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 A B S T R A C T

This paper presents a highly efficient signed-distance field (SDF) generator designed specifically for com-
putational fluid dynamics (CFD) workflows. Our approach integrates the Message Passing Interface (MPI) 
for parallel computing with the performance benefits of modern Fortran, enabling efficient and scalable 
signed distance field (SDF) computations for complex geometries. The algorithm focuses on localized distance 
calculations to minimize computational overhead, ensuring efficiency across multiple processors. An adjustable 
stencil width allows users to balance computational cost with the desired level of accuracy in the distance 
approximation. Additionally, GenSDF supports the widely used Wavefront OBJ format, utilizing its encoded 
outward normal information to achieve accurate boundary definitions. Performance benchmarks demonstrate 
the tool’s ability to handle large-scale 3D models (∼ (107) triangulation faces) and computational grid points 
∼ (109) with high fidelity and reduced computational demands. This makes it a practical and effective 
solution for CFD applications that require fast, reliable distance field computations while accommodating 
diverse geometric complexities.
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Fig. 1. (a) Body conforming mesh used in typical computational fluid dynamics applications (b) Immersed Boundary Method over a regular Cartesian grid.

1. Motivation and significance

Scale resolving turbulent flow simulations around complex objects 
have become increasingly accessible for engineering problems by virtue 
of the increasing computational power [1–4]. While there exist multiple 
classes of methods that can be used to introduce complex objects within 
the flow, such as body-conforming grids as shown in Fig.  1 [3,5], the 
use of the immersed boundary method (IBM) has increasingly become 
popular due to its efficient underlying algorithm on regular grids [6,7]. 
Since IBM does not require the grid to conform to the object, the un-
derlying grid data structure can leverage the Cartesian grid’s simplicity 
and use efficient pressure solvers for the governing equations [8]. For 
complex objects, it becomes essential to correctly locate the boundary 
of the immersed object on the computational lattice/grid, which can 
be done through the signed distance field (SDF). This paper presents 
an efficient and scalable SDF computation algorithm that can be used 
for geometries stored using the OBJ file format.

While SDF generators are not new [9], the closed-source nature 
of existing solutions has limited accessibility for CFD applications. 
Additionally, as the problem size for scale-resolving simulation grows, 
the memory requirement for generating the SDF can drastically increase 
thus requiring a distributed-memory framework to efficiently paral-
lelize the SDF generation. In this work, we use the distributed memory 
paradigm allowed by Message-Passing-Interface (MPI) to circumvent 
this limitation and allow for a scalable algorithm beyond billions of 
grid points and surface triangulation corresponding to the geometry. 
In the following sections, we will first present a detailed description 
of the software and its performance, followed by some illustrative 
examples and benchmark results. We then summarize the discussion 
by presenting an impact statement and concluding remarks.

2. Software description

The GenSDF software is a general-purpose code developed to ac-
curately and efficiently obtain the SDF over a Cartesian grid for an 
arbitrary triangulated geometry.

2.1. Software architecture

The GenSDF software is written in modern Fortran and is compatible 
with the Fortran 2003 standard and later [10], allowing for a simple 
yet computationally efficient framework to develop and maintain the 
code. The distributed memory parallelism is achieved through the MPI 
interface (compatible with MPI-4.0 standard and above), where the 
computational grid is decomposed using linear decomposition along the 
x-coordinate axis into N chunks, where N corresponds to the number 
of MPI ranks used for the parallel version of the code. Fig.  2 shows 
a simple flowchart detailing the central components of the software 
presented in this paper. As detailed in the second step of the algorithm, 
the bounding box coordinates of the triangulated geometry can be used 

to co-locate it on the computational grid. Using this information, a large 
positive distance is assigned to the grid points outside the bounding 
box (henceforth referred to as B-Box in Fig.  2) since these points are 
known in advance to be outside the geometry. This B-Box methodology 
allows for correctly excluding the computationally expensive distance 
query for points that are known to be outside the geometry. The B-
Box also includes a user-specified stencil width (𝑠𝑏), where 𝑠𝑏 is the 
number of computational grid points in the B-Box wall-normal direc-
tion. Additionally, 𝑠𝑏 is also used to carry out a narrow-band distance 
calculation where it is defined as the number of grid points away from 
the geometric face, where the distance calculation is carried out.

