

Delft University of Technology

GenSDF
An MPI-Fortran based signed-distance-field generator for computational fluid dynamics
applications
Patil, A.; Krishnan Paranjothi, U.C.; Garcia Sanchez, C.

DOI
10.1016/j.softx.2025.102117
Publication date
2025
Document Version
Final published version
Published in
SoftwareX

Citation (APA)
Patil, A., Krishnan Paranjothi, U. C., & Garcia Sanchez, C. (2025). GenSDF: An MPI-Fortran based signed-
distance-field generator for computational fluid dynamics applications. SoftwareX, 30, Article 102117.
https://doi.org/10.1016/j.softx.2025.102117

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1016/j.softx.2025.102117
https://doi.org/10.1016/j.softx.2025.102117

O

G
c
A
a

b

A

K
S
C
M

C

S

h
R

SoftwareX 30 (2025) 102117

A
2

Contents lists available at ScienceDirect

SoftwareX

journal homepage: www.elsevier.com/locate/softx

riginal software publication

enSDF: An MPI-Fortran based signed-distance-field generator for
omputational fluid dynamics applications
kshay Patil a,∗, Udhaya Chandiran Krishnan Paranjothi b, Clara García-Sánchez a
3D Geoinformation Research Group, Faculty of Architecture and the Built Environment, Delft University of Technology, The Netherlands
Wind Energy Section, Flow Physics and Technology Department, Faculty of Aerospace Engineering, Delft University of Technology, The Netherlands

 R T I C L E I N F O

eywords:
igned-distance-field
omputational fluid dynamics
PI

 A B S T R A C T

This paper presents a highly efficient signed-distance field (SDF) generator designed specifically for com-
putational fluid dynamics (CFD) workflows. Our approach integrates the Message Passing Interface (MPI)
for parallel computing with the performance benefits of modern Fortran, enabling efficient and scalable
signed distance field (SDF) computations for complex geometries. The algorithm focuses on localized distance
calculations to minimize computational overhead, ensuring efficiency across multiple processors. An adjustable
stencil width allows users to balance computational cost with the desired level of accuracy in the distance
approximation. Additionally, GenSDF supports the widely used Wavefront OBJ format, utilizing its encoded
outward normal information to achieve accurate boundary definitions. Performance benchmarks demonstrate
the tool’s ability to handle large-scale 3D models (∼ (107) triangulation faces) and computational grid points
∼ (109) with high fidelity and reduced computational demands. This makes it a practical and effective
solution for CFD applications that require fast, reliable distance field computations while accommodating
diverse geometric complexities.

ode metadata

Current code version v0.1
Permanent link to code/repository used for this code version https://github.com/ElsevierSoftwareX/SOFTX-D-24-00647
Permanent link to Reproducible Capsule NA
Legal Code License AGPL-3.0 license
Code versioning system used git
Software code languages, tools, and services used MPI + Fortran
Compilation requirements, operating environments & dependencies gfortran and MPI library
Link to developer documentation/ manual https://github.com/AkshayPatil1994/GenSDF
Support email for questions a.l.patil@tudelft.nl

oftware metadata

Current software version v0.1
Permanent link to executables of this version https://github.com/AkshayPatil1994/GenSDF
Legal Software License AGPL-3.0 license
Computing platforms/Operating Systems Linux, OS X, Unix-like
Installation requirements MPI, gfortran, make
Support email for questions a.l.patil@tudelft.nl

∗ Corresponding author.
E-mail address: a.l.patil@tudelft.nl (Akshay Patil).
ttps://doi.org/10.1016/j.softx.2025.102117
eceived 30 November 2024; Received in revised form 26 February 2025; Accepted 27 February 2025
vailable online 12 March 2025
352-7110/© 2025 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

https://www.elsevier.com/locate/softx
https://www.elsevier.com/locate/softx
https://github.com/ElsevierSoftwareX/SOFTX-D-24-00647
https://github.com/AkshayPatil1994/GenSDF
mailto:a.l.patil@tudelft.nl
https://github.com/AkshayPatil1994/GenSDF
mailto:a.l.patil@tudelft.nl
mailto:a.l.patil@tudelft.nl
https://doi.org/10.1016/j.softx.2025.102117
https://doi.org/10.1016/j.softx.2025.102117
http://creativecommons.org/licenses/by/4.0/

Akshay Patil et al. SoftwareX 30 (2025) 102117
Fig. 1. (a) Body conforming mesh used in typical computational fluid dynamics applications (b) Immersed Boundary Method over a regular Cartesian grid.

