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Abstract 

This paper presents an assessment of a two-scale framework for the study of softening 
materials. The procedure is based on a hierarchical Finite Element (FE) scheme in which 
computations are performed both at macro and mesoscopic scale levels. The methodology is 
chosen specifically to remain valid when the scales are coupled which is frequently 
encountered in fracture processes of heterogeneous materials.  

The effect of the boundary conditions chosen to construct the meso-scale problem is 
studied in this contribution by comparing multiscale and monoscale analysis of  an equivalent 
problem. It is shown in this study that macroscopic mesh size dependence is encountered 
when using linear interpolated boundary displacements at the interface between meso-
specimens. 

An improvement to the linear interpolated boundary displacements is presented which 
proves to be more adequate when strain localisation phenomena is encountered at the 
interface of the meso-specimens. The specific upscaling procedure for the improved boundary 
conditions remains an issue of ongoing research. 
 

1. INTRODUCTION 
The increasing performance of modern computational tools has stimulated to  model many 

engineering  materials at a significant detailed level.  This is the case for multiscale strategies 
which aim to simulate the processes which originate at a lower material scale such as 
localisation and fracture. 

Different approaches can be found in literature which aim at obtaining a more accurate 
response of the material via the computations at a lower scale level. During the recent years 
approaches have been developed to include the classical homogenisation theories in to a 
nested computational framework. This is the case of computational homogenisation 
techniques (see i.e. [1] and [2]) where the link between the upper and lower scale is 
established at the macroscopic integration point of the structural specimen. The constitutive 
information at the macroscopic Gauss point is given by the solution of a mesoscopic boundary 
value problem over a representative volume (RVE) of the material. Non-linear phenomena is 
naturally captured due to the incremental iterative formulation of the scheme in which a 
numerical technique (i.e. Finite Element method) is needed to solve both upper and lower-
scale problems. 

The key ingredient of these techniques is the assumption made to downscale the 
information and build the boundary value problem at the lower level. Different assumptions 
are explained in [3] which have an influence on the resulting constitutive law used at the 
upper level. As shown in [4], difficulties are found in order to determine the size of the 
representative volume when the material shows softening and localisation phenomena. It can 
be proved that when combining this technique with a constitutive model that allows for 
softening and localisation, both macro-element and meso-level size dependence are found [4]. 



The former fact is linked to a lack of regularisation upon mesh refinement whilst the latter is a 
purely phenomenological issue related to the non existence of an RVE for the softening 
regimes. 

An attempt to overcome the latter drawbacks is to formulate a scheme in which upper and 
lower scales remain coupled. This is the case of strong coupling multiscale techniques as 
described in [5] and [6] by Ibragimbehovic and Markovic. The idea is to assign a meso-
specimen to each macro-element and perform the data exchange at the macroscopic element 
level instead of the Gauss point level. The scales are coupled via localised Lagrangian 
multipliers which provide compatibility for meso and macro displacement fields. This 
technique is taken in this study for the case of a displacement interface and assessed for 
softening materials. In the case where the displacements at the interface are forced to be 
compatible without any extra constraint the technique can be compared to substructuring or 
domain decomposition techniques (i.e. [7] ) where the different domains of study would be 
represented by the macroscopic elements themselves. 

Other techniques (see [8] and [9]) are based on the superposition of  a global (upper level) 
and a local (lower level) solution field over a certain domain. The upscaling is performed this 
time enriching the global shape functions via the solution field of the local problem. The 
enrichment at the boundaries of the local problem needs to be zero and, for this reason, the 
local domain should always explicitly contain all non-linearities and complex phenomena (i.e. 
cracking and strain localisation) that can not be described uniquely at the global domain. 

In the following a formulation is presented for the strong coupling multiscale technique 
with a displacement interface. 

2. METHODOLOGY 
In this section the formulation of the strong coupling multiscale framework is introduced 

for the case of a displacement interface based on linear interpolation of the macroscopic 
displacement field along the mesoscopic boundaries and an improved displacement interface 
based on the geometrical compatibility between upper and lower scales. 