After the B-Box is co-located in Step 2, it is decomposed based on 
the user-requested MPI ranks, as detailed in Step 3. Here, the domain 
decomposition is carried out over the streamwise direction, usually the 
longest in such flow simulations. Once the domain decomposition is 
done, individual MPI ranks compute the local distance calculations for 
the surface triangles within their individual coordinate extents. Finally, 
Step 4 gathers the decomposed domain by handling the boundary 
values and file write operations.

2.2. Software functionalities

The software has three core functionalities:

• Parse OBJ geometry and load it into memory.
• Calculate the distance between a query point and a triangular 
face.

• Parallelize the workload for efficient and accurate computations.
Within these core functionalities, the software first parses the input 

file where the user provides information about the input geometry, 
input grid type, the default distance value for points outside the ge-
ometry, and the stencil width. This user input file parser is contained 
in the subroutine called read_inputfile. Once the input data is known, 
the computational grid is parsed into memory on each of the MPI 
ranks using the read_cans_grid subroutine. Subsequently, the surface 
triangulated geometry is parsed into the memory using the read_obj
subroutine that loads the vertex, vertex normal (assumed to be pointing 
outwards), and face data. Once the geometry is loaded into memory, 
the bounding box corresponding to the geometry is calculated, which 
is then used to co-locate the extent over which the distance is queried.

The computationally intensive workload is housed in the subroutine 
titled compute_scalar_distance_face. The algorithm to compute the signed 
distance is designed to scale the computational effort based on the 
number of vertices in the triangulated geometry. Specifically, in this 
implementation, the outermost loop iterates over the total number of 
faces within the triangulated geometry. As presented in Fig.  4, each 
triangular face on the surface geometry is composed of three vertices 
where an average surface normal pointing outwards is also defined 
(not shown in Fig.  4). Knowing the 𝑥, 𝑦, and 𝑧 coordinates of the 
2 
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Fig. 2. Flowchart of the key steps in the code. In step 3, the numbers represent the MPI rank IDs. The flowchart presents a 2D example of the B-Box; however, the code works 
in 3D.

vertices, a face-local bounding box can be obtained readily as the 
computational grid (shown with the blue grid lines) constitutes a simple 
Cartesian structure. This bounding box includes all the candidate grid 
points where a distance calculation is considered and excludes all the 
other points that are relatively further away from the triangulated 
face under consideration. Once the face-local bounding box is known, 
the distance between the point and the triangular face is calculated 
using a well-established algorithm following Eberly [11]. The face-local 
bounding box circumvents the brute-force computational cost, which 
would otherwise scale as (𝑁𝑐 × 𝑁𝑓 ), where 𝑁𝑐 is the number of 
computational grid points and 𝑁𝑓  is the total number of triangular 
faces in the input geometry. The central idea is to reduce the pre-
factor 𝑁𝑐 by only considering the computational grid points in the 
immediate vicinity of the requisite face controlled by the 𝑠𝑏 input 
parameter thus reducing the overall computational cost to ∼ (𝑠𝑏×𝑁𝑓 ). 
For context 𝑠𝑏 ∼ (10) while 𝑁𝑐 ∼ (107), thus resulting in relatively 
large reduction in the computational cost associated with calculating 
the SDF when compared to the brute-force method. Fig.  3 presents 
a simple sketch considering 𝑠𝑏 = 1 around the face (an edge in 2D) 
marked in red and the corresponding points considered for calculating 
the distance query marked in black- and purple-filled circles (closest 
point to the face). The thick-purple lines connecting the filled-black 
circles are chosen based on the value of 𝑠𝑏 prescribed by the user in 
each lattice direction around the point of consideration in 3D. The 
pseudo-code of the algorithm is detailed below in Algorithmic listings 
1–2.

