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Abstract In this paper, a classical Stefan problem is
studied. It is assumed that a small, time-dependent heat
influx is present at the boundary, and that the initial val-
ues are small. By using a multiple timescales perturba-
tion approach, it is shown analytically (most likely for
the first time in the literature) how the moving interface
and its stability are influenced by the time-dependent
heat influx at the boundary and by the initial conditions.
Accurate approximations of the solution of the prob-
lemare constructed,which are valid on long timescales.
The constructed approximations turn out to agree very
well with solutions of problems for which similarity
solutions are available (in numerical form).
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1 Introduction

For more than a century, Stefan or moving boundary
problems have been studied. Originally, Stefan prob-
lems describe the phase transitions of materials, but
nowadays, it has many applications ranging from prob-
lems such as solidification of a liquid [23], formation
of a mushy area between a solid and a liquid phase
[21], three-phase transition models for gas formation
[1], heat convection in the liquid phase [20,22], dif-
fusion in glassy polymers [12,13], the dissolution of
particles in multi-component alloys [25], and to many,
many other applications. The readers are referred to the
classical books [5,7] for a more comprehensive review
of the existing variations in application of Stefan prob-
lems.

The classical Stefan problems consist of parabolic
partial differential equations with boundary conditions
given at a fixed position and at a moving position, and
with some specified conditions at an initial time. The
existence and uniqueness of a solution for such Ste-
fan problem have been proved in many mathematical
papers (see for instance [2,27]). On the other hand,
exact analytical solutions are rarely available. And
those available are usually constructed by using the
similarity method, which implies that only very spe-
cial Stefan problems are solved.

Most Stefan problems are solved approximately by
using numericalmethods (see for instance [4,10,12,13,
16,18,19,24,25]). A smaller part of the Stefan prob-

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s11071-022-07734-7&domain=pdf
http://orcid.org/0000-0001-5318-4630
http://orcid.org/0000-0002-5405-3939


A. F. Ihsan et al.

lems is approximately solved by using straightforward
perturbation expansion (see for instance [3,6,9,12,13,
15,17,26,28]). To expand the solution of the problem, a
small parameter is usually introduced in the aforemen-
tioned papers, and this choice of the small parameter
usually leads to a problem for an elliptic partial dif-
ferential equation. For such problems, arbitrary initial
conditions and arbitrary time-dependent boundary con-
ditions (given at the fixed position) cannot be included
in the approximation. In fact, one constructs a station-
ary solution for a Stefan problem with very special ini-
tial conditions and boundary conditions (at the fixed
position).

In this paper, a classical Stefan problem similar to
the ones that have been studied in [3] and in [17] is
considered and is formulated in Sect. 2 of this paper. In
[3,17], the authors used the moving boundary variable
as the time-like variable and assumed that the Stefan
number is small. In this way, the problem was refor-
mulated in a problem for a perturbed elliptic equation,
which does not permit arbitrary initial conditions. In
fact, the approach as is introduced in [3,17] starts off
from the stationary solution. This also implies that the
heat influx at the boundary cannot be an arbitrary, time-
dependent function. In this paper, we use a different
approach. First, using a transformation in the spatial
variable, we fix the moving boundary. Furthermore,
by rescaling the time variable by using a transforma-
tion which depends on the moving boundary variable,
we rewrite the system as a weakly nonlinear diffusion
equation subject to nonlinear boundary conditions and
subject to initial conditions on a fixed spatial domain.
Thus, our approach does not assume a small Stephan
number.

In contrast to [3,17] where the authors used a
straighforward, naive perturbation approach, a multi-
ple timescales perturbation method is used and applied
in Sect. 3 of this paper such that arbitrary initial con-
ditions and an arbitrary time-dependent heat inflow
at the boundary can be taken into account. Accurate
approximations of the solution of the Stefan problem
will be constructed, and it will be shown how the
initial values and the boundary heat inflow influence
the solution. The readers are referred to the classical
and standard books [8,11,14] on perturbation meth-
ods, which all explain and describe clearly how the
multiple timescales perturbation method can be used
and applied to all kinds of problems described by dif-
ferential equations. In Sect. 4 of this paper, the obtained

approximations are compared to numerical approxi-
mations of solutions which are obtained by using the
similarity method. In contrast with the approximation
constructed in [3,17] which diverges after a relatively
short time, our approximations agrees very well with
the one constructed using similarity method, on long
timescales. Finally, in Sect. 5 of this paper, we draw
some conclusions.

