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Abstract

The aerospace industry has a lot of interest in addi-
tive manufacturing (AM). One of the reasons for this
interest is caused by the complex topologies that can
be produced with it. This means that it is possible to
design parts that are lighter, which saves fuel, costs
and reduces the environmental impact. The geomet-
rical complexity that can be achieved translates into
an increase in possible designs which causes difficul-
ties in the designing process. The traditional design
process might work well for simple constructions, but
it is unable to grasp all the possibilities in a very large
and complex design space. When the traditional pro-
cess is used for AM parts, it is slow and the final de-
sign might not be the optimal one.

A design process with computational optimization
will enable engineers to use the geometrical freedom
offered by AM. These optimization algorithms will de-
sign a structure that performs most optimal within
certain constraints. This study explores how topol-
ogy optimization can be used to design structures
that are fatigue tolerant. A structure that can sus-
tain damage is called damage tolerant. Because of
safety concerns damage tolerance is a requirement
for aerospace structures. Damage tolerance can be
related to crack propagation when fatigue is consid-
ered.

Two optimization algorithms for fatigue tolerance
were developed in this thesis. One algorithm mini-
mizes the stress intensity factor (SIF), whereas the
other one maximizes the fatigue crack growth life
(FCGL). The difference between the SIF minimiza-
tion and FCGL maximization is that the first one con-
siders the crack growth rate for a crack of a spe-
cific length, whereas the other considers the crack
growth from the starting crack length until the final
one. Both algorithms use a resource constraint to
limit the total amount of material, an enriched finite
element method to analyze the crack growth perfor-
mance and the method of moving asymptotes to in-
crementally improve the design. The enriched finite
element method was chosen, because it determines
the stress intensity factor directly when solving the
FE problem. This simplified the adjoint gradient cal-
culation, which is required for the method of moving
asymptotes.

The optimization algorithms were used to optimize
three different types of structures:

• A discrete structure where the algorithm deter-
mines where to assign material and where not.

• An infill optimization case which is similar to
the discrete one. However, here the material is

added to an existing geometry. This existing ge-
ometry cannot be altered.

• A variable thickness plate structure with the lo-
cal thicknesses as design variables. The algo-
rithm reinforces a flat plate by distributing extra
material.

Optimizing the SIF for discrete or infill structures re-
sulted in designs that closed the crack tip. Clos-
ing the crack tip under loading means that the tip
is compressed, which stops the fatigue propagation
entirely. However, these designs cannot directly be
used in structures, they are too susceptible to other
failure modes.
Minimizing the SIF of the variable thickness plate
showedmore promising results. The SIF was reduced
by 30 to 40 percent, with respect to a flat plate of
the same weight. For 3D printed titanium this would
reduce the crack growth rate by 80 to 90 percent.
The actual gain in fatigue crack growth life is less, as
that is also dependent on the performance at other
crack lengths. Nevertheless, the FCGL maximization
designed variable thickness plates with more than
double the FCGL of a flat plate with similar weight.
This was obtained from an algorithm that enforces
a straight crack and which does not allow the thick-
ness to change in elements along the crack path. It
is believed that an algorithm with crack steering will
result in even better performing structures.
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Chapter 1

Introduction

Additive manufacturing (AM) is a group of manu-
facturing methods with unprecedented capabilities
causing it to gain major interest of both the pub-
lic and industry for over the past ten years [1].
Figure 1.1 shows what kind of complex geometries
can be manufactured. These organic looking struc-
tures can incorporate the features of multiple tradi-
tional parts reducing the part count and the assem-
bly costs. The complex parts are potentially lighter
and can lead to reduce fuel costs in the aerospace
industry. Hence, these manufacturing processes are
promising for the aerospace industry [2].

An engineer has a great design freedom which al-
lows for better performing structures, but it will also
increase the difficulty of the designing process. Cur-
rently the engineer uses analytical approximations
and gut feeling in the design process. From these
equations the current performance can be deter-
mined and improvements can be identified. Iterative
improvements are made until the engineer is satis-
fied with the performance. Then finite elementmeth-
ods (FEM) or tests are performed to verify and vali-
date the performance.

Imagine that one has to design the parts in fig. 1.1

starting off with the left part. Using the traditional
approach is unlikely to lead to the lightweight part at
the right. The simplified analytical expression cannot
capture the structural behavior whichmeans that nu-
merical methods such as FEM are required from the
start. In contrasts to the analytical expressions do
FEM do not tell how the design can be improved and
due to the complexity it might be impossible to iden-
tify these improvements, even for experienced engi-
neers.

It has been acknowledged that an optimization
driven design process can enable the entire geomet-
rical freedom offered by the AM techniques [4, 5].
Topology optimization (TO) is a method that finds the
optimal material distribution of a problem [6]. Vari-
ous objectives can be optimized with this method.
Examples are; (end)compliance, strength, heat con-
duction or antenna gain [6–9]. Some topology op-
timization formulations are tailored to consider the
maneuverability with AM processes [10, 11].

One of the main problems in the aerospace industry
is that of fatigue resistance. This needs to be tack-
led with a damage tolerant approach due to safety
requirements. This approach recognizes that failure

Figure 1.1: Optimized organic designs for additive manufacturing [3].
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2 CHAPTER 1. INTRODUCTION

cannot entirely be avoided. Damage tolerant parts
are designed such than even in the case of failure
the mission can safely be fulfilled due to alternative
load paths. Regular inspections are required to de-
tect and repair the failed parts.

Few tolerant fatigue optimizations have been found
in literature. A study of J. Lu, N. Kashaev and N. Hu-
ber [12], developed an algorithm that optimizes the
crenelation pattern for fatigue crack growth life of
a stiffened plate. Here they assume a pre-existing
crack as well. However these studies use search
methods such as genetic or biological algorithms.
This is less efficient than gradient based versions.

An attempt that used gradient methods was made
by Z. Kang, P. Liu and M. Li [13]. They developed a
bi-criteria optimization that minimizes both the com-
pliance and strain energy release rate of a structure
with an existing crack. Minimizing the strain energy
release rate reduces the crack growth rate, result-
ing in an increased fatigue crack growth life. This
method does not optimize the entire growth behav-
ior, only the crack growth rate for the crack at one
specific location and length.

The author of this thesis was motivated by these two
methods to develop a fatigue crack growth life maxi-
mization that uses a gradient method. The objective
of this thesis was to explore optimizations that in-
crease the fatigue tolerance. For that purpose two
algorithms where developed, one that minimizes the
crack growth rate and another that maximizes the
fatigue crack growth life.

The crack growth rate minimization similar to the
strain energy release rate minimization of Z. Kang
[13], because it does only conciser the crack growth
speed at one moment in time. The difference lies
in the use of stress intensity factors instead of the
strain energy release rate. Because of the enrich-
ment FE method the stress intensity is obtained di-
rectly from the FEA. This makes the formulation more
direct. Hence, the algorithm can be expanded more
easily, so that it can optimize more complex prob-
lems.

The second algorithm is an example of such an ex-
pansion, it is a fatigue crack growth life maximization
algorithm. This algorithm maximizes the amount
of cycles the crack requires to grow to a maximum
length. This is, to the author’s knowledge, the first
fatigue crack growth life topology optimization in ex-
istence.

This report is divided in three parts, a literature
study, the development and presentation of the algo-
rithm and a conclusion. To identify and specify the re-
search topics a literature study was performed, part I
contains the summary of this study. It examines the
fatigue processes, gives an overview of topology op-
timization and discusses existing damage tolerance
optimizations. This literature study is concluded in
chapter 5, where the thesis scope is specified, the
objective is formulated and the methodology which
is used in the rest of the thesis is presented.

Part II discusses the mathematical definition and im-
plementation of both algorithms in detail. It presents
the validation of the FE method and explores capabil-
ities of the algorithm by optimizing different example
problems.
The thesis concludes in part III with the results, con-
clusions, recommendations and future work. The
recommendations describe readily available meth-
ods to improve the algorithms in speed and capabil-
ities. Whereas, the future work discusses promising
new research topics which could assist in the devel-
opment and adaptation of damage tolerant optimiza-
tion algorithms.



Part I

Literature Study
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Chapter 2

Fatigue of structures

Fatigue is a phenomena that causes material to
weakening due to cyclic loading. Because, repeated
load cycles are required before the damage becomes
critical the fatigue failure mode is most commonly
observed in structures with repeated use. Examples
of cyclic loading can be found in the transportation,
petrol and machine sector due to waves, pressure
cycles, accelerations, shocks and others.

Fatigue can cause failure at loads magnitudes below
the static failure limit. The failure can occur with-
out any warning and little plastic deformation. This
means that testing a part at the expected load once,
as is done to test mechanical overload failure, is not
sufficient, the test needs to be repeated, thousands
or even millions of times before the fatigue becomes
critical. These fatigue tests are time-consuming and
expensive which can cause problems during the de-
sign and certification of a structure.

Most of the time the fatigue process is invisibly small,
only at the end of the fatigue life, just before failure,
a macroscopic crack can be observed. Predicting ex-
actly when fatigue becomes critical is near impossi-
ble because of the probabilistic nature of the process
and the amount of variables that play a role in it. The
only way to ensure safety is to regularly inspect the
fatigue critical locations. The interval between in-
spections should be smaller than the time required
for the barely visible crack to grow until failure.

Cost related to structural failure, of which fatigue is
a significant part, are enormous. Research indicates
that around 4% of the GDP is spent on structural fail-
ure related costs (USA: $199bn per year 1982 [14],
EU: ±4% GDP/year in 1991 [15]). These costs are
caused by:
• repair or replacement,
• loss of revenue while unavailable,
• replacement because of unavailability,
• consequential damage,
• prevention (for example recalls),
• sub-optimal operations (overdesign),
• inspection/maintenance,
• testing, and
• other implications (loss of confidence/image).

Fatigue life can be split in three phases, crack ini-
tiation period, crack growth period and final failure.
The last phase, final failure, will not be considered in
this chapter. The first section, section 2.1, will dis-
cuss how cracks initiate, what processes and vari-

ables play a role in it and most importantly how it is
predicted. The second section, section 2.2, discusses
the fatigue crack growth phase.

2.1 Crack initiation period

The fatigue initiation period is the phase of crack nu-
cleation and micro cracking. Initiation is influenced
by surface and micro structural effects.

The time, or amount of cycles, required for crack ini-
tiation can be significant in terms of fatigue life [16,
sec. 2.5]. This is surprising because the cracks are
smaller, less than 0.5 mm, then those observed at fi-
nal failure [17]. This means that the most significant
impact on the fatigue life can be made by designing
structured with a prolonged initiation period.

2.1.1 Mechanical drivers

Research into a railway accident in 1842 showed that
a locally increased surface stress could reduce the
fatigue life. At these stress raisers, such as notches
and cutouts, the stresses are locally increased due to
the geometrical. At these locations the stresses can
be a multitude of the far field stresses and at these
locations fatigue will initiate.

That the cracks initiate at these stress raisers is logi-
cal, as cyclic slip requires a certain amount of stress
to occur. This cyclic slip starts the initiation is caused
by cyclic plastic dislocations in the crystal structure.
Another feature that increases the likelihood of initia-
tion is the presence of a free surface, as that is where
the grains are less constrained causing the slip to oc-
cur at lower stresses.

Cracks are nucleated due to a repeatedly slipping.
After a slip, a new surface is exposed to the environ-
ment. Oxidation and strain hardening cause this to
be irreversible. Over time and after a many slipping
actions a notch starts to appear with higher stresses
at the tip causing the process to speed up.

This micro crack growth is still depended on surface
properties and grain boundaries. Just by crossing
a boundary the crack growth can slow down, and
sometimes even stop.

Shortly, the following influences the crack initiation:

4



2.1. CRACK INITIATION PERIOD 5

Figure 2.1: Best-fit S/N curves for unnotched sheets of Al 2024-T3 [19, Fig. 3.2.3.1.8(a)].

Load: magnitude and amplitude can cause the local
stress field to change wile frequency and shape
of the loading can cause the impact of the envi-
ronment to change.

Geometric: features can cause the local stress to
be higher than the stresses in the far field, this
is related to the stress concentration.

Surface: properties play an effect such as, rough-
ness and surface treatments. Cracks initiate
faster on rough surfaces. Several surface treat-
ments influence the initiation phase, most no-
tably shot peeling which causes the surface to
be under compression and reduce the speed of
microscopic growth [18].

Environment: such as corrosion and fretting can
roughen the surface and speed op the initiation
phase.

(Micro) Material: properties such as the orienta-
tion of the slip planes, strength, toughness,
grain size and boundary can cause changes in
the crack nucleation phase.

2.1.2 Prediction of initiation

Initiation is treated as a probabilistic process. De-
termining moment of initiation exactly is impossible
because there is little understanding of the physical
processes. Even laboratory samples that are care-
fully processed in the same manner can show sig-
nificant differences in the amount of load cycles re-
quired to initiate a crack.

With extensive measurements S-N (Wöhler) curves

can be made, they link stress to fatigue life. The
specimens used are designed such that final failure
happens shortly after initiation. Hence, these di-
agrams relate the amount of cycles required for a
crack to initiate. The load amplitude plays an impor-
tant role in the initiation process, to capture this, the
test are performed not only at different stress levels,
but also at multiple load ratios (R = Smin/Smx). In
the end statistical methods are used to best fit curves
through the data. An example of the resulting curves
can be found in fig. 2.1.

Generating these S,R-N curves is however costly.
Many experiments are required while the results can
only be used in specify situations. Take for example
fig. 2.1. It required 107 specimens to determine the
relation:

log (N) = 11.1 − 3.97 log �Smx (1 − R)0.56 − 15.8
�

where the fit parameter is only R2 = 82%. The equa-
tion is only applicable to longitudinal oriented Alu-
minum (2024-T3) sheets with an eloctro-chemical
polished surface in a standard laboratory environ-
ment (dry, ±21◦C etc.). For other materials, surface
treatments, environment and sheet orientation new
tests need to be performed.

Some of the samples used to create fig. 2.1 never
failed. For these so called runouts, noted by ’→’, the
tests were stopped because of time limitations. From
these S-N curves one can derive that some materi-
als do not experience fatigue underneath a certain
load, the so-called fatigue limit. When designing the



6 CHAPTER 2. FATIGUE OF STRUCTURES

structure such it is assumed that no fatigue should
occur when the local maximum stress stays below
this limit.

The S-N curves shown in the example are based
on unnotched specimens, specimens without stress
raisers. A designer should be aware that their struc-
tures have stress raisers. The stresses of the critical
location should be used for fatigue initiation predic-
tions.

Better understanding of the physical phenomenons
in crack initiation is required for more accurate pre-
dictions. Currently no better models available. Lack
of physical understanding/models cause even larger
uncertainties when more complicated problems are
being solved. For example the models used to pre-
dict variable amplitude fatigue, are based on more
statistics and best fit parameters. This causes more
(unexplained) scatter and thus uncertainties.

2.1.3 Preventing crack initiation

As mentioned before, crack initiation can be pre-
vented by designing such that the peak surface
stress stays below the fatigue limit. There are how-
ever drawbacks when doing so. The fatigue limit
is significantly below the yield stress the design be-
comes heavier than those that only take mechanical
overloads in account. Besides the fatigue limit is not
only influenced by the material but also by the sur-
face conditions, such as fretting and corrosion, which
are difficult to take in account. This makes it hard to
ensure that fatigue will never occur.

Aerospace engineering requires lightweight struc-
tures. This means that overdesigning structures to
avoid fatigue initiation is not possible. Therefore, the
aerospace industry does not try to prevent fatigue
initiation. Instead, it focuses on ensuring safety of
structures that do fatigue. This is done by damage
tolerance also named safety by inspection. Damage
tolerant parts are designed such than even in the
case of failure the mission can safely be fulfilled due
to alternative load paths. Regular inspections are re-
quired to detect and repair parts that show fatigue
damage.

Various methods are used to extend the fatigue ini-
tiation life. A combination of proper surface treat-
ments, material selection and geometric designs im-
prove the fatigue performance. When designing
notches, the geometries are chosen such that the
stresses are raised least.

Some optimization methods claim that the optimal
design is one which has equal stresses everywhere.
This means that all stress raisers are removed and
that the fatigue life is thus optimal. However, these
designs cause problems for inspections as fatigue
cracks can initiate everywhere. Not having any crit-
ical regions would require inspectors to investigate
every location increasing the amount of work and the
related costs.

2.2 Crack growth period

The crack growth period starts when the crack is
fully initiated, i.e. when the growth rate becomes
independent of the surface and micro-structural ef-
fects. The two periods are treated separately be-
cause the mechanics behind are different. Although
some physical understanding of the crack growth ex-
ists, the methods used to describe it are based on
curve fitting. The models used in this thesis are
based on linear elastic fracture mechanics, which is
discussed in section 2.2.2.

This crack growth period will, in general, be a lot
shorter than the crack initiation period. The crack will
propagate faster when compared to the first phase,
and will eventually result in failure.

This does not mean that the crack growth period is
less important. As the crack becomes visible during
this phase the inspection interval is linked to the time
required by the crack to grow from (barley) visible
to final failure. Especially for hard to reach cracks
extending the crack growth phase could result in a
larger inspection interval, reducing work, unavail-
ability and costs. Besides the importance for inspec-
tion the crack path is required for a good damage tol-
erant design. To properly predict what the impact of
part failure is, one is required to know how the part
fails. For fatigue critical cases one needs to know
what path the crack will take and how long the crack
is before final failure.

2.2.1 Mechanical drivers

Crack tips are some type of stress raisers, the will
cause the local stresses to increase. Compared
to the crack initiation phase the stresses are even
higher.

The crack will cause the stress field to become differ-
ent from that of the uncracked part. When the crack
growths it will change the stresses even more. Be-
cause the stress field is related to the crack growth
rate the growth speed does also change with crack
growth.

Shortly the following influences the crack nucleation:

Load: magnitude and amplitude can cause the local
stress field to change wile frequency and shape
of the loading can cause the impact of the envi-
ronment to change.

Geometric: features can cause the stress state
severity at the crack tip to change and can thus
be related to the crack propagation speed.

Environment: properties can influence the crack
growth rate. From experiments, it was observed
that corrosive environments increase the crack
growth rate.

Material: properties influence the crack growth
rate.
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2.2.2 Prediction of crack growth

Linking crack growth rate to tip stress, as is done
for the initiation phase, is difficult as the tip stresses
go towards infinity in linear elastic mechanics. The
stresses go to infinity because it is assumed the crack
tip is infinity sharp. Infinite stresses do not exist in
reality, it is caused by the assumption that the ma-
terial is linear elastic.
Instead of stresses at the tip, stress intensity fac-
tors are used. These factors are indications for the
severity of the stress field around the crack, i.e. how
fast the stresses go to infinity. In a two-dimensional
space two stress intensity factors exist, K and K for
mode I and mode II opening respectively.
The theory of stress intensity factors was devel-
oped by G.R. Irwin [20]. He proposed to describe
the intensity of the stresses at the crack tip with
K = limr→0

p
2πrσyy(r,0). For the problem shown

in fig. 2.2 the stress equations derived are:

σ =
Kp
2πr

cos
θ

2

�
1 − sin θ

2
sin

3θ

2

�
− S (2.1)

σyy =
Kp
2πr

cos
θ

2

�
1 + sin

θ

2
sin

3θ

2

�
τy =

Kp
2πr

cos
θ

2
sin

θ

2
cos

3θ

2

In the value of K both the load and the are geometry
considered.

Figure 2.2: Infinite sheet with center crack, axis
system definitions [16].

P. Paris, M. Gomez and W. Anderson [21] observed
that for similar cases, with a constant ΔK = Kmx −
Kmin, the crack growth rate was constant. P. Paris
and P. Erdogan [22] observed that plotting crack
growth rate (d/dN) versus stress intensity (ΔK) in a
log-log space results in linear lines. Therefore, they
proposed a fit equation,

d
dN
= C ΔKm (2.2)

understanding as the relation between crack growth
rate and the stress intensity cycle.
Because the method is based on curve fitting, the
variables C and m need to be obtained experimen-
tally. The values of C and m are assumed to be

constant for ‘similar’ cases. This means that exper-
iments need to be performed for new materials, en-
vironments and load cycles (R or frequency).

The unit if the constant C is dependent on the magni-
tude of the power m [23]. This can create difficulties
when converting1 the units. For conversions within
the metric system unruly factors have to be used.
This thesis will use the following units for eq. (2.2),� mm

cycle

�
= C [MPapmm][-] (2.3)

even if constants are obtained from literature they
will be converted to this system first.

2.2.3 Stress intensity factors

The stress intensity factor which describes the sever-
ity of the stress state around the crack contains infor-
mation about both the geometry and the loading. For
simple cases the stress intensity can be described
with K = σβ

p
π [MPapmm], here σ is the far-field

stress,  the crack length and β an unitless geome-
try correction factor.

There exist three main methods to determine the
stress intensity factor function of a geometry, al-
gabraic determination β using for example the West-
ergaard function method, empirically fitting K as a
function of load and geometric parameters or a finite
element analysis.

The case of an infinite plate with a center crack can
be approached with the Westergaard stress equa-
tions and results in a β = 1. Similar derivation, as
shown by H. Tada [24], can be made for other ge-
ometries such as those of a finite width plate with a
center crack where;

β =

√√√√√ 1

cos
�π
W

� (2.4)

is a function of geometry only.

For more complex geometries empirical equations,
where for example the far-field stress is undefined,
are fitted to experiments or FEA. An example of such
an empirical equation is the stress intensity calcula-
tion used for a flat compact tension (CT) specimens
as proposed by the ASTM standard [25]:

K =
P

B
p
W

2 + 
W�

1 − 
W

�3/2 �0.886 + 4.64
� 
W

�
−

13.32
� 
W

�2
+ 14.75

� 
W

�3
− 5.6

� 
W

�4 �
(2.5)

this equation allows for quick calculation of stress in-
tensity factors.

When working with arbitrary geometries FEA is the
fastest way of obtaining a stress intensity value.