1. Motivation and significance

Scale resolving turbulent flow simulations around complex objects
have become increasingly accessible for engineering problems by virtue
of the increasing computational power [1–4]. While there exist multiple
classes of methods that can be used to introduce complex objects within
the flow, such as body-conforming grids as shown in Fig. 1 [3,5], the
use of the immersed boundary method (IBM) has increasingly become
popular due to its efficient underlying algorithm on regular grids [6,7].
Since IBM does not require the grid to conform to the object, the un-
derlying grid data structure can leverage the Cartesian grid’s simplicity
and use efficient pressure solvers for the governing equations [8]. For
complex objects, it becomes essential to correctly locate the boundary
of the immersed object on the computational lattice/grid, which can
be done through the signed distance field (SDF). This paper presents
an efficient and scalable SDF computation algorithm that can be used
for geometries stored using the OBJ file format.

While SDF generators are not new [9], the closed-source nature
of existing solutions has limited accessibility for CFD applications.
Additionally, as the problem size for scale-resolving simulation grows,
the memory requirement for generating the SDF can drastically increase
thus requiring a distributed-memory framework to efficiently paral-
lelize the SDF generation. In this work, we use the distributed memory
paradigm allowed by Message-Passing-Interface (MPI) to circumvent
this limitation and allow for a scalable algorithm beyond billions of
grid points and surface triangulation corresponding to the geometry.
In the following sections, we will first present a detailed description
of the software and its performance, followed by some illustrative
examples and benchmark results. We then summarize the discussion
by presenting an impact statement and concluding remarks.

2. Software description

The GenSDF software is a general-purpose code developed to ac-
curately and efficiently obtain the SDF over a Cartesian grid for an
arbitrary triangulated geometry.

2.1. Software architecture

The GenSDF software is written in modern Fortran and is compatible
with the Fortran 2003 standard and later [10], allowing for a simple
yet computationally efficient framework to develop and maintain the
code. The distributed memory parallelism is achieved through the MPI
interface (compatible with MPI-4.0 standard and above), where the
computational grid is decomposed using linear decomposition along the
x-coordinate axis into N chunks, where N corresponds to the number
of MPI ranks used for the parallel version of the code. Fig. 2 shows
a simple flowchart detailing the central components of the software
presented in this paper. As detailed in the second step of the algorithm,
the bounding box coordinates of the triangulated geometry can be used

to co-locate it on the computational grid. Using this information, a large
positive distance is assigned to the grid points outside the bounding
box (henceforth referred to as B-Box in Fig. 2) since these points are
known in advance to be outside the geometry. This B-Box methodology
allows for correctly excluding the computationally expensive distance
query for points that are known to be outside the geometry. The B-
Box also includes a user-specified stencil width (𝑠𝑏), where 𝑠𝑏 is the
number of computational grid points in the B-Box wall-normal direc-
tion. Additionally, 𝑠𝑏 is also used to carry out a narrow-band distance
calculation where it is defined as the number of grid points away from
the geometric face, where the distance calculation is carried out.

After the B-Box is co-located in Step 2, it is decomposed based on
the user-requested MPI ranks, as detailed in Step 3. Here, the domain
decomposition is carried out over the streamwise direction, usually the
longest in such flow simulations. Once the domain decomposition is
done, individual MPI ranks compute the local distance calculations for
the surface triangles within their individual coordinate extents. Finally,
Step 4 gathers the decomposed domain by handling the boundary
values and file write operations.

2.2. Software functionalities

The software has three core functionalities:

• Parse OBJ geometry and load it into memory.
• Calculate the distance between a query point and a triangular
face.

• Parallelize the workload for efficient and accurate computations.
Within these core functionalities, the software first parses the input

file where the user provides information about the input geometry,
input grid type, the default distance value for points outside the ge-
ometry, and the stencil width. This user input file parser is contained
in the subroutine called read_inputfile. Once the input data is known,
the computational grid is parsed into memory on each of the MPI
ranks using the read_cans_grid subroutine. Subsequently, the surface
triangulated geometry is parsed into the memory using the read_obj
subroutine that loads the vertex, vertex normal (assumed to be pointing
outwards), and face data. Once the geometry is loaded into memory,
the bounding box corresponding to the geometry is calculated, which
is then used to co-locate the extent over which the distance is queried.

The computationally intensive workload is housed in the subroutine
titled compute_scalar_distance_face. The algorithm to compute the signed
distance is designed to scale the computational effort based on the
number of vertices in the triangulated geometry. Specifically, in this
implementation, the outermost loop iterates over the total number of
faces within the triangulated geometry. As presented in Fig. 4, each
triangular face on the surface geometry is composed of three vertices
where an average surface normal pointing outwards is also defined
(not shown in Fig. 4). Knowing the 𝑥, 𝑦, and 𝑧 coordinates of the
2

Akshay Patil et al. SoftwareX 30 (2025) 102117
Fig. 2. Flowchart of the key steps in the code. In step 3, the numbers represent the MPI rank IDs. The flowchart presents a 2D example of the B-Box; however, the code works
in 3D.