Some notations. Throughout this paper, we will be
using the notation: ∂η for ∂

∂η
and ∂2η for ∂2

∂η2
. Further-

more, when the function depends only on one variable,
we will be using ′ to denote the first-order derivative
with respect to the variable.

2 Formulation of the problem

Consider a semi-infinite sheet of ice which is melting.
We assume that the heat transfer is one dimensional.
This implies that the sheet of melting ice can be mod-
eled on the interval: [0,∞). Using θ as the time vari-
able, let S(θ) ∈ (0,∞) be the location of the boundary
between the solid and the liquid phase. In this paper,
we restrict our attention to the liquid phase of the melt-
ing ice. We denote the temperature of the material at
the location X ∈ [0, S(θ)) and the time θ by T (X, θ).
Then, the dynamics of this temperature profile is gov-
erned by the heat equation (or diffusion equation):

ρc∂θT (X, θ) = K∂2XT (X, θ), 0 < X < S(θ), θ > 0,

(1a)

where ρ represents the density of the material, while c
and K represent the heat capacity and the heat conduc-
tivity of the water. At the interface of the phases, that
is, at X = S(θ), the heat exchange is governed by the
so-called Stefan condition:

−K∂XT (S(θ), θ) = ρLS′(θ), (1b)

T (S(θ), θ) = Tm, (1c)

where L and Tm are the latent heat and melting temper-
ature of the material, respectively. For the other bound-
ary condition at X = 0, we consider a heat inflow
described by the Neumann boundary condition

∂XT (0, θ) = −εH̄(θ), (1d)
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Fig. 1 Melting process of a semi-infinite ice sheet

where 0 < ε � 1 is a small positive parameter, and
H̄ is a given positive function of θ . Lastly, the initial
condition is given by

T (X, 0) = Tm + ε F̄(X), 0 < X < S(0) = b, (1e)

where b is a positive constant. In Fig. 1, the melting ice
process is displayed graphically. The system of equa-
tions (1a)-(1e) defines a classical and well-known Ste-
fan problem.

To reduce the number of parameters in the aforemen-
tioned Stefan problem, the following rescalings and re-
definitions of functions are introduced:

τ = K

cρ
θ, U (X, τ ) = c

L
(T (X, θ) − Tm) ,

F(X) = c

L
(F̄(X) − Tm), and H(τ ) = c

L
H̄(θ).

Then, problem (1a)-(1e) can be reformulated in the fol-
lowing nondimensional form:

∂τU (X, τ ) = ∂XXU (X, τ ), 0 < X < S(τ ), τ > 0,
(2a)

−∂XU (S(τ ), τ ) = S′(τ ), τ ≥ 0, (2b)

U (S(τ ), τ ) = 0, τ ≥ 0, (2c)

∂XU (0, τ ) = −εH(τ ) τ ≥ 0, (2d)

U (X, 0) = εF(X), 0 < X < S(0) = b,
(2e)

where F is positive-definite function.
Traditionally, one defines a transformation in space

to fix the moving boundary. As a consequence, one
ends up with a diffusion equation with time-dependent
coefficients. In this paper, we will also rescale time
again to eliminate the presence of the moving variable
S(τ ) from the problem to be studied.

Let

t (τ ) =
∫ τ

0
S−2(η)dη, x= X

s(t)
, v(x, t)=U (X, τ ),

s(t) = S(τ ), and h(t) = H(τ ). (3)

Substituting the aforementioned transformations (3)
into the problem (2a)-(2e) for U (X, τ ), one obtains
the following problem for v(x, t):

− ∂xv(x, t)
x

s(t)
s′(t) + ∂tv(x, t) = ∂xxv(x, t), (4a)

∂xv(0, t) = −εs(t)h(t), (4b)

∂xv(1, t) = − 1

s(t)
s′(t), (4c)

v(1, t) = 0, (4d)

v(x, 0) = ε f (x), (4e)

where f (x) = F(X). The dependence on s(t) in (4a)
can be removed by substituting (4c) into (4a), yielding

∂tv(x, t) = ∂xxv(x, t) − x∂xv(x, t)∂xv(1, t).