1A unit converter can be found at Zentech.

http://www.zentech.co.uk/zencrack_support_unitconversion.htm
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These calculations require a converged FE problem
with a stress and displacement field that can handle
the singularities that occur at crack tips. Four dif-
ferent extraction methods will be discussed, Stress
extrapolation, displacement extrapolation, J-Integral
and element enrichment.
Because the stress intensity is defined as a function
of the stresses approaching the tip,

K = lim
r→0

�
σyy(r,0)

p
2πr

�
(2.6)

the stress field around the crack tip can be used to
extrapolate the stress intensity value [26, 27]. FEA
calculates the displacements from which stresses
can be obtained. The step of calculating stresses can
be avoided by using the displacement field directly.
It is derived from an integration of the strains related
to the stress field around the tip, with k = 3 − 4ν for
plain strain and k = (3−ν)/(1+ν) for plain stress [28,
pp. 569]. This means that along θ = π the stress in-
tensity factor can be extrapolated as,

K = lim
r→0

 2G

k + 1

√√√2π

r
y(r, π)

 (2.7)

The accuracy of both extrapolation methods is de-
pended on the accuracy of the stress/displacement
field around the crack tip. To model the displacement
field at the crack tip special singularity elements
must be used, an example for this is the quarter
node element. These quarter node elements must
be combined with local mesh refinement to obtain
accurate results. When the crack growths and the
location of the crack tip changes, the location of the
crack tip elements and refinement needs changes as
well. Hence, remeshing is required which reduces
the efficiency of the algorithms.
A method that can be used without mesh refinement
is based on the energy release rate, J. This energy re-
lease rate can be linked to both the deformation field
and the stress intensity factor. The integral required
to calculate J is path independent. That means that
taking an arbitrary integral around the crack tip leads
to the same result. The following equations depend
on k, where k = E for plane stress and k = E/(1− ν2)
for plain strain. Details on the other variables can
be found in the papers from G.P. Cherepanov and J.R.
Rice [29, 30].

J =
1

k
K2 (2.8)

J =
∫


�
Wdy − T · ∂

∂
ds
�

(2.9)

This method is more accurate than both extrapola-
tion methods because it is not so dependent on the
local stress and displacement field. However, the
other methods allow the user to use the residual of
the equation used for the extrapolation as a simple
check to see whether the results are consistent [26].
The last method proposed is one that considers en-
riching the crack tip elements. The method used was

developed by S. E. Benzley [31] and improved by L.
N. Gifford [32]. It uses a linear summation of a con-
tinuous displacement field and a near crack tip dis-
placement field capturing both the discrete behavior
at the crack tip and the continuous one around it.
The discrete solution was derived with the Wester-
gaard function method [33]. This type of tip element
enrichment allows accurate predictions of stress in-
tensity directly from the FEA without any post pro-
cessing as it can be found in the displacement vec-
tor.
The main benefits of this method are that:
• The stress intensity factors can be derived from
the final displacement vector in the FEA. No
post-processing is required.

• The resulting K and K are relatively insensitive
to the mesh size. A relative course mesh can be
used due to the high order of the tip element.

• An extension into 3D is readily available, devel-
oped by P.D. Hilton [34].

• An XFEM version exists which allows the cracks
to propegate through the elements, described
by X.Y. Liu, X.Z. Xiao and B.L. Karihaloo [35].

Drawbacks exist as well most notably that the
method requires an element to be positioned at the
crack tip exactly, when simulating growing cracks
remeshing is required.



Chapter 3

Topology optimization

Structural optimization is a major topic in this com-
munication. Proper understanding of it is required
before a fatigue life optimization algorithm can be
developed. This chapter will provide the reader with
a basic insight into topology optimization. The opti-
mization algorithm developed is based on the topol-
ogy optimization.

Several structural optimization methods exist most
notably; topology, shape and sizing optimization.
This research focuses on topology optimization (TO)
as it is the most general of the three methods. Sizing
and shape optimization work with predefined geome-
tries and cannot change the topology of the design
anymore while TO can alter the layout of the struc-
ture. Within a design space it tries to distribute a
limited amount of material such that a certain objec-
tive is maximized or minimized. This design space is
limited by; the size of the design region, a material
constrain, boundary conditions and others.

This chapter will introduce TO. It will discuss the for-
mulation of a basic algorithm and the problems that
can be encountered. It will provide the reader the
basic grasp that is required before a change in opti-
mization objective can be discussed. Therefore, sec-
tion 3.1 will introduce a basic example of the TO al-
gorithm that minimizes the global compliance, and
thus maximizes stiffness. After which common prob-
lems such as non-uniqueness and mesh refinement
will be discussed. If a solution for these problems is
available they will be explained in section 3.2. The al-
gorithm developed in this thesis does not try to max-
imize stiffness therefore section 3.3 discusses how to
change objectives.

3.1 Global compliance TO

To introduce topology optimization a basic example
algorithm is presented in this section. By explaining
this basic algorithm the background of topology opti-
mization can be comprehended. This knowledge will
be applicable to other topology optimization exam-
ples as well and should be informative to anybody
who wants a concise and clear introduction in topol-
ogy optimization.

This type of TO tries to minimize the global compli-
ance. It will be the main example algorithm as it
has been researched and documented extensively
among others by the TopOpt group at the Technical
University of Denmark (DTU) [6, 7, 36–38]. The goal
of the method is to minimize the compliance by dis-
tributing the assigned mass. It has to satisfy cer-
tain constraints, the volume constrain V limits the
amount of mass available and the structure should
be in equilibrium. If required, more constraints can
be formulated. One can limit the size of the finest
features and take manufacturing limitations in ac-
count or introduce a local density constraint to create
porous structures which ensures structural stability
[39].

Different implementations of global compliance TO
exist, but only one will be presented here. It is based
on a gradient method and thus requires a continu-
ous expression for the compliance as a function of
the mass/density distribution. Therefore, it must al-
low elements with density values that are between 0
and 1 and it uses a proportional stiffness with penal-
ization method (SIMP) to approximate a discrete 0-1
problem. Other methods such as solving the discrete
problem with genetic algorithms will not be shown.
Maore information on those methods can be found

Figure 3.1: A 2D cantilever beam with minimized compliance.

9
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in the paper of T. Chen and Y. Chiou or M. Beckers
[40, 41].

The algorithm developed for the literature study1
was derived from the MatLab codes developed by the
TopOpt group at the DTU [6, 7] and an object oriented
Python code written by Li-Yi Wei from the University
of Hong Kong [43]. Care was taken to make the code
readable and flexible. This will reduce the develop-
ment time of future versions that can optimize for
other objectives such as the damage tolerance. All
examples used are generated by this code2. For ex-
ample fig. 3.1, which is a 2D cantilever beam that
was subjected to a point load at the tip (red arrow)
and constrained in  and y direction at the end, show
by the respective green and blue triangles.

This section will start with a presentation of the opti-
mization objective and its formulation in a continuum
form. In section 3.1.2 the spatially discretized for-
mulation is shown. This will include the penalization
scheme used to allow for a smooth density function.
Then the basics of the computational implementa-
tion is shown in section 3.1.3. Followed by a explana-
tion of an efficient FEA solver for this specific problem
(section 3.1.4). Lastly a discussion of the sensitivity
analysis, method of moving asymptotes (MMA) and
the update scheme in section 3.1.5.

3.1.1 Continuum formulation

The linear elastic optimization for small deformation
as presented by N. Olhoff and J.E. Taylor [44] is used.
It considers a design region Ω that is in R2 or R3 of
which a subregion Ωm is filled with material [36]. The
optimal topology is reached when the optimal stiff-
ness tensor Ejk() is found.

As all space within Ωm is filled an equation of the
mass distribution X can be formulated as a discrete
function,

X() =

¨
1 if  ∈ Ωm

0 if  ∈ Ω\Ωm (3.1)

This can be used to define the stiffness tensor,

Ejk() = X()Ejk (3.2)

in terms of this mass distribution function and the
constant rigidity tensor Ejk. The constant rigidity
tensor is function of the material properties only. As
X is a discrete function all admissible tensors are dis-
crete and thus the optimization problem has a dis-
crete valued parameter function.

The amount of work due of the deformation  can be
calculated by eq. (3.3). With the standard linearized
strain formulation this results in,

() =
∫
Ω
ƒ dΩ +

∫
T
t dT (3.3)

1The python code is available at GitHub [42].
2A database with the simulation settings of each figure

is available at OSF to improve the reproducibility [90].

A bi-linear energy equation with virtual work (, ̂)
is formulated,

(, ̂) =
∫
Ω
Ejkϵk()ϵj(̂) dΩ (3.4)

̂ is an arbitrary kinematically admissible deforma-
tion. Equilibrium is ensured when (̂) = (, ̂) is
satisfied for all admissible deformations ̂.
As minimizing the work, due to the traction forces for
a given load, minimizes the deformation of a struc-
ture the problem can be formulated as:

min
Ωm

() (3.5)

s.t. : (, ̂) = (̂)∫
Ω
X()dΩ = Vol(Ωm) ≤ V

3.1.2 Discretization

To solve the continuum problem of the previous sec-
tion it is discretized into a finite element analysis with
N elements:

min
X1,X2,...,XN

c = ƒT (3.6)

s.t. : K = ƒ
N∑

e=1
eXe ≤ V

Xe ∈ {0,1} ∀ e ∈ {1,2, . . . , N}
where : K =

N∑
e=1

Ke(Xe, E)

it shows that the element stiffness matrix Ke de-
pends on the element material value Xe and the ma-
terial stiffness E. The problem becomes unstable
towards the element type and mesh when the dis-
crete formulation of eqs. (3.1) and (3.2) are used.
Such a distribution problem generally has no solu-
tion [45, 46]. Iterative search methods would not
work because they require the calculation of gradi-
ents. Therefore, the problem is changed so that the
density becomes a continuous equation ranging from
0 to 1.

0 ≤ Xe ≤ 1 (3.7)
This method would result in a design with intermedi-
ate values. Although this makes sense for variable
thickness plate design, see the work of M.P. Rossow
and J.E. Taylor [47], for discrete topology design loses
its direct physical representation. There is either ma-
terial or there is not, intermediate values are mean-
ingless. Changing eq. (3.2) with a penalization that
reduces the effectiveness of intermediate values re-
sults in a formulation that suppresses these interme-
diate values. The method used here, developed by
E. Andreassen [38], is derived from the classical pe-
nalized proportional stiffness method (SIMP) [6, 36].
Here Emin is a small artificial stiffness used to avoid
elements with zero stiffness as that could make the
FEA unstable.

Ejk() = Ejk,min + X()p
�
Ejk − Ejk,min

�
(3.8)

https://github.com/AJJLagerweij/topopt
https://osf.io/f36j7/
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When p > 1 the intermediate density values are less
effective as there stiffness is low in comparison to
the volume occupied. When p is sufficiently large,
generally p ≥ 3, the design converges to a solution
that is close to a discrete (0-1) design.

3.1.3 Computational implementation

The iterative implementation of topology optimiza-
tion as proposed by M. Beckers, [41] or M.P. Bend-
søe and O. Sigmund [6] are similar. It exists out of
three parts, initialization, optimization and post pro-
cessing. The flowchart for the methods used in this
communication can be found in fig. 3.2.

Initialize

Finite Element Analysis

Sensitivity Analysis

Method of Moving Asymptotes

Update Design variables

Convergedno

Post Procesing

Stop

yes

Figure 3.2: Basic flowchart for compliance
minimization [6].

In the initialization phase the problem is set up. It
defines the design domain, the loading conditions,
the initial design and generates the finite element
mesh that will be used in the optimization phase.

The optimization phase is the iterative method that
solves the topology problem. It will analyze the cur-
rent design with a FEA. After which it will calculate
the sensitivity of the global compliance to the den-
sity of each element, this is the local gradient of
which the calculation is discussed in section 3.1.5.
The Method of Moving Asymptotes (MMA), developed
by K. Svanberg [48], is used to formulate a simpli-
fied convex approximation of the problem which is
optimized to formulate the updated design. These
steps are performed in a loop until the design is con-
verged, i.e. when the change in design between two
iterations becomes negligible.

Post processing is required to remove the last el-
ements with intermediate values and generate a
shape out of the design, for example a CAD or STL
file. This literature study will not contain a detailed
analysis of the post processing steps. The code used
in this communication simply plots the final shape
and load case.

3.1.4 Efficiently FEA formulation

The most computational time is spent on the finite
element analysis. The FE problem consists of assem-
bling the global stiffness matrix and inverting it. The
code for assembling becomes more efficient when a
regular grid is used. The location of a degree of free-
dom can be calculated if the location of the element
is known. Then the most time is spend on solving
the linear problem ƒ = K where the displacement
vector is the unknown. This section will discuss how
characteristics of a multigrid preconditioned conju-
gate gradient (MG-cg) solver can be used to reduce
computational costs. The method presented here
was descirbed by O. Amir, N. Aage and B. Lazarov
[49].
Multigrid methods have a theoretical convergence
rate that is independent of the mesh size. This is an
improvement over other methods such as a conju-
gate gradient method. It is a multiresolution method
which means that it uses different mesh sizes to im-
prove convergence with relaxation techniques. It it-
erates over smoothing, coarsing and interpolation
cycles to solve the linear problem. Beside good con-
vergence the method can be paralyzed which allows
it to run even more efficient on modern hardware
[50].
There is one major drawback of MG solvers, the
amount of iterations required to solve the problem
depends on the contrast of the matrix, the higher
this contrast the slower the solver. In the case of
topology this can be linked to E/Emin which is high in
general. It was proven that a contrast of more than
106 barely effects the amount of iterations required
while the method was still faster than an incomplete
Cholesky preconditioned conjugate gradient method
[49].
Some properties of the TO can be used to improve
the efficiency of the solver. The first property utilized
is connected to the filter radius (see section 3.2.2).
These filters smoothen the problem, reducing the
amount or impact of high frequency modes. To en-
sure that the solver errors propagate into smoothed
regions as efficiently as possible a relation between
the filter size and the amount of MG-cg levels was
developed [49, sec. 3.1]. The second improvement
is about the required accuracy of the linear approx-
imation. This improvement can be made with any
type of iterative solver and stops the iterations when
an accurate enough solution is obtained. As the de-
sign update scheme is based on the sensitivities, see
section 3.1.5, the only requirement is that the sensi-
tivities are calculated accurate enough [51, 52]. An
exact formulation of both ideas can be found in the
paper of O. Amir, N. Aage and B. Lazarov [49].

3.1.5 Sensitivity analysis and MMA

The main focus on developing a robust and stable
algorithm is the update scheme. The MMA scheme
was chosen as it proofed to be very effective for this
type of optimization [6]. MMA is an efficient method
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meant for non-linear non-convex problems that ap-
proaches those problems by generating purely con-
vex sub-problems, based on the gradient informa-
tion. It can be used to iterative solve the optimization
problem.
The gradient of one element in the discretized form is
∂c/∂Xe. This derivative does not have to be explicitly
calculated as the problem is self adjoint. This is used
by the following proof. It starts with a new formula-
tion of the work, the difference is the zero term at the
end. Again ̂ is any arbitrary admissible deformation
[6].

c = ƒT − ̂T (K − ƒ ) (3.9)
taking the derivative to the density leads to:

∂c

∂Xe
=
�
ƒT − ̂TK� ∂

∂Xe
− ̂T ∂K

∂Xe
 (3.10)

when ̂ satisfies the adjoint equation it becomes:
∂c

∂Xe
= − ̂T ∂K

∂Xe
 (3.11)

when ƒT − ̂TK = 0

Satisfying this adjoint equation is simple, just choose
̂ = . The derivative of the stiffness matrix to the
density of an element can be derived leading to the
final expression of the gradient:

∂c

∂Xe
= −pXp−1e TKe (3.12)

MMA approaches the problem with multiple convex
approximations around the expansion point (current
iteration). The goal here is to find the optimal density
distribution of the current iteration where the influ-
ence of the densities is approximated with a convex
function. This approximation is based on the sen-
sitivity and some information of previous iterations.
Solving these convex equation can be done by var-
ious basic algorithms. The obtained optimum is not
the real optimum of the optimization problem as the
convex function used is only an approximation of the
real problem. However, it is a step into the direc-
tion of the real optimum. The obtained density dis-
tribution is then used as an input of the next iteration
[6, p.19-21]. The optimization of this local problem
must meet all the constraints. This means that the
updated design has to meet the global volume con-
straint.
The approximation, at iteration k, made by the MMA
algorithm is described in eq. (3.13). Here Xk is a vec-
tor with the densities of all elements at the current
iteration. A description on the calculations of Ue and
Le follows later. The method was developed by K.
Svansberg [48].

c ≈ ck +
N∑

e=1

�
re

Ue − Xe +
se

Xe − Le
�

(3.13)

where: re =

(
0 if ∂c

∂Xe
≤ 0�

Ue − Xke
�2 ∂c

∂Xe
if ∂c

∂Xe
> 0

se =

(
0 if ∂c

∂Xe
≥ 0

− �Xke − Le�2 ∂c
∂Xe

if ∂c
∂Xe

< 0

That all the density sensitivities are negative can be
derived from eq. (3.12). This simplifies the expres-
sion and resulted in:

c ≈ ck +
N∑

e=1
−
�
Xke − Le

�2
Xe − Le

∂c

∂Xe
(3.14)

Then the optimization, on Xe, used in this iteration is
defined as:

min
X1,X2,...,XN

ck −
N∑

e=1

�
Xke − Le

�2
Xe − Le

∂c

∂Xe
(3.15)

s.t. :
N∑

e=1
eXe ≤ V

0 ≥ Xe ≥ 1 ∀ e ∈ {1,2, . . . , N}
here the moving asymptote, Le, can be varied and is
chosen to improve convergence and stability, choos-
ing this wisely is important. In general the goal is to
stabilize the process when it is oscillating, i.e. mov-
ing the asymptote closer. Or to relax the problem
when it is monotone, i.e. moving the asymptote fur-
ther and thus causing larger steps to be taken at that
iteration. This can be done by including the behav-
ior of previous iterations or calculating the second
derivative of the optimization objective to the design
variables. Several implementations exist, they are
tuned to work for specific problems [48, 53].
The update scheme minimizes the local approxima-
tion to decide on the new densities. Starting with the
minimalization of the Lagrange function:

L = ck −
N∑

e=1

�
Xke − Le

�2
Xe − Le

∂c

∂Xe
+ Λ

 
N∑

e=1
eXe − V

!

+
N∑

e=1
λ−e (Xe − 0) +

N∑
e=1

λ+e (1 − Xe) (3.16)

This separable and purely convex problem can be
solved by a range of algorithms. It can easily be
changed into a formulation with other or more con-
straints.

3.2 Complications with TO

The TO algorithm as described in the previous sec-
tion has some problems. To be able to use the al-
gorithm, interpret its results or alter its formulation
an understanding of these complications and there
influence on the results is required. Here these prob-
lems will be discussed and if possible a solution will
be presented. Some of the problems have no solu-
tion. It is important to keep them in mind when dis-
cussing the results of the optimizations.
First the issues of the local minima and non-
uniqueness (section 3.2.1) are discussed. They are
caused by the gradient method and the nature of the
optimization problem. Theymake clear that the solu-
tion obtained might not be the only one possible nor
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a)

b)

c)

Figure 3.3: Optimized cantilever beams at
resolution, a) 250x50, b) 500x100 and c) 1000x200.
A sensitivity filter of rmn = 1.25 is used to avoid

checkerboard patterns.

might it be the real optimum. There are no solutions
available to solve these issues. Then mesh refine-
ment and checkerboard patterns will be explained,
sections 3.2.2 and 3.2.3. These problems are caused
by the FEA and will be solved in the same way.

3.2.1 Local minimum

The MMA as a gradient decent method searches for
a local minimum. This means that the solution con-
verges to a design that might not be the global op-
timum in the design space. The final design is de-
pended on the starting design. Avoiding this problem
is only possible when another optimization algorithm
is used that can search for a global optimum such as
a genetic algorithm.

One could try several different starting designs to
see if noticeable differences appear. This does not
necessary lead to a global optimum but to multiple
local optima. It is nearly impossible to proof that the
converged design is a global optimum. One could
use engineering sense and experience to judge the
design. While methods that can solve for global op-
tima are to inefficient (genetic algorithms) or not ap-
plicable to this non-linear non-convex problem.

TO algorithm presented in this communication uses
a distributed starting design. This means that when
the volume constrain is 30% the initialization density
set to Xe = 0.3 for all elements.

Even solving for one global optimummight not result
in the requested result, as multiple designs might
have the same stiffness. A clear example of that
would be a design space under uni-axial tension [54].
One thick bar would perform the same as a group
of thinner bars with the same total thickness. This
does not only mean that different designs can have
the same performance but that even several equally
optimal solutions can exist. One designmight be bet-
ter due to manufacturing, maintenance or other rea-
sons. These topics are not considered by the algo-
rithm and in contrast to genetic algorithms [55, 56]
the user cannot be asked for their opinion.

a)

b)

c)

Figure 3.4: Sensitivity filtered optimized cantilever
beams at resolutions an filters, a) 250x50
rmn = 1.25, b) 500x100 rmn = 2.50 and c)

1000x200 rmn = 5.00.

3.2.2 Mesh refinement

Every reliable FEA requires a mesh convergence
check to verify whether the results obtained are the
correct ones. Commonly this is done by comparing
the FE results run on different mesh sizes. Yet run-
ning the TO algorithm on different resolutions does
result in different designs as is shown in fig. 3.3. This
is logical, a finer mesh allows for finer features which
can result in a better performance. This is unwanted
for several reasons. Checking mesh convergence is
impossible and the smallest features that appear in
the optimization might be smaller than those that
can be manufactured.

Several solutions exist, they try to limit the appear-
ance of fine features. Examples are constraining the
perimeter of all internal holes, reducing the design
space to one that excludes these small features or
filtering the sensitivities or densities in every itera-
tion. Different regularization methods are compared
by O. Sigmund [57]. The algorithm of this thesis will
use filtering of the densities or sensitivities.

Filtering the sensitivities was proposed by O. Sig-
mund [58, p.72-75]. The method is derived from im-
age processing and uses a normalized convolution
filter to blur the figure. The density distribution Xe
and the gradient can be interpreted as a figure with
gray scale pixels. The gradient itself is not filtered,
but the gradient multiplied by the densities is filtered
before the update scheme decides on the densities
of the next iteration [54, 59].

The sensitivity filter can be described as,

Ö∂C
∂Xk

=
1

Xk
∑N
=1H

N∑
=1

H X
∂()

∂X
(3.17)

H =

¨
rmn − dist(k, ) if dist(k, ) < rmn

0 if dist(k, ) ≥ rmn

where k is the element to be filtered. The value of the
filtered compliance density gradient at element  is
depended on three main things, the density, density
gradient and the distance to the surrounding nodes
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a)

b)

c)

Figure 3.5: Optimized cantilever beams at
resolution, a) 250x50, b) 500x100 and c) 1000x200.