vertices, a face-local bounding box can be obtained readily as the
computational grid (shown with the blue grid lines) constitutes a simple
Cartesian structure. This bounding box includes all the candidate grid
points where a distance calculation is considered and excludes all the
other points that are relatively further away from the triangulated
face under consideration. Once the face-local bounding box is known,
the distance between the point and the triangular face is calculated
using a well-established algorithm following Eberly [11]. The face-local
bounding box circumvents the brute-force computational cost, which
would otherwise scale as (𝑁𝑐 × 𝑁𝑓), where 𝑁𝑐 is the number of
computational grid points and 𝑁𝑓 is the total number of triangular
faces in the input geometry. The central idea is to reduce the pre-
factor 𝑁𝑐 by only considering the computational grid points in the
immediate vicinity of the requisite face controlled by the 𝑠𝑏 input
parameter thus reducing the overall computational cost to ∼ (𝑠𝑏×𝑁𝑓).
For context 𝑠𝑏 ∼ (10) while 𝑁𝑐 ∼ (107), thus resulting in relatively
large reduction in the computational cost associated with calculating
the SDF when compared to the brute-force method. Fig. 3 presents
a simple sketch considering 𝑠𝑏 = 1 around the face (an edge in 2D)
marked in red and the corresponding points considered for calculating
the distance query marked in black- and purple-filled circles (closest
point to the face). The thick-purple lines connecting the filled-black
circles are chosen based on the value of 𝑠𝑏 prescribed by the user in
each lattice direction around the point of consideration in 3D. The
pseudo-code of the algorithm is detailed below in Algorithmic listings
1–2.

A sign-unaware distance is calculated with the method proposed by
Eberly [11], which further requires information from the underlying
geometry to correctly tag the positive or negative sign associated with
the point being inside or outside the geometry. Since the OBJ file
format supports storing the vertex normals as shown in Fig. 3, the
distance can be tagged to each query point by taking the inner product
between the average vertex normals corresponding to the face and the
segment connecting the query point and the face centre given by
𝐿tag𝑞𝑖 = sgn(𝑛̂𝑓 ⋅ 𝑘𝑞𝑖−𝑜), (1)

where 𝐿tag𝑞𝑖 is the sign tagged to the distance calculated for the respec-
tive query point 𝑞𝑖, sgn is the sign function that returns either a 1.0 or
−1.0 (double-precision floating point), 𝑛̂𝑓 is the vertex averaged normal
vector associated with the face, and 𝑘𝑞𝑖−𝑜 is the vector originating from
the query point and pointing towards the face centre. Query points
returning a positive 𝐿tag𝑞𝑖 are tagged to be inside the geometry, while
the query points that return a negative 𝐿tag𝑞𝑖 are tagged to be outside as
sketched in Fig. 3.

Algorithm 1 Compute the Minimum Distance Between a Point and a
Triangle
Require: Point 𝑃 , triangle ▵ 𝐴𝐵𝐶 with vertices 𝐴,𝐵, 𝐶
Ensure: Minimum distance 𝑑 between 𝑃 and ▵ 𝐴𝐵𝐶
1: Compute edge vectors:
2: 𝐸0 ← 𝐵 − 𝐴
3: 𝐸1 ← 𝐶 − 𝐴
4: 𝑉 ← 𝑃 − 𝐴
5: Compute dot products:
6: 𝑑00 ← 𝐸0 ⋅ 𝐸0
7: 𝑑01 ← 𝐸0 ⋅ 𝐸1
8: 𝑑11 ← 𝐸1 ⋅ 𝐸1
9: 𝑑20 ← 𝑉 ⋅ 𝐸0
10: 𝑑21 ← 𝑉 ⋅ 𝐸1
11: Compute barycentric coordinates:
12: denom ← 𝑑00𝑑11 − 𝑑201
13: 𝑣 ←

𝑑11𝑑20−𝑑01𝑑21
denom

14: 𝑤 ←
𝑑00𝑑21−𝑑01𝑑20

denom
15: 𝑢 ← 1 − 𝑣 −𝑤
16: if 𝑢 ≥ 0 ∧ 𝑣 ≥ 0 ∧𝑤 ≥ 0 then
17: 𝑃𝑐 ← 𝐴 + 𝑣𝐸0 +𝑤𝐸1
18: return 𝑑 ← ‖𝑃 − 𝑃𝑐‖

19: end if
20: Check closest vertex cases:
21: if 𝑣 ≤ 0 ∧𝑤 ≤ 0 then
22: return 𝑑 ← ‖𝑃 − 𝐴‖
23: else if 𝑢 ≤ 0 ∧ 𝑣 ≤ 0 then
24: return 𝑑 ← ‖𝑃 − 𝐶‖

