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General representations for wavefield modeling

and inversion in geophysics

Kees Wapenaar'

ABSTRACT

Acoustic, electromagnetic, elastodynamic, poroelastic,
and electroseismic waves are all governed by a unified ma-
trix-vector wave equation. The matrices in this equation obey
the same symmetry properties for each of these wave phe-
nomena. This implies that the wave vectors for each of these
phenomena obey the same reciprocity theorems. By substi-
tuting Green’s matrices in these reciprocity theorems, unified
wavefield representations are obtained. Analogous to the
well-known acoustic wavefield representations, these unified
representations find applications in geophysical modeling,
migration, inversion, multiple elimination, and interfero-
metry.

INTRODUCTION

Wavefield representations play an important role in forward and
inverse geophysical problems, such as modeling, migration, inver-
sion, multiple elimination, and, recently, interferometry. Various au-
thors have derived acoustic and elastodynamic wavefield represen-
tations by substituting Green’s functions into the Rayleigh and Ray-
leigh-Betti reciprocity theorems, respectively (Morse and Feshbach,
1953; de Hoop, 1958; Gangi, 1970, 2000; Aki and Richards, 1980;
Fokkema and van den Berg, 1993). In this paper, we follow a similar
approach for a general matrix-vector wave equation that governs
acoustic, electromagnetic, elastodynamic, poroelastic, or elec-
troseismic wave propagation. First, we derive general convolution
and correlation reciprocity theorems for this wave equation, supple-
mented with boundary conditions for imperfectly coupled interfac-
es. Next, we introduce a Green’s matrix as the point-source solution
of the general wave equation. By substituting this Green’s matrix
into the reciprocity theorems, we obtain general convolution- and
correlation-type representations. We conclude this paper by briefly

discussing a number of applications of these general representations
in seismic modeling, migration, inversion, multiple elimination, and
interferometry.

MATRIX-VECTOR WAVE EQUATION

Diffusion, flow, and wave phenomena can each be captured by the
differential matrix-vector equation,

ADu+Bu+Du=s (1)

(Wapenaar and Fokkema, 2004), where u = u(x,?) is a vector con-
taining space- and time-dependent field quantities, s = s(x,?) is a
source vector, A = A(x) and B = B(x) are matrices containing
space-dependent material parameters, and Dy is a matrix containing
the spatial differential operators d,, d,, and d;. D, denotes the material
time derivative, defined as D, = 9, + v*- V = 4, + v)4,, where J, is
the time derivative in the reference frame and v’ = v’(x) the space-
dependent flow velocity of the material; v{ denotes the kth compo-
nent of v°. Einstein’s summation convention applies to repeated sub-
scripts; lower-case Latin subscripts (except 7) run from 1 to 3. In ex-
ploration geophysics, we consider nonmoving media; hence, from
here, onward we replace D, by 4,.

For acoustic wave propagation in an attenuating fluid, the vectors
and matrices in equation 1 are defined by

p q
U1 fi
U2 12
U3 VE

with p = p(x,1) the acoustic pressure, v; = v,(X,?) the particle veloci-
ty, ¢ = q(x,1) the volume injection rate, f; = f;(x,z) the external
force;
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with k = k(x) the compressibility, p = p(x) the mass density, b”
= br(x) and b = b*(x) the loss terms, and

0 0, & &

p_|@ o000y @
*“la, 0 0 0
% 0 0 0

For electromagnetic diffusion and/or wave propagation in matter,

we have
E - J¢
u:(H>’ Sz(—J’”)’ )

with E = E(x,7) and H = H(x,7) the electric and magnetic field vec-
tors, J¢ = Je(x,1) and J” = J"(x,?) the external electric and magnetic
current density vectors;

A_(e 0) B_(a'e 0) ¢
“\0 u/) “\o o)’ ©

with € = €(x) and g = p(x) the permittivity and permeability ten-
sors, o¢ = 0*(x) and 0" = ¢”(x) the electric and magnetic conduc-
tivity tensors, O the null-matrix, and

o 0 —d5 &
D, = (D 00)7 Dy=| ¢ 0 =94 (7)
0 -9 4 0

(superscript 7 denotes matrix transposition only; it does not denote
operator transposition).