With a density filter of rmn = 1.25 to avoid
checkerboard patterns.

. All nodes that fall within radius rmn are contribut-
ing but the further the node is the lower its contri-
bution. Note that the filter is normalized by dividing
it by

∑
Ĥ. There is limited understanding why this

filter works, there is no physical or theoretical basis
for it. From experience, it was simply observed that
it works well.

Figures 3.3 and 3.4 show the same simulations. The
only difference is that the simulations in fig. 3.4 are
filtered. It was observed that scaling the filter size
rmn with the resolution results in similar designs.
The main difference between the designs is that
higher resolution simulations result in a smoother
structure. But filtering this way leads to less discrete
designs. Larger filters cause more pixels to have in-
termediate density values. Three solutions do exist;
lowering the filter size for the last couple of itera-
tions, increasing the SIMP penalty factor or applying
extra post processing steps.

Another filter that can be considered is the linear
density filter which was proposed by T.E. Bruns, D.A.
Tortorelli and B. Bourdin [60, 61]. Here the blur filter,

ÓXe = 1∑N
=1H

N∑
=1

H X (3.18)

H =

¨
rmn − dist(k, ) if dist(k, ) < rmn

0 if dist(k, ) ≥ rmn

is applied directly on the densities. These filtered
densities, ÓXe, are used in the FEA and SA. This
means that the design variables Xe lose there physi-
cal meaning as the FEA gives it the relation to reality,
therefore the final geometry should be based on the
filtered densities [57].

A comparison between fig. 3.5 and fig. 3.6 shows that
filtering the densities suppresses the finer features
well. Comparing the performance difference of the
sensitivity and density filters is difficult. Many crite-
ria can be used such as, computational effort, how
discrete the final design is, the magnitude of the fi-
nal compliance and whether the volume constrained
is still maintained. A small comparison was made by

a)

b)

c)

Figure 3.6: Density filtered optimized cantilever
beams with resolution and filters, a) 250x50
rmn = 1.25, b) 500x100 rmn = 2.50 and c)

1000x200 rmn = 5.00.

O. Sigmund [57]. The performance of the filters de-
pends greatly on the design case used. The paper
clearly shows that better filters exist then those pre-
sented in this communication however as the density
and sensitivity filters are computational efficient and
simple to implement they were chosen as the basic
filters used in the code.

3.2.3 Checkerboard patterns

A common issue to appear it topology optimization
results is the appearance of checkerboard patterns.
An example of these patterns is shown in fig. 3.7.
They do not appear due to beneficial micro-structural
patterns but because of artificial stiffness created
due to the FE analysis.

The 2D four node quadrilateral elements that are
used can only deform linearly. First assume a patch
of four elements (2x2), with a checkerboard pattern,
and load the structure bi-axially. Even though the
structure is unsymmetrical, it will deform symmetri-
cally, the outer edges will stay straight. If quadratic
elements (8 or 9 nodes) where used this would not
happen, there stresses will peak in the corner where
the corners of two filled elements meet. This will re-
sult in a more realistic deformation pattern. Using
higher order elements suppresses the problem, how-
ever this results in a large increase of the computa-
tional effort. Therefore, other methods have been
sought.

To ilustrate why these checkerboard patterns are pre-
ferred by the optimization a biaxial loading case is
shown. For this case it is known that filling the inside
with 50% volume causes checkerboard patters. The
ideal solution would be a perfect distribution of the
volume as every element is loaded the same way.
This is also what comes out of a simulation with the
penalty factor p set to one. The final design has a
compliance of 12380, but the goal was to obtain dis-
crete designs. Hence, p is increased to three, result-
ing in the pattern shown in fig. 3.7. Note that the
compliance of the checkerboard result is only 7.7%
more than that of the uniformly distributed case.
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Figure 3.7: A biaxial compression case resulting in a
checkerboard pattern. The border is forced to be

totally filled. The compliance is 13334.

Whereas forcing the structure out of these artificial
patterns (fig. 3.8) causes a great increase, nearly
80%, in compliance.

Other patterns exist for other elements or optimiza-
tion targets. In general these patterns occur when
the structure is more optimal for artificial reasons
than for physical ones. Under some circumstances
even higher order elements might show artificial pat-
terns (for high penalty factors p) [62]. When opti-
mizing any structure for any goal one should review
whether the method could create solutions that are
only optimal because of artificial reasons.

This is where the filters proposed in the section about
mesh refinement (section 3.2.2) help. These filters
are used to remove fine features so that the FEA can
capture the physical behavior properly. As checker-
board patterns are caused by the artificial stiffness
created by a structure on element size they disap-
pear when the small features are removed.

Other methods do exist, but they are more difficult to
implement or require a higher computational effort.
Some of these methods are described in the mono-
logue written by O. Sigmund and M.P. Bendsøe [6].

3.3 Other objectives

Topology optimization can be used for several objec-
tives; classical examples are, truss structure design,
antenna/microphone design, heat convection prob-
lems [6, 63] and MEMS actuator designs [6, 7, 64,
65]. In general all these TO algorithms approach
the optimization as a material distribution problem
within a design space with a resource constraint

Figure 3.8: A biaxial compression case with
sensitivity filtering. The compliance c = 22181

when the filter size rmin = 1.15.

witch is solved with an iterative gradient method.
When changing the objective and/or problem one
should start with a formulation of the problem which
consists of the objective, variables and constraints.
Then the changes should be made in the calculation
of the objective and sensitivity. Important therefor
is the method used to link the optimization variables
to the objective, in the case of compliance minimiza-
tion it consists of the variables to density formulation
(SIMP eq. (3.8)) and the FEA that links stiffness to
compliance. Beneficial would be a (self) adjoint for-
mulation because it allows for an efficient calculation
of the sensitivities. The parts of the method that are
unlikely to change are; the overall methodology, de-
scribed in fig. 3.2, the method of moving asymptotes
and its update scheme.
Sometimes optimization objectives are formulated in
the form of several sub objectives resulting in multi
objective optimization formulations. Optimizing for
multiple objectives or load cases at once is com-
mon. For most structures several considerations,
such as costs, weight and strength are taken in ac-
count. In addition do most structures experience
multiple load-cases during their life. Several TO al-
gorithms have been developed for this purpose. The
most basic methods will be discussed here.
The method sets up multiple FEA as shown in fig. 3.9.
Then the total objective will be linked to sub objec-
tives. For instance the goal might be to minimize the
compliance due to n load cases. One could formu-
late the total objective (O) as the weighted sum of
the compliance of all load cases,

O =
n∑
=1

c (3.19)
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Initialize

FEA 1

Sensitivity Analysis

Method of Moving Asymptotes

Update design values

Convergedno

Post Procesing

Stop

yes

FEA 2

Figure 3.9: Flowchart of the multi loadcase
compliance minimization algorithm [6].

resulting in a gradient function that can be formu-
lated as,

∂O

∂Xe
=

n∑
=1


∂c

∂Xe
(3.20)

Another example can bemade with a similar method.
Assume that adding up the objective is not what is
wanted but that the goal is to prohibit two different
failure modes. Hence, the design update is based on
the most critical case resulting in objective,

O =mx (o1, o2, . . . , on) (3.21)

An example of such a formulation can be found in the
TO based damage tolerance optimization algorithm
presented by Z. Kang, P. Liu and M. Li [13, sec. 4.4].
Where they optimize geometries for the most cricital
crack in every iteration. The sensitivities can then be
formulated as:

∂O

∂Xe
=

n∑
=1

s
∂o

∂Xe
(3.22)

where s =

¨
1 if o = O
0 if o ̸= O

These basic multiple load case algorithms can be
summarized in the flowchart shown in fig. 3.9. In
general the FEA requires most of the computational
time therefore the method as shown here is com-
putationally inefficient. More advanced algorithms
have been developed but these are outside the scope
of this communication [66, 67].



Chapter 4

Optimization for fatigue and damage

Optimizing for damage (tolerance) and fatigue is not
new. Several studies have been performed, which
will be discussed in this chapter. A short summary of
the reference studies can be found in table 4.1.

Optimizing fatigue (crack growth) life of structures
is not uncommon in the field of shape optimization.
Studies performed at the Monash University [68, 69]
show that maximizing fatigue life can be achieved
with a biological shape optimization algorithm. R.
Jones D. Peng, D. Abramson et al. treat problems of
hole and fillet shapes by moving the shape bound-
ary [68]. Their first code is derived from a biological
stress equalizing algorithm. It assumes that the op-
timal geometry is one that has equal hoop stresses
at all points along the hole circumference. They ex-
tended the problem to one of equal stress intensity
by assuming (small) cracks at all nodes around the
hole. By using a finite element alternating technique,
they avoided the need of a full FEA per crack. Ul-
timately a fatigue life optimization was developed.
Which again considered cracks at all nodes around
the hole, while their propagation was modeled with
the Erdogan-Paris rule.

For these biological algorithms, two assumptions
where made. Firstly that the most optimal design
is one that has equal performance at all areas. This
might actually be unwanted as it would mean that
the likelihood to failure is equal everywhere, this
means that the entire part needs to be inspected.
Currently inspections are performed at the weakest
locations only, greatly reducing the amount of work
and time required for an inspection. The second as-
sumption is that locally adding material improves the
performance locally. This means that at the locations
that perform below average, material is added and
at those that perform well material is removed. This
simplifies the development as no gradient informa-
tion is required, but limits the flexibility of the prob-
lem formulation. Complicated objectives and prob-
lems do generally not allow one to formulate such
a rule. Compliance maximization is for example a
global parameter, making it difficult to express what
the local performance is. Optimizing structural topol-
ogy for fatigue life with this method might be impos-
sible because, local performance can influence local
behavior at other locations. Besides the fact that
adding material at underperforming locations may or
may not improve efficiency, as softening around the
crack tip can result in fatigue life improvements [70].

Another group of optimization method that can be
used, are genetic algorithms (GA), which search
through the design space with a metaheuristic
method. The method is inspired by the theory of
evolution and selection, which allows one to search
through the ‘entire’ design space without trying all
options. It is also more likely to result in the global
optimum, compared to the other methods consid-
ered. Because the GA only requires the objective cal-
culations of every design it is known for its low devel-
opment time and can easily be adopted to optimize
complex problems. However, this comes at the cost
of increased computational requirements and a ma-
jor risk, as predicting the influence of the optimiza-
tion settings onto the result is near impossible due
to the stochastic nature of GA, making it into a kind
of black box.

J. Lu, N. Kashaev and N. Huber [12] developed such
an algorithm to design a variable thickness plate with
the objective to maximize its fatigue crack growth
life. Genetic algorithms are initiated with many ran-
domly generated designs. Which were repeatedly
improved by the processes of natural selection, mu-
tation and crossover. Their method used a FEA to cal-
culate the fatigue crack growth life, while many gen-
erations needed to be analyzed before convergence.
This causes problems due to the computational re-
quirements and as a result only 1D problems at low
resolution can be run. Even considering these limi-
tations, the increase of fatigue crack growth life was
10%, improving these algorithms can lead to signifi-
cantly better structures.

B. Herremans [71] reduced the computational effort
of this problem by replacing the FEA by an analytical
stress intensity equation, which greatly simplifies the
calculations required per design. This allowed them
to optimize problems at a higher resolution. This the-
sis is inspired by these crenelations optimizations. It
will explore the impact of a 2D problem, one where
the local thicknesses of the plate are the design vari-
ables.

Another way of reducing the computational require-
ments is the use of gradient methods, especially
those with an adjoint formulation. Examples of
these methods are topology optimization algorithms
that use the optimality criteria or method of mov-
ing asymptotes update schemes. These methods
use the gradient information -how all the design vari-

17
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ables impact the objective- to generate a simplified
optimization problem, which is only valid close to
the original design point. This simplified problem is
solved in order to determine the updated design vari-
ables. Repeating this process should lead to a local
minimum. Using the adjoint derivative formulation
is an efficient method, as it allows the calculation of
all derivatives with one equation. This method is in
some ways similar to the biological methods used in
shape optimization. However, the update scheme is
more advanced and applicable to more complex pro-
cesses. The drawback is that it requires the gradient
calculation of which the derivations can be difficult.

Including damage (tolerance) in a topology optimiza-
tion algorithm was done in 1998 by M.P. Bendsøe
and A.R. Díaz [9]. They developed two algorithms.
One that minimized the amount of damage due to
yielding. While the other one was damage tolerance
oriented, where the stiffness of a damage structure
was maximized. Their work showed that damage
tolerance considerations can be included in gradient
based topology optimization.

A similar material failure optimization model was
recently, 2018, presented by L. Li, G. Zhang and
K. Khandewal [72]. Their formulation minimizes
the weight, while requiring the structure to absorb
a certain amount of energy and limiting the dam-
age (yielding). This allowed them to design robust,
lightweight and energy absorbing structures which
can be used for crash structures.

Neither of these two algorithms or any of the compa-
rable damage TO methods [73, 74] consider damage
tolerance for propagating fatigue cracks. Optimizing
for fatigue life has two major difficulties. The algo-
rithm does not know where the crack initiates, as the
initiation location is dependent on the design vari-
ables. Secondly, a propagating crack changes in the
stress/displacement field, causing the original FEA to
become invalid, resulting in path dependencies.

Closest to a working gradient based fatigue optimiza-
tion is the algorithm written by Z. Kang, P. Liu and
M. Li [13]. They assume the existence of a crack
and minimize the sum of its energy release rate and
compliance. A low energy release rate relates to a
low crack growth, while the compliance was required
to ensure realistic designs. The method requires a
known initiation location, which is difficult to define
before the geometry is known and only optimizes for
one crack length. As cracks are propagating, they
change the stress state at its tip. Therefore, the op-
timum design for this crack might be inefficient when
the crack becomes longer. Adding information about
the whole fracture process would be an improvement
to the algorithm.

L. Xia, D. Da and J. Yvonnet [75] did exactly that.
Though their research focused on monotonic brittle
failure, which is different from fatigue, they showed
how to consider the whole fracture process. Their
algorithm maximizes the energy released of a struc-
ture composed of twomaterials by distributing mate-
rials in the optimal way. Maximizing the mechanical

fracture energy is equivalent to fracture resistance,
and the crack paths are dependent on the geome-
try, allowing the method to consider crack steering
to increase its performance.
Their extended bidirectional evolutionary structural
optimization (BESO) update scheme is related to bi-
ological methods but considers the derivatives when
adding or removing material. This allows the im-
plementation of global objectives while maintaining
some simplicity of the biological methods. The al-
gorithm uses a phase field model which diffuses the
local and discrete behavior of the crack and is able
to model the crack propagation. The method de-
signs composite materials of arbitrary geometry, and
there results cannot be manufactured with the cur-
rent manufacturing methods making validation of
their results impossible.
Optimizing fatigue life with a gradient implementa-
tion of TO has not been attempted before, but should
be possible as the largest problems of it have been
solved already. Z. Kang [13] showed that optimiz-
ing for crack growth is possible while L. Xia [75]
and K. James [74] show that even the path depen-
dency problem can be optimized for. Combining the
strength of their methods should allow one to for-
mulate a path dependent fatigue life maximisation
method with a local damage model which can opti-
mize the geometry under a material constraint.
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Chapter 5

Research scope

In the field of aerospace engineering damage toler-
ance is one of the main pillars used to ensure safety.
Designing structures while considering the ability to
sustain defects until the next inspection is hence
commonly used. For fatigue failure this means that
the focus is on the crack growth period, as those
crack can be detected during inspections. Topology
optimization for fatigue crack growth life could prove
valuable addition assist in the design of these struc-
tures. To the author’s knowledge, nobody develop an
fatigue crack growth life maximization algorithm.

5.1 Objective and questions

Due to time constraints it is impossible to develop an
algorithm that maximizes fatigue life and considers
the entire fracture process. Thus, the scope was re-
duced and the objective of this thesis was specified
as: “Explore the opportunity that TO offers to design
fatigue crack growth reducing geometries by devel-
oping a TO algorithm that minimizes stress intensity
andmaximizes fatigue crack growth life and optimize
example problems.”

The simplified algorithm should be able to optimize
the fatigue life while considering straight cracks only
to avoid the path dependency problem. The for-
mulation should be as concise and simple as possi-
ble to allow future researchers to formulate a three-
dimensional version for arbitrary shaped crack sur-
faces. To develop such an algorithm the following
research questions need to be answered:

1. What is the formulation of a TO algorithm that
minimizes the crack growth rate?
(a) Can the enriched crack tip FE method accu-

rately calculate the stress intensity factors?
(b) What is the adjoint sensitivity equation for

the enriched crack tip element FE method?
(c) What is the performance of the optimiza-

tion results?
2. What is the formulation of a TO algorithm that
maximizes the fatigue life?
(a) What implementation of the Paris rule can

calculate fatigue crack growth life?
(b) What is the adjoint sensitivity equation for

the fatigue crack growth life maximization?
(c) What is the performance of the optimiza-

tion results?

5.2 Hypothesis

It was hypothesized that stress intensity factors
could accurately be calculated with the enriched
crack tip FE method. This enrichment method would
calculate the stress intensity factors directly as a de-
gree of freedom in the FEA. Minimizing K is, in that
sense, similar to end compliance minimization, sim-
plifying the derivation of the sensitivities. Hypothe-
sized is that the formulation of the adjoint and sensi-
tivity equations for the stress intensity minimization
are the same as those used in the end compliance
minimization algorithms.

A fatigue crack growth life maximization is an exten-
sion of the stress intensity factor minimization. The
amount of cycles required to grow a certain distance
can be derived from the Paris-Erdogan rule. It would
be dependent on an integral which consists of the
stress intensity factors as a function of crack length.
This integral can be approached by a summation,

N =
1

C

L−1∑
=1

δ�
1

2

�
K  + K

+1


��m (5.1)

which assumes that the crack growth between two
locations of known stress intensity value is equal to
their average. In this equation N is the fatigue life in
cycles, C and m are constants of the Paris law and
δ is the step size. The objective is the inverse of a
summation of stress intensity factors meaning that
the sensitivity equation is also some type of summa-
tion of the sensitivity to stress intensity values.

5.3 Methodology

To explore the possibilities of TO for damage toler-
ance two algorithms will be developed. It starts with
the development of the optimization algorithms, of
which the process is shown in fig. 5.1. Here the first
step is the formulation of the problem for stress in-
tensity minimization in the most general form. Fol-
lowed by the development of a FE model that can
capture the singular behavior at the crack tip. Then
the stress intensityminimization algorithmwill be ex-
plained. Which, in the end, will be expanded to a
fatigue crack growth life maximization algorithm.

20
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Figure 5.1: Optimization algorithm development process.
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Figure 5.2: The general problem formulation and the compact tension specimen studied in this thesis.

a) Variable thickness problem. b) Discrete problem. c) Honeycomb infill problem.

Figure 5.3: Three diferent types of optimizations are used for the evaluation and validation.

The implementation of both the stress intensity min-
imization and fatigue crack growth life maximization
algorithms will be based on the compliance mini-
mization example discussed in section 3.1. They will
employ:

• an adjoint formulation of the sensitivities to re-
duce computational requirements,

• the method of moving asymptotes (MMA) as a
local approximation to base the design variable
updates on,

• density filtering to avoid checkerboard patterns
and constrain a minimum feature size, and

• no post-processing steps as it is out of this thesis
its scope.

The scope of the research is reduced, by constraining
the general problem formulation to that of a compact
tensions (CT) specimen. This is shown in fig. 5.2. This
CT specimen is used to specify both the design do-
main and load case. It was chosen because of its sim-
ple geometry, load case and the availability of var-
ious test standards [25, 76, 77]. The standardized
specimen consists of a rectangular flat plate with a
manufactured crack. This crack is pulled open caus-
ing it to grow. The driving force increases steeply
with the crack length because it is a combination of
both tension and bending. This allows for measure-
ment of crack growth rates at a large range of stress
intensity factors.

The reference CT specimen is a flat plate, of course
this is not the case for the optimization results. The
optimization can add and/or remove material to im-
prove the performance, which resulted in the typolo-
gies shown in fig. 5.3. The algorithms will be used to
optimize three different types of problems:

• A variable thickness plate optimization where
the design variables are the local thicknesses.
The local thickness is constraint between a min-
imum and maximum while the total amount of
mass is limited by the resource constraint. The
result of such an optimization can be found in
fig. 5.3a.

• A discrete optimization in which material is dis-
tributed throughout the design space. Here the
SIMP penalization method is used to obtain a de-
sign that is discrete, as is shown in fig. 5.3b

• An infill optimization case which is similar to the
discrete optimization problem. Here material is
added to an existing geometry, while the ex-
isting geometry cannot be altered. Figure 5.3c
shows how extra mass is distributed in a honey-
comb base structure.

Before the algorithms can be evaluated and used it
is important to validate the FE analysis and the as-
sumptions that it is based on. The validation will be
performed in two steps, a comparison of flat plates
stress intensity factors to the known solutions and
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the testing of optimized geometries.
The flat plate validation consist of a comparison be-
tween the stress intensity factors calculated with the
enriched FE method and a known solution for the
same geometry. For this validation the compact ten-
sion, double edge and single edge crack specimens
are used. A mesh refinement study is performed for
these specimens and the converged stress intensity
factors are compared to the algebraic solution.
The second validation checks whether the optimiza-
tion results perform as predicted. The difference with
the first validation step is that it will consider plates
with varying thickness. This is important as the opti-
mization algorithm can come up with solutions where
artificial patterns appear. The performance of these
patterns is overestimated because the FE method
cannot capture their behavior properly. This vali-
dation is performed by measuring the performance
manufactured optimized design and comparing it to
the FE results of the same geometry.
Finally, the performance of optimization results will
be evaluated. This is done by performing optimiza-
tions and comparing them to the reference CT de-
sign. For the stress intensity minimization the vari-
able thickness plate, discrete and infill design prob-
lems are examined. The study of the fatigue lifemax-
imization will be less extensive and focus on variable
thickness plates only.



