite horizon SMDP with finite state and action spaces is
considered, which satisfies the Markov property (or memoryless property) and implies
that the conditional probability distribution of future states depend only on the present
state of the system. This SMDP variant is known as a decision problem without
discounting (Grabski, 2015). Several studies have previously used the SMDP approach
with infinite horizon to optimize maintenance planning problems and minimize the
total cost rate (Tijms, 2003; Tomasevicz & Asgarpoor, 2009). This approach requires
the tidal energy infrastructure to be represented as summarized below. A detailed
description of the SMDP model that was used for this case study can be found in
Appendix C.

• States describe the unique combination of TEC failures in the array.
• Decisions describe whether or not maintenance is performed in each state, and

how many TECs are to be replaced.
• Transition probabilities describing what the probability is of going from one

state to another, based on the selected decision of performing maintenance (main-
tenance based transition) or doing nothing (failure based transition).
• Transition rates describe at what rate the transition from one state to another

occurs. This is either induced by a TEC failure or the time it takes to perform
maintenance.
• Rewards describe the benefits and costs of being in a particular state. This is

directly related to downtime of one or more TECs and the cost of performing
maintenance.

The optimal policy of the system describes the most economical decision to make in
each state. For each of the tidal energy infrastructure’s unique failure combinations,
the following questions are answered by the model:

• Should a maintenance operation be initiated?
• If so, how many TECs should be replaced in one maintenance operation?

The optimization model also determines the system’s gain rate, which is interpreted
as the reward rate, given that the optimal policy is executed. In this model the rewards
are represented by the costs, so the model will attempt to minimize the maintenance
cost rate for the tidal array. The generated maintenance cost rate includes all costs
which are included in the model, namely:

• TEC downtime costs.
• TEC repair costs (characteristic TEC product costs).
• Maintenance vessel costs.
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The SMDP optimization assumes an infinite horizon, so the cost rate can be mul-
tiplied with the duration of interest to calculate the total expenditure on the listed
maintenance related costs. Naturally, the estimated cost rate is bounded by the afore-
mentioned assumptions and additional costs may apply in reality.

4.3. Added value of using vine copula based environmental synthetic time
series

A comparative analysis is performed to showcase the added value of using vine cop-
ulas to generate synthetic time series with environmental uncertainty. The results of
the model using the exclusively original measurement data from FORCE are com-
pared with the results using the synthetic time series, which have been generated
using vine copulas. This analysis compares the probabilistic maintenance activity du-
ration for replacing an arbitrary number of TECs. This is directly influenced by the
weather window uncertainty, which is induced by the interaction between the vessel’s
operational limits and the used environmental time series. For each analysis only the
maintenance activity durations of replacing 1, 6 and 10 TECs are depicted in this
section.

The first analysis compares the original and synthetic time series for a fixed starting
point for the Vcurr time series in order to determine what the influence is of generating
more realizations to introduce uncertainty.

Figure 13 shows the activity durations for using the original and synthetic time
series. The weather window limits have been selected to fully correspond to the base
case, mentioned in section 4.2. Only one simulation can be run with the original time
series data, so this results in a deterministic value, displayed by the red vertical line.
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Figure 13. Comparison of activity duration with original and synthetic time series
(fixed starting point)

It can be noted that, whilst keeping the current velocity time series fixed in all the
simulations, still a large weather window uncertainty is introduced by applying the vine
copulas to simulate synthetic time series for the Hs, Tp and Vwind variables. It is exactly
this environmental randomness which can be included by simulating additional time
series. Each of these synthetic time series add more possible environmental realizations,
resulting in a probabilistic representation of the maintenance activity durations.

The second analysis enables multiple varying starting points in both the original
and synthetic time series. This enables multiple simulations to be extracted from the
same original time series in order to compare the probabilistic results of an approach
without (original TS) and with vine copulas (synthetic TS).
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Figure 14. Comparison of activity duration with original and synthetic time series
(variable starting point)

By using the original time series with a varying starting point, it is possible to
construct different time series. However, a major limitation of this approach is its
restriction in generating more environmental realizations than already exists in the
original measurement data. Hence, it is not possible to describe the operational window
uncertainty. It can be seen in Figure 14 that as the number of tasks increases, and thus
the overall operational window length, the two approaches start showing a significant
discrepancy.