Furthermore, from (4b), it follows that

s(t) = −∂xv(0, t)

εh(t)
, and

s′(t) = −1

ε

[
∂xtv(0, t)h(t) − ∂xv(0, t)h′(t)

h2(t)

]
.

Substituting these expressions into (4c), one obtains

−h(t)∂xv(0, t)∂xv(1, t)=∂xtv(0, t)h(t)−h′(t)∂xv(0, t).

Since small initial conditions are considered, the fol-
lowing rescaling is introduced: v = εu, and problem
(4a)-(4e) becomes

∂t u(x, t) = ∂xxu(x, t) − εx∂xu(x, t) ∂xu(1, t),

0 < x < 1, t ≥ 0, (5a)

u(1, t) = 0, t ≥ 0, (5b)

− ε∂xu(1, t)∂xu(0, t)=∂xt u(0, t)−h′(t)
h(t)

∂xu(0, t), t≥0,

(5c)

u(x, 0) = f (x), 0 < x < 1. (5d)

Problem (5a)-(5d) is a weakly nonlinear diffusion
equation subject to nonlinear boundary conditions and
initial conditions on a fixed spatial domain. In the next
section, we will use the two timescales perturbation
method to approximately solve this problem.

3 The two timescales perturbation method

When straightforward perturbation expansion for the
solution u(x, t) of problem (5a)-(5d) is used, then
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secular (that is, unbounded) terms in t will occur in
the approximations for u(x, t). To avoid these secular
terms and to obtain approximations which are valid on
long timescales, a two timescales perturbation method
will be used to (approximately) solve problem (5a)-
(5d).

It is assumed that the solution depends on t0 = t and
t1 = εt , and that u(x, t) can be expanded in

u(x, t) = u0(x, t0, t1) + εu1(x, t0, t1) + O(ε2).

The time derivative operator is then ∂t = ∂t0 +ε∂t1 . By
using the two timescales t0 and t1, by using the pertur-
bation expansion for u(x, t), and by taking apart terms
of equal orders in ε, one obtains a family of initial-
boundary value problems for u0, u1, u2, . . . : (see also
[8,11,14] for a description of the method)

O(1) : ∂t0u0(x, t0, t1) = ∂xxu0(x, t0, t1), (6a)

∂xt0u0(0, t0, t1) = h′(t)
h(t)

∂xu0(0, t0, t1), (6b)

u0(1, t0, t1) = 0, (6c)

u0(x, 0, 0) = f (x), (6d)

O(ε) : ∂t0u1(x, t0, t1) + ∂t1u0(x, t0, t1)

= ∂xxu1(x, t0, t1) (6e)

− x∂xu0(x, t0, t1)∂xu0(1, t0, t1), (6f)

− ∂xu0(1, t0, t1)∂xu0(0, t0, t1) = ∂xt0u1(0, t0, t1)

+ ∂xt1u0(0, t0, t1) − h′(t)
h(t)

∂xu1(0, t0, t1), (6g)

u1(1, t0, t1) = 0, (6h)

u1(x, 0, 0) = 0, (6i)

O(ε2) : ∂t0u2(x, t0, t1) + ∂t1u1(x, t0, t1)

= ∂xxu2(x, t0, t1)

− x[∂xu0(x, t0, t1)∂xu1(1, t0, t1)
+ ∂xu1(x, t0, t1)∂xu0(1, t0, t1)], (6j)

− [∂xu1(1, t0, t1)∂xu0(0, t0, t1)
+ ∂xu0(1, t0, t1)∂xu1(0, t0, t1)]
= ∂xt0u2(0, t0, t1) + ∂xt1u1(0, t0, t1)

− h′(t)
h(t)

∂xu2(0, t0, t1), (6k)

u2(1, t0, t1) = 0, (6l)

u2(x, 0, 0) = 0, . . . (6m)

In the next subsections, the O(1)-problem, O(ε)-
problem, and O(ε2)-problem will be studied.