Part II

Algorithm development,
Validation & Testing
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Chapter 6

Stress intensity factor minimization

The objective of the research was to explore how
topology optimization can be used to optimized for
damage tolerance objectives such as fatigue crack
growth rate. It was hypothesized that the difficul-
ties would lay in the formulation an objective function
and the adjoint equation. There formulation should
be based upon linear fracturemechanics with the use
of FEA. In this chapter the method behind the algo-
rithm1, will be presented. This algorithm will be used
in the later chapters and there the results of the al-
gorithm will be discussed. Therefore, understanding
the method, its benefits, limitations and quirks, will
allow for better interpretation of the results.

The chapter will be divided in five parts, the first one,
section 6.1, will present the problem and its objective
and constraints. Secondly, section 6.2 the enriched
finite element implementation that is used to calcu-
late the stress intensity factor will be derived. There
are multiple methods to calculate the stress inten-
sity factors but this method stood out for its simplic-
ity, the FEA calculates the stress intensity values di-
rectly which simplies the formulation of the objective
and adjoint equations significantly. In section 6.3 the
method that minimizes the stress intensity is shown.
It is based upon a compliant maximization method
developed at the DTU. The last section, section 6.4
known limitations of the method are mentioned and
if possible an indication of the severity or a solution
to the problem are given.

6.1 Problem formulation

The problem formulation, required for optimization
problems, should contain the optimization objective,
its link to the design variables and the constraints.
Because the goal is design a geometry with the low-
est crack growth rate and the Paris-Erdogan law [22]
minimizing stress intensity factor K was chosen as
the objective. Due to this formulation the design ge-
ometry, topology, is the optimization variable.

Assuming a general problem, shown in fig. 6.1, which
minimizes the stress intensity by changing the ma-
terial distribution, X() within the design domain Ω,

1The source code is available at GitHub [78].

∂Ω

Ω

Crack

X()

t



Figure 6.1: Design domain Ω with a crack, arbitrary
boundary conditions and a density X which is

dependent on the position vector .

the following mathematical formulation is proposed;

min
X()

K(X()) (6.1)

s.t. : ((X()), ̂) = (̂)∫
Ω
X() dΩ = Vol(Ωm) ≤ V

Xmin ≤ X() ≤ Xmx

it enforces equilibrium with a virtual work method
while the problem is subjected to a resource con-
straint. This constraint limits the volume within the
design domain that can be filled with a material be-
side setting a minimum andmaximum density value.

For any optimization a link between the objective and
the design variables must be made. Themethod pro-
posed here can be used for two cases, variable thick-
ness plate and discrete material distribution. The
honeycomb infill problem is a type of discrete mate-
rial distribution and will not be discussed separately.
In the first case the optimization variables X are inter-
preted as the local plate thickness. As the thickness
influences the local stiffness properties it affects the
stress intensity values at the crack tip. For this vari-
able thickness sheet a linear relation,

Ejk() = Ejk,min + X()
�
Ejk − Ejk,min

�
(6.2)
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between local stiffness and thickness is used. This
equation was proposed by M.P. Rossow and J.E. Taylor
[47] and discussed by O. Sigmund [79], and causes
the stiffness to become twice as high when the thick-
ness is doubled. Here Ejk is a constant stiffness ten-
sor related to the material it unity thickness while
Ejk,min a tensor is with very small stiffness. Which
enforces the total stiffness to be larger than zero.
One cannot allow the stiffness to become zero as it
would cause the FEA to fail. This relation might be
inaccurate due to out of plane effects at thickness
changes and it will be necessary to measure under
what circumstances this equation is invalid.

When the goal is to obtain a discrete design the den-
sity values can be either 0 (no material) or 1 (mate-
rial). This however causes the objective equation to
become discrete as well as the method used a gra-
dient approach and requires a continuous function
of density. To ensure a discrete final design while
maintaining a continuous objective function a penal-
ization method was implemented. The method used
was based upon the penalized proportional stiffness
method (SIMP),

Ejk() = Ejk,min + X()p
�
Ejk − Ejk,min

�
(6.3)

it causes designs to converge to a 0-1 solution when
the penalty factor p is chosen sufficiently high. Val-
ues of p ≥ 3 are required for designs to become dis-
crete.

6.2 FE implementation

The previous section linked the design variables
to the stiffness distribution no official formulation
of the stress intensity factors in terms of de-
sign variables was made. This formulation is in-
directly made through the equilibrium constraint
of eq. (6.1) as stiffness distribution influences the
stress/displacement field of the loaded part, these
stress/displacement distribution can be related to
the stress intensity factor. The original equilibrium
equation is in a continuum formulation but to sim-
plify the problem a discretized version will be solved
using FEA.

To ensure a direct and efficient calculation of the
stress intensity factor while using a finite element
analysis an enrichment method was used for ele-
ments close to the crack tip. The method used was
developed by S.E. Benzley [31] and improved by L.N.
Gifford [32]. It uses a linear summation of a continu-
ous displacement field and a near crack tip displace-
ment field capturing both the discrete behavior at
the crack tip and the continuous one around it. The
discrete solution was derived with the Westergaard
function method [33]. This type of tip element en-
richment allows accurate predictions of stress inten-
sity directly from the FEAwithout any post processing
as it can be found in the displacement vector.

6.2.1 Element stiffness matrix

The method uses special elements around the crack
tip of which the stiffness matrix needs to be derived.
As these enriched elements based upon an addition
of the continuous and singularity displacement field
these are discussed separately at first.
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Figure 6.2: Nodal definition of the crack tip element.

The enrichment method shown here was based upon
the crack tip element developed my L.N. Gifford
[32]. Who based the enriched elements on a bicubic
serendipity elements, see fig. 6.2. The algorithm pre-
sented here keeps the local coordinate system (ξ, η)
as only a regular mesh with square elements will be
used. For a more general element that can contain
cracks under an angle and that transforms elements
from (ξ, η) to (, y) see the original paper [32].
The displacement field within the bicubic serendipity
12-node element can be described by:

 =
11∑
=0

N(ξ, η) (6.4)

where the shape functions N are,

N0 =
1

32
(1 − η) (1 − ξ) �9η2 + 9ξ2 − 10� (6.5)

N1 =
9

32
(1 − η) (1 − 3ξ) �1 − ξ2�

N2 =
9

32
(1 − η) (1 + 3ξ)

�
1 − ξ2�

N3 =
1

32
(1 − η) (1 + ξ) �9η2 + 9ξ2 − 10�

N4 =
9

32
(1 − 3η) (1 + ξ) �1 − η2�

N5 =
9

32
(1 + 3η) (1 + ξ)

�
1 − η2�

N6 =
1

32
(1 + η) (1 + ξ)

�
9η2 + 9ξ2 − 10�

N7 =
9

32
(1 + η) (1 + 3ξ)

�
1 − ξ2�

N8 =
9

32
(1 + η) (1 − 3ξ) �1 − ξ2�

N9 =
1

32
(1 + η) (1 − ξ) �9η2 + 9ξ2 − 10�
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N10 =
9

32
(1 + 3η) (1 − ξ) �1 − η2�

N11 =
9

32
(1 − 3η) (1 − ξ) �1 − η2�

Added to this will be the crack tip singularity dis-
placement field which derivation starts from the def-
inition of stress intensity factors in a simplified 2D
space,

K = lim
r→0

p
2πrσ (6.6)

K = lim
r→0

p
2πrσy

and the crack tip stresses derived with the Wester-
gaard method [33],

σ =
Kp
2πr

cos
θ

2

�
1 − sin θ

2
sin

3θ

2

�
(6.7)
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�
which are accurate approximations of the stresses
close to the crack tip, i.e. r is small. Figure 6.3 shows
the axis system definition for the calculation around
the crack tip. A formulation of the displacement field

y


θ

r

Crack

Figure 6.3: Definition of the axis systems around
the crack tip.

can be found by integration leading to,

 =K ƒ(r, θ) + Kg(r, θ) (6.8)
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where γ = (3 − ν)/(1 + ν) for plane stress and γ =
3 − 4ν for plane strain [28, pp.569]. When assum-
ing linear fracture mechanics one can describe the
displacement field of this element as summation of
eqs. (6.4) and (6.8) resulting in:

 = K ƒ(r, θ) + Kg(r, θ) +
∑

N(ξ, η) (6.9)

y = K ƒy(r, θ) + Kgy(r, θ) +
∑

N(ξ, η)y

The singularity equations need to be transformed
from the (r, θ) axis into the local (ξ, η) system. This
transformation is dependent of the relative location
of the crack tip to the local element axis system.

The enriched displacement functions, see eq. (6.9),
can cause discontinuities at the border to normal el-
ements, this can be repaired by multiplying the en-
richment terms of the displacement function with an
equation that is 1 at the crack tip and 0 at the border
to non enriched elements [31]. It has however been
reported that the effects of discontinuities are mi-
nor and this solution was therefore not implemented
[32].

Following a definition of FE by Zienkiewicz [80] an
element stiffness matrix can be calculated with,

K =
∫ 1

−1

∫ 1

−1
BTDB det J dξdη (6.10)

where D the material stiffness matrix is, J the Ja-
cobian of axis system transformation (ξ, η) into the
global (, y) axis system is and B the matrix is that
converts displacement into strain. The integration
was performed with a Gauss-Legendre quadrature
function with 8x8 integration points as was found suf-
ficient by L.N. Gifford [32].

For a standard bicubic serendipity element this Bma-
trix is of shape (3, 24) however due to the enrich-
ment it becomes (3, 26). Which results in a final stiff-
ness matrix of (26, 26). Where

ƒ = K =


ƒ0
...
ƒ∗
ƒ∗y

 =

k

... k12

· · · ... · · ·
k21

... k22



0
...
K
K

 (6.11)

Here k is similar to the stiffness matrix of a nor-
mal bicubic element, the enrichment is in the parts
k12, k21 and k22. New terms do also appear in the
force vector, where ƒ∗ and ƒ

∗
y are so-called singular

loads. They describe the external forces applied on
the crack boundary [31], in general these values are
zero.

6.2.2 Meshing strategy

To reduce computational costs these enriched ele-
ments are only used at the crack tip and conventional
linear elements are used throughout the rest of the
mesh. It uses the hanging node method to connect
the elements as can be seen in fig. 6.4.
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Crack tip

Figure 6.4: Top section of mesh around a crack tip,
⊕ is the enrichment node with K and K , while solid
circles represent the linear ones and the open circle

the higher order ones.

This mesh is not conform which can potentially cause
the displacement field to become discontinuous. To
avoid this one could use normal bicubic serendip-
ity elements throughout the entire mesh which is
computational inefficient. However, using a multi-
resolution interpretation of topology optimization its
performance might be improved [81].

Currently the linear system of the FEA, ƒ = K,
and the adjoint equation,  = Kλ, are solved with a
complete Cholesky decomposition. A more efficient
methods can be formulated with a Multi Grid Conju-
gate Gradient method as proposed by O. Amir [49].

6.3 Topology optimization

The optimization method that can efficiently solve
the problem formulation of the previous section is
based upon level-set topology optimization. The
topology optimization algorithm used is derived from
the compliant mechanism design code developed by
Sigmund in the nineties [59]. The procedure for min-
imizing eq. (6.12) is presented in fig. 6.5.

This section explains the implementation of opti-
mization in three subsections. One discusses the dis-
cretized objective, the objective sensitivities and ad-
joint equation. The second section treats the local
approximation (MMA) and the update scheme while
the last section handles filtering strategies used to
create checkerboard free and mesh independent de-
signs.

6.3.1 Discretization and sensitivities

As a spacial discretized method (FEA) was used
to calculate the objective the problem formulation
needs to become discretized as well. For a mesh of

Initialize

Finite Element Analysis

Sensitivity Analysis

Method of Moving Asymptotes

Update Design variables

Convergedno

Post Procesing

Stop

yes

Density Filter

Sensitivity Filter

Figure 6.5: Topology optimization flowchart, either
the density filter or the sensitivity filter is used [6].

N elements the optimization objective becomes;

min
X1,X2,...,XN

K = T (6.12)

s.t. : K = ƒ
N∑

e=1
eXe ≤ V

Xmin ≤ Xe ≤ Xmx ∀ e ∈ {1,2, . . . , N}
where : K =

N∑
e=1

Ke(Xe, E)

and the terms have the exact samemeaning as those
of eq. (6.1), thus again it minimizes stress intensity
by ensuring equilibrium and setting constraints to
the density distribution. Here  is the enriched dis-
placement vector, ƒ the force vector and e is the
(relative) element volume.  is zero vector except
for the degree of freedom linked to the stress inten-
sity factor, and the multiplication of T will return
the stress intensity factor. This is similar to the com-
pliant mechanism optimization mentioned by O. Sig-
mund [59] where the displacement of a specific de-
gree of freedom is maximized.

As the problem of eq. (6.12) is non convex and unsta-
ble towards the mesh and element type an iterative
solving method is selected. The iterative solver will
attempt to improve the design of the current itera-
tion by optimizing a simplified and convex approxi-
mation of the local problem repeatedly until the prob-
lem converges.

The local convex approximation requires the calcu-
lation of the sensitivity of K to a density change
in any element. This can be measured by ∂K /∂Xe,
which can be calculated with the following steps and
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starts with adding a zero term after the known func-
tion K = T, where λ is an arbitrary vector:

K = T − λT (K − ƒ ) (6.13)
∂K

∂Xe
=
�
T − λTK� ∂

∂Xe
− λT ∂K

∂Xe


Now choosing a convenient vector for λwhich causes
T − λTK to be zero leads to the following expression
for the sensitivity,

∂K

∂Xe
= − λT ∂K

∂Xe
 (6.14)

where:  = Kλ

This means that λ can be calculated with the FEA,
where  is seen as a sort force vector, by solving
 = K. The sensitivity of K to the element density
can be calculated but depends on what function is
used to calculate the element stiffness, see eqs. (6.2)
and (6.3).

6.3.2 MMA and update scheme

The local convex approximation is based upon the
method of moving asymptotes (MMA) [48], as it
proved to be an efficient for this specific type of op-
timization. MMA approximates K of the updated de-
sign by,

K ≈ Kk +
N∑

e=1

�
re

Ue − Xe +
se

Xe − Le
�

(6.15)

where: re =

(
0 if ∂K

∂Xe
≤ 0�

Ue − Xke
�2 ∂K

∂Xe
if ∂K

∂Xe
> 0

se =

(
0 if ∂K

∂Xe
≥ 0

− �Xke − Le�2 ∂K
∂Xe

if ∂K
∂Xe

< 0

based upon a simplified convex and local approxima-
tion in iteration k. Here Xke are the densities at the
current iteration while Xe is the optimization param-
eters and represents the density distribution belong-
ing to the predicted K .

The name of the method is derived from Ue and Le
which are limiting the maximum density change in
each element with their asymptotic behavior. The ef-
ficiency of themethod is in choosing these asymtotes
in a smart and adaptive way, when the optimization
behaves stable they are spaced further apart to allow
for larger steps, and they are closer together when
oscillatory behavior is observed [48, 53].

To improve upon the current design the local approx-
imation needs to be minimized resulting in the prob-

lem formulation,

min
X1,X2,...,XN

Kk +
N∑

e=1

�
re

Ue − Xe +
se

Xe − Le
�

(6.16)

where: re =

(
0 if ∂K

∂Xe
≤ 0�

Ue − Xke
�2 ∂K

∂Xe
if ∂K

∂Xe
> 0

se =

(
0 if ∂K

∂Xe
≥ 0

− �Xke − Le�2 ∂K
∂Xe

if ∂K
∂Xe

< 0

s.t.:
N∑

e=1
= eXe ≥ V

Xmin ≤ Xe ≤ Xmx ∀ e ∈ 1,2, . . . , N
As the approximation in eq. (6.15) was setup to be
convex the optimization is straight forward and can
be performed by a variety of methods. For this al-
gorithm the primal-dual Newton method was imple-
mented as proposed by K. Svansberg [53].

6.3.3 Filtering

Since a objective and method have been formulated
an algorithm can be developed it however has a cou-
ple of problems such as mesh dependency and arti-
facts. The mesh convergence issue appears because
finer meshes allow for finer features to be created.
This can be unwanted as one might want to know
wether the geometry obtained is an optimum on a
finer mesh as well. Some types of features, such
as checkerboard patterns, appear only because the
FEM overestimates the stiffness of them because the
structural details cannot be modeled at such course
meshes. However when optimizing the problem at a
finer mesh smaller version of these artifacts start to
appear and will again have overestimated stiffness.
To ensure that these features can not be created a
limitation on the feature size has to be formulated.
This can be done in several ways, of which two are
implemented in the algorithm, the so-called sensitiv-
ity,

Ö∂C
∂Xk

=
1

Xk
∑
=1H

∑
=1

H X
∂()

∂X
(6.17)

H =

¨
rmn − dist(k, ) if dist(k, ) < rmn

0 if dist(k, ) ≥ rmn

and density filtering,

ÓXe = 1∑
=1H

∑
=1

H X (6.18)

H =

¨
rmn − dist(k, ) if dist(k, ) < rmn

0 if dist(k, ) ≥ rmn

which where discussed in the literature study, sec-
tion 3.2.2
The computationally most efficient formulation of
both these filters is obtained when dedicated code to
filter pictures is used. This simply generates a con-
volution matrix based upon the filter and applies it
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to all pixels. This however, results in problems at the
outer edges of the design space, which was noted by
B. Bourdin [61]. As the convolution filter has a con-
stant size it will try to filter a pixel at the edge par-
tially based upon data that is outside the design re-
gion. No information about the densities or thickness
is available there, this however is generally solved by
extrapolating the figure. Simple examples of extrap-
olations are; repeating the data at the border pixels,
reflecting along the border and setting a fixed value
outside the design domain. It is assumed that the fi-
nal design is barely affected by these settings when
the filter size, rmn, is small compared to the resolu-
tion. However, features at the border might be in-
fluenced by it. The model uses reflection boundaries
unless specified otherwise.

It was observed that scaling the filter size rmn lin-
early with the resolution results in similar designs.
The main difference between the designs is that
higher resolution simulations result in a smoother
structure. But filtering this way leads to gray, unde-
termined, edges around discrete designs. Larger fil-
ters cause more pixels to have intermediate density
values. This is unwanted when discrete optimization
cases are coincided, three solutions do exist, lower-
ing the filter size for the last couple of iterations, in-
creasing the SIMP penalty factor or applying extra
post processing steps.

6.4 Restrictions of the method

The method in its presented form has a couple of lim-
itation, these can be caused by various sources and
are separated based upon there origin.

An issue that comes from the problem formulation
include assumption that the thickness to stiffness
formula (eq. (6.2)) assumes that stresses are con-
stant through the thickness. While examples of lim-
itations are that the thickness of elements at the
crack tip are not allowed to change and that the crack
path needs to be determined in advance and the FE
method implemented requires the cracks to be at
along the edges elements. Lastly do problems ex-
ist that are related to topology optimization, such as
non-uniqueness, local-minima and filter-objective in-
teraction.

The limitation description will include an indication
of the impact and if available a solution will be pro-
posed.

6.4.1 Problem formulation

The first problem can be found in the formulation
used for variable thickness plates. The equation
that relates stiffness to the local optimization vari-
able (thickness or density), see eq. (6.2), makes
an incorrect assumption. It assumes that the stiff-
ness increases linearly with the thickness and it com-
pletely neglects through thickness differences of the
stresses and/or strains. This will cause problems at

A B C

Thickness

Figure 6.6: The variable thickness sheet under a
uni-axial load, at cross-section A & C stress is

constant while at B it varies through the thickness.

locations where the thickness changes, as depicted
in fig. 6.6.

The stiffness approximation of the model assumes
that, even at cross-section B, the stresses through
the thickness are constant. This is untrue, the in-
plane stresses at B will vary through the thickness.
Hence, it is hypothesized that the stiffness equa-
tion for a variable thickness sheet is inaccurate for
abrupt and large thickness changes. This means
that the stiffness of areas with repeated large thick-
ness changes could be overestimated. These prob-
lems might be solved with a large density filter which
smoothens the thickness changes.

The assumption that the stiffness increases linearly
with thickness or cross-sectional area is used exten-
sively in literature. Not only in the field of variable
thickness plate optimization [47, 79] but also for an-
alytical expressions that predict stress intensity fac-
tors of stiffened plates [82, 83] and functional graded
materials [84, 85]. When C.D Rans, R. Rodi and R.C.
Alderliesten performed tests to verify their analytical
stress intensity factor model it was observed that the
difference between reality and the model is not too
large and that the model predicts the overall behav-
ior properly [82].

In the current algorithm it is assumed that the ele-
ments around the crack tip have a density/thickness
of one. The current computational implementation
cannot calculate the stiffness of the enriched ele-
ments with varying stiffenss (K(Xe)). Allowing these
elements to change could be achieved by deriving
K(Xe) and ∂K/∂Xe(Xe) for the enriched elements.
Making the crack tip thickness variable might result
in a stress intensity minimized geometry with no ma-
terial at the tip, as it would reduce the stresses to 0.
This is unwanted, as this solution would result in a
structure with a hole at the crack tip. Hence, it is
advised to set a minimum thickness constraint.

6.4.2 Finite element method

The finite element model has its own limitations, only
those specific to the element enrichment method
and implementation in this algorithm will be men-
tioned. It is assumed that the readers are familiar
with common problems such as; inaccuracies around
load introductions, element aspect ratio and non-
linear behavior.
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A limitation of the FEA enrichment is that the crack
must be on the edge of the elements. This causes
the current implementation to be limited to straight
cracks only. With more advanced meshing one could
model a curved crack as one that exists of multiple
straight segments. This might cause new problems.
The FEA risks having a discontinuity in the displace-
ment field there were the enriched elements touch
the conventional ones because of the following two
reasons:
• The enrichment function that contains the dis-
crete displacement field can be non zero at
these borders. One could multiply the enrich-
ment equation with a term that goes to zero to-
wards these borders and is equal to one at the
crack tip. It was however observed that the im-
pact is minimal [32].

• The non-conform mesh which is used, shown in
fig. 6.4, does not constrain the location of the
higher order nodes to be on the border of the
linear elements. This means that a gap or over-
lap between elements might occur.

The best way to solve all these element enrichment
problems is to use an XFEMmethod with direct stress
intensity calculations. The formulations of XFEM al-
lows for discontinuities within elements while main-
taining continuity throughout the rest of the mesh.
Accurate results can be obtained on coarse meshes
and requireminimal remeshing. Thismethodwas de-
veloped by T. Belytschko and T. Black [86]. Formula-
tions of XFEM with direct evaluations of the stress in-
tensity factors do exist. This means that implement-
ing XFEM into the model work similar the enrichment
method discussed in this thesis and is described by
X.Y. Liu, X.Z. Xiao and B.L. Karihaloo [35]. Implement-
ing this solution would be time expensive and was
avoided due to the short development time of the
algorithm.