On the other hand, by using a vine copula approach, it is possible to simulate as
many synthetic time series as desired. This is a significant added value as more envi-
ronmental realizations result in a more complete description of the weather induced
uncertainty. Figure 14c illustrates a considerable underestimation of the activity dura-
tion, in case of using the original dataset instead of the synthetic time series (∆T ≈ 75
hours at P90 value).

4.4. Replacement maintenance results

For each of the synthetic time series an optimal policy and corresponding replacement
maintenance cost rate is calculated. The full set of identified cost rates can best be
interpreted as the theoretical lower limit for performing replacement maintenance,
given that the weather forecast is fully known for the decision maker at any moment
in time. This should, theoretically, provide the required information to always select
the best decisions for that specific state, given the full insight in the weather conditions
for the time span of all possible activities.

Each of these identified optimal policies is the best policy to implement in that
single simulation and has its own corresponding replacement maintenance cost rate.
The cumulative distribution of the replacement maintenance cost rates is depicted
in Figure 15 and represents the absolute minimum cost rate distribution of the tidal
energy infrastructure.

In reality it is most common to operate by means of fixed decision rules, namely the
recommended corrective maintenance policy. These dictate what decision should be
taken in each state, without having full insights in the upcoming weather conditions.
This requires us to narrow down the set of identified optimal policies to one recom-
mended policy, which is an approximation of the theoretical lower limit and minimizes
the corrective maintenance cost rate difference, based on a desired confidence level.
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Figure 15. CDF of the minimum cost rate distribution (FORCE)

It should be noted that the selection of the confidence level is entirely up to the
decision maker and the output of this decision support method can assist in gaining
insight into the risks and gains which are related to different confidence levels. In
total 155 unique policies have been found to represent the maintenance optima for
different simulations. All the policies which occurred less than ten percent of the total
simulations have been neglected and will be excluded in the policy analysis, resulting
in policy A (≈ 47% occurrence) and policy B (≈ 11% occurrence).

To quantify the difference in terms of corrective maintenance cost rates, the poli-
cies A and B are plugged into the corrective maintenance model to execute its fixed
set of decisions for each of the synthetic time series. Under the assumption that all
environmental uncertainty is fully described, this results in the effective corrective
maintenance cost rate distribution per fixed policy. The cost rate distributions of the
two policies are also depicted in Figure 16. It can be seen that both policies result in
distributions at nearly the same cost rates (i.e. ≈1 e/h at P90 value). Hence, these
policies can be characterized as near-optimal.
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Figure 16. CDF of the minimum cost rate of the quasi-optimal policies A and B
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5. Conclusions

In this article a method is proposed that uses vine copulas to construct time series of
the dependent environmental conditions wind velocity, significant wave height, peak
wave period and current velocity for a specific location of interest. These synthetic
time series can support decision making processes for offshore infrastructure planning.
It was shown that it is possible to generate synthetic time series that incorporate
these dependencies. It also provides more possible realizations of the environmental
conditions while the persistence of the operational windows remains comparable to
the original limited dataset. In this way, it is possible to incorporate the dependent
uncertainties of the offshore environmental conditions into the decision making pro-
cesses.

To illustrate the impact in decision making, a replacement maintenance application
case concerning a Tidal Energy Converter concept from Damen Shipyards for a specific
tidal location in Canada was examined. A decision support tool has been developed
based on a semi-Markov decision process, which uses the environmental time series
and TEC parameters as input to determine optimal replacement maintenance policy.
This policy describes what should be the combination of failed TECs for replacement
maintenance to be initiated by a vessel, ensuring an overall cost minimization of both
maintenance costs and revenue losses. The decision support tool enables the formal
description of multiple failing components in the array, spread over several independent
tidal platforms, and can therefore identify, for a particular environmental time series,
an optimal replacement maintenance policy based on detailed failure combinations.

In order to investigate the impact of using vine copula based synthetic time series,
the durations of certain activities were calculated and compared to the case where a
the limited dataset was used. As it was expected, this limiting approach underesti-
mated the duration of the activities because it did not take into account more possible
realizations of the environmental conditions. Particularly, it is interesting to note that
the limiting approach leads to a considerable underestimation of the operational win-
dows and maintenance replacements, compared to the case where vine copulas were
used to generate time series (underestimation percentage even up to ≈ 20% in our
case).