3.1 Solving the O(1)-problem

Before solving the O(1)-problem (6a)-(6d), we first
simplify the boundary condition at x = 0 by integrating
(6b) with respect to t0, yielding

∂xu0(0, t0, t1) = k0(t1)h(t0),

where k0(t1) is an arbitrary function depending on
t1. Moreover, we derive from (4b) that ∂xu0(0, t) =
−s(t)h(t). Since h(0) > 0, this implies that k0(0) =
−s(0) = −b. Using the transformation ũ0(x, t0, t1) =
u0(x, t0, t1) + k0(t1)h(t0)(1− x), we obtain an initial-
boundary value problem with homogeneous boundary
conditions for ũ0:

∂t0 ũ0(x, t0, t1) = ∂xx ũ0(x, t0, t1) + H0(x, t0, t1),

∂x ũ0(0, t0, t1) = ũ0(1, t0, t1) = 0,

ũ0(x, 0, 0) = f (x) − bh(0)(1 − x),

where H0(x, t0, t1) = k0(t1)h′(t0)(1−x). The problem
for ũ(x, t0, t1) can readily be solved, and so u(x, t0, t1)
is given by

u0(x, t0, t1) =
∞∑
n=1

[u0n(t0, t1)φn(x)]

−k0(t1)h(t0)(1 − x),

where φn(x) = cos(ωnx), ωn = (
n − 1

2

)
π , and

u0n(t0, t1) = e−ω2
n t0

×
[
C0n(t1) − 2k0(t1)

ω2
n

∫ t0

0
eω2

nηh′(η)dη

]
.

Note that, this solution still contains some unknown
functions in t1, i.e., k0(t1) and C0n(t1). These func-
tions will be chosen as such secular terms in u1 can
be avoided. To determine u0(x, t0, t1) completely, we
have to solve the O(ε) problem (6f)-(6i).

3.2 Solving the O(ε)-problem

Consider the O(ε) problem (6f)-(6i). Let us simplify
(6g) to
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∂xu1(0, t0, t1) = h(t0)

[∫ t0

0

g1(η, t1)

h(η)
dη + k1(t1)

]
,

(7)

where g1(t0, t1) = −∂xt1u0(0, t0, t1) − ∂xu0(1, t0, t1)
∂xu0(0, t0, t1), and k1(t1) is an arbitrary function. We
define G1(t0, t1) = ∂xu1(0, t0, t1). As in the previous
subsection, we transform ũ1(x, t0, t1) = u1(x, t0, t1)+
G1(t0, t1)(1−x) to obtain homogeneous boundary con-
ditions for ũ1, and to obtain for ũ1:

∂t0 ũ1(x, t0, t1) = ∂xx ũ1(x, t0, t1) + H1(x, t0, t1),

∂x ũ1(0, t0, t1) = ũ1(1, t0, t1) = 0,

ũ1(x, 0, 0) = k1(0)h(0)(1 − x),

where

H1(x, t0, t1) = ∂t0G1(t0, t1)(1 − x) − ∂t1u0(x, t0, t1)

−x[∂xu0(x, t0, t1)][∂xu0(1, t0, t1)].
The problem for ũ1 can simply be solved, and so we
obtain

u1(x, t0, t1) =
∞∑
n=1

[u1n(t0, t1)φn(x)]

− G1(t0, t1)(1 − x),

where

u1n(t0, t1) = C1n(t1)e
−ω2

n t0

+
∫ t0

0
eω2

n(η−t0)H1n(η, t1)dη, and

H1n(t0, t1) = 2
∫ 1

0
H1(x, t0, t1) cos (ωnx) dx .

Secular terms that occur in this solution have to be
removed to avoid unbounded solution. In doing so, we
can derive explicit expressions for the unknown func-
tions k0(t1) and C0n(t1). The O(ε) solution itself also
has other still unknown functions k1(t1) and C1n(t1)
which can be used to avoid secular terms in u2.