6.4.3 Optimization strategy

The MMA searches for a local minimum with gradient
decent method. This means that the solution con-
verges to a design that might not be the global op-
timum in the design space. The final design is thus
depended on the starting design.
One could try several starting designs to see if no-
ticeable differences appear. This does not neces-
sary lead to a global optimum but to multiple local
optima. It is nearly impossible to proof that the con-
verged design is a global optimum. One can try to
use engineering sense and experience to judge the
design.
TO algorithm presented in this communication uses
a distributed starting design. This means that when
the volume constrain is 30% that at the initialization
step all elements have their density set to Xe = 0.3.
Even solving for one global optimummight not result
in the requested result, as multiple designs might
have the same stiffness. A clear example of that

would be a design space under uni-axial tension [54].
One thick bar would perform the same as a group
of thinner bars with the same total thickness. This
does not only mean that different designs can have
the same performance but that even several equally
optimal solutions can exist. One designmight be bet-
ter due to manufacturing, maintenance or other rea-
sons. Sadly the algorithm does not allow the user to
make such a choice as it only calculates one of the
local minima.
This research uses the topology optimization with
this drawback in mind. This means that this issue
was not resolved and that better solutions to the spe-
cific optimization problem might exist. If one is in-
terested in the global optimum one could consider
using methods such as genetic algorithms or extend
the iterative gradient method with disconnected bi-
furcation checks [87].
The filtering methods used to set a minimal filter
size can cause several problems at the border of the
design domain as shown by A. Clausen and E. An-
dreassen [88]. In their paper they formulate three
issues; the first one being that along domain bound-
aries the minimum feature size is not satisfied, sec-
ondly that structural edges are forced to be perpen-
dicular to domain boundaries and lastly that the ge-
ometries tend to “stick” to the domain boundaries.
They do propose solutions for the discrete design
case but because of time constraints they were not
implemented in the algorithm.



Chapter 7

Fatigue crack growth life maximization

The proposed stress intensity optimization does not
necessary maximize the fatigue crack growth life
as it only minimizes the crack growth rate at one
specific crack length. The optimization does not
care about the crack growth rate at any other crack
lengths, it might even cause its fatigue life to be
shorter than that of a non optimized design. To
tackle this problem an optimization that uses the
Paris-Erdogan formula to calculate the fatigue crack
growth life is proposed. The algorithm is based upon
the stress intensity factor minimization, it uses the
same FE method and optimization strategy. The dif-
ferences are that the objective and the sensitivity
equations are replaced and that, per iteration, more
FEA need to be solved.

7.1 Method

Fatigue crack growth rate can be predicted with the
Paris-Erdogan rule. The fatigue crack growth life can
be determined by integrating the inverse of the crack
growth rate to the crack length. For the optimiza-
tion algorithm this would result in a summation, N =∑
dN/d δ. It would need to calculate stress inten-

sity values for the crack at different lengths, i.e. in-
crementally increasing the crack length. The imple-
mentation in this thesis assumes that the crack path
is known before the optimization designs the geome-
try. This assumption is valid for the compact tension
specimen with a symmetry condition and simplifies
the calculation of the adjoint sensitivities.

Multiple FEA are required to determine the crack
growth rate for all these crack increments. As the
stress intensity factor and crack growth rate changes
with increasing crack length. The algorithm assumes
K between crack increment  and  + 1 to be con-
stant and equal to the average, i.e. (K  + K +1)/2.
The amount of cycles required to growth the crack
from the starting crack length,  = 0, to the last crack
length , = L, as the objective:

N =
1

C

L−1∑
=1

δ�
1

2

�
K  + K

+1


��m (7.1)

where δ is the difference between the crack length
of the current increment and the next one. C and m
are constants from the Paris-Erdogan equation.
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Figure 7.1: Fatigue life topology optimization
flowchart, with a FE and sensitivity analysis for

every crack increment.

The sensitivity of N to the density distribution can be
expressed as:

∂N

∂Xe
= −m2m

C

L−1∑
=1

δ

�
∂K

∂Xe



+
∂K

∂Xe

+1�
�
K  + K

+1


�m+1 (7.2)

This formulation does not work however, the opti-
mization converges to a solution that does not sat-
isfy the resource constraint. The method of moving
asymptotes requires the sensitivities of the density
constraint derivative, dV/dXe to be in the same or-
der of magnitude as the objective sensitivity dN/dXe.
Assuming that; the geometry is manufactured of ti-
tanium (Ti-6Al-4V/ELI), printed with selective laser
melting, loaded at room temperature and with a
stress ratio R = 0, the constants1 are m = 4.41 and
C = 5.05 × 10−16 while the Poisson’s ratio ν = 0.31
[89]. It becomes clear that the termm2m/C becomes

1The reference paper reports that C = 2.08×10−12. How-
ever they use other units for stress intensity factors, the
value was therefore converted.

31
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large causing the objective sensitivity to be orders of
magnitude larger than the volume constraint deriva-
tive. This problem was solved by using a mathemati-
cal objective that scales exactly linear with the phys-
ical objective:

O =
1

m2m
∑L−1
=1 δ

L−1∑
=1

δ�
1

2

�
K  + K

+1


��m (7.3)

resulting in a sensitivity of:
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Maximizing O should maximize N as well, as they are
linearly dependent. In real applications one might
not be interested in maximizing the overall fatigue
live but only a part of it, where for example because
of inspectability. One could consider maximizing the
size of from the smallest inspectable crack to the fail-
ure length. When doing so one might increase the
importance of one crack increment over the others
for which weighing factors () were introduced re-
sulting in the following optimization:

mx
X1,X2,...,XN

O =
1

m2m

L−1∑
=1


δ�

1

2

�
K  + K

+1


��m (7.5)

s.t. : ƒ  = K  ∀  ∈ 1,2, . . . , L
N∑

e=1
eXe ≤ V

Xmin ≤ Xe ≤ Xmx ∀ e ∈ {1,2, . . . , N}
where : K =

N∑
e=1

Ke(Xe, E)

7.2 Limitations

The limitations of the fatigue crack growth life maxi-
mization are inherited from the stress intensity mini-
mization one. Two of these limitations are discussed
again, as they have more impact on this FCGL maxi-
mization than they had on the SIF minimization.

That the thickness of crack tip elements cannot be
changed is a significant problem for fatigue life max-
imization of variable thickness plates. The fatigue
crack growth analysis requires the crack to prop-
agate. In the fatigue maximization all elements
around the crack are forced to have unit thickness.
Literature shows that creating patterns of varying
thickness/stiffness in front and after the crack tip in-
fluences the crack growth rate and the overall fatigue
live [12, 82]. These kinds of crenelation patterns can-
not be created by the optimization algorithm.

That the crack geometry needs to be determined in
advance does also have a larger impact in this crack
growth life maximization algorithm. The fatigue life

optimization assumes a crack path and does not con-
sider that the crack might deviate from it. It might
very well be possible that a better design, one in
which more load cycles are required for the crack
to grow a certain length, can be obtained by “crack
steering”. It is recommended to investigate how the
method can be expanded such that crack steering
becomes possible.



Chapter 8

Validation of the finite element method

To ensure that the FEA results are accurate a valida-
tion study was performed. One can argue that the
accuracy of the FEA is unimportant because the op-
timization method depends on the gradient informa-
tion only. This means that the trend between objec-
tive and optimization variables is more critical than
the actual accuracy. However, validating that the
FEA captures the trend properly is the easiest by en-
suring that the stress intensity results are accurate
throughout the entire design domain.

The validation exists of two phases, firstly by com-
paring flat plate FEA to existing empirical fit solu-
tions. And secondly by testing optimized geometries
and comparing the test results to the FEA.

Separating the hypothesized weaknesses of the
model into different tests allows for more direct rec-
ommendations. The flat plate validations, discussed
in section 8.1, give an indication about the accuracy
of the enriched FE model. While problems related

to the density-stiffness model or artificially well per-
forming geometry problems should show up in the
variable thickness validation (section 8.2).

To ensure repeatability all the results data generated
is available online1. This data includes raw data,
scrips and graphs of both the simulations and mea-
surements.

8.1 Flat plate validation

For the validation of the enriched FEA three prob-
lems have been selected, the compact tension, sin-
gle edge and double edge crack specimens. Analyti-
cal stress intensity equations are available for these
geometries and because they are used in a variety of
testing procedures the accuracy of these equations

1The optimization settings, results and post processing
scripts are available on OSF [90].
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Figure 8.1: Mesh convergence check of a compact tension specimen, where scaled FEA results are
compared to an empirical solution of the ASTM standard [76]. For a specimen of unit thickness the

empirical solution results in KASTM = 0.697 MPapmm, to which the converged FEA differs less than 1%.

33

https://osf.io/mydg2/


34 CHAPTER 8. VALIDATION OF THE FINITE ELEMENT METHOD

0 10 20 30 40 50 60 70
 [mm]

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

2.25

K

[M
Pa
p m

m
]

20 ele.
50 ele.
100 ele.
200 ele.
400 ele.
800 ele.
ASTM approx.

W = 96 mm



P = 1 N

Figure 8.2: Validation where scaled FEA results of several mesh sizes and crack lengths are compared to
an empirical solution of the ASTM standard [76], all specimens are of unit thickness.

has been confirmed.
There is a problem with the algorithm that must be
solved before the mesh refinement study can be per-
formed. In these simulations every element has a di-
mension of 2×2, as shown in fig. 6.2. In the code the
transformation between the local element and global
coordinate system was not implemented. When the
mesh is refined, the model will represent a physically
larger geometry.
The value of the stress intensity is dependent on the
physical size which means that the FEA results need
to be scaled to the reference geometry. For each ge-
ometry the required scaling factors will be derived.

8.1.1 Compact tension specimen

For the CT geometry, which is defined in ASTM stan-
dards [25, 76], the following parameters where used:
W = 96 mm,  = 36 mm, P = 1 N, B = 1 mm. The
stress intensity factor can be calculated with,

KASTM =
P

B
p
W

2 + 
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� 
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�
−
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� 
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� 
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�4 �
(8.1)

and results, for the geometry chosen, in a stress in-
tensity factor K = 0.719 ± 0.65% MPapmm. The
function is empirical, created by least square root fit-
ting to data, and has an uncertainty of ±0.65%.
In section 8.1 it was mentioned that the amount of el-
ements directly relates to the dimension of the part.
For the CT specimen this means that the values ofW
and  are directly related to the mesh size, while the

ratio /W, thickness B and load P are independent of
the amount of elements used.

The scaling factor, named s, from the FEA to the tar-
get size can be defined as,

sW =
W

WFEA (8.2)

s =


FEA
(8.3)

because eq. (8.1) states that K ∝ 1/
p
W, a scaling of

the stress intensity factor can be derived, resulting
in,

K = KFEA
1p
sW

(8.4)

after scaling the stress intensity values they were
compared to the empirical solution.

Figure 8.1 shows that the FEA solution does converge
to the empirical one for increasingly finer meshes.
The solution of the most refined mesh, K = 0.715
MPapmm is less than 1% below the empirical value.
Acceptable results, those with an error of <2.5%, are
obtained when the amount of elements in  direction
is equal or more than 160.

In fig. 8.2 the empirical solution and the scaled finite
element results are plotted for various crack lengths.
The graph affirms that the FEA solutions become
more accurate with increasing mesh size. The FEA
model is clearly able to capture the trend of K as
a function of crack length , even at coarse resolu-
tions.
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Figure 8.3: Mesh convergence check of a (double) edge crack specimen, where scaled FEA results are
compared to an empirical solution obtained from “The Stress Analysis of Cracks Handbook” [24],

KRef = 7.09 and KRef = 2.00 MPapmm for the edge crack and double edge crack respectively. In both
cases the relative error converges to a difference of less than 2%.

8.1.2 Edge crack specimens

For two other sample geometries, the single and dou-
ble edge cracks specimens, the same mesh refine-
ment and validation study was performed.
For both geometries the empirical stress intensity
equations were obtained from the “The Stress Anal-
ysis of Cracks Handbook” [24], for single edge crack
specimens given was,
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p
π

�
1.122 − 0.231

� 
W

�
+ 10.55

� 
W

�2
− 21.71

� 
W

�3
+ 30.382

� 
W

�4 �
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and for a double edge crack specimens the equations
was,

KRef = σ
p
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which for the geometries given in fig. 8.3 results in
a stress intensity value of K = 7.09 ± 0.5% for the
single and K = 2.01 ± 2% MPapmm for the double
edge crack specimens.
For both these specimens the stress intensity value
K ∝
p
 resulting in a stress intensity scaling factor

K = KFEA
p
s (8.7)

From fig. 8.3, which compares the analytical to the
FEA solution, it can be concluded that the FEA so-
lution converges. Although the amount of elements

in width direction required for the error to go below
2.5% is different between the geometries, converged
results can be obtained at relative low, 300 elements
along the width, resolutions.

It should be noted that L. Nash-Gifford and P. Hilton
showed that accurate stress intensity factors of the
double edge crack specimen can be reached at even
with only a couple of elements [32]. They obtain ac-
curate results with fewer elements than what is pos-
sible with the implementation used in this thesis.

8.1.3 Conclusion

From the mesh convergence and validation of flat
problems four conclusions can be drawn.

Firstly that the stress intensity factor converges sta-
bly with increasing mesh refinement. The resolution
required to converge differs from geometry to geom-
etry. Of all three problems the mesh required is ac-
ceptable in the sense that reasonable computational
effort is required to solve the FE problem.

Secondly, the mesh required for converged solutions
is finer than those in the paper of L. Nash-Gifford and
P. Hilton [32], where they presented the enriched
bicubic serendipity elements. The difference in mesh
requirement can be explained by the following rea-
sons. They used a local mesh refinement strategy
with higher, third, order elements throughout the
whole mesh. This in contrast to the algorithm pre-
sented in this paper which has constantly sized linear
elements. The local refinement they used will allow
a coarse mesh further a way from the tip while using
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higher order shape functions will result in a more ac-
curate approximation of the displacement field. Fur-
thermore, because they used bicubic serendipity ele-
ments throughout the mesh, problems with meshing
around the enriched elements does not exist.

Simply using bicubic elements throughout the en-
tire mesh will greatly increase the computational re-
quirement to obtain optimized results at high resolu-
tions, because the mesh is directly linked to the opti-
mization resolution. It is possible implement a multi-
resolution optimization where the mesh is courser
than the resolution of the optimization variables.
This does significantly improve the performance of
higher order finite element meshes in topology opti-
mization [81].

Thirdly that the stress intensity factors calculated
with the enriched FEA match the empirical solutions
for all geometries inspected.

Lastly, that an element-global coordinate transfor-
mation should be implemented in the algorithm to
avoid the need of scaling FE results. Scaling is pos-
sible for the geometries considered as the factors
could be derived from empirical equations to calcu-
late the stress intensity, however for more compli-
cated geometries their scaling factors cannot be de-
rived. This means that a mesh refinement study with
the current algorithm is impossible for arbitrary ge-
ometries.

In the end it can be concluded that, although the cur-
rent FE implementation works, two improvements to
the FEA analysis can be made:

• A element to global coordinate transformation
should be implemented.

• The hanging node method must be removed
by using bicubic elements throughout the entire
mesh as shown in [32].

• A multi-resolution optimization scheme should
be implemented to result in high resolution op-
timized geometries at low computation costs as
shown in [81].

8.2 Variable thickness validation

The previous section shows that the FE model can
accurately capture cracks in flat specimens. It does
not show however, how accurate the model is for
variable thickness plates. Adding thickness variation
into the model introduce problems, for example the
thickness-stiffness problem which was discussed in
section 6.4.1.

The test discussed in this section was performed to
verify whether the FE model can accurately calculate
the displacement field and stress intensity factors for
variable thickness geometries. It was assumed that
all designs which the optimization algorithm iterates
over are in between the initial one, a flat plate, and
the optimization results. Since the flat plates where
validated already, only geometries resulting from an

actual optimization where tested. This reduced the
amount of specimens and time significantly.
During the test three different measurements where
performed; DIC (Digital Image Correlation) was used
to measure how much the crack opens up, an exten-
someter was used to measure the clamp displace-
ment and the load cell measured the failure strength.
The crack opening and clamp displacement can be
related to the specimen’s stiffness response, while
the maximum load can be related to stress intensity
factors directly.
For these tests six different samples, one flat com-
pact tension specimen and five optimized CT ge-
ometries where used. The optimizations where run
with different settings to obtain different geometries,
more details about the optimization of CT specimens
is discussed in section 9.1.
It was hypothesized that FE results of the speci-
mens with large abrupt changes in thickness are
less accurate than their smoother counterparts. The
FE method assumes that through the thickness the
strains/stresses are constant. But as shown in
fig. 6.6, this is not the case at the thickness changes.
The more abrupt the change, the larger the stiffness
overestimation is.

8.2.1 Specimen

To ensure that some specimens have smoother thick-
ness changes than the others themain difference be-
tween the specimens is in the density filter radius,
the larger this is, the more smooth the geometry be-
comes. Another variation between the specimens
is the maximum thickness, because a larger max-
imum thickness allows for larger changes in thick-
ness which was hypothesized to be detrimental for
the FEA accuracy. The settings used are shown in ta-
ble 8.1, all other settings were kept constant, a min-
imum thickness 1 mm, 500 elements in horizontal
direction, and a crack that reaches until the middle
(/W = 0.375).

rmin [elements] mx [mm]
CT Flat 1.0 1.0
CT0053 1.5 2.0
CT0054 3.0 2.0
CT0055 7.0 2.0
CT0057 30.0 2.0
CT0058 1.5 1.5

Table 8.1: The differences between the optimization
settings.

The thicknesses distributing resulting from these op-
timizations was transformed into a .stl (steriolithog-
raphy file format) mesh with the help of a ball pivot-
ing surface reconstruction algorithm [91] in meshlab
[92]. The mesh was scaled to the final dimension,
shown in fig. 8.4, the minimum thickness was set at
20 mm.
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thickness of the specimen is 20 mm. The

dimensions are projected on the geometry of
CT0053.

Eventually the parts where manufactured of white
resin (FLGPWH04) with a formlabs Form 2 printer.
The specimens where cured for 60 minutes in a cur-
ing chamber at 60◦C. The slit and holes where ma-
chined while the precrack was made by hand with
a hacksaw and finished with a 0.25mm thick jigsaw.
The dimensions of the final specimens wasmeasured
and documented.

The final geometry is close to the simulated one,
however one important difference was found. The
thickness at the cracktip was not manufactured ac-
curately. This thickness was set to 1 in all simula-
tions, 20 mm after scaling, and all surrounding el-
ements where allowed to change. In the optimiza-
tion the surrounding elements became significantly
thicker which resulted in small but deep dimple at the
crack tip. Sadly this dimple was barely visible after
printing due to the printer resolution and accuracy.
This difference is likely to have little effect on the
crack opening as the opening is related to stiffness
and driven by a global response, on which this local
difference has only little effect. However, this differ-
ence is likely to increase the failure load significantly
as it is dependent on local properties.

8.2.2 Test setup

The first test, which measures the crack opening is
a test within the elastic regime. The goal is to plot
how much the crack opens at every location along
the crack length. The displacement can be linked to
the overall elastic response, and assuming the FEA
is accurate the model should have a crack opening
similar to reality.

To measure this DIC is used. A 3D, two cam-
eras, setup was used and consisted of 5.0 MP FLIR
Grosshopper3 cameras with a Sony Pregius IMX250

sensor. The cameras where equipped with 80 mm
lenses while a spot was used to ensure a (constant)
and light target.

The test was performed on a Zwick 20 kN test bank
that was equipped with an extensometer and analog
output channel to export the force to the DIC com-
puter (1 V = 200 N). A preload of 20 N was used and
a speed of 1 mm/min was set. From testing the flat
compact tension specimen till failure, 1118 N, it was
decided to load all other specimens to 500 N. As 500
N is far below the expected failure load no damage
occurred, which allows for a repeated test if required.

Figure 8.5: In plane rotation of the CT Flat sample.
This figure is moving in the digital edition of this

thesis.

During the test it was observed that the part rotated
a bit. This was probably caused by a (small) misalign-
ment of the bracket holding the specimens. This is
made visible in fig. 8.5, which shows the difference
between a photo at rest and loaded condition. The
other movements visible, crack gap widening and
the slight translation downward, are expected. This
rotation happened slowly and even at higher loads
due to the high friction between the bracket and ten-
sile machines’ wedge grips. As the misalignment be-
tween the brackets was different per specimen a dif-
ferent amount of rotation was observed per speci-
men.

The data was processed with Vic-3D which calculated
the location and displacement of the surface using
the speckle patterns. The subset size and step size
where automatically determined and auto calibration
was used to obtain accurate and precise results.

Two less usual post-processing steps where required
to obtain the required displacement fields. To have
the coordinate system of the measurements align
with that of the model the coordinate system needed
to be set such that the crack aligns with the -axes.
While the rigid body movements where to be re-
moved from the displacement fields as the model ex-
cludes those. This removal did also remove the rigid
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body rotation resolving all issues related to it.

Python was used to interpolate the results to a struc-
tured grid, plot the displacement fields and extract
the crack opening as a function of horizontal loca-
tion. The crack opening is calculated by adding the
downward deflection 3 mm below the crack to the
upward deformation 3 mm above the crack. Some
distance above and below the crack is required as
DIC cannot give results at the edge.

Figure 8.6: Compact tension tensile test setup.

During these elastic tests an extensometer was
mounted on the clamps, as shown in fig. 8.6. The
idea was to use this to determine the elastic modu-
lus required to make the FEA of the flat CT specimen
match that of the measurements. The results where
excluded because the rigid body rotation caused the
results to be inconsistent and invalid, a part of the
extension measured was due to this rotation.

After testing the elastic response, the fracture
strength was measured. To do so the specimens
where pulled apart in the Zwick 10 kN testing ma-
chine. No other sensors then the load cell were
used, the only intention was to measure the ultimate
strength.