Additionally, when running the replacement maintenance model for each of the
generated environmental time series, a probabilistic description of the cost rate of the
optimal policy can be identified, which is based on the uncertainty of the occurring en-
vironmental conditions. Since there is a different optimal replacement policy for every
synthetic time series, it is difficult for the decision maker to decide which one should be
followed. Therefore, the two most occurring policies were simulated for the set of the
synthetic time series and resulted in near-optimal cost rates. It should be noted that
the cost rates of these near-optimal replacement policies had insignificant differences
compared to the theoretical optimal (≈ 1 e/h at P90 value). Hence, these can be of
assistance to practitioners who would be able to choose one particular replacement
policy to plan the maintenance activities.
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Appendix A. EMEC environmental time series analysis

Figure A1. Geographical location of EMEC∗

∗Source: Google Maps
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(a) EMEC: Hs - Vwind (b) EMEC: Vwind - Tp (c) EMEC: Tp - Vcurr

Figure A2. Scatter plots of EMEC pseudo-observations

A.1. Bivariate dependence

Table A1. Kendall’s Tau rank correlations of EMEC data

Vwind Hs Tp Vcurr

Vwind 1.000 0.121 -0.089 -0.003
Hs 0.121 1.000 0.077 -0.069
Tp -0.089 0.077 1.000 0.394
Vcurr -0.003 -0.069 0.394 1.000

A.2. Base level factorisation

Table A2. Base level factorisation of EMEC data

U1 U2 U3 U4

EMEC Vcurr Tp Vwind Hs

A.3. Copula fitting and semi-correlations

Table A3. Semi-correlations and selected copula factorisation (EMEC)

Data set ρsw ρtotal ρne Tail dependence Copula

Vwind −Hs -0.040 0.184 0.222 Upper Gumbel
Hs − Tp 0.132 0.112 -0.010 Lower Clayton
Tp − Vcurr 0.271 0.546 0.400 Upper Gumbel
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Appendix B. Maintenance task durations and weather windows

Table B1. Required weather window of the maintenance operation

Environmental limits
Task Duration [hours] Limit Hs [m] Tp [s] Vwind [m/s] Vcurr [m/s]

Vessel mobilization 24 -
TEC loading 1 -
TEC unloading 1 -
Waiting for weather window 0* -
Sailing to array 2 1 2.5 9
Sailing to port 2 1 2.5 9
Intra-array transit 1* 1 2.5 9
Emerge platform 2 2 2 7 2.5
Submerge platform 2 2 2 7 2.5
TEC replacement 1 3 1.5 6 2

* The mentioned duration is applied when no weather window related delays occur.
This duration will therefore increase if waiting for a weather window of successive
maintenance tasks is required.

Appendix C. Application of SMDP to the tidal system

C.1. SMDP representation

All system states and its transition properties (durations, probabilities and costs) are
represented in a SMDP. A policy consists out of a set of actions per state and affects the
transition properties, such as the ability to move from one state to another. For each
policy the gain can be computed, which is the average reward per unit of time for the
entire system. A policy iteration method, based on the Howard algorithm, can be used
to identify improved policies with a higher gain compared to the initial policy. This
process continues until the gain has converged to a maximum value, thus obtaining
the optimized policy. Due to the nature of a SMDP (and its Markov property), the
optimized policy of the SMDP therefore describes the best possible action per state,
also taking into account all possible the effect of all future actions in the system.

C.2. States

Within this study the number of states has been linked to the number of unique failure
combinations within the tidal array. Two types of states have been defined in the model
to resemble the tidal energy infrastructure well:

• Deterioration states (D-states, SD)
• Maintenance states (M-states, SM )

Each deterioration state thus describes a unique combination of failed TECs within
the array. This effectively enables the model to include all transitions and costs which
occur if the system changes from one state to another, by either performing mainte-
nance or wait for another TEC to fail. A simple serial example of the states and their
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interaction is depicted in Figure C1a, in which the arrows indicate direction of state
changes, red being a TEC failure, gray the decision of performing maintenance and
green the replacement operation.