25: else if 𝑢 ≤ 0 ∧𝑤 ≤ 0 then
26: return 𝑑 ← ‖𝑃 − 𝐵‖
27: end if
28: Check closest edge cases:
29: if 𝑢 ≤ 0 then
30: 𝑃𝑐 ← ClosestPointOnSegment(𝑃 ,𝐵, 𝐶)
31: else if 𝑣 ≤ 0 then
32: 𝑃𝑐 ← ClosestPointOnSegment(𝑃 , 𝐶,𝐴)
33: else if 𝑤 ≤ 0 then
34: 𝑃𝑐 ← ClosestPointOnSegment(𝑃 ,𝐴, 𝐵)
35: end if
36: return 𝑑 ← ‖𝑃 − 𝑃𝑐‖
3

Akshay Patil et al. SoftwareX 30 (2025) 102117
Fig. 3. 2D sketch of sign-tagging logic used in this implementation. The black solid line with black-filled circles marks the faces of the geometry where each segment corresponds
to a face. The vertex normals originate at each vertex and point in the outward normal direction. The green arrows originating from the query points (q1, q2, and q3) are assumed
to point towards the closest face on the geometry. The black-dashed lines mark the computational grid on which the query points are situated. The red edge connecting the
red-filled circles correspond to the edge under consideration for the distance query while the black-filled circles are the computational grid points against which the distance needs
to be calculated. The triangulation here i.e., the faces, are presented as isotropic in size, however, this is not a requirement for the algorithm. (For interpretation of the references
to colour in this figure legend, the reader is referred to the web version of this article.)

Fig. 4. Example sketch of the triangulated surface geometry overlaid onto the computational grid (2D example). The three filled-red circles correspond to the vertices of the
triangular face denoted by the solid black lines.

Algorithm 2 Closest Point on a Line Segment
Require: Point 𝑃 , segment endpoints 𝑋, 𝑌
Ensure: Closest point 𝑃𝑐 on segment 𝑋𝑌
1: Compute projection parameter:
2: 𝑡 ← (𝑃−𝑋)⋅(𝑌−𝑋)

(𝑌−𝑋)⋅(𝑌−𝑋)
3: Clamp 𝑡 to [0, 1]:
4: 𝑡 ← max(0,min(1, 𝑡))
5: Compute closest point:
6: 𝑃𝑐 ← 𝑋 + 𝑡(𝑌 −𝑋)
7: return 𝑃𝑐

Since the user is allowed to specify a stencil width around the
geometry where the distance is calculated, the default initialization for
the SDF value does not correctly tag the values inside the geometry
that should retain a negative value. During the initialization step, all
points are originally tagged to be outside the geometry and assigned
a large positive distance value specified by the user in the user input
parameters. The effect of varying stencil width without correctly han-
dling the internal values can be seen in Fig. 5 where the algorithm
incorrectly assigns a positive default value inside the geometry. For
increasing stencil width, such a situation can be potentially avoided,
however, the computational cost scales with the stencil width, thus
we make use of a simple 3D flood-fill algorithm that assigns a large
negative value for internal values bounded by the SDF. This is a critical
part of the algorithm as the SDF is used to identify the location of the
solid interface (i.e., SDF = 0.0), thus without the final flood-fill process,
4

Akshay Patil et al. SoftwareX 30 (2025) 102117
Fig. 5. Example case illustrating the effect of stencil width when flood-fill algorithm is not used post-signed-distance calculation. Size of the internal region with a default positive
value decreases with increasing stencil width.

the CFD solver could potentially return multiple interface locations.
Finally, once the SDF is calculated on the individual MPI ranks, the
gather_array subroutine collects the decomposed parts of the array and
stacks it into a single contiguous array which is then written out to a
binary file format for further use within the CFD solver.

This approach not only localizes the distance query but also allows
for an efficient parallelization strategy as there is no global commu-
nication required when such a distance query is requested. Since the
outer loop iterates over the total number of faces in the triangulated
surface geometry, there are some limitations that must be considered
for this particular algorithm. Geometries with long and slender trian-
gles may render de-generate SDF, this is especially true for geometries
that constitute a large collection of blocks (cubes such as buildings).
Additionally, for cases where the underlying computational grid is
relatively much finer compared to the surface triangulation, there can
be instances where certain computational points render de-generate
SDF. A simple fix for both scenarios is to refine the surface triangulation
using a meshing tool or the instructions provided within the published
repository.

2.3. Input requirements and performance

GenSDF is designed with the CFD user in mind and, like any other
software, requires input parameters and data to work as detailed in this
paper. Some of these requirements are:

1. Input Geometry: The geometry is required to consist of trian-
gles and must be manifold and watertight. In cases where the
computational grid spacing is larger than the triangulation of
the geometry, water tightness is not a strict requirement. The
geometry must be stored in the wavefront OBJ file format as it
stores the vertex normal information that is central to the imple-
mentation considered in this study. Additionally, this file format
is supported and used in many open-source software where
the input geometry will be used for setting up scale-resolving
simulations [12,13]. The algorithm enforces the coordinate axes
𝑥𝑖 to be aligned such that 𝑖 = 1, 2, 3 correspond to the stream-
wise (longest), spanwise, and vertical directions, respectively.
The bounding box of the input geometry must be contained
within the bounding box of the computational geometry either
completely or partially. In case the input geometry is completely
outside the bounds, the SDF will simply return a default value
for all computational grid points.