8.2.3 FE setup

A python code to run the FEA and export the crack
opening and stress intensity values was derived from
the optimization algorithm. This code can import
the optimized geometries while it allows one to al-
ter parameters such as thematerial properties, crack
length and even SIMP penalization factor.

Most of the settings used for these FEA are the same
as those used in the optimization from which the ge-
ometry was obtained. Three differences exist how-
ever, material stiffness, crack length and load mag-

nitude. From the manufactured specimens the crack
was measured and the actual length was used in the
FEA model. As the stiffness influences both the crack
intensity value and crack opening magnitude it was
required to obtain its actual value.
As it was proofed that the FEA is accurate in pre-
dicting the flat plate results, see Section 8.1, the flat
specimen was used to tune the model. The flat spec-
imen is the only that was loaded in tension until it
broke wile using the DIC setup. A load close to fail-
ure (1072 N) was chosen to determine the stiffness
from. It is important to notice that this variable plate
problem required some sort of running stiffness per
unit thickness value (E/t), see eq. (6.2). As themodel
is run with a thickness of 1 (unity) the goal is simply
to find the stiffness required for the model to match
measurements.
As the model is linear, all displacements can be
scaled inversely with stiffness, which results in E/t =
Eold/ t · OFEA/Oreal. And resulted in a stiffness of
58956.7 MPamm/mm.

E/t [MPamm/mm] Opening [mm]
Original 1.0 30740
Scaled 58956.7 0.5214

Table 8.2: FEA crack opening for different stiffness’s
an F = 1072 N. The crack opening was measured to

be 0.5214 mm.

As the FEA uses symmetry the crack opening was cal-
culated as twice the y displacement of the elements
directly at the crack, while the stress intensity factors
were obtained from the FE enrichment.
To predict the fracture strength the fracture tough-
ness (KC MPa

pmm) is required. This was again ob-
tained by tuning the FEA of the flat specimen to its
measurement. To simplify all calculations the stress
intensity factors where used without scaling to the
real specimen dimensions. As the stress intensity
factor is linear depended on the load the following
equation determines the fracture toughness,

KC = FmxK(F = 1N) (8.8)
resulting in KC = 269.9 MPapmm. Reversing this
equation allows for the calculation of the fracture
strength of the optimized specimens,

Fmx =
269.9

K(F = 1N)
(8.9)

8.2.4 Results

The crack opening test show good agreement be-
tween the FEA and measurements for CT Flat,
CT0053, CT0057 and CT0058, as shown in fig. 8.7.
The crack opening graphs of the FEA and measur-
ments have similar shapes and the magnitudes.
In fig. 8.7 one can consistently find two differences
between the measurements and FE results. Firstly
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the crack opening magnitude of the FEA is slightly
lower (≤ 1%) and secondly that at the crack-tip the
FEA crack opening drops to zero directly, whereas the
measurements show a smoother transition.

The specimens, CT0053, CT0054, CT0055 and
CT0057 are all very similar in geometry which means
that the crack opening calculated with the FEA are all
nearly equal. In fig. 8.8, which shows these samples,
one can see that the FEA results are overlapping with
each other. Surprising is that the measurements of
two of these specimens, CT0054 and CT0055, are in-
consistent with the simulations.

The failure load test shows that all specimens where
stronger than predicted, as shown in fig. 8.9. The
differences between measurements and predictions
is significant and can be up to 30%.

8.2.5 Discussion of the results

The differences in fig. 8.7 can simply be explained;
firstly the FEA seems to be stiffer because the stiff-
ness (E/t) was calculated at a load close to failure
(1072 N). Although thematerial is brittle and shows a
near linear stress strain curve it is assumed that the
difference of ≤ 1% is caused by a bit of non-linear
behavior just before failure.

Secondly that the measured crack opening does not
drop off to zero directly at the crack tip can be ex-
plained by the measurement method. The crack
opening was measured by taking the upward dis-
placement 3 mm above the crack and added to the
downward displacement 3 mm below the crack, this
will have a smoother transition because no singulari-
ties exist above or below the crack tip. The FEA uses
the displacements directly at the crack, they drop to
zero at the crack tip as there is no opening anymore.

No good explanation for the offset between the mea-

surements and FEA of specimen CT0054 and CT0055
have been found. The specimens are created by
a simulation with filtersizes (r) between those of
CT0054 and CT0057 resulting in geometries that are
similar to those. It would be logical to assume that
the crack opening would be similar, but it is not. The
maximal opening is 0.23 mm, close to that of the flat
specimen. Besides the sharp drop at  = 0 (fig. 8.8)
is not supposed to exist. Such a large drop would
locally require an enormous strain, which seems im-
possible. The test data was processed multiple times
to exclude the possibility of mistakes in the process-
ing steps. In the end it was decided to exclude
CT0054 and CT0055 as they are assumed to be out-
liers caused by measurement errors.

That the failure loads where always higher than pre-
dicted by the FEA wasmost likely caused by theman-
ufacturing issues mentioned in section 8.2.1. Firstly
was the crack tip not infinity sharp, but made with a
0.25mm jigsaw which reduces the stress magnitudes
at the crack tip. Secondly was the thickness at the
crack tip larger than modeled due to the printing in-
accuracies. A local increase of thickness at the crack
tip increases the failure load, mostly easily explained
with the concept of strain energy release rate,

G =
K2
E

(8.10)

and can be related to the amount of energy required
per unit new fracture area. When the part, locally,
becomes thicker than expected more energy is re-
quired to create the new area increasing the critical
load.

In the end it can be concluded that the FE model
is able to accurately model deformation but verify-
ing that the stress intensity factors are accurate was
impossible because the geometry manufactured was
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Figure 8.7: The crack opening of the FEA and measurements of CT Flat, CT0053, CT0057 and CT0058.
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Figure 8.8: The crack opening of the FEA and measurements of CT0053, CT0054, CT0055 and CT0057.

CT Flat
CT0053

CT0054
CT0055

CT0057
CT0058

0

500

1000

1500

2000

2500

Fa
ilu
re
lo
ad
[N
]

Test
FEA

Figure 8.9: Comparison of actual and predicted
failure loads.

significantly different from the modeled one. It was
also impossible to proof that the filter size has an ef-
fect on the accuracy of the FEA model, because of
two outliers in the four samples meant to test that
hypotheses. It is recommended to improve the code
such that:

• The enriched crack tip elements are allowed to
change in thickness, which does not only impact
the stiffness term but also the enrichment parts.
To avoid instabilities in the optimization it is rec-
ommended to keep the crack tip elements den-
sity linked to that of the surrounding ones.

• Performing tests with more samples to proof, or
disprove, the hypotheses that claim that under-
neath a certain filter size errors caused by the
thickness-stiffness equation will invalidate the
FEA.

8.2.6 Discussion of the test procedure

Although the crack opening and fracture tests where
successfully used to validate the FE model the tests
themselves can be improved upon. Several prob-
lems where encountered:
• Manufacturing of an infinitely sharp crack tip
was impossible with plastics.

• The performance of some specimens was close
te equal because the geometries where similar
(CT0053 and CT0057), more variation in the de-
sign is recommended.

A better test would be a fatigue crack growth speed
test. This would allow one to determine the stress in-
tensity values as a function of crack length by using
the Paris law. As the crack is formed by growing, the
tip will be sharp and the test can return stress inten-
sity factors of as a function of location. The drawback
is that such a test would require metal specimens
which is relatively expensive and the manufacturing
will be time-consuming.



Chapter 9

Designing variable thickness plates

Since the optimization algorithm was developed and
its FE method validated it can now be used to de-
sign parts. This chapter presents the results of vari-
able thickness plate optimizations. In this optimiza-
tion a base plate of unity thickness is improved by
adding material. Appendix A discusses the settings
of this optimization where the design variables are
interpreted as the local plate thickness. Similar to
the validation study, the focus lies on compact ten-
sion specimens because the code to analyze and op-
timize them is already developed.

The chapter starts with a detailed discussion of the
stress intensity minimization of the compact tension
specimens in section 9.1. The focus lies on the mag-
nitude of the stress intensity factor reduction, its sen-
sitivity to the simulation settings and the geometries
that results from it.

Then a fatigue life optimization of these compact ten-
sion specimen will be discussed in section 9.2. Here
the computational costs, the resulting geometries
and performance will be compared to the stress in-
tensity optimization.

9.1 Minimizing stress intensity

The optimization problem and setup must be dis-
cussed before their results are. To reduce the com-
putational cost a symmetry axis is used resulting in
a model of the upper half of the CT specimen, as is
shown in fig. 9.1. The horizontal symmetry axis cre-
ates a boundary condition, which constrains vertical
movement at the bottom. At the crack this vertical
boundary condition was removed to allow the nodes
to move up and down freely.

For all simulations 500 by 240 elements in horizon-
tal direction were used while the problem was initial-
ized with a constant thickness equal to 1. In the area
just around the load introduction the plate thickness
was constraint to a value of 1 to avoid local thickness
spikes to appear due to stress concentrations. The
crack extended to half-way the part (/W = 0.375).
Theminimum thickness (Xmin) was also set to 1 while
settings such as the filter size, maximum thickness
and material constraint where varied. Because of
time constraints the optimizations where cut off af-
ter 5000 iterations, even if the result was not yet
converged. A complete overview of the simulations,

crack tip

Figure 9.1: Low resolution compact tension
specimen initialization and load case. The red arrow
is a force, the blue triangle is vertical constraint
while the green one is a horizontal constraint.

there settings and the post-processing scripts can be
found online1.

The results will be compared to a flat compact ten-
sion specimen of unity thickness. Of these flat plates
the stress intensity factors will be calculated with
the algebraic approximation of eq. (8.1). The per-
formance will be given as a dimensionless ratio,
KSIM/KRef. This comparison might be unfair as the
mass of the optimized geometry can be more than
that of this flat plate, depending on the material con-
straint. Therefore, the performance of a flat plate of
same weight is shown as well.

9.1.1 Sensitivity to optimization settings

The first investigation studied the sensitivity of the
density filter size on the stress intensity factor of op-
timization results. Figure 9.2 does not only show how
the final stress intensity is influenced but also shows
what the difference is between the resulting geome-
tries.

Clearly the size of the finest features increases with
increasing filter size. This is the intended behavior,
as the filter is meant to allow for mesh-refinement
studies which requires constant smallest feature
sizes on different meshes.

One can imagine that an increasing minimal fea-
ture size constrains the design spaces, as disallowing

1The optimization settings, results and post processing
scripts are available on OSF [90].
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https://osf.io/mydg2/
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Figure 9.2: Optimization results at different filter
sizes, final weight is 110% of the flat reference. A
flat plate of same weight would have a relative

performance of 0.91.

small features to appear results in less different de-
signs to choose from. This can cause the designs at
larger filter sizes to become less optimal. The graphs
in fig. 9.2 clearly show that the most efficient designs
are those with small filter sizes.

The filter can not be removed however, as the small-
est features should at least be larger than the ele-
ment size, to avoid the appearance of inaccuracies
in the FE algorithm. Unknown is what the minimal
filter size is that results in acceptable designs. It
was impossible to derive the minimal filter size re-
quired to for accurate FE results from the validation
study (chapter 8). Currently filters are set such that
no checkerboard patterns appear but it is unknown
whether other but similar, numerical, problems exist
and from which filter size they are removed.

The optimization algorithm distributes the element
stiffness such that the stress intensity is minimized.
The local thickness constraints Xmin and Xmx have
a great impact on the performance of the optimal so-
lution, because the element stiffness is related to the
local thickness. From fig. 9.2 it can be observed that
the samples with a larger maximum thickness per-
form better.

Due to linearity in the model the absolute magni-
tudes are not that important, it is the ratio between
stiffness of the thickest and thinnest elements that
has the most impact. It is therefore hypothesized,
that optimizations with double the thickness and vol-
ume constraints will simply result in a scaled geom-
etry with the same layout. Doubling the thickness
everywhere means that the crack tip elements thick-
ness should be doubled as well. This makes testing
of the hypothesis impossible with the current imple-
mentation, as it requires the crack tip element thick-
ness to be unity.
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Figure 9.3: Optimization for different volume
fractions and flat plate of same weight. Cases with
max thickness of 1.5 do never use more than 1.36

volume even if it is available.

Figure 9.3 was produced to verify the impact of the
resource (material) constraint. This constrains the
amount of material available for distribution, in the
code the constraint is reported as the maximum av-
erage thickness of the plate. The higher the value,
the more material can be used. Using less than avail-
able is allowed.

One might simply assume that more material will re-
sult in stronger parts, for example the stress inten-
sity factor of flat CT specimens is inversely propor-
tional to the thickness, but for complex geometries it
is not that simple. Two exceptions can be found in the
graph. Firstly, for low volume fraction some unstable
behavior can be found. That the stress intensity is
not continuously decreasing for increasing material
constraint is attributed to simulation getting stuck in
different local minima. Secondly, adding mass might
actually be detrimental, because it increases the lo-
cal stiffness, which then attracts load and results in
higher stresses.

Figure 9.4: Optimization can assign less mass than
available. The simulation was set up with a material
constraint of one, in the end a fraction of only 0.868

was reached.
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In fig. 9.3 it is shown that adding material to the opti-
mization algorithm does indeed improve the perfor-
mance initially, however, at a certain point it has no
effect anymore. For the thin optimizations (Xmx =
1.5) a volume fraction up to 1.5 was allowed, this es-
sentially means that the optimization can distribute
material with maximum thickness everywhere. The
algorithm did not do this however, it did only use a
volume fraction of 1.36, as indicated by the arrows.

An other example of this is given in fig. 9.4, where
only 87% of the assigned mass was used. The sim-
ulation was run with the local thickness values (Xe)
constraint by Xmx = 1 and Xmin = 0.5 and a vol-
ume fraction of one. Assigning all the material would
result in a geometry equal to the reference design,
a flat plate with a thickness of 1 everywhere. The
optimization shows that even removing material can
result in a stress intensity reduction of nearly 50%
(KSIM/KRef = 0.54). Thematerial is removed between
the crack tip and the load introduction, which will
cause less load to be attracted to the crack and lo-
cally result in lower stresses.

In the end it can be concluded that the volume frac-
tion has a smaller impact on the results then ex-
pected. It is less important than the ratio between
the maximum and minimum thickness. More impor-
tant is that this shows that adding mass might not be
the solution when considering stress intensity opti-
mization. This can cause the biological optimization
methods, developed by Jones and Das [68, 69], to
work badly. These biological algorithms do namely
assume that adding mass locally improves the per-
formance locally.

9.1.2 Characteristic geometric features

The final geometries contains several distinct fea-
tures that appear in most of these CT optimizations.
Some features that appear have a larger impact on
the performance than others. In fig. 9.5 three fea-
tures have been highlighted; the fine fringing pat-
terns, the plateau just behind the crack tip and the
increased edge thickness. The fine fringing pattern
does not appear in all simulations, as larger filter
sizes forces features to become larger which causes
fringes to disappear.

Simulations have been run where some of these fea-
tures have been removed to calculate their individual
impact. Of which the results are reported in table 9.1.
The impact of the features was given in a percentage
of the improvement of the final design with respect
to the reference plate. Note that adding the perfor-
mance of all three features separately does not result
in the same as that of a simulation with all features.
This is caused by the (minor) interaction between the
features.

The impact of the fringes could not be calculated sep-
arately because they are dependent on the plateau.
The impact can be derived from the difference be-
tween the simulations with a & b and b only and re-
sulted in a contribution of 14.9%.

a

b

c

Figure 9.5: Geometry of an optimized compact
tension specimen. Geometric features a. fringes, b.

plateau and c. edges.

K [MPa
pmm] Part of im-

provement [%]
a, b and c 0.1311 100.0
a and b 0.1357 96.8
b only 0.1521 80.9
c only 0.2336 6.9

Table 9.1: Contribution in stress intensity reduction
of the geometric features. It can be derived that the

fringes (feature a) contribute for 14.9%.

It is hypothesized that these fringes create an
anisotropy behavior, as the stiffness in length di-
rection is higher than that along the width. This
anisotropy can guide the loads into certain direc-
tions, guiding it away from the crack tip. This hy-
pothesis remains however untested.

The impact of the plateau behind the crack tip is the
largest, 80.1%, of all the features. The impact ismost
likely caused because it can reduce the loads of the
crack tip stress redistribution. Just behind the crack
tip normal stresses are largest, adding material in
this region will reduce the stress of the redistribution
most significantly.

The impact of the increased edge thickness is most
likely caused by a similar reason, reducing stresses
of the bending behavior of the CT specimens. The
layout of the CT specimen is developed to create a
moment around the out of plane axis. This moment
causes extra tensile stresses at the crack tip and al-
lows fracture toughness measurements with a small
specimen at relative low loads, hence the name com-
pact tension specimen. While the bending stresses
cause tension at the crack tip, they cause compres-
sion at the back. This means that increasing the
thickness at the back will resist the bending more
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than adding material halfway between the crack tip
and the edge.
Overall, it can be concluded that the plateau at the
crack tip has the most impact compared to the other
features. The reasons that the features impact the
performance can be hypothesized but where not ver-
ified. It is recommended to perform a more detailed
investigation into the features and the reason that
they arise. This might help us understand more
about the design of damage tolerant structures.

9.2 Maximizing fatigue life

Fatigue life maximization design geometries that will
sustain the most load cycles before the crack grows
to a given length. This is different from stress inten-
sity minimization for two reasons.
Firstly, because of scaling, which is caused by the
non-linearity of the Paris-Erdogan relation,

d
dN
= CKm (9.1)

where C = 5.05 × 10−16 and m = 4.41 are the con-
stants used in this study [89]. Due to the power m
a small improvement in K , will result in a relatively
larger change in d/dN. For example a reduction
in stress intensity of 10% will result in a 35% lower
crack growth rate.
Secondly because fatigue life maximization takes the
performance over a range of crack lengths (incre-
ments) in account. This results in the following in-
tegral equation,

N =
∫ mx

min

dN
d
d (9.2)

the maximization of fatigue life is essentially equiva-
lent to maximizing the area underneath the -dN/d
curve. Whereas minimizing K will lead to a maximal
dN/d value for a crack of one specific length.
Notice that dN/d, the amount of cycles to grow
one mm, is non commonly used in literature. Nor-
mally the crack growth rate d/dN [mm/cycle] is dis-
cussed as it comes from the Paris-Erdogan formula
directly. The crack growth rate is logical to use when
one wants to illustrate that cracks propagate faster
with increasing crack length. It fails however, in the
discussion of the optimization algorithm presented,
as it has no direct physical relation with the objec-
tive2. For completeness this thesis will present both
the -d/dN and -dN/d graphs, as can be seen in
figs. 9.9 and 9.10.
It is evident that due to these differences fatigue life
maximization will lead to other results than stress

2A optimization with a direct relation to crack growth rate
can be formulated, where oneminimizes the crack length at
a certain amount of load cycles:  =

∫ Nmx
Nmin

d/dN dN which
relates to the area under the N-d/dN curve which similarly
uncommon.

intensity minimization. This section explores what
these differences are. It will focus on the computa-
tional aspect, optimized geometries and their perfor-
mance.

9.2.1 Computational considerations

In this thesis little attention was payed to the compu-
tational efficiency, stress intensity minimization was
fast enough to run on a simple laptop anyway. This
is different for fatigue life maximization. The differ-
ence in computational requirements comes from the
fact that information of the stress intensity and its
sensitivity are required as a function of crack length.
The fatigue growth model requires calculating stress
intensity factors for the crack at different values of .
For each stress intensity calculation a mesh needs to
be generated on which a FEA and adjoint problemwill
be solved. Please see the methodology in chapter 7
for more information.

In the current, simple but inefficient, implementation
the following steps are taken:

1. During the problem initialization the meshes for
the crack at all lengths are generated.

2. During each iteration the following steps are per-
formed for all these meshes:
(a) Assemble the stiffness matrix.
(b) Solve both the linear elastic and adjoint

problems with a complete Cholesky factor-
ization, which has a computational com-
plexity of O(n3/3).

All meshes are generated ones and reused through-
out all iterations, which compared to regenerating
them, reduces the computational requirements. This
causes an increase of the memory requirements, be-
cause all the meshes generated need to be saved
untill they are used. The size of all these arrays
becomes significant. The optimizations run for the
stress intensity optimization section (section 9.1)
with a mesh of 500 by 240 elements required 0.3
GB to store the mesh. For fatigue life maximization
many of these meshes need to be saved. For an op-
timization with a crack that growths from element
220 to 430 around 210 crack length increments are
required, just saving the meshes requires 63 GB of
RAM already.

No attempt to improve the mesh generation and sav-
ing was made because the current implementation is
incompatible with any method that allows for crack
steering. When the crack path can be changed by
the optimization variables, the mesh of the current
crack increment can only be determined after fin-
ishing the FEA calculation of the previous increment.
This means that the mesh can only be generated in
each increment.

Besides the memory requirement, the optimization
requires a large computational effort as it needs
to solve two systems of linear equations per crack
length considered. For the problems solved in
figs. 9.8 to 9.10 every iteration required around 13
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minutes on a pc with a Intel Xeon E5-1620 v2. The
optimization required 12 days to converge, this is sig-
nificantly longer than the 4 to 8 hours which is used
in stress intensity minimization at the same resolu-
tion.
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Figure 9.6: Optimization with large crack increments
will result in poor designs. The area underneath the
dN/d plot is clearly larger for the FEA with larger

crack increments which was used in the
optimization. The prediction with small increments

size is an analysis of the same geometry.

To reduce both the memory and computational re-
quirements one could use a crack increment that are
larger than one element between every stress inten-
sity calculation. Performing the calculation every two
elements will already half the memory and computa-
tional requirements.
Taking crack length increments that are far greater
than the element size will result in inaccurate fatigue
life predictions which has a large effect on the opti-
mization results. An optimization with large incre-
ments will design a structure that preforms well at
the location where the stress intensity factors are cal-
culated and neglect the rest. Figure 9.6a the result
of an optimization with a crack increment of 25 el-
ements is shown. A more accurate FEA with used
crack increments of 1 element was run. The area un-
der the dN/d curves in fig. 9.6b of the smaller crack
increments is lower. This proves that taking to large
increments will lead to degenerate designs of with
performance is overestimated by the optimization.
From experience a crack increment of two elements
can always be used without any artifacts appearing.
This is also why the lines shown in figs. 9.8 to 9.10 are
generated by calculating the stress intensity values
every two elements.
Improving the computational efficiency should be

a)

crack start
 = 28 mm

crack end
 = 80 mm

b)

crack tip
 = 36 mm

c)

crack tip
 = 60 mm

Figure 9.7: Comparing geometries of fatigue life
and stress intensity maximization, where a) shows a
fatigue life optimization, while b)&c) are results of

stress intensity minimization.

a major focus before expanding the capabilities to
higher resolution or 3D problems. One could con-
sider improving the currently algorithm by using ef-
ficient FE problem solvers [49] and creating a paral-
lel implementation [93] with for example the PETSc
framework3. Another solution to reduce the compu-
tational requirement is to reduce the amount of FEA
that need to be performed, for example by replac-
ing themwithmore simple algebraic approximations.
B. Herremans showed that an algebraic approxima-
tion of the fatigue performance could replace the FE
model used in optimization algorithm, wile retaining
accuracy. The original model (developed by J. Lu
[12]) was to slow for high resolution problem, while
the improved version could be run in a matter of sec-
onds [71].