C.3. Decisions

It is important to note that, whilst the decisions have their own transition rates be-
tween states, the decision making moment is instantaneously upon entering the dete-
rioration states from a previous state.

The primary decision set (Dx) can be chosen from any D-state:

Option 1 ’Do Nothing’ (SD → SD)
Option 2 ’Perform Corrective Maintenance’ (SD → SM )

If option 1 (D1) is selected the system is left to deteriorate to a next state due to
failure of an additional TEC. Selecting option 2 (D2) initiates corrective maintenance
and the corresponding maintenance state is entered in which the secondary decision
has to be taken.

The secondary decision set (D2.x) can be chosen from in any M-state:

Option 2.1 ’Replace 1 TEC (SM → SD , with: NTEC,fail,new = NTEC,fail,old−1)
Option 2.x ’Replace x TECs (SM → SD , with: NTEC,fail,new = NTEC,fail,old−x)

Due to the state architecture, this secondary decision set is only activated after
the decision has been made to perform corrective maintenance (D2) in a deterioration
state. In the maintenance state it can be decided to replace a number of failed TECs,
ranging between 1 and the number of failed TECs in the entire array, NTEC,fail.

(a) Example of deterioration
and maintenance states

(b) Primary decision set 1:
D-states

(c) Secondary decision set 2:
M-states

Figure C1. Decision sets for system states in SMDP representation

C.4. Deterioration module

In this section the methods will be explained to determine the transition rates, prob-
abilities and rewards for the deterioration related process. This process is directly
related to decision 1 (D1: ’Do Nothing’), so that the failures of TECs result in the
transition from one deterioration state to another (SD,from → SD,to), with increasing
number of failed TECs (NTEC,fail).
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C.4.1. Failure transition probabilities

Transitions between the deterioration states do not necessarily have one predefined
path, as the introduction of multiple platforms within the system allows multiple
destination states in some cases.

For each deterioration state the transition probabilities of ending up in another
deterioration state are calculated in a two-step process.

Step 1 Identify the deterioration states which have one more failed TEC than the
departing state
(NTEC,fail,to = NTEC,fail,from + 1)

Step 2 Calculate the transition probabilities of going from the departing state
(SD,from) to the arrival state (SD,to)

PSD,from→SD,to
=
NTEC,fail,pos,from→to

NTEC,oper
(C1)

NTEC,oper = NTEC,tot −NTEC,fail (C2)

NTEC,fail =

Nplatform∑
i=1

NTEC,fail,i (C3)

It should be noted that the sum of all departing transition probabilities per decision
adds up to one.

ND,to∑
i=1

PSD,from→SD,to,i
= 1 (C4)

C.4.2. Failure transition rates

In a SMDP all state transitions are represented as exponential distributions, which
fully corresponds with the exponential distributions that describe the failure rate of a
TEC. The following equation describes the transition rate for any arbitrarily deterio-
ration state transition.

λSD,from→SD,to
= NTEC,fail,pos,from→to · λTEC (C5)

C.4.3. Production downtime costs (’Reward’)

For decision 1, ’Do Nothing’, the associated costs consist of the downtime costs, also
defined as the indirect cost of maintenance (ESD,from→SD,to

in e). This is because a
TEC failure results in a lack of electricity production. The downtime costs of a single

29



TEC is the net price of the electricity which would have been produced in the period
of downtime, had the TEC not failed or undergoing maintenance.

The net amount of non-produced electricity during a state transition (ESD,from→SD,to

in kWh) is obtained by calculating the long term mean production (PTEC,mean in kWh)
and then multiplying it with the number of failed TECs in the array (NTEC,fail)
and duration of the state transition, defined as the mean time between failure of the
current state (MTBFSD,from

in years). The downtime cost (CSD,from→SD,to
in e) is then

obtained by multiplying the net amount of non-produced electricity with the feed-in
tariff (FiT in e/kWh) which applies to the tidal location. The equation to calculate
these deterioration costs is as follows:

CSD,from→SD,to
= ESD,from→SD,to

· FiT (C6)

ESD,from→SD,to
= NTEC,fail · PTEC,mean ·

(
MTBFSD,from

· 365 ∗ 24
)

(C7)

NTEC,fail =

Nplatform∑
i=1

NTEC,fail,i (C8)

MTBFSD,from
=

1

λSD,from

(C9)

C.5. Maintenance module

Using a similar structure as the previous section, this section will present the meth-
ods to determine the transition rates, probabilities and rewards for the maintenance
related process. This process is initiated when decision 2 (D2: ’Perform Maintenance’)
is selected in a state, after which the set of sub-decisions (D2.x) determine how many
TECs should be replaced at once.