A sign-unaware distance is calculated with the method proposed by 
Eberly [11], which further requires information from the underlying 
geometry to correctly tag the positive or negative sign associated with 
the point being inside or outside the geometry. Since the OBJ file 
format supports storing the vertex normals as shown in Fig.  3, the 
distance can be tagged to each query point by taking the inner product 
between the average vertex normals corresponding to the face and the 
segment connecting the query point and the face centre given by 
𝐿tag𝑞𝑖 = sgn(𝑛̂𝑓 ⋅ 𝑘𝑞𝑖−𝑜), (1)

where 𝐿tag𝑞𝑖  is the sign tagged to the distance calculated for the respec-
tive query point 𝑞𝑖, sgn is the sign function that returns either a 1.0 or 
−1.0 (double-precision floating point), 𝑛̂𝑓  is the vertex averaged normal 
vector associated with the face, and 𝑘𝑞𝑖−𝑜 is the vector originating from 
the query point and pointing towards the face centre. Query points 
returning a positive 𝐿tag𝑞𝑖  are tagged to be inside the geometry, while 
the query points that return a negative 𝐿tag𝑞𝑖  are tagged to be outside as 
sketched in Fig.  3.

Algorithm 1 Compute the Minimum Distance Between a Point and a 
Triangle
Require: Point 𝑃 , triangle ▵ 𝐴𝐵𝐶 with vertices 𝐴,𝐵, 𝐶
Ensure: Minimum distance 𝑑 between 𝑃  and ▵ 𝐴𝐵𝐶
1: Compute edge vectors:
2: 𝐸0 ← 𝐵 − 𝐴
3: 𝐸1 ← 𝐶 − 𝐴
4: 𝑉 ← 𝑃 − 𝐴
5: Compute dot products:
6: 𝑑00 ← 𝐸0 ⋅ 𝐸0
7: 𝑑01 ← 𝐸0 ⋅ 𝐸1
8: 𝑑11 ← 𝐸1 ⋅ 𝐸1
9: 𝑑20 ← 𝑉 ⋅ 𝐸0
10: 𝑑21 ← 𝑉 ⋅ 𝐸1
11: Compute barycentric coordinates:
12: denom ← 𝑑00𝑑11 − 𝑑201
13: 𝑣 ←

𝑑11𝑑20−𝑑01𝑑21
denom

14: 𝑤 ←
𝑑00𝑑21−𝑑01𝑑20

denom
15: 𝑢 ← 1 − 𝑣 −𝑤
16: if 𝑢 ≥ 0 ∧ 𝑣 ≥ 0 ∧𝑤 ≥ 0 then
17:  𝑃𝑐 ← 𝐴 + 𝑣𝐸0 +𝑤𝐸1
18:  return 𝑑 ← ‖𝑃 − 𝑃𝑐‖

19: end if
20: Check closest vertex cases:
21: if 𝑣 ≤ 0 ∧𝑤 ≤ 0 then
22:  return 𝑑 ← ‖𝑃 − 𝐴‖
23: else if 𝑢 ≤ 0 ∧ 𝑣 ≤ 0 then
24:  return 𝑑 ← ‖𝑃 − 𝐶‖

25: else if 𝑢 ≤ 0 ∧𝑤 ≤ 0 then
26:  return 𝑑 ← ‖𝑃 − 𝐵‖
27: end if
28: Check closest edge cases:
29: if 𝑢 ≤ 0 then
30:  𝑃𝑐 ← ClosestPointOnSegment(𝑃 ,𝐵, 𝐶)
31: else if 𝑣 ≤ 0 then
32:  𝑃𝑐 ← ClosestPointOnSegment(𝑃 , 𝐶,𝐴)
33: else if 𝑤 ≤ 0 then
34:  𝑃𝑐 ← ClosestPointOnSegment(𝑃 ,𝐴, 𝐵)
35: end if
36: return 𝑑 ← ‖𝑃 − 𝑃𝑐‖
3 