2. Input Computational Grid: In addition to the input geometry, the
computational grid over which the SDF is to be calculated needs
to be provided. The code in its current form is directly compati-
ble with one of the widely used CFD solvers CaNS developed by
Costa [8]. However, since most scalable CFD solvers that would
require the use of GenSDF have similar structure i.e., isotropic
grid spacing in two directions, and non-isotropic grid in one

direction; the grid can be ported to CaNS format. Specifically,
the CaNS grid structure consists of two files, namely, a. geom-
etry.out, and b. grid.out. These two files are assumed to
be hosted in the data directory relative to where the executable
is placed. The geometry.out file contains two lines with
three columns of information where the first line contains the
total number of grid points while the second line contains the
length of the domain with respect to the computational grid
origin (default origin 0,0,0) in the streamwise, spanwise, and
vertical directions, respectively. The grid.out file contains
five columns and 𝑛𝑧 lines, where 𝑛𝑧 is the number of grid points
in the vertical direction. The first column is typically empty
and has a dummy value of 0.0 while the second and third
columns correspond to the cell centre and cell face locations in
the vertical directions, respectively. The fourth and fifth columns
correspond to the grid spacing for the cell centre and the cell face
locations. Both the geometry.out and grid.out columns
are separated by white space and do not contain a file header.

3. Input Parameters: A complete list of input parameters required
in addition to the input geometry are detailed in Listing 1. Each
line preceding with a ‘!’ corresponds to a comment. The scalar
value refers to the initial value set for all the points assumed to
be outside the geometry. The real and int keywords correspond
to floating point and integer data types, respectively. The non-
uniform-grid boolean flag can either be set to ‘T’ or ‘F’ for True
and False, respectively.

Listing 1: Input parameters required for the code with the default file
name parameters.in
! Name and location of the inputfile
’data/armadillo_withnormals.obj’
! Scalar value (real), stencil width (int),

progressbarsize (int)
100.0 4 10
! nx, ny, nz (Computational Grid)
512 128 128
! r0 (Origin of the computational grid)
0.0 0.0 0.0
! non_uniform_grid
F

To evaluate the accuracy and the performance of the software,
we first consider the effect of increasing resolution for a sphere with
a radius of 𝑟𝑐 = 0.05 units centred at (0.5, 0.5, 0.5). The background
computational grid is discretized using three grid resolutions 𝑟𝑐∕𝛥 =
[12.8, 25.6, 51.2]. Fig. 6(a) compares the results using GenSDF where the
level-set (SDF = 0.0) is shown against the analytical geometry. With
increasing grid resolution, the level-set converges towards the analyti-
cal geometry. For relatively complex geometry, the level-set accurately
5

Akshay Patil et al. SoftwareX 30 (2025) 102117
Fig. 6. (a) SDF level-set comparison against analytical geometry for varying computational grid resolution. The dashed-magenta, dash–dot-blue, and dotted-red lines correspond
to 𝑟𝑐∕𝛥 = [12.8, 25.6, 51.2], respectively, while the solid black line represents the ground truth. (b–d) Comparison of the level-set against a relatively complex geometry with an
effective resolution of 𝛥 = [1∕512, 1∕1024] marked using orange and magenta solid lines respectively, while the solid black line represents the exact geometry. The background grid
corresponds to a resolution of 𝛥 = 1∕1024. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Table 1
Computational time required for the three geometries tested using GenSDF as a function
of the number of faces (𝑁𝑓) in the geometry for constant background grid resolution.
 Geometry name 𝑁𝑓 𝛥 = 1.0∕512 𝛥 = 1.0∕1024
 Orion 51736 1.64 s 2.46 s
 Stanford Lucy 99970 1.63 s 1.55 s
 Stanford Dragon 249882 4.90 s 5.21 s

captures the underlying geometry even for a relatively coarse resolution
as shown using the orange solid line in Fig. 6(b–d). To demonstrate
the performance of the algorithm, we consider three cases namely the
Orion [14], the Stanford Dragon, and Lucy [15] with two grid sizes
with a resolution of 𝛥 = [1.0∕512, 1.0∕1024]. The original geometry was
re-scaled to fit a bounding box (of the geometry) with size 𝑥min =
(0.5, 0.5, 0.5), 𝑥max = (1.0, 1.0, 1.0) within the cube (background compu-
tational grid) of side length 1.5 units. Table 1 lists the time required to
generate the SDF using 8 cores on a single socket CPU. It is clear to see
that despite the relatively simple computational structure, the code is
fast and accurate for complex geometries.