The primary decision D2 does not represent any physical process and imposes no
costs (CD2 = 0). Upon selection of this primary decision, the state changes instanta-
neously (TD2 = 0) from the deterioration state to its corresponding maintenance state
with probability one (PD2 = 1)

The transition rates, probabilities and rewards for the maintenance related process
are thus exclusively related to the secondary decision set D2.x.

C.5.1. Transition probabilities

This model allows a maximum of one TEC to fail during the execution of a maintenance
activity of which the durations (Tact) are listed in appendix B. The chance of a TEC
failure during the maintenance activity is
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PTEC,fail = min

(
Tact

(MTBFarray ∗ 365 ∗ 24)
, 1

)
(C10)

MTBFarray =
1

λarray
(C11)

λarray = NTEC,oper · λTEC (C12)

with MTBFarray being the failure time in years until one TEC fails in the array,
given the current state.

Three characteristic situations may occur in the system:

• Tact << (MTBFarray ∗ 365 ∗ 24) → PTEC,fail ≈ 0
This applies to most cases, since maintenance tasks usually last considerably
shorter than the array failure time.
• Tact ≈ (MTBFarray ∗ 365 ∗ 24) → PTEC,fail ≈ 1

Especially in large arrays the MTBFarray due to the large number of TECs. The
failure probability increases as maintenance takes longer, or the time between
TEC failure decreases.
• Tact > (MTBFarray ∗ 365 ∗ 24) → PTEC,fail = 1

If the maintenance activity duration exceeds that of the MTBFarray, it is as-
sumed that a TEC will always fail during operation.

If PTEC,fail is calculated, the transition probabilities are calculated as follows:

PSM,from→SD,nofail
= 1− PTEC,fail (C13)

PSM,from→SD,fail,i
= PTEC,fail · PSD,nofail→SD,fail,i

(C14)

The transition rate to the designated D-state without failure is PSM,from→SD,nofail
,

and the transition rate to any of the possible D-states when failure during the main-
tenance operation is described by PSM,from→SD,fail,i

. The latter parameter uses the
deterioration probabilities of the state that would have been arrived in, had failure
not occurred.

C.5.2. Maintenance activity duration algorithm (’Transition rates’)

The maintenance activity durations are calculated in a four step process, which is
repeated Nsim times for each generated activity in the system.

Step 1 Non-operable time steps per task are identified within the synthetic time
series

Step 2 All possible weather windows per task are calculated
Step 3 The generated task sets per activity are sequentially projected onto the

synthetic time series, attempting to fit the task on the first possible weather
window after the final time step of the previous task
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Step 4 The maintenance activity duration is the sum of all individual task durations
(Tact =

∑Ntask

i=1 Ttask), including the intermediate periods of weather window
waiting

Under the assumption that the calculated deterministic duration of the maintenance
activities in hours is in fact the mean time to repair (MTTR) of the corresponding
exponential maintenance activity duration distribution, the maintenance transition
rates can be easily determined.

λMTTR =
1

MTTR
(C15)

MTTR = Tact (C16)

C.5.3. Maintenance costs (’Rewards’)

The cost of executing a maintenance activity, and thus the costs when changing states
due to the maintenance decision D2.x, consists of three independent cost contributions,
namely:

• Vessel activity costs
• TEC product costs
• Downtime costs

For an arbitrary maintenance operation the following holds:

Cmaint = Cact + CTEC,tot + CDT,tot (C17)

For each maintenance activity the individual task durations have been calculated
per synthetic time series. To obtain the vessel maintenance costs, also referred to as
the direct costs of maintenance, the task durations are to be multiplied with their
respective cost rate.