Akshay Patil et al. SoftwareX 30 (2025) 102117 
Fig. 3. 2D sketch of sign-tagging logic used in this implementation. The black solid line with black-filled circles marks the faces of the geometry where each segment corresponds 
to a face. The vertex normals originate at each vertex and point in the outward normal direction. The green arrows originating from the query points (q1, q2, and q3) are assumed 
to point towards the closest face on the geometry. The black-dashed lines mark the computational grid on which the query points are situated. The red edge connecting the 
red-filled circles correspond to the edge under consideration for the distance query while the black-filled circles are the computational grid points against which the distance needs 
to be calculated. The triangulation here i.e., the faces, are presented as isotropic in size, however, this is not a requirement for the algorithm. (For interpretation of the references 
to colour in this figure legend, the reader is referred to the web version of this article.)

Fig. 4. Example sketch of the triangulated surface geometry overlaid onto the computational grid (2D example). The three filled-red circles correspond to the vertices of the 
triangular face denoted by the solid black lines.

Algorithm 2 Closest Point on a Line Segment
Require: Point 𝑃 , segment endpoints 𝑋, 𝑌
Ensure: Closest point 𝑃𝑐 on segment 𝑋𝑌
1: Compute projection parameter:
2: 𝑡 ← (𝑃−𝑋)⋅(𝑌−𝑋)

(𝑌−𝑋)⋅(𝑌−𝑋)
3: Clamp 𝑡 to [0, 1]:
4: 𝑡 ← max(0,min(1, 𝑡))
5: Compute closest point:
6: 𝑃𝑐 ← 𝑋 + 𝑡(𝑌 −𝑋)
7: return 𝑃𝑐

Since the user is allowed to specify a stencil width around the 
geometry where the distance is calculated, the default initialization for 
the SDF value does not correctly tag the values inside the geometry 
that should retain a negative value. During the initialization step, all 
points are originally tagged to be outside the geometry and assigned 
a large positive distance value specified by the user in the user input 
parameters. The effect of varying stencil width without correctly han-
dling the internal values can be seen in Fig.  5 where the algorithm 
incorrectly assigns a positive default value inside the geometry. For 
increasing stencil width, such a situation can be potentially avoided, 
however, the computational cost scales with the stencil width, thus 
we make use of a simple 3D flood-fill algorithm that assigns a large 
negative value for internal values bounded by the SDF. This is a critical 
part of the algorithm as the SDF is used to identify the location of the 
solid interface (i.e., SDF = 0.0), thus without the final flood-fill process, 
4 
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Fig. 5. Example case illustrating the effect of stencil width when flood-fill algorithm is not used post-signed-distance calculation. Size of the internal region with a default positive 
value decreases with increasing stencil width.

the CFD solver could potentially return multiple interface locations. 
Finally, once the SDF is calculated on the individual MPI ranks, the
gather_array subroutine collects the decomposed parts of the array and 
stacks it into a single contiguous array which is then written out to a 
binary file format for further use within the CFD solver.

This approach not only localizes the distance query but also allows 
for an efficient parallelization strategy as there is no global commu-
nication required when such a distance query is requested. Since the 
outer loop iterates over the total number of faces in the triangulated 
surface geometry, there are some limitations that must be considered 
for this particular algorithm. Geometries with long and slender trian-
gles may render de-generate SDF, this is especially true for geometries 
that constitute a large collection of blocks (cubes such as buildings). 
Additionally, for cases where the underlying computational grid is 
relatively much finer compared to the surface triangulation, there can 
be instances where certain computational points render de-generate 
SDF. A simple fix for both scenarios is to refine the surface triangulation 
using a meshing tool or the instructions provided within the published 
repository.