2.4. Current limitations and future vision

GenSDF in its current form provides a foundational framework
to further develop a computational tool to generate SDFs for CFD
applications. Consequently, in this section we will briefly present the
future vision for improving GenSDF.
Short-Term Milestones

1. In its current form, GenSDF uses a streamwise slab-type decom-
position [16] which can be a limiting aspect of the implemen-
tation. A 2D pencil decomposition could further improve the
scalability of GenSDF and will be considered in the next update
cycle.

2. Finally, the underlying computational grid is assumed to be in
a specific format that is not universal and does not allow non-
isotropic grid spacing in the streamwise and spanwise directions.
This can be relatively easily fixed by defining a universal input
grid format that is agnostic to the CFD solver and will be
considered in the update cycle.

Long-Term Milestone

1. With GPGPU computing hardware continually improving over
the past decade, both serial- and multi-GPU support could
greatly improve the usability and performance when compared
to the current MPI-based CPU version of the code. This aspect
will require re-writing relatively major parts of the code and thus
will be considered as one of the long-term milestones.

3. Illustrative examples

Despite some of the shortcomings mentioned above, GenSDF has
been used at extreme scale simulation setups as illustrated in the fol-
lowing section. By default, the code assumes that the grid is staggered
such that the locations of 𝑢, 𝑣, 𝑤, (velocities in streamwise, spanwise,
and vertical directions, respectively) and 𝑝 (pressure and any other cell-
centre parameters of interest i.e., scalars) are different thus generating
four different arrays corresponding to the location of the variables. The
code also provides an indication of the expected minimum memory
required to run the specific program based on the total number of
arrays initialized by the software. This is important when the problem
size is large and the user requires a minimal memory estimate to
schedule the SDF generation on HPCs.

Figs. 7, 8, and 9 depict the suitability of GenSDF for multi-scale and
complex geometries. Fig. 7 depicts the SDF generated for an artificially
generated coral reef containing a total of 14.85 Million vertices and
29.75 Million faces on a background non-isotropic computational grid
containing 1.2 Billion grid points. The Stanford dragon exhibits rela-
tively sharp curvature and slender cross-sections as seen in Fig. 8 and
GenSDF is able to sufficiently capture the details without introducing a
large computational overhead (see Table 1). A relatively extreme-scale
case is depicted in Fig. 9 with 2 Billion grid points and 25 Million
triangulation faces where the grey colour marks the level-set of 0
representing the solid boundary of the buildings and the colour marks
the distance field.

4. Impact

The development of this software has a significant impact on en-
abling a pre-processing workflow for scale-resolving turbulent flow
6

Akshay Patil et al. SoftwareX 30 (2025) 102117
Fig. 7. SDF generated for a multi-scale artificially generated coral reef (Results from [17]).

Fig. 8. SDF generated for complex geometry corresponding to the Stanford Dragon [15].

simulations around complex objects for problem sizes in the order of
billions of computational grid cells. GenSDF is an open-source software
that allows computational fluid dynamicists to seamlessly incorpo-
rate complex geometries into their solvers. The distributed memory
implementation ensures scalability across multiple CPUs, eliminating
memory limitations as a bottleneck and enabling its application to
large-scale simulations. While originally designed to integrate with
the well-validated scale-resolving solver CaNS [8], GenSDF is highly
adaptable and can be employed with other solvers requiring signed
distance functions (SDFs) to handle complex objects.

The availability of GenSDF opens up avenues for exploring new
research questions in computational fluid dynamics (CFD) and be-
yond. For example, it enables the study of turbulence and flow be-
haviour around geometrically intricate structures at high resolution.
It also facilitates research into optimized solver designs that leverage
SDF representations, allowing for novel investigations into mesh-free
methods and hybrid grid-based techniques. Additionally, GenSDF’s
ability to handle arbitrary geometries with high scalability enables
interdisciplinary applications, such as biomechanics and atmospheric
simulations, that require accurate modelling of complex boundary
interactions. The GenSDF software has been used in the following
manuscripts:

1. Patil, A. and García-Sánchez, C. Hydrodynamics of In-Canopy
Flow in Synthetically Generated Coral Reefs Under Oscillatory
Wave Motion, Journal of Geophysical Research: Oceans, (sub-
mitted 2024-08-09, Under Review)

2. Patil, A. and García-Sánchez, C. A Comparative Hydrodynamic
Characterization of the Flow Through Regular and Stochasti-
cally Generated Synthetic Coral Reefs Over Flat Topography,
Coastal Dynamics 2025 Meeting, Aveiro, Portugal, (submitted
2025-01-15), Pre-Print: https://arxiv.org/abs/2501.15237

Fig. 9. SDF generated for the Delft University of Technology central campus with a
background grid size of 2 Billion grid points and 25 Million triangulation faces for the
underlying geometry. Only a section of the grid is shown in the figure.