Cact =

Ntask∑
i=1

Ttask · Crate,task (C18)

The TEC product costs describe the mean repair costs of a TEC due to the ’as new’
replacement of the failed assembly. 1

CTEC,tot = CTEC ·NTEC,repl (C19)

The downtime costs during the maintenance activity are calculated in a way similar
to the one used for the deterioration related downtime costs.

32



Appendix D. Validation plots of synthetic time series

The observed task has the following operational limits:

• Hs limit: 2.0 m
• Vwind limit: 7.0 m/s
• Vcurr limit: see Figure D1
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Figure D1. Comparison of the CDF of the persistence in the original and synthetic
time series (Nsim = 1000) for different Vcurr limits

Appendix E. Descriptive analysis of selected quasi-optimal maintenance
policies

When comparing the two quasi-policies and their respective decisions per state, an
interesting decision pattern was observed. It was found that three Decision Ranges
(DRs) can be set up, which are related to the number of TEC failures (NTEC,fail) of
the respective states. The distribution of TEC failures among the tidal platforms does
not affect these ranges.

The three DR which were identified in the analyzed optimal policies are:

DR 1 Maintenance should never be performed.
DR 2 Maintenance should be performed, based on the failure combination.
DR 3 Maintenance should always be performed.

In DR 1 the replacement of the failed TECs never outweighs the cost due to the
TEC downtime. The system is therefore left to deteriorate to subsequent D-states until
the economical break-even point is achieved.

DR 2 can be seen as the transition between the D1 (’Do Nothing’) and D2 (’Per-
form Corrective Maintenance’) set of decisions. The two policies have very similar DR
boundaries, but an unique set of decisions in DR 2. This shows that each of the two
observed policies have near identical decisions and only differ slightly. It should be
noted that for the two policies A and B the maximum number of TECs are replaced
if decided to perform corrective maintenance.

All decisions in DR 3 are to perform corrective maintenance and replace NTEC,fail,
regardless of the failure combination. This can be explained by the physical repre-
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sentation that the added cost of long maintenance activities (including sailing back
and forth to the port to load more TECs) never becomes more expensive than the
downtime costs of the non-replaced TEC(s). Also, the fixed mobilization costs of the
vessel only have to be paid once when replacing all TECs in one maintenance activity.

The DR boundaries which apply to the two policies are shown in Table E1 and
are defined by the number of failed TECs. These may be subjected to change when
observing other policies or changing the system. The decisions per state of the two
policies of DR 2 are visualized in Figure E1. The number of failed TECs per tidal
platform in the array are listed in brackets left of each failure combination.

Table E1. Boundaries of the decision regimes for analyzed policies

DR Lower boundary Upper boundary
[NTEC,fail] [NTEC,fail]

1 0 2 (3*)
2 3 (4*) 5
3 6 9

* the respective boundaries of policy A

0 1 2 3 4 5 6 7 8 9

[00003]              

0 1 2 3 4 5 6 7 8 9

[00012]              

0 1 2 3 4 5 6 7 8 9
Number of TECs to be replaced in one activity

[00111]              

(a) States with
NTEC,fail = 3

0 1 2 3 4 5 6 7 8 9

[00004]              

0 1 2 3 4 5 6 7 8 9

[00013]              

0 1 2 3 4 5 6 7 8 9

[00022]              

0 1 2 3 4 5 6 7 8 9

[00112]              

0 1 2 3 4 5 6 7 8 9
Number of TECs to be replaced in one activity

[01111]              

(b) States with
NTEC,fail = 4

0 1 2 3 4 5 6 7 8 9

[00005]              

0 1 2 3 4 5 6 7 8 9

[00014]              

0 1 2 3 4 5 6 7 8 9

[00023]              

0 1 2 3 4 5 6 7 8 9

[00113]              

0 1 2 3 4 5 6 7 8 9

[00122]              

0 1 2 3 4 5 6 7 8 9

[01112]              

0 1 2 3 4 5 6 7 8 9
Number of TECs to be replaced in one activity

[11111]              

(c) States with
NTEC,fail = 5

Policy A
Policy B

Figure E1. Decisions per state in DR 2 for the pseudo-optimal policies A and and C
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