2.1 Framework formulation 
In order to couple the scales every macro element is assigned a corresponding meso-cell 

with identical shape and dimensions. Macro-elements are constituted in this study by four 
nodded bilinear elements and meso-specimens are formed, at the same time, by an arbitrary 
FE type. At the macro level no constitutive law is specified whereas at the meso-level all 
phases of the heterogeneous material are identified by its inelastic law. The data exchange 
between upper and lower levels is performed at the element level of the macro computations 
(see Figure 1) where element quantities are formed after the solution of the corresponding 
meso boundary value problems. An advantage of such a scheme is that all mesoscopic 
computations can be performed in parallel. 
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Figure 1: Framework scheme 

At each macro iteration (i) the linearised system of equations  
iMiMiM dd ,1,, ruK =+  (1) 

needs to be solved, where here the superscripts M and m  are used to indicate macro and 
mesoscopic quantities respectively. Each macro element is assigned a meso specimen for 
which a boundary value problem can be constructed based on the iterative displacements of 
the four corner nodes. The downscaling strategy is summarized in Eq. (2). 

ielMelielm ,,,, uTu = , (2) 

where the transformation matrix T is introduced which sets the relation between the 
displacement of the corner nodes of each macro element and the corresponding displacements 
along the boundaries of the mesoscopic cell.  

The corresponding linearised problem to be solved at the meso-level for each iteration (j) 
reads 

jmjmjm dd ,1,, ruK =+ . (3) 

After reaching equilibrium at the meso-level the upscaling of the quantities is performed in 
two steps as illustrated in Eqs. (4) and (5). First the static condensation of Wilson [10] is 
employed to project the information to the boundaries of the meso-specimen 
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obtaining the condensed stiffness matrix and residual vector respectively. Second this 
information is transformed using the transformation matrix T into macroscopic quantities to 
be used in Eq. (1) for each macro iteration. 
 

elelmTelielM TKTK ,,, ˆ)(=  (5) 

elmTelielM dd ,,, ˆ)( rTr = .  
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2.2 Displacement interface 
The simplest choice of the displacement interface is the linear interpolation of the 

displacements at the corners of the macroscopic specimen. In this case it is trivial to construct 
T such it accomplishes Eq. (2). Figure 2 (left) illustrates the linear interpolated interface for a 
quadrilateral macro element which has a corresponding cell meshed with nine regular 
quadrilateral elements. 

 
Figure 2: Displacement interfaces 

An alternative displacement interface is to preserve the macrosopic deformed configuration 
allowing the mid boundary nodes of the meso cell to move freely along the deformed edge. 
The geometrically linear boundary displacements (Figure 2 (right)) can be seen as a weak 
constraint that would allow more flexibility to the interface. 

In this strategy the downscaling is accomplished by imposing the displacement at the four 
corner nodes in an exact way and setting a multifreedom constraint to the mid boundary nodes 
of the meso cell. This multifreedom constraint can be imposed using Lagrange multipliers, the 
penalty method or the master slave method. The weak constraint sets, in this case, the slope to 
each mid boundary node according to the deformed configuration dictated by the macroscopic 
corner nodes. Figure 3 shows schematically the deformed configuration of a side of the 
quadrilateral. The linear deformed configuration can be formulated as a multifreedom 
constrain using the penalty method by means of the penalty element stiffness equation shown 
in Eq. (6). 

 
Figure 3: Multifreedom constraint formulation 
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The scalar ω denotes the penalty weight used to enforce the constraint. Eq. (6) can be 
rewritten in terms of the displacement field increment and assembled to the mesoscopic 
stiffness at the corresponding positions of the boundary degrees of freedom. 
 

3. RESULTS 
In this section two examples are presented in which the multiscale framework is assessed 

for softening materials. The third example shows the performance of the geometrically linear 
boundary displacements  when an arbitrary orientation for the strain localisation is 
encountered. All computations are performed in 2D assuming plain strain. The model used at 
the meso-level is a gradient enhanced damage model (see [11]) where an exponential damage 
evolution law and a Mazar’s definition of the non-local equivalent strain are considered. 