By streamlining the integration of complex geometries into CFD
workflows, GenSDF significantly reduces the time and effort required
for pre-processing, allowing researchers to focus on core simulations
and analysis. This efficiency improvement accelerates studies on topics
like flow-induced noise, drag reduction, and wake dynamics. Moreover,
its scalability allows researchers to push the boundaries of resolution
in turbulence modelling, leading to more accurate insights into multi-
scale flow phenomena and better validation of theoretical models. The
software’s robustness and scalability have also encouraged its adoption
in high-performance computing (HPC) environments, making complex
simulations more accessible and routine for a broader audience.
7

https://arxiv.org/abs/2501.15237

Akshay Patil et al. SoftwareX 30 (2025) 102117
5. Conclusions

GenSDF provides an open-source, scalable, and accurate method to
generate a signed distance field for complex objects over a Cartesian
grid with variable vertical grid spacing. The development of this code
was primarily motivated by the need for a scalable and distributed
memory solution to generate a signed distance field for computational
fluid dynamics applications. Some of the main advantages of GenSDF
are: (1) Low memory footprint (2) Scales over 100s of CPUs (3) Easily
portable to different CFD solvers. The software also provides detailed
documentation of the source code and example usage. GenSDF is
continually updated and tracked through the GitHub repository where
users can directly contribute.

CRediT authorship contribution statement

Akshay Patil: Writing – review & editing, Writing – original draft,
Visualization, Validation, Supervision, Software, Resources, Methodol-
ogy, Investigation, Formal analysis, Data curation, Conceptualization.
Udhaya Chandiran Krishnan Paranjothi: Writing – review & edit-
ing, Software, Methodology, Formal analysis, Conceptualization. Clara
García-Sánchez: Writing – review & editing, Visualization, Validation,
Supervision, Software, Resources, Project administration, Methodology,
Investigation, Funding acquisition, Formal analysis, Conceptualization.

Declaration of competing interest

The authors declare the following financial interests/personal rela-
tionships which may be considered as potential competing interests:
Akshay Patil and Clara Garcia-Sanchez report financial support was
provided by Horizon Europe. If there are other authors, they declare
that they have no known competing financial interests or personal
relationships that could have appeared to influence the work reported
in this paper.

Acknowledgements

A.P. would like to thank the resources provided by the 3D Geoinfor-
mation Research Group for the testing and prototyping of this software.
A.P. and C.GS would also like to acknowledge that this research was
carried out as a part of the EU-Project RefMAP. RefMAP has received
funding from the Horizon Europe program under grant agreement No
101096698. The opinions expressed herein reflect the authors’ views
only. Under no circumstances shall the Horizon Europe program be
responsible for any use that may be made of the information con-
tained herein. During the preparation of this work, the authors used
Grammarly in order to spell and grammar check. After using this

tool, the authors reviewed and edited the content as needed and
take full responsibility for the content of the publication. The authors
express their sincere gratitude to the two anonymous reviewers for
their insightful comments and constructive suggestions, which have
significantly contributed to the improvement of this manuscript.

References

[1] Goc KA, Lehmkuhl O, Park GI, Bose ST, Moin P. Large eddy simulation of
aircraft at affordable cost: a milestone in computational fluid dynamics. Flow
2021;1:E14. http://dx.doi.org/10.1017/flo.2021.17.

[2] Ciarlatani MF, Huang Z, Philips D, Gorlé C. Investigation of peak wind loading
on a high-rise building in the atmospheric boundary layer using large-eddy
simulations. J Wind Eng Ind Aerodyn 2023;236:105408. http://dx.doi.org/10.
1016/j.jweia.2023.105408.

[3] García-Sánchez C, Philips D, Gorlé C. Quantifying inflow uncertainties for
CFD simulations of the flow in downtown Oklahoma City. Build Environ
2014;78:118–29. http://dx.doi.org/10.1016/j.buildenv.2014.04.013.

[4] Hochschild J, Gorlé C. Design and demonstration of a sensing network for
full-scale wind pressure measurements on buildings. J Wind Eng Ind Aerodyn
2024;250:105760. http://dx.doi.org/10.1016/j.jweia.2024.105760.

[5] Jiang H, Cheng L. Large-eddy simulation of flow past a circular cylinder for
Reynolds numbers 400 to 3900. Phys Fluids 2021;33(3). http://dx.doi.org/10.
1063/5.0041168.

[6] Peskin CS. The immersed boundary method. Acta Numer 2002;11:479–517.
http://dx.doi.org/10.1017/S0962492902000077.

[7] Yang J, Balaras E. An embedded-boundary formulation for large-eddy simu-
lation of turbulent flows interacting with moving boundaries. J Comput Phys
2006;215(1):12–40. http://dx.doi.org/10.1016/j.jcp.2005.10.035.