2.3. Input requirements and performance

GenSDF is designed with the CFD user in mind and, like any other 
software, requires input parameters and data to work as detailed in this 
paper. Some of these requirements are:

1. Input Geometry: The geometry is required to consist of trian-
gles and must be manifold and watertight. In cases where the 
computational grid spacing is larger than the triangulation of 
the geometry, water tightness is not a strict requirement. The 
geometry must be stored in the wavefront OBJ file format as it 
stores the vertex normal information that is central to the imple-
mentation considered in this study. Additionally, this file format 
is supported and used in many open-source software where 
the input geometry will be used for setting up scale-resolving 
simulations [12,13]. The algorithm enforces the coordinate axes 
𝑥𝑖 to be aligned such that 𝑖 = 1, 2, 3 correspond to the stream-
wise (longest), spanwise, and vertical directions, respectively. 
The bounding box of the input geometry must be contained 
within the bounding box of the computational geometry either 
completely or partially. In case the input geometry is completely 
outside the bounds, the SDF will simply return a default value 
for all computational grid points.

2. Input Computational Grid: In addition to the input geometry, the 
computational grid over which the SDF is to be calculated needs 
to be provided. The code in its current form is directly compati-
ble with one of the widely used CFD solvers CaNS developed by 
Costa [8]. However, since most scalable CFD solvers that would 
require the use of GenSDF have similar structure i.e., isotropic 
grid spacing in two directions, and non-isotropic grid in one 

direction; the grid can be ported to CaNS format. Specifically, 
the CaNS grid structure consists of two files, namely, a. geom-
etry.out, and b. grid.out. These two files are assumed to 
be hosted in the data directory relative to where the executable 
is placed. The geometry.out file contains two lines with 
three columns of information where the first line contains the 
total number of grid points while the second line contains the 
length of the domain with respect to the computational grid 
origin (default origin 0,0,0) in the streamwise, spanwise, and 
vertical directions, respectively. The grid.out file contains 
five columns and 𝑛𝑧 lines, where 𝑛𝑧 is the number of grid points 
in the vertical direction. The first column is typically empty 
and has a dummy value of 0.0 while the second and third 
columns correspond to the cell centre and cell face locations in 
the vertical directions, respectively. The fourth and fifth columns 
correspond to the grid spacing for the cell centre and the cell face 
locations. Both the geometry.out and grid.out columns 
are separated by white space and do not contain a file header.

3. Input Parameters: A complete list of input parameters required 
in addition to the input geometry are detailed in Listing 1. Each 
line preceding with a ‘!’ corresponds to a comment. The scalar 
value refers to the initial value set for all the points assumed to 
be outside the geometry. The real and int keywords correspond 
to floating point and integer data types, respectively. The non-
uniform-grid boolean flag can either be set to ‘T’ or ‘F’ for True 
and False, respectively.

Listing 1: Input parameters required for the code with the default file 
name parameters.in
! Name and location of the inputfile
’data/armadillo_withnormals.obj’
! Scalar value (real), stencil width (int),

progressbarsize (int)
100.0 4 10
! nx, ny, nz (Computational Grid)
512 128 128
! r0 (Origin of the computational grid)
0.0 0.0 0.0
! non_uniform_grid
F