To compute u0 completely, the heat inflow function
h(t) has to be specified. In Sect. 3.4 and 3.5, we will
explicitly determine k0(t1) and C0n(t1) in u0(x, t0, t1)
when the heat inflow is constant at the boundary x = 0,
and when the heat inflow is time-periodic, respectively.

3.3 Solving the O(ε2)-problem

Let us now consider the problem (6j)-(6m). We need to
compute the solution of O(ε2) problem to obtain later
the O(ε) part of the solution for the moving interface
s(t). Observe first that

∂xu1(x, t0, t1) =
∞∑
n=1

u1n(t0, t1)φ
′
n(x) + G1(t0, t1) ⇒

∂xt1u1(0, t0, t1) = ∂t1G1(t0, t1).

Now, defining

g2(t0, t1) = −∂xt1u1(0, t0, t1)

− [∂xu1(1, t0, t1)∂xu0(0, t0, t1)
+ ∂xu0(1, t0, t1)∂xu1(0, t0, t1)]
= −∂t1G1(t0, t1)

−
[ ∞∑
n=1

φ′
n(1) (u1n(t0, t1)G0(t0, t1)

+u0n(t0, t1)G1(t0, t1))

+ 2G0(t0, t1)G1(t0, t1)

]
,

equation (6k) can be simplified to

u2x (0, t0, t1) = h(t0)

[∫ t0

0

g2(η, t1)

h(η)
dη + k2(t1)

]
.

(8)

We set G2(t0, t1) = ∂xu2(0, t0, t1). Because now we
have a similar problem as for the O(ε) problem, we
can proceed in the same way and obtain

u2(x, t0, t1) =
∞∑
n=1

[u2n(t0, t1)φn(x)]

− G2(t0, t1)(1 − x),

where

u2n(t0, t1) = C2n(t1)e
−ω2

n t0

+
∫ t0

0
eω2

n(η−t0)H2n(η, t1)dη,

H2n(t0, t1) = 2
∫ 1

0
H2(x, t0, t1) cos (ωnx) dx,
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and where

H2(x, t0, t1) = ∂t0G2(1 − x)

− x
[
∂xu0(x, t0, t1)∂xu1(1, t0, t1)

+ ∂xu1(x, t0, t1)∂xu0(1, t0, t1)
]
.

3.4 The case with constant heat inflow at the
boundary x = 0

Let us consider the simplest situation where the heat
flux at the boundary x = 0 is constant. An exact solu-
tion for this problem is not available, but by using the
similarity method, an ordinary differential equation,
which describes the moving interface, can be obtained.
The numerical approximation of the solution of this
ordinary differential equationwill be compared in Sect.
4.3 of this paper with the approximation we will now
be constructing by using the multiple timescales per-
turbation method.

Suppose h(t) = a, where a is a positive constant.
Then, the O(1) solution u0 is

u0(x, t0, t1) =
∞∑
n=1

C0n(t1)e
−ω2

n t0 cos (ωnx)

− ak0(t1)(1 − x).

For the O(ε) problem, the boundary condition (7)
becomes

∂xu1(0, t0, t1) = ak1(t1) − t0
(
a2k20(t1) + ak′

0(t1)
)

+ ak0(t1)
∞∑
n=1

[
φ′
n(1)

ω2
n

u0n(t0, t1)

]
.

To avoid unbounded solutions in t0, we have to take
ak20(t1)+k′

0(t1) = 0with initial condition k0(0) = −b.
That gives us

k0(t1) = b

bat1 − 1
. (9)

Next, we compute

∫ t0

0
eω2

nηH1n(η, t1)dη

= −
[
C ′
0n(t1) − 3ak0(t1)C0n(t1)

2

]
t0 + n.s.t,

where n.s.t stands for non-secular terms. So, to avoid
unbounded solutions in t0, it follows that C ′

0n(t1) −
1
23ak0(t1)C0n(t1) = 0. Solving this equation for
C0n(t1), and by using the initial conditions (6d), it fol-
lows that

C0n(t1) =
(
fn − 2ab

ω2
n

)
(1 − abt1)

3
2 ,

where fn is the n-th Fourier series coefficient of f (x).
Thus, the solution v(x, t) is

v(x, t) = ε

[ ∞∑
n=1

(
fn − 2ab

ω2
n

)
(1 − abεt)