For elastodynamic wave propagation in a solid, we have u”
= (v',— 71,— 77,— #7) (with v and 7; the particle velocity and trac-
tion vectors), s” = (f7,h{,h% h!) (with f and h, the external force and
deformation rate vectors), and A, B, and D, are 12 X 12 matrices (de
Hoop and de Hoop, 2000; Wapenaar and Fokkema, 2004).

For electroseismic wave propagation in a saturated porous solid
(Pride, 1994), we have u” = (E",H" {v*}",— 71,— 71— 7L, w7,p/)
(with superscripts s and f referring to the solid and fluid phase, re-
spectively), where E and H are the average electric and magnetic
field vectors, v* and 7; the solid particle velocity and bulk traction
vectors, w = ¢(v/ — v*) the filtration velocity (with ¢ the porosity),
and p/ the fluid pressure. Moreover, s’ = (- {J,
— {J7 47, h], hZ, hI {f}7, h/), where J¢ and J™ are again the external
electric and magnetic current density vectors, f and f/ the external
forces on the bulk and on the fluid, and h; and // the modified exter-
nal deformation rates for the bulk and the fluid. Finally, for this situa-
tion A, B, and D, are 22 X 22 matrices. Omitting E, H, J¢, and J"
from u and s gives the field and source vectors for poroelastic waves
(Biot, 1956) governed by 16 X 16 matrices A, B, and D,. On the oth-
er hand, omitting w, p/, £/ and 7/ and reorganizing B results in the
electrokinetic equations for a piezoelectric system (Auld, 1973),
with 18 X 18 matrices A, B and D,.

In all cases, matrices A(x) and B(x) can be replaced by convolu-
tional operators A(x,?)* and B(x,)* to account for more general at-
tenuation mechanisms.

We define the temporal Fourier transform of a space- and time-de-
pendent quantity p(x,1) as

px,w) = f exp(— jor)p(x,1)dt, (8)

—00

where j is the imaginary unit and w the angular frequency. Applying
the Fourier transform to all terms in matrix-vector equation 1, with
D, replaced by ¢, and A(x) and B(x) replaced by convolutional oper-
ators A(x,7)* and B(x,)*, we obtain

ijﬁ + Ba + D, =§, 9)
where, apart from the field and source vectors @i(x, w) and §(x, ), the
material parameter matrices A(x, ) and ﬁ(x, w) are in their general
form frequency-dependent and complex-valued. Note that j wA and
B could be combined into one material-parameter matrix. However,
we prefer to keep these terms separated to acknowledge the different
character of the parameters in A andB.

For each situation, matrices A, B, and D, obey the symmetry rela-
tions

KAK = A = A”, (10)
KBK = B, (11)
KD,K = - D, = - DI, (12)

where K is a real-valued diagonal matrix, obeying the property K
= K-!. For example, for the acoustic and electromagnetic situations
discussed above, we have

1 0 0 0
0 -1 0 -1 0O
K= and K = , (13)
0 0 -1 (O 2 |
0 0 0o -1

respectively, with I the identity matrix.

MATRIX-VECTOR BOUNDARY CONDITION

Atany position in space where the medium parameters in matrices
A and B are discontinuous, the wavefield quantities in vector @
should obey boundary conditions. The same is true at a fracture with
imperfect coupling. For this situation, the wavefield quantities in
may exhibit a finite jump. We call both types of medium singularities
interfaces. In the following, we consider the most general case for
which the medium parameters are different at both sides of the inter-
face and the media are not in perfect contact with each other.

Consider an interface with normal vector n = (n,,n,,n5)" between
two materials (see Figure 1). In linearized form, the boundary condi-
tions at an imperfect interface can be formulated in the space-fre-
quency domain as

[Mi] = - joY(Ma) (14)

(Wapenaar et al., 2004), where M is a matrix that contracts the wave
vector 1 to the components that are involved in the boundary condi-
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tions, Y = f((x, w) is a matrix containing the boundary parameters,
and [-] and (-) represent the jump and the average across the inter-
face, respectively, as stated by

[px,w)] = llig)l(ﬁ(x + hn,w) — p(x — hn,w)), (15)

(p(x,w)) = im(p(x + hn,w) + p(x — hn,w))/2, (16)
1o

where x is chosen at the interface.
For acoustic waves, the