3.1 Macroscopic mesh size sensitivity 
In this example a tension test is performed to a quadrilateral sample containing four voids 

aligned vertically in its left edge as depicted in Figure 4a (upper left). The test consists on 
pulling from the right edge of the specimen until the load carrying capacity is reached and the 
cell starts softening localising the strains around the aligned voids. A single-scale analysis is 
performed meshing the structure depicted in Figure 4a (upper left) using three-nodded 
triangular elements. The same test is simulated now using the multiscale framework with a 
1x1, 2x2 and a 3x3 macro element discretisation (Figure 4a (upper right, lower left and lower 
right)). Each of the macro elements have a corresponding meso-cell meshed using three 
nodded triangular elements and containing the voids as shown in the upper left part of Figure 
4a. 
 

 

 

 Figure 4a: Multiscale discretisation   Figure 4b: Mechanical response 
 

The force versus displacement graphic at the right boundary is depicted in Figure 4b. It is 
observed that the dissipated energy is different for the monoscale and the multiscale analysis 
with 1x1, 2x2 and 3x3 macro elements. The coarser the macroscopic discretisation the more 
ductile the behaviour which is, at the same time, drifting away from the true monoscale 
response. This effect is explained considering that the linear interpolated boundary 
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displacements do not allow the strains to localise along the boundary. For this reason the area 
that is experiencing unloading during the softening regime is lower than in the monoscale 
analysis causing a more ductile overall behaviour. 

3.2 Displacement interface test 
A tensile test is imposed to a quadrilateral sample containing three voids in its center as 

shown in Figure 5a (upper right). The specimen is tested by means of a single scale analysis, a 
multiscale analysis (using linear interpolated boundary displacements) and using the 
geometrically linear boundary displacements applied to a single macroscopic element (1x1 
macro-discretisation). The mechanical response at the right boundary of the cell is shown in 
Figure 5b.  

It can be observed that the dissipated energy between the single scale analysis and its 
equivalent test using the geometrically linear boundary displacements is practically the same. 
Nevertheless, when comparing these two graphics with the one obtained using the former 
displacement interface the behaviour is slightly stiffer during the elastic regime and more 
ductile along the softening regime.  

The geometrically linear boundary displacements allow for localisation to take place at the 
boundary in a natural way. For this reason the overall behaviour is much more similar to the 
one observed at the single scale test. Hence the area where strain is localizing is comparable 
and this is translated to the overall response.  

 

 

 

 Figure 5a : Loading test    Figure 5b : Mechanical response 
 

3.3 Localisation test 
In this section the later displacement interface is used with a specimen containing three 

voids aligned diagonally as depicted in Figure 6. The specimen is pulled from opposite 
corners. Displacement, local equivalent strain and damage contours are shown in Figure 7. 
The deformed geometry of the edges is linear as dictated by the constraint type. Nevertheless 
localisation can naturally take place at the boundaries and corners of the specimen. The 
displacement interface is compatible with an arbitrary orientation of the strain localisation. 
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Figure 6: Loading test 

 
Figure 7: Field contours of the deformed specimen 

4. CONCLUSIONS 
A strong coupling multiscale framework is assessed in this study for materials that show 

softening and localisation. The choice of a displacement interface based on a linear 
interpolated boundary displacements does not seem to be adequate for this type of problems. 
Macroscopic mesh size dependency is observed. The overall response of the specimen is more 
ductile when the macro structure is discretised with a coarser mesh.  

When the displacement interface is set using geometrically linear boundary displacements, 
localisation can take place naturally at the boundaries during the softening regime. The energy 
dissipation is comparable to the single scale analysis, hence seems a more adequate choice to 
tackle these kind of problems.  

A transformation matrix is not trivial to find for this kind of displacement interface and the 
downscaling is performed using multi freedom constraints at the mid boundary nodes. For this 
reason the upscaling technique needs to be tailored for this particular case and it is an issue of 
ongoing research.  
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