9.2.2 Results and comparison

When comparing a fatigue life maximization to stress
intensity minimization results, surprising conclusions
can be drawn. The fatigue life optimization result dis-
cussed in this section maximizes the amount of cy-
cles required for a crack to grow from 28 to 80 mm.
This was compared to a stress intensity minimiza-
tion for a short crack and a long crack, with a crack

3Look for an example at TopOpt_in_PETSc or [94].

http://www.topopt.mek.dtu.dk/Apps-and-software/Large-scale-topology-optimization-code-using-PETSc
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Figure 9.8: Comparing stress intensity as a function of crack length of fatigue life optimization results.
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Figure 9.9: Comparing crack growth rate as a function of crack length of fatigue life optimization results.
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Figure 9.10: Comparing crack growth rate as a function of crack length of fatigue life optimization results.
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tip at 36 and 60 mm respectively. For all these op-
timizations the local thickness was limited between
1 ≤ Xe ≤ 2 with a resource constrain of 1.1. The ge-
ometries that where obtained from these optimiza-
tions are shown in fig. 9.7.

The final geometry of a fatigue life optimization has
the same type of features that were observed in
stress intensity minimization results. The fringing
patterns, plateau and increased edge thickness do
appear, although the plateau is a bit more stretched
out. The plateau starts approximately 31 mm from
the load introduction. A location close to that of the
crack tip at the first increment. In the dN/d graph,
fig. 9.10, this is also the location where a peak is ob-
served.

The optimization seems to favor increasing fatigue
resistance of the first crack increments over improv-
ing the performance for longer cracks. This causes
the fatigue life maximized geometry in fig. 9.7a to
be most similar to the stress intensity minimization
with the short crack  = 36 mm of fig. 9.7b. The
only clear difference between the stress intensity or
dN/d graphs, figs. 9.8 and 9.10, is that the fatigue
life optimization has the minimal stress intensity at
an even shorter crack length.

Fatigue life is impacted more by the performance of
the first crack length increments because the crack
growth is slowest when  is small. This means that
the crack tip stays longer in the area influenced by a
feature such as a plateau. Besides reducing a low
stress intensity factor has more impact that a rel-
atively equal reduction for a higher stress intensity
value, the difference is caused by the power in the
Paris-Erdogan formula. This difference can be ob-
served when the stress intensity graph, fig. 9.8, and
dN/d graph, fig. 9.10, are compared. These effects
are both amplified by the combined tension-bending
behavior of the CT specimen. This causes the driv-
ing force and stress intensity factor to more steeply
with crack length than for a load case that is tension
dominated only.

These arguments do also explain the difference in fa-
tigue life of the stress intensity minimization of short
and long cracks (geometries shown in fig. 9.7b and
fig. 9.7c). Figure 9.11 clearly shows that the fatigue
life of the geometry with the stress intensity mini-
mized for a crack of 36 mm is larger than that of the
one optimized with the crack length  = 60 mm.

Most surprising is that the fatigue life of a geometry
with a minimal stress intensity for  = 36mm is com-
parable to the fatigue life optimized one. A stress in-
tensitymaximization with the crack tip placed 31mm
from the load introduction performed even better. Its
fatigue life was just a couple of percentage smaller
than that of the fatigue life maximized design. While
the fatigue life of the stress intensity minimization
with the long crack,  = 60 mm, is almost compa-
rable to that of the flat reference plate. Even a flat
plate of the same weight performs better.

It is hypothesized that crack steering needs to be al-
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Figure 9.11: Performance comparison between
fatigue life and stress intensity optimization.

lowed before fatigue life maximization outperforms
stress intensity minimization significantly. Because
the increase in computational effort, it is recom-
mencement to not use the fatigue life maximization
implementation. Running a stress intensity optimiza-
tion with the crack tip positioned at the first incre-
ment will lead to a structure that performs well for a
fraction of the computational time.



Chapter 10

Designing discrete parts

The algorithm can design discrete parts such that the
stress intensity at the crack tip is minimized. The dif-
ference with the previous chapter on variable thick-
ness plate optimization is that the final geometries
of this chapter are discrete, locally either having ma-
terial or no material. Forcing the optimization into a
discrete design was done by setting the SIMP penal-
ization factor to p = 3, while the local density was
constraint with 0 ≤ Xe ≤ 1. When interpreting the re-
sults a 1 means that material is present and a 0 that
the location is void.

To avoid checkerboard patterns a density filter was
used. This causes gray scale areas to appear there
where material borders empty areas. Because dis-
crete designs are the objective, these gray areas
have to be removed. This was achieved by altering
the optimization settings in the last 200 iterations,
the filter size was gradually reduced while the penal-
isation factor was increased to 4.

Two different cases are optimized for; the free and
the infill design case. A description of the optimiza-
tion settings for both cases is available in appendix A,
which does also explain how the two cases are differ-
ent. After sections 10.1 and 10.2 on stress intensity
minimization, a small discussion about the difficul-
ties of fatigue life maximization for discrete geome-
tries will follow in section 10.3.

10.1 Free design

In the free design case the algorithm can distribute
the mass throughout the entire design domain. The
main problem of this optimization is that the final
design deviates far from the initial one, which is a
flat plate. This means that the stress state without
crack will also change. If the stress state of the de-
sign without crack is different from the initial one the
crack might initiate at another location making the
optimization obsolete. The results of this optimiza-
tion is interesting, because it gives insight to what
the model determines as optimal in these extremely
unconstrained conditions.

The optimizations in this section are following the
compact tension specimen load case extensively dis-
cussed in the previous chapters. Some differences
do exist, the SIMP penalization factor p = 3 and the
local density is constraint between 0 and 1

a)

b)

Up
Down

0

Up

Down

c)

Figure 10.2: Optimized geometry without a base
structure resulting in compliance mechanisms,
where a) shows a optimized geometry for b) the
displacement direction and c) the area where

around the crack tip.

These discrete optimizations without a base geome-
try results in a design with characteristics of compli-
ance mechanisms. In fig. 10.2 an optimized geom-
etry is shown, of this geometry the y displacement
just before the crack tip is negative. This means that
it moves down, ‘closing’ the crack. This mechanism
operates by elastic deformation instead of rigid body
movement, in which it is similar to compliance de-
signs, discussed by T. Bruns and D. Tortorelli [60], or
tHIhe MEMS actuator optimization examined by O.
Sigmund [64, 65].

Before running the optimizations, the hypothesis was
that the optimized geometry would disconnect the
crack tip from the load introduction. As creating an
alternative load path would reduce the stress inten-

48
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a)

b)

Figure 10.3: Optimized geometries without a base
structure are sensitive to changes in the moving
limit. The optimizations had a limit set to a) 1 and

b) 0.125 which result in different designs.

sity at the crack tip to zero. These geometries did not
appear however as these compliance mechanisms
perform even better. The downward movement just
before the crack tip will cause negative stress inten-
sity factors.

A downward displacement along the crack is impos-
sible, the material will come in contact with what is
on the opposite side of the crack/symmetry axis. The
model allows for these downward displacements be-
cause it lacks contact laws.

Nevertheless, these geometries would still perform
well when contact is included. The contact causes
the stresses around the crack tip to be compressive,
which means that the crack tip is closed. In a closed
crack purely compressive stresses will not cause any
fatigue propagation, as the stress can be transferred
from one side of the crack to the other without any
effect of the singularity.

This does not mean that the designs obtained are
optimal, as several weaknesses can be found in the
model. Solutions to these problems need to be found
before optimizing discrete structures that should be
used in reality:

1. The crackmight not initiate at the assumed loca-
tion, because the stresses in the final design are
very different from the initial one. This causes
the optimization maximize the wrong objective.

2. These compliance mechanisms violate the as-
sumption of small deformation because the ge-
ometry is designed to have large displacements.
A geometrically non-linear FEA should be used.

Besides these issues it was surprising to see that the
choice of moving limit has a large effect on the re-
sults. Its affect can be seen in fig. 10.3 where the
resulting geometry of two simulations is shown. The

only difference between them is the moving limit,
a property which has no influence on the physical
meaning of the problem. Its impact is on the imple-
mentation of the update-scheme only. The effect of
moving limit changes on variable thickness plate op-
timization was small.

This setting limits the density change within an iter-
ation. For large moving limits, not the moving limit
but the asymptotic behavior of the MMA or the max-
imum/minimum density will be limiting the density
changes. This means that a simulation with a tight
moving limit will require more iterations to converge
as smaller changes can bemade per iteration. Some-
times optimization with differing moving limits will
converge to solutions in different local minima. Sur-
prising is, that the impact of this is much larger on
the discrete optimizations than the variable thick-
ness ones.

No investigation into why the optimization becomes
so sensitive to the moving limit was performed, as it
did not fall within the scope of this thesis. An investi-
gation in this matter could lead to better understand-
ing of the optimization method, its limitations and its
interaction with the physical problem at hand.

10.2 Honeycomb infill

Designing an infill that is within an existing structure
will have less of an impact on the stresses of the de-
sign. This makes infills less likely to violate the as-
sumption that a crack initiates at the predicted loca-
tion than the free design version.

Topology optimization is commonly used at the start
of the design process to obtain concepts. The opti-
mization results are then processed by an engineer
so that it satisfies all requirements which where not
taken in account by the algorithm.

This is different from the reinforcement method pre-
sented in this section. Here discussion is about re-
inforcing an existing design by adding extra features
with an extra mass budget. The base geometry can
be anything, for example, an existing part or a stress
minimization result. Similar to normal topology opti-
mization, the optimal design needs to be post pro-
cessed. An engineer needs to alter the design so
that it meets other requirements or manufacturing
constraints.

This means that before running any optimization the
base structure needs to be generated. A compact
tension specimen with a honeycomb meta-material
was used as a base design where the performance
was improved by the optimization algorithm. Con-
verting the honeycomb base geometry to a discrete
version causes not only raged edges but also a
change in volume fraction. This can also be observed
when comparing figs. 10.4a and 10.4b. The courser
the discretization the larger the differences with re-
spect to the original base structure are. This was
why a mesh of a high resolution, 1000 by 480 el-
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a)

b)

c)

Figure 10.4: A honeycomb infill optimization and its
base geometry. a) a base structure with volume

fraction of 0.33, b) the discretized one, which due to
rounding has a fraction of 0.30 and c) the

optimization result shown has a fraction of 0.33.

ements, was used. The crack tip was moved a bit
further away as the tip should be placed at a loca-
tion with material. The tip was positioned there were
the first ligament of the honeycomb was found after
 = 60 mm (/W = 0.375).

Honeycomb structures are anisotropic and multiple
directions can be found. Two basic orientations were
distinguished in this thesis, one with struts horizon-
tal and one with struts vertical. Other orientations
and its impact on fracture toughness are discussed
by F. Lipperman, M. Rynvkin and M. B. Fuchs [95].
Figure 10.5 shows optimization results for these dif-
ferent orientations. The geometry in the top figure
causes crack tip compression whereas the bottom
one results in a stress intensity value that is close
to zero. This demonstrate that orientation of honey-
combs has an impact on the damage tolerance of the
structure, even after infill optimization.

Significant improvements can be obtained, not only
for the honeycombs designs discussed here, but for
cellular solids in general. Compliance mechanisms
that close the crack tip are observed. Adding a bit of
mass is already enough, just increasing the volume
fraction from 0.3 to 0.33, will cause the crack tip to
close. Little extra material is required because these
structures are very flexible on a local scale. These

a)

b)

Figure 10.5: Optimization of honeycomb infill with
different base structure orientation, a) one with
vertical struts and b) one with horizontal struts.

cellular solids might be strong and stiff when looking
at a large scale, but on a small scale the structure is
compliant. This means that the stress intensity fac-
tor, a property of the local response around the crack
tip, can be changed significantly.

This crack closure will increase the loads of the lig-
aments further in front, which will cause them to
break before the crack tip ligament. This is similar
to crack bridging which is known to improve the frac-
ture toughness of materials such as bone [96], nacre
[97], metal matrix composites [98], fiber composites
[99] and many others.

10.3 Fatigue life problems

Fatigue life maximization of discrete structures is not
possible with the current algorithm. Because of two
reasons; stress intensity values at less than dense
areas and crack initiation.

If the elements around the crack tip have a density
value other than zero, the values of stress intensity
cannot be calculated. This is caused by one of the
current implementation limitations of these enriched
elements. As mentioned in section 6.4, the thick-
ness of an element at the crack tip must be unity. A
discrete fatigue life optimization algorithm will try to
place or remove material, also along the crack path.
This would create voids or intermediate density val-
ues at a location where stress intensity calculations
are performed which results in errors.

This problem does not exist when the optimization
tries to reinforce a part were the crack path stays
within an area with material. This is clearly not the
case for the fully free and honeycomb designs dis-
cussed in this section.
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The second problem is that themodel presented can-
not predict fatigue crack initiation, as that is not
based upon stress intensity factors. The crack needs
to reinitiate at every void it encounters, which can
greatly increase the fatigue life. This initiation pe-
riod can be quite significant and is the reason that
honeycomb geometries are so fatigue resistant. The
good fatigue performance of the cellular solids lay in
the fact that reinitiation of the crack is required at
every ligament.
A honeycomb infill optimization for fatigue life maxi-
mization should be based upon stress concentration
instead of stress intensity factor minimization. The
formulation of the algorithm could be similar to the
one presented in this thesis, where the objective is
to maximize the amount of cycles for the crack to
propagate. For each ligament the amount of cycles
for failure needs to be calculated by:
1. Calculating the stresses of the critical ligament.
2. Using the Wöhler curve equation to calculate the
amount of cycles the ligament holds.

3. Breaking the ligament in question.
An attempt to maximizing the fracture resistance,
not fatigue life, of honeycomb infill typologies can be
made by altering the algorithm proposed by L. Xia, D.
Ba and J. Yvonnet [75]. Their “Topology optimization
for maximizing the fracture resistance of quasi-brittle
composites” maximizes the fracture energy of the bi-
material composite by distributing an inclusionmate-
rial. Changing it from a bi-material model to an algo-
rithm that considers one material with voids should
be possible.





Part III

Conclusion, Discussion &
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Chapter 11

Discussion and conclusion

This thesis explored the opportunities that topol-
ogy optimization (TO) offers to design fatigue crack
growth resisting geometries. Hence, algorithms for
stress intensity factor minimization and fatigue crack
growth life maximization were developed. Physical
tests were performed to verify the accuracy of the
algorithms. While the performance of the algorithms
was explored with examples.

The novelty of the method presented in this thesis is
the combination of a FE crack tip enrichment tech-
nique and a topology optimization algorithm. The
crack tip element enrichment method allows one to
calculate the stress intensity factors directly from the
FEA. This reduces the complexity of the optimization
which results in a shorter the computational time and
cost.

This method and the way it was implemented in a
python program required several assumptions. The
most important assumptions will be introduced be-
fore discussing the results,
• the crack path is known beforehand,
• the crack path will not cross elements,
• the crack tip is positioned at a node, and
• the enriched crack tip element thickness cannot
change.

11.1 Finite element enrichment

The enriched FEA was based upon the method pre-
sented by S.E. Benzley [31] and L.N. Gifford [32].
It can model the discrete behavior at the crack tip
by enriching a bicubic serendipity element, where
the crack tip displacement field was derived with the
Westergaard function method [33]. As a result the
stress intensity factors K and K become degrees of
freedom in the FEA. This means that solving the lin-
ear elastic FE problem directly calculates the stress
intensity factors.

The implementation in this thesis assumes that the
crack path is along element borders and that the
crack tip is positioned on a node. The benefit of this
method is that no mesh refinement around the crack
tip is required. Little remeshing is needed when the
crack increases in length. The only change required
is shifting the degrees of freedom that are related to
the enrichment.

In this thesis the implementation of this enriched

FEM was simplified. All elements beside those at
the crack tip were bilinear quadrilaterals. The higher
order elements were connected to the surrounding
ones with hanging nodes. This means that the mesh
is non-conform and that the displacement field could
potentially become discontinuous.

To validate the FEM, its enrichment and implemen-
tation, two steps were performed: Firstly, the results
of the FE method were compared to algebraic results
obtained from literature. Secondly, final geometries
from optimizations were physically tested.

From the first step it was concluded that the stress
intensity results of the FE enrichment method were
accurate. At a converged mesh, the stress intensity
factors of the compact tension, single and double
edge crack specimens, were within 2 percent of their
algebraic solutions.

In the second step the elastic response of the op-
timized geometries was predicted accurately. The
fracture load was not, the FEA underestimated it.
This fracture load is inversely proportional to the
stress intensity factor. That specimens outper-
formed the predictions was most likely caused by
a manufacturing inaccuracy. The stereolithography
printer that build the part, made the thickness at the
crack tip too large.

During these two validation steps, the following prob-
lems were encountered:

• Refining themesh causes themodel to represent
a physically larger part, because the model does
not transform from a local element to the global
system. This changes the stress intensity factor
as it is dependent on specimen size.

• The stress intensity factors required a finermesh
to converge in the implementation used in this
thesis than in the enriched crack tip element lit-
erature. This is most likely caused by the hang-
ing nodes in the mesh.

• The fracture load inaccuracy was caused by the
crack tip element thickness. In the model this
thickness was constraint to one while all sur-
rounding elements where thicker, manufactur-
ing this was impossible.

Despite these problems the enriched crack tip FE
method could be used to calculate the stress inten-
sity factors.
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a) Variable thickness problem. b) Discrete problem. c) Honeycomb infill problem.

Figure 11.1: Three diferent types of optimizations were used for the evaluation and validation.

11.2 Stress intensity factor mini-
mization

A stress intensity factor (SIF) minimization algorithm
was developed. It used the enriched FEM to calcu-
late the stress intensity factors. The sensitivity of
the SIF to the design variables was calculated with an
adjoint formulation. The local approximation and up-
date scheme were based upon the method of moving
asymptotes and a density filter was used to enforce
checkerboard free designs.

The SIF minimization was performed with three dif-
ferent kinds of compact tension specimens.

• A variable thickness plate optimization where
the design variables are the local thicknesses.
The local thickness is constraint between a min-
imum and maximum. The result of such an op-
timization can be found in fig. 11.1a.

• A discrete optimization in which material is dis-
tributed throughout the design space. Here the
SIMP penalization method is used to obtain a de-
sign that is discrete, as is shown in fig. 11.1b

• An infill optimization case which is similar to the
discrete optimization problem. Here material is
added to an existing geometry, while the exist-
ing geometry cannot be altered. Figure 11.1c
shows how extra mass is distributed in a honey-
comb base structure.

The evaluation of the optimization started with the
variable thickness plate optimization. When the al-
gorithm calculates the local plate thickness the re-
sults have a 20 to 40 percent lower stress intensity
factor than plates of the same weight.

It was shown that increasing the amount of material
available did not always result in better performing
structures. This was already hypothesized and inval-
idates some reference studies. In those reference
studies an algorithm was described, which assumed
that (localy) adding material will result in better per-
formance. This assumption is incorrect, because the
optimization did not always use all material avail-
able. In those cases the resulting geometry reduced
the thickness between the crack tip and load intro-
duction. This will attract less load to the crack tip,
reducing the stress intensity factor.

When designing discrete geometries, it was ob-
served that the optimized geometries cause crack
closure. The designs that appear are compliant
mechanisms, which cause the crack tip to be com-
pressed as much as possible, resulting in negative
stress intensity factors. These compliance designs
are more optimal than a geometry that avoids the
crack tip and creates an alternative load path.

The assumed crack tip location, which was deter-
mined in advance, is most likely violated however.
The stress distribution of these discrete designs is
vastly different from the flat plate from which the
crack tip location was derived. It is therefore unlikely
that the crack would initiate at the location originally
assumed. This means that the optimization mini-
mizes the SIF of a crack that will not initiate and ap-
pear. Optimizing geometries this way will not lead to
fracture resilient designs.

The third kind of SIF minimization attempted to de-
sign a discrete infill that would increase the frac-
ture resistance of a honeycomb meta-material. It
became apparent that these optimization techniques
can cause great changes in the fracture mechanisms
of these meta-materials. The algorithm utilizes that
the local (deformation) behavior, that of one liga-
ment, can easily be changed. The honeycomb ma-
terial might be strong or stiff on a large scale, but
reducing tension in the one ligament at the crack tip
does not require much change to the overall geom-
etry. For some cases increasing the volume fraction
from 0.3, honeycomb only, to 0.33, honeycomb with
infill, could cause crack closure mechanisms to ap-
pear already.

11.3 Fatigue crack growth life
maximization

The fatigue crack growth life (FCGL) predictions
were based upon a discrete summation of the Paris-
Erdogan rule. This means that stress intensity fac-
tors need to be calculated for the crack at different
lengths (crack increments). The design sensitivities
were then derived and expressed in some summa-
tion of the stress intensity factor sensitivities.

The current implementation of the algorithm requires
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the crack path to be known in advance. In general
the crack path depends on the actual topology, caus-
ing it to change every iteration when the design is
updated. This makes it impossible to determine the
crack path before running the optimization, limiting
the applicability of this optimization algorithm. The
crack path for the symmetric compact tension speci-
men can be determined before running the FEA, as it
is straight. Hence, optimizing the variable thickness
compact tension specimen was possible.

The FCGL of optimized variable thickness plates out-
perform flat specimens of the same weight by two
times. That improvements of 100 percent can be
reached, is caused by the power in the Paris rule. A
small reduction in a stress intensity factor will cause
the crack growth to slow down significantly.