[8] Costa P. A FFT-based finite-difference solver for massively-parallel direct nu-
merical simulations of turbulent flows. Comput Math Appl 2018;76(8):1853–62.
http://dx.doi.org/10.1016/j.camwa.2018.07.034.

[9] Roosing A, Strickson OT, Nikiforakis N. Fast distance fields for fluid dynamics
mesh generation on graphics hardware. 2019, arXiv:1903.00353.

[10] Fortran 2003 Draft International Standard. URL https://wg5-fortran.org/N1601-
N1650/N1602.pdf.

[11] Eberly D. Distance between point and triangle in 3D. 2020, URL https://www.
geometrictools.com/Documentation/DistancePoint3Triangle3.pdf. [Accessed 15
November 2024].

[12] Peters R, Dukai B, Vitalis S, van Liempt J, Stoter J. Automated 3D reconstruction
of LoD2 and LoD1 models for all 10 million buildings of the Netherlands.
Photogramm Eng Remote Sens 2022;88:165–70. http://dx.doi.org/10.14358/
PERS.21-00032R2.

[13] Pađen I, García-Sánchez C, Ledoux H. Towards automatic reconstruction of
3D city models tailored for urban flow simulations. Front Built Environ
2022;8:899332. http://dx.doi.org/10.3389/fbuil.2022.899332.

[14] Orion capsule, NASA 3D resources. 2025, URL https://nasa3d.arc.nasa.gov/
detail/orion-capsule. [Accessed January 2025].

[15] The stanford 3D scanning repository. 2025, URL http://graphics.stanford.edu/
data/3Dscanrep/. [Accessed January 2025].

[16] Li N, Laizet S. 2Decomp & FFT-a highly scalable 2D decomposition library
and FFT interface. In: Cray user group 2010 conference. 2010, p. 1–13,
URL https://www.turbulencesimulation.com/uploads/5/8/7/2/58724623/2010_
laizet_nag.pdf.

[17] Patil A, García-Sánchez C. A comparative hydrodynamic characterization of the
flow through regular and stochastically generated synthetic coral reefs over flat
topography. 2025, arXiv:2501.15237.
8

http://dx.doi.org/10.1017/flo.2021.17
http://dx.doi.org/10.1016/j.jweia.2023.105408
http://dx.doi.org/10.1016/j.jweia.2023.105408
http://dx.doi.org/10.1016/j.jweia.2023.105408
http://dx.doi.org/10.1016/j.buildenv.2014.04.013
http://dx.doi.org/10.1016/j.jweia.2024.105760
http://dx.doi.org/10.1063/5.0041168
http://dx.doi.org/10.1063/5.0041168
http://dx.doi.org/10.1063/5.0041168
http://dx.doi.org/10.1017/S0962492902000077
http://dx.doi.org/10.1016/j.jcp.2005.10.035
http://dx.doi.org/10.1016/j.camwa.2018.07.034
http://arxiv.org/abs/1903.00353
https://wg5-fortran.org/N1601-N1650/N1602.pdf
https://wg5-fortran.org/N1601-N1650/N1602.pdf
https://wg5-fortran.org/N1601-N1650/N1602.pdf
https://www.geometrictools.com/Documentation/DistancePoint3Triangle3.pdf
https://www.geometrictools.com/Documentation/DistancePoint3Triangle3.pdf
https://www.geometrictools.com/Documentation/DistancePoint3Triangle3.pdf
http://dx.doi.org/10.14358/PERS.21-00032R2
http://dx.doi.org/10.14358/PERS.21-00032R2
http://dx.doi.org/10.14358/PERS.21-00032R2
http://dx.doi.org/10.3389/fbuil.2022.899332
https://nasa3d.arc.nasa.gov/detail/orion-capsule
https://nasa3d.arc.nasa.gov/detail/orion-capsule
https://nasa3d.arc.nasa.gov/detail/orion-capsule
http://graphics.stanford.edu/data/3Dscanrep/
http://graphics.stanford.edu/data/3Dscanrep/
http://graphics.stanford.edu/data/3Dscanrep/
https://www.turbulencesimulation.com/uploads/5/8/7/2/58724623/2010_laizet_nag.pdf
https://www.turbulencesimulation.com/uploads/5/8/7/2/58724623/2010_laizet_nag.pdf
https://www.turbulencesimulation.com/uploads/5/8/7/2/58724623/2010_laizet_nag.pdf
http://arxiv.org/abs/2501.15237

	GenSDF: An MPI-Fortran based signed-distance-field generator for computational fluid dynamics applications
	Motivation and significance
	Software description
	Software architecture
	Software functionalities
	Input Requirements and Performance
	Current limitations and Future Vision

	Illustrative examples
	Impact
	Conclusions
	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgements
	References