3
2

eω2
n t

cos (ωnx)

+ab(1 − x)

1 − abεt

]

+ O(ε2). (10)

Solution (10) contains a singularity at abεt = 1.
However, this is an artificial singularity due to the time
scaling in (3). Transforming back to the time variable τ

will remove this singularity. From (10), it can be seen
that the influence of the initial temperature distribution
(given by the Fourier coefficients fn) on the solution
v(x, t) decreases exponentially in time. This implies
that the moving interface is stable in time. The moving
interfacewill be discussed further in Sects. 3.6 and in 4.

3.5 The case with periodic heat flux at the boundary
x = 0

Let us consider a more general case: the case where the
incoming heat at x = 0 is T -periodic and positive def-
inite. We assume that T isO(1). We can expand h(t) in
its Fourier seriesa+∑∞

n=1 (An sin (κnt)+Bn cos (κnt)) ,

where κn = 2nπ
T for some constants a, An , and Bn . The

solution for u0n then becomes

u0n(t0, t1) = Qn(t1)e
−ω2

n t0 − Rn(t0, t1),

where

Qn(t1) = C0n(t1)

+
∞∑

m=1

2κmk0(t1)

ω2
n(ω

4
n + κ2

m)
(Amω2

n + Bmκm), and (11)

Rn(t0, t1) =
∞∑

m=1

2κmk0(t1)

ω2
n(ω

4
n + κ2

m)
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[
(Amω2

n + Bκm) cos(κmt0)

+ (Amκm − Bmω2
n) sin(κmt0)

]
. (12)

Computing u1x gives us

u1x (0, t0, t1) = −h(t0)

[
t0

(
k′
0(t1) + ak20(t1)

)

−
∞∑
n=1

k20(t1)

κn
(Bn sin(κnt0)

− An cos(κnt0))

+ k0(t1)
∞∑
n=1

(
φ′
n(1)

∫ t0

0
un0(η, t1)dη

)

− k1(t1)

]
.

We recognize the first term inside the square bracket as
a secular term. As a consequence, k0(t1) has to satisfy
(9). Computing further, the solution leads to similar
results as in the case of the constant heat flux, i.e.,

∫ t0

0
eω2

nηH1n(η, t1)dη

= −
[
Q′

n(t1) − 3ak0(t1)Qn(t1)

2

]
t0 + n.s.t..

Removing the secular termgives usQn(t1) = Qn(0)(1−
abt1)

3
2 , from which we can derive

C0n(t1) =
[
fn − 2b

ω2
n

(
a +

∞∑
m=1

(
Bm + κm

Amω2
n + Bmκm

(ω4
n + κ2

m)

))]

(1 − abt1)
3
2

−
∞∑

m=1

2κmk0(t1)(Amω2
n + Bmκm)

ω2
n(ω

4
n + κ2

m)
.

Thus, the solution v(x, t) can be written in a similar
form as the solution for the constant case:

v(x, t) = ε

[ ∞∑
n=1

(
Qn(εt)e

−ω2
n t0−Rn(t, εt)

)
cos (ωnx)

+ab(1 − x)

1 − abεt

]
+ O(ε2), (13)

where Q and R are given by (11) and (12), respectively.
As an example, we can assume that the heat flux at

x = 0 is alternating on and off and is described by a

square wave h(t) = 2a
∑∞

n=1(−1)nH(t − nT ), where
H is the Heaviside function, and T is the period of the
wave. In this case, the Fourier series of the flux h(t)
has the form

h(t) = a + 4a

π

∞∑
n=1

1

2n − 1
sin

(
2π(2n − 1)t

T

)
.

We can directly use the general solution (13) by setting

κn = ωn, An = 2a

ωn
, and Bn = 0.

Thus, Qn(t1) and Rn(t1) become

Qn(t1) =
[
fn − 2ab

ω2
n

(
1 + 2

∞∑
m=1

ωmω2
n

(ω4
n + ω2

m)

)]

(1 − abt1)
3
2 ,

Rn(t0, t1) =
∞∑

m=1

4ak0(t1)

ω2
n(ω

4
n + ω2

m)

[
ω2
n cos(ωmt0)

+ωm sin(ωmt0)] .