To evaluate the accuracy and the performance of the software, 
we first consider the effect of increasing resolution for a sphere with 
a radius of 𝑟𝑐 = 0.05 units centred at (0.5, 0.5, 0.5). The background 
computational grid is discretized using three grid resolutions 𝑟𝑐∕𝛥 =
[12.8, 25.6, 51.2]. Fig.  6(a) compares the results using GenSDF where the 
level-set (SDF = 0.0) is shown against the analytical geometry. With 
increasing grid resolution, the level-set converges towards the analyti-
cal geometry. For relatively complex geometry, the level-set accurately 
5 
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Fig. 6. (a) SDF level-set comparison against analytical geometry for varying computational grid resolution. The dashed-magenta, dash–dot-blue, and dotted-red lines correspond 
to 𝑟𝑐∕𝛥 = [12.8, 25.6, 51.2], respectively, while the solid black line represents the ground truth. (b–d) Comparison of the level-set against a relatively complex geometry with an 
effective resolution of 𝛥 = [1∕512, 1∕1024] marked using orange and magenta solid lines respectively, while the solid black line represents the exact geometry. The background grid 
corresponds to a resolution of 𝛥 = 1∕1024. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Table 1
Computational time required for the three geometries tested using GenSDF as a function 
of the number of faces (𝑁𝑓 ) in the geometry for constant background grid resolution.
 Geometry name 𝑁𝑓 𝛥 = 1.0∕512 𝛥 = 1.0∕1024 
 Orion 51736 1.64 s 2.46 s  
 Stanford Lucy 99970 1.63 s 1.55 s  
 Stanford Dragon 249882 4.90 s 5.21 s  

captures the underlying geometry even for a relatively coarse resolution 
as shown using the orange solid line in Fig.  6(b–d). To demonstrate 
the performance of the algorithm, we consider three cases namely the 
Orion [14], the Stanford Dragon, and Lucy [15] with two grid sizes 
with a resolution of 𝛥 = [1.0∕512, 1.0∕1024]. The original geometry was 
re-scaled to fit a bounding box (of the geometry) with size 𝑥min =
(0.5, 0.5, 0.5), 𝑥max = (1.0, 1.0, 1.0) within the cube (background compu-
tational grid) of side length 1.5 units. Table  1 lists the time required to 
generate the SDF using 8 cores on a single socket CPU. It is clear to see 
that despite the relatively simple computational structure, the code is 
fast and accurate for complex geometries.

2.4. Current limitations and future vision

GenSDF in its current form provides a foundational framework 
to further develop a computational tool to generate SDFs for CFD 
applications. Consequently, in this section we will briefly present the 
future vision for improving GenSDF.
Short-Term Milestones

1. In its current form, GenSDF uses a streamwise slab-type decom-
position [16] which can be a limiting aspect of the implemen-
tation. A 2D pencil decomposition could further improve the 
scalability of GenSDF and will be considered in the next update 
cycle.

2. Finally, the underlying computational grid is assumed to be in 
a specific format that is not universal and does not allow non-
isotropic grid spacing in the streamwise and spanwise directions. 
This can be relatively easily fixed by defining a universal input 
grid format that is agnostic to the CFD solver and will be 
considered in the update cycle.

Long-Term Milestone

1. With GPGPU computing hardware continually improving over 
the past decade, both serial- and multi-GPU support could
greatly improve the usability and performance when compared 
to the current MPI-based CPU version of the code. This aspect 
will require re-writing relatively major parts of the code and thus 
will be considered as one of the long-term milestones.

3. Illustrative examples

Despite some of the shortcomings mentioned above, GenSDF has 
been used at extreme scale simulation setups as illustrated in the fol-
lowing section. By default, the code assumes that the grid is staggered 
such that the locations of 𝑢, 𝑣, 𝑤, (velocities in streamwise, spanwise, 
and vertical directions, respectively) and 𝑝 (pressure and any other cell-
centre parameters of interest i.e., scalars) are different thus generating 
four different arrays corresponding to the location of the variables. The 
code also provides an indication of the expected minimum memory 
required to run the specific program based on the total number of 
arrays initialized by the software. This is important when the problem 
size is large and the user requires a minimal memory estimate to 
schedule the SDF generation on HPCs.

Figs.  7, 8, and 9 depict the suitability of GenSDF for multi-scale and 
complex geometries. Fig.  7 depicts the SDF generated for an artificially 
generated coral reef containing a total of 14.85 Million vertices and 
29.75 Million faces on a background non-isotropic computational grid 
containing 1.2 Billion grid points. The Stanford dragon exhibits rela-
tively sharp curvature and slender cross-sections as seen in Fig.  8 and
GenSDF is able to sufficiently capture the details without introducing a 
large computational overhead (see Table  1). A relatively extreme-scale 
case is depicted in Fig.  9 with 2 Billion grid points and 25 Million 
triangulation faces where the grey colour marks the level-set of 0 
representing the solid boundary of the buildings and the colour marks 
the distance field.