The computational effort required to perform this fa-
tigue life maximization is large. To determine the
FCGL, several FEA have to be run, namely one to
determine the stress intensity factor of each crack
increment. The optimization algorithm requires the
sensitivity values, which adds an extra FEA per crack
increment. As a result, the maximization of the FCGL
requires a multitude of the number of computations
when comparing it to stress intensity factor mini-
mization.

The FCGL maximization offers little improvement
compared to the stress intensity minimization. This
was shown by comparing the FCGL of a stress inten-
sity minimized and a FCGL maximized part. Here the
crack length of the stress intensity minimization was
set equal to that of the starting crack length of FCGL
analysis. The difference in FCGL was small.

It was hypothesized that large improvements in FCGL
will only be obtained when crack steering is imple-
mented. However, this would require an optimiza-
tion algorithm that considers the crack path direc-
tion. Making such an algorithm would require the
implementation of a FEM where the crack path and
tip can be anywhere and a sensitivity expression that
includes the crack path dependency.

11.4 Discussion

The goal of this research was to explore the com-
bination of topology optimization and the design of
fatigue tolerant structures. It is the authors believe
that better structures can be designed with the sup-
port of this type of algorithm. The resulting designs
will outperform those that were designed with the
traditional methods. Optimization leads to lighter
constructions and longer inspection intervals, reduc-
ing the costs and environmental footprint.

Optimization is not so simple that a good design ap-
pears with the push of a button. The optimization
needs to be set up carefully, putting rubbish in re-
sults in rubbish coming out. These algorithms do not
produce final designs. Interpreting the results into
a real design is required because the topology has;

ragged edges and areas where it is unclear whether
material is assigned or not. Optimization results can
be used as inspiration or an initial design.
Two points need special attention when the results of
the algorithms discussed in this thesis are processed;
the crack tip location assumption and the existence
of other failure modes.
It can be difficult to identify the crack tip location be-
fore starting the optimization, because the initiation
and crack growth direction are influenced by the ac-
tual topology, which is still unknown beforehand. Af-
ter running the optimization, the user is required to
verify that the crack initiates at the assumed loca-
tion.
The algorithm uses stress intensity factors only, no
other requirements or failure modes are considered.
The resulting designsmight fail in failuremodes, long
before fatigue becomes critical. The design must be
improved such that it will satisfy all other require-
ments. Example requirements are ultimate strength,
stiffness and manufacturability.

11.5 Conclusion

The stess intensity minimization algorithm devel-
oped in this thesis performs well. It was proven that
the crack tip enrichment method is accurate and that
implementing it into topology optimization schemes
is possible.
The method works best for the design of variable
thickness plates, even when considering the as-
sumptions mentioned before. It was proven that
stress intensity factors can be reduced by 30 to 40
percent by using the TO algorithm. Designing dis-
crete parts, allowing material do be distributed any-
where, is problematic. These geometries are so dif-
ferent from the original design that the crack will not
initiate at locations originally assumed. This is in con-
flict with the crack path and crack tip assumptions.
Using the algorithm to design an infill geometry of
a honeycomb meta-material is very promising. Be-
cause of flexibility on a local scale, large improve-
ments can be made for a very low weight penalty.
The fatigue crack growth life maximization algorithm
works, but only for very specific cases. That the
crack path needs to be predetermined does limit the
applicability. This means that the optimization is un-
able to steer the crack. Crack steering could force
the crack into a direction of reduced growth, result-
ing in better performing designs.
The potential of fatigue crack growth life maximiza-
tion algorithms is large. It was show that, even in its
current state, a variable thickness compact tension
specimen can easily resist double the amount of load
cycles than a flat specimen of the same weight. An
improved formulation that can steer the crack might
prove to be even more effective.



Chapter 12

Recommendations and future work

This thesis showed that it is possible to optimize
structures to be fatigue resilient from a damage tol-
erance perspective. The algorithms developed for
this thesis were used to explore the possibilities that
this type of optimization offers. The algorithms and
implementations are imperfect and several improve-
ments can be made. These improvements would al-
low for the optimization of a larger variety of struc-
tures, resulting in an increase of the computational
efficiency and a better optimization framework. Is-
sues for with the solutions are straight forward or
readily available, can be found in section 12.1.

Exploring the opportunities of topology optimization
resulted in the discovery of several new research op-
portunities. These opportunities, discussed in sec-
tion 12.2, differ from the recommendations because
it is yet unclear how to reach their objectives. They
could prove to greatly improve current damage toler-
ance optimization algorithms and result in more re-
silient designs.

12.1 Recommendations

The recommendations presented here should im-
prove the capabilities of the algorithms when opti-
mizing variable thickness plates. It shortly discusses
its importance followed by a possible solution.

12.1.1 Improving the FEA

A coordinate system transformation between
the local element and the global coordinates would
simplify FEA mesh refinement studies. At the mo-
ment all elements have a size of 2×2 length units.
Refining the mesh will increase the physical size of
the part that is represented by the model. As stress
intensity factors are dependent on the actual size,
the results need to be scaled. The scaling method
that is currently used, see section 8.1, cannot be
used when the geometries are too complex. Adding
a coordinate system transformation would be a more
fundamental solution. Implementing this transfor-
mation would require one to perform actual (reduced
Gaussian) integration when calculating the trans-
formed element stiffness matrix.

Bicubic elements throughout the entire mesh will
solve the hanging node issue, creating a conform-

ing mesh. This would increase the accuracy of the
FEA, reducing the amount of elements required for
the stress intensity to converge with mesh size. The
increased computational cost related to the increas-
ing element order can be countered with the multi
resolution optimization algorithm discussed below.

Crack(tip) inside elements would allow for a more
flexible calculation of stress intensity values. Cur-
rently, the crack must be along element borders and
the tip at a nodal location. Combining the crack tip
enrichment method [31, 32, 80, 86, 100, 101] and
XFEM [102] is proposed. An example of such a com-
bination was developed by X.Y. Liu, Q.Z. Xiao and B.L.
Karihaloo [35].

An efficient FE solver will reduce the computa-
tional time required by the optimization. The cur-
rent solver is fast enough for the stress intensity min-
imization, which is optimized in a couple of hours,
but is too slow for high resolution images, 3D prob-
lems or fatigue crack growth life optimizations. Im-
plementing a multigrid conjugate gradient method
will significantly reduce the amount of computations
required [50]. Adopting iterative solvers for topology
optimization specifically [51], can improve the effi-
ciency even more. Such an efficient MG-cg method
for topology optimization is discuses by O. Amir, N.
Aage and B.S. Lazarov [49]. Other methods to im-
prove the computational efficiency include, using a
parallel framework [93, 103] such as PETSc [94] or
approximations instead of the FEA [52, 71].

12.1.2 Improving the optimization

Higher order multi resolution optimization will
increase the computational efficiency [104–106]. It
has a finer design variables mesh than the FE mesh
does [107, 108]. J. Groen, M. Langelaar, O. Sigmund
and M. Ruess [81] found that using bicubic Legen-
dre elements combined with 5×5 design variables
per element is most efficient for 2D problems. This
improvement can be used in combination with the
one that proposed to use bicubic elements through-
out the entire mesh. Be aware that in this thesis
serendipity elements were used, whereas this multi-
resolution scheme requires the use of Legendre ele-
ments.

Better filtering strategies will remove some ar-
tifacts that appear because of the density filtering
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technique that the algorithms uses. A. Clausen and
E. Andreassen criticized the basic sensitivity or den-
sity filter because of the use of homogeneous Neu-
mann boundary conditions. They propose to use a
padding around the design domain to get rid of these
boundary effects [88].

A variable crack tip thickness could significantly
improve the results of the FCGL maximization of vari-
able thickness plates. It was shown that patterns of
increased and decreased thickness on the crack path
can increase the fatigue crack growth life of plates
[12, 71]. Implementing variable crack tip thickness
requires deriving ∂Ke/∂Xe for the enriched crack tip
element suffices. But there is a high risk that the op-
timization results in invalid or unwanted geometries.
Allowing the crack tip to be optimized might result
in the total removal of material at the crack tip ele-
ment. Properly constraining the crack tip thickness
can solve this.

Adding a compliance constraint to the discrete
optimization problems can be used to obtain more
rigid designs. The discrete designs obtained in this
thesis are not useful in normal design cases, they are
to compliant. Z. Kang, P. Liu and M. Li [13] showed
that stiffer designs can be obtained when the op-
timization considers the compliance. Adding (end-
)compliance to the optimization can most easily be
achieved by adding it as a constraint to the MMA up-
date scheme.

Constraining the crack initiation location would
eliminate the need to verify whether the crack initi-
ated at the assumed location. This could be achieved
by constraining the stresses locally [109–112]. This
constraint is imposed on the topology without a
crack. Relaxing the constraint at one location will
lead to a design where the crack initiates at that loca-
tion, because of the locally increased stresses.1 Dif-
ficulties can be expected during the implementation
of these constraints. Due to the local behavior these
stress constraints are notoriously computational de-
manding and can even be unstable.

12.2 Future work

Based upon the experience obtained during this the-
sis three topics which require further investigation
were identified. Their objective and need will be de-
scribed in detail. The proposals will, if possible, ad-
vice on methods and point to literature available to
solve problems that are likely to be encountered.

1Regarding stress minimization in general, these algo-
rithms cause fatigue crack initiation to be equally unlikely
in all places. Hence, the entire part has to be inspected
instead of just the critical location. This would cause the
duration of the inspection to increase, resulting in higher
inspection costs and vehicle unavailability.

12.2.1 Extensive validation

One of the most obvious spin-offs would be to study
the performance of this algorithm when optimizing
for real design cases. This thesis focused on compact
tension specimens solely. Working on other struc-
tures could provide new insights. Performing this ex-
tensive validation on SIF minimized variable plates
is recommended. Because the SIF algorithm for vari-
able thickness plates is most mature of all options
presented in this thesis.

Special attention should be given to the validation of
the fatigue crack initiation location. The algorithm
has the crack set at a predetermined location. Its
solution would be meaningless if in reality the op-
timized geometry will not have a crack propagate
over that location. One could perform tests or calcu-
late the stress field of optimized geometries without
a crack and determine where the crack initiated. See
for example the work of Z. Kang, P. Liu and M. Li [13].

The work of Z. Kang [13] describes an algorithm
that minimizes both compliance and strain energy
release rate for the discrete designs. Including com-
pliance in the optimization causes the final designs
to be more useful for structural applications. Adding
compliance as an objective or constraint to the SIF
minimization could result in similar designs. Due
to the isotropic linear elastic fracture mechanics as-
sumptions, the strain energy release rate and SIF are
related to each other by material properties. That
the goal is physically equivalent does not necessar-
ily mean that the same results are obtained. Com-
paring the results of a SIF algorithm that considers
compliance to those of Z. Kang could provide valu-
able insight. It would show the impact of a different
mathematical representation for optimization with a
physically equivalent objective.

Studying how sensitive the SIF would be if the crack
tip were to deviate a bit fromwhere it was assumed is
advised. In two structures of the same design (small)
variations in initiation and propagation of cracks can
exist. This variation can come from; use, manufac-
turing differences and up to a certain extent even
from stochastic phenomena. Hence, it would be un-
likely for a crack to end up exactly there were pre-
dicted.

Using the optimization on real parts will also provide
feedback to what improvements should be made.
This will not only cause the algorithm to mature
faster but also provide us with better understanding
on its performance and capabilities.

12.2.2 Path independent formulation

One of the main drawbacks of the fatigue crack
growth life maximization algorithm for variable thick-
ness plates presented in this thesis, is that it is not
crack-path independent. The results would be invalid
if the crack path does not propagate through the op-
timal geometry as was originally assumed. This also
means that it does not consider any crack steering
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features. Allowing this crack steering could result in
designs that perform significantly better.

There are twomain directions leading to an algorithm
that takes the path dependency into account. Both
options have one thing in common; the entire frac-
ture process needs to be seen as one problem. This
in is contrast with the implementation of this thesis,
where the FCGL problem is seen as a summation of
the inverse crack growth rate.

The first option is using a non-local damage model.
This is most similar to examples of topology opti-
mization that solve the path dependency problem.
Both the algorithms of K.A. James and H. Waisman
[66] and that of L. Xia, D. Da and J. Yvonnet [75] use
some type of local damage model. The main diffi-
culty is in the calculation of the adjoint formulation
of the sensitivities, but it is shown that it can be de-
rived [113–115].

Another method would be to consider a local damage
model, such as the Paris rule. One could try to maxi-
mize the amount of load cycles, before the stress in-
tensity or strain energy release rate reaches a critical
value. This type of implementation would require a
FEA that allows cracks to cross elements and a crack
tip that can be positioned anywhere. To reduce the
complexity, it is recommended to use a model that
can calculate the crack growth magnitude and direc-
tion with a formulation that is as concise as possible.
For example, one could think of an XFEM formulation
with a direct stress intensity calculation [35] and a
mixed-mode crack propagation criterium [116, sec.
5.2]. Similar to the non-local damage methods, the
main difficultly would be the adjoint equation deriva-
tion which allows for an efficient calculation of the
sensitivities.

Implementing some of the recommendations pre-
sented in the previous section would be beneficial to
both the local and non-local methods. Both methods
will cause the computational effort to rise. Reduc-
ing the computational complexity can be achieved
by implementing an efficient FE solver and higher
order elements with a multi-resolution optimization
method. Besides, creating a code where the thick-
ness at the crack(tips) can vary is required as the
crack tip can be positioned anywhere in this im-
proved FCGL maximization algorithm.

12.2.3 Meta-material infill optimization

One of the problems studied in this thesis was stress
intensity factor minimization for the infill of a honey-
comb meta-material. The optimization results were
promising. Changing the local behavior requires lit-
tle extra material, while it had a large impact on the
stress intensity factor. The problem was that the fa-
tigue crack growth of these mata-materials cannot
be described with the Paris rule. The fatigue resis-
tance of these structures comes from the fact that
reinitiation is required when the crack grows through
a ligament.

Fatigue crack growth life optimization for infill design
of these meta-materials should be based upon a re-
peated reinitiation process. A simplified and limited
algorithm that requires the crack path to be known in
advance could be developed relatively quickly, and
would be similar to what this thesis presented. The
Paris crack growth equation should be substituted by
the Wöhler-curve, while stress intensity values need
to be replaced by the stress at the current ‘crack tip’
ligament. The amount of cycles required to break
one ligament can be calculated from the stress state
and an equation from the Wöhler-curve, for example
N =W(σ). As the ligament is now broken, one needs
to compute the number of cycles that the next lig-
ament, crack increment, can withstand. In the end,
the total fatigue life can be calculated with a summa-
tion of these ligaments breaking N =

∑
N, the sen-

sitivities can be derived from some type of summa-
tion of the sensitivities to the stresses at the different
crack increments.
This method has the same problem as the FCGLmax-
imization, namely the crack path needs to be pre-
determined and crack steering is not allowed. Cre-
ating a path independent method would be an im-
proved formulation that is applicable to more (com-
plex) design cases. One could consider an accumula-
tive damage progressive failure model. An example
of this is using a combination of Wöhler curve equa-
tions and the Miner’s rule. The stiffness of an ele-
ment should be reduced when the Miner’s equation
reaches one.
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Appendix A

Optimization settings

The differences between the variable thickness
plate, discrete and infill stress intensity factor min-
imization problems are discussed in this appendix.
The objective of these problems are introduced and
the settings of example optimizations will be dis-
cussed. Attention will be given to the differences
between the problems, as they are caused by small
changes in the settings.

A.1 Variable thickness plate

As the name suggests the goal is to obtain the de-
sign of a plate. It considers how to reinforce a flat
reference plate. It will add material to the plate to
improve its performance, by increasing the thickness
locally. The local thicknesses are the design and op-
timization variables.

The model assumes that the element stiffness is di-
rectly proportionality to the local thickness. It will
add material to an element to increase its stiffness.
The local thickness can not be thinner than the ref-
erence plate, hence the minimum thickness is con-
straint with Xmin = 1. A maximum local thickness
constraint (Xmx) was introduced to ensure that the
part cannot become too thick. Setting the maximum

thickness to two will allow the algorithm to design
parts that are locally twice as thick as the reference
plate.
In this optimization the volume fraction is used as
a material constraint. It is relative to the amount
of material of the reference plate. For the exam-
ple case, table A.1, a volume fraction of 110% and a
maximum thickness of 2 were used. The designs are
allowed to use 10%moremass that the reference de-
sign. The optimization could decide to increase the
local thickness to 1.1 everywhere. It could also in-
crease the thickness of ten percent of the elements
to 2 while keeping all other elements at a thickness
of 1.

Figure A.1: Variable thickness plate optimization CT0053 result.
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Name Symbol Python Value

Material Young’s modulus E young 1
Zero stiffness Emin Emin 1 × 10−9
Poisson’s ratio ν poisson 0.3

Constraints Volume fraction V volfrac 110%
Minimum thickness Xmin density_min 1
Maximum thickness Xmx density_max 2
MMA moving limit n.a. move 0.25

Mesh Reslution  direction n.a. nelx 500
Resolution y direction n.a. nely n.a.
Crack length (elements) n.a. crack_length 250

Optimization SIMP penalty factor p penal 1
Filter type n.a. filt ‘density’
Filter radius rmin rmin 1.5
Max. number iterations n.a. loopy 5000
Convergence limit n.a. delta 0.001

Output Stress intensity itr. 1 K,1 n.a 0.2412
Stress intensity itr. 100 K,10 n.a. 0.14
Stress intensity end K ki 0.13
Iteration end n.a. itr 1900
Change of last itr. n.a. n.a. 0.001
Time (seconds) n.a. n.a. 14479

Table A.1: Input and output variables for the variable thickness plate optimization CT0053.
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A.2 Free discrete part

The discrete part optimization tries to improve the
material distribution. It solves the problemwhere the
design variables are binary either 0 (no-material) or
1 (material).

To steer the optimization to a discrete material distri-
bution a penalization scheme is used. This method
(SIMP) makes intermediate values perform unfavor-
able, hence these intermediate values are removed
by the optimization. This SIMP method requires a pe-
nalization factor of 3 or higher, while the design vari-
ables are constraint between 0 and 1.

Figure A.2 shows gray areas between the white and
black. There gray areas indicate that the design vari-
ables are in between 0 and 1. This behavior is caused
by the density filter and is unwanted. Changes in set-

tings were made during the optimization to reduce
the impact of the filters. Table A.2 shows how the
penalization factor was increased and the filter ra-
dius was decreased for the last 200 iterations. This
should reduce the amount of intermediate density el-
ements and results in a more clear design, as can be
seen by comparing figs. A.2 and A.3.

Figure A.2: Discrete optimization CT Extreme 8 at the end of the first optimization (5000 itr.).

Figure A.3: Final result of CT Extreme 8 where the filter radius is incrementally decreased.
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Name Symbol Python Value

Material Young’s modulus E young 1
Zero stiffness Emin Emin 1 × 10−9
Poisson’s ratio ν poisson 0.3

Constraints Volume fraction V volfrac 25%
Minimum thickness Xmin density_min 0
Maximum thickness Xmx density_max 1
MMA moving limit n.a. move 1

Mesh Reslution  direction n.a. nelx 500
Resolution y direction n.a. nely n.a.
Crack length (elements) n.a. crack_length 250

Optimization 1 SIMP penalty factor p penal 3
Filter type n.a. filt ‘density’
Filter radius rmin rmin 8
Max. number iterations n.a. loopy 5000
Convergence limit n.a. delta 0.001

Optimization 2 SIMP penalty factor p penal 4
Filter type n.a. filt ‘density’
Filter radius rmin rmin 4
Max. number iterations n.a. loopy +100
Convergence limit n.a. delta 0.001

Optimization 3 SIMP penalty factor p penal 4
Filter type n.a. filt ‘density’
Filter radius rmin rmin 2
Max. number iterations n.a. loopy +100
Convergence limit n.a. delta 0.001

Output Stress intensity itr. 1 K,1 n.a 4.54
Stress intensity itr. 100 K,10 n.a. -544.70
Stress intensity end K ki -7296.39
Iteration end n.a. itr 5200
Change of last itr. n.a. n.a. 0.164
Time (seconds) n.a. n.a. 50681

Table A.2: Input and output variables for the discrete optimization CT Extreme 8.
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A.3 Honeycomb infill

The honeycomb infill optimization will try to reinforce
the honeycomb base structure. The settings are sim-
ilar to the discrete optimization, because it considers
the same material or no-material distribution prob-
lem.
To ensure that the honeycomb background structure
remains intact they are introduced as passive ele-
ments. To find the location of the passive elements
a python script1 has been made. This script designs
the honeycomb background in terms of cell size, ori-
entation and volume fraction.
The only other difference is that the amount of el-
ements was increased. This was required to have
the algorithm design features inside the honeycomb
cells.

1This scrip is available on OSF [90].

Figure A.4: Honeycomb infill result.

https://osf.io/mydg2/
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Name Symbol Python Value

Material Young’s modulus E young 1
Zero stiffness Emin Emin 1 × 10−9
Poisson’s ratio ν poisson 0.3

Constraints Volume fraction V volfrac 25%
Minimum thickness Xmin density_min 0
Maximum thickness Xmx density_max 1
MMA moving limit n.a. move 1

Mesh Reslution  direction n.a. nelx 10000
Resolution y direction n.a. nely n.a.
Crack length (elements) n.a. crack_length 538

Optimization 1 SIMP penalty factor p penal 3
Filter type n.a. filt ‘density’
Filter radius rmin rmin 6
Max. number iterations n.a. loopy 5000
Convergence limit n.a. delta 0.001

Optimization 2 SIMP penalty factor p penal 3
Filter type n.a. filt ‘density’
Filter radius rmin rmin 1
Max. number iterations n.a. loopy +500
Convergence limit n.a. delta 0.001

Output Stress intensity itr. 1 K,1 n.a 1.26
Stress intensity itr. 100 K,10 n.a. 1.04
Stress intensity end K ki -0.02
Iteration end n.a. itr 2489
Change of last itr. n.a. n.a. 0.050
Time (seconds) n.a. n.a. 95888

Table A.3: Input and output variables for the honeycomb infill optimization.



Appendix B

Background information of the figures

To ensure repeatability the optimization settings and
their results where uploaded to OSF1. Table B.1 clar-
ifies what scripts were used to generate each of the
figures.

1See: https://osf.io/psr5m/.
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