Observe that the periodic heat flux leads to the same
function for k0(t1) as in the previous Subsection. From
(13), it can be seen that v(x, t) and so the moving inter-
face s(t) are mainly determined by the overall average
of the periodic heat flux at the boundary x = 0, that
is, by the constant a. The non-constant periodic parts
in h(t) only lead to relatively small, periodic fluctua-
tions (with average zero over a period T ) in the moving
interface position s(t).

3.6 The formula for the moving boundary

We still need to compute themoving interface s(t) from
the solution of the temperature profile v(x, t). From
(4b), we can directly see that

s(t) = −∂xv(0, t)

εh(t)
= k0(εt) + O(ε).

In this Subsection, we restrict ourselves to the casewith
constant heat flux at x = 0 (see Sect. 3.4). We write
first that

s(t0, t1) = −ux (0, t0, t1)

a

= −1

a
(u0x (0, t0, t1) + εu1x (0, t0, t1) + O(ε2)).
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If we only take theO(1) part, then the solution will be

s(t) = b

1 − abεt
+ O(ε),

which in its original variables S and τ become

S(τ ) = b + εaτ + O(ε2). (14)

This result is valid at least up to τ = O(1). To obtain
better approximations on longer timescales, we need to
include higher order terms. In this case, we have

s(t0, t1) = b

1 − abt1
+ εR(t0, t1) + O(ε2), (15)

where

R(t0, t1) = −u1x (0, t0, t1)

a

= −k0(t1)
∞∑
n=1

[
φ′
n(1)C0n(t1)

ω2
n

e−ω2
n t0

]
− k1(t1).

We need to know k1(t1) explicitly. To obtain k1(t1), we
have to compute the solution u2(x, t0, t1) of theO(ε2)

problem, where we have boundary condition (8). To
find k1, we only need to identify the secular terms in
u2x (0, t0, t1). If we look at the formula of g2, we see
that secular terms can be avoided when

−ak′
1(t1) − 2a2k1(t1)k0(t1) = 0,

and so,

k1(t1) = k1(0)

(1 − abt1)2
.

Since ∂xu1(0, 0) = 0, we find that

k1(0) = −b
∞∑
n=1

(−1)nC0n(0)

ωn
.

Thus,

k1(t1) = − b

(1 − abt1)2

∞∑
n=1

(−1)nC0n(0)

ωn
.

So, we can compute R in (15) explicitly, yielding

R(t0, t1) = b(1 − abt1)
1
2

∞∑
n=1

(−1)n

ωn

(
fn

−2ab

ω2
n

)[
e−ω2

n t0 − (1 − abt1)
− 5

2

]
.

Writing in full, we have

s(t) = b

1 − abεt

[
1 + ε(1 − abεt)

3
2

∞∑
n=1

(−1)n

ωn
( fn

−2ab

ω2
n

) [
e−ω2

n t − (1 − abεt)−
5
2

]]
+ O(ε2).

Transforming this solution back to the original vari-
ables S and τ is difficult, as it involves infinite series.
In this case, we will compute S(τ ) implicitly. To do so,
we compute first s(t) for some values of t up to the
N -th term. Then, for each t , we compute τ by using
the inverse transformation

τ(t) =
∫ t

0
s2(η)dη. (16)

For each τ obtained, we map it to the respective s(t) to
obtain the value of S(τ ) = s(t (τ )). This procedure can
be done numerically in Sect. 4.3 where we compare it
with a similarity solution. We will also compare it with
results in the literature [3,17], where a straightforward
perturbation approach was used.

4 Numerical comparisons

4.1 Previous work

In [3,17], an initial boundary value problem similar to
(2a) -(2e) is considered. In both papers straightforward,
naive perturbation expansions are used and it is well
known that the obtained results are usually not accu-
rate on long timescales (see [8,11,14]). We use those
results for comparison with ours. The approximations
as obtained in [3,17] for the moving boundary variable
are in the following form with adjusted notation.