4. Impact

The development of this software has a significant impact on en-
abling a pre-processing workflow for scale-resolving turbulent flow 
6 
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Fig. 7. SDF generated for a multi-scale artificially generated coral reef (Results from [17]).

Fig. 8. SDF generated for complex geometry corresponding to the Stanford Dragon [15].

simulations around complex objects for problem sizes in the order of 
billions of computational grid cells. GenSDF is an open-source software 
that allows computational fluid dynamicists to seamlessly incorpo-
rate complex geometries into their solvers. The distributed memory 
implementation ensures scalability across multiple CPUs, eliminating 
memory limitations as a bottleneck and enabling its application to 
large-scale simulations. While originally designed to integrate with 
the well-validated scale-resolving solver CaNS [8], GenSDF is highly 
adaptable and can be employed with other solvers requiring signed 
distance functions (SDFs) to handle complex objects.

The availability of GenSDF opens up avenues for exploring new 
research questions in computational fluid dynamics (CFD) and be-
yond. For example, it enables the study of turbulence and flow be-
haviour around geometrically intricate structures at high resolution. 
It also facilitates research into optimized solver designs that leverage 
SDF representations, allowing for novel investigations into mesh-free 
methods and hybrid grid-based techniques. Additionally, GenSDF’s 
ability to handle arbitrary geometries with high scalability enables 
interdisciplinary applications, such as biomechanics and atmospheric 
simulations, that require accurate modelling of complex boundary 
interactions. The GenSDF software has been used in the following
manuscripts:

1. Patil, A. and García-Sánchez, C. Hydrodynamics of In-Canopy 
Flow in Synthetically Generated Coral Reefs Under Oscillatory 
Wave Motion, Journal of Geophysical Research: Oceans, (sub-
mitted 2024-08-09, Under Review)

2. Patil, A. and García-Sánchez, C. A Comparative Hydrodynamic 
Characterization of the Flow Through Regular and Stochasti-
cally Generated Synthetic Coral Reefs Over Flat Topography, 
Coastal Dynamics 2025 Meeting, Aveiro, Portugal, (submitted 
2025-01-15), Pre-Print: https://arxiv.org/abs/2501.15237

Fig. 9. SDF generated for the Delft University of Technology central campus with a 
background grid size of 2 Billion grid points and 25 Million triangulation faces for the 
underlying geometry. Only a section of the grid is shown in the figure.

By streamlining the integration of complex geometries into CFD 
workflows, GenSDF significantly reduces the time and effort required 
for pre-processing, allowing researchers to focus on core simulations 
and analysis. This efficiency improvement accelerates studies on topics 
like flow-induced noise, drag reduction, and wake dynamics. Moreover, 
its scalability allows researchers to push the boundaries of resolution 
in turbulence modelling, leading to more accurate insights into multi-
scale flow phenomena and better validation of theoretical models. The 
software’s robustness and scalability have also encouraged its adoption 
in high-performance computing (HPC) environments, making complex 
simulations more accessible and routine for a broader audience.
7 
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5. Conclusions

GenSDF provides an open-source, scalable, and accurate method to 
generate a signed distance field for complex objects over a Cartesian 
grid with variable vertical grid spacing. The development of this code 
was primarily motivated by the need for a scalable and distributed 
memory solution to generate a signed distance field for computational 
fluid dynamics applications. Some of the main advantages of GenSDF 
are: (1) Low memory footprint (2) Scales over 100s of CPUs (3) Easily 
portable to different CFD solvers. The software also provides detailed 
documentation of the source code and example usage. GenSDF is 
continually updated and tracked through the GitHub repository where 
users can directly contribute.
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