S(τ ) =
√
7 tan

(√
7
2 γ 2τ − arctan

(
1√
7

))
+ 1

4γ
+ C,

(17)

where γ is the Stefan number times the constant heat
flux at the boundary, andC is a constant corresponding
to the initial condition. In our case, C = b, the Stefan
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number equals to one, and the heat flux is the small
number εa.

4.2 An equation for the similarity solution

An explicit analytical solution for the problem, we are
considering, is not available. However, we can use the
similaritymethod to obtain a first-order, nonlinear ordi-
nary differential equation which describes the analyti-
cal solution. To obtain an approximation of the solution
of this differential equation, we have to integrate the
equation by using numerical methods. For our prob-
lem, the similarity transformations are

U (X, τ ) = y(z)
√

τ , z = X√
τ

.

Subsituting these transformations into the problem
gives us the following problem:

y′′ + z

2
y′ − y

2
= 0, (18a)

y′(0) = −εa, (18b)

y′ (S(τ )τ− 1
2

)
= −S′(τ ), (18c)

y
(
S(τ )τ− 1

2

)
= 0. (18d)

The differential equation (18a) for y can readily be
solved, yielding

y(z) = c2z − c1

[
e− z2

4 + √
π
z

2
erf

( z
2

)]
,

and by using the boundary conditions (18b)-(18d), we
finally obtain

S′(τ ) = 2εae− S2
4τ

√
τ

2e− S2
4τ

√
τ + S

√
πerf

(
S

2
√

τ

) . (19)

The differential equation (19) cannot be solved
explicitly. In the next section, we will use a numeri-
cal integration method (i.e., the Adaptive Runge–Kutta
method) to obtain numerical approximations of S as
function of τ .

4.3 Numerical results

In this subsection, a constant heat flux at the boundary
x = 0 is considered.Wewill compare and plot in Fig. 2

Fig. 2 Approximations of moving boundary profiles S(τ ) by
using different methods, and a = 1, b = 1, ε = 0.1

to Fig. 5 the approximations as obtained in [3,17], the
numerical approximations as obtained from the simi-
larity approach (see Sect. 4.2 of this paper), and the
approximations as obtained using the two timescales
perturbation approach (see Sect. 3.4. Different sets of
values for the parameters a, b, and ε are chosen. In
Fig. 2, the choice for the parameters is a = b = 1,
and ε = 0.1. For small times τ , the three approxi-
mations are close to each other. For larger times τ ,
the approximation obtained by using a straightforward
perturbation method blows up (due to a singularity in
the approximation (17), i.e., the tan-function becomes
large),where as the other twoapproximations stay close
to each other. The small difference between the “sim-
ilarity” approximation and the “two timescales pertur-
bation” approximation ismost likely due to the fact that
higher-order correction terms (in ε) in the last approxi-
mation are neglected. In Fig. 3 to Fig. 5, the choices for
the parameters are {a = 1, b = 0.3, ε = 0.1}, {a =
2, b = 0.3, ε = 0.1}, and {a = 1, b = 0.3, ε = 0.05},
respectively. Also, in Fig. 3 to 5, similar behavior as
in Fig. 2 can be observed, and it can be concluded that
the (exact) similarity solution and the approximation
as obtained by the two timescales perturbation method
stay close to each other for long times τ .

5 Conclusion

In this paper, it is shown how the multiple timescales
perturbation method can be applied to approximate the
solution of a classical Stefan problem with a time-
dependent heat flux at the boundary. How the solution
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Fig. 3 Approximations of moving boundary profiles S(τ ) by
using different methods, and a = 1, b = 0.3, ε = 0.1

Fig. 4 Approximations of moving boundary profiles S(τ ) by
using different methods, and a = 2, b = 0.3, ε = 0.1

Fig. 5 Approximations of moving boundary profiles S(τ ) by
using different methods, and a = 1, b = 0.3, ε = 0.05

is influenced by this heat flux and by the initial con-
ditions is shown explicitly. It is also shown that the
results as obtained by the multiple timescales pertur-
bation method agree well with those for which “exact”
solutions in numerical form are available. The applica-
bility of the multiple timescales perturbation method
to this Stefan problem opens possibilities for future
research to more complicated moving boundary prob-
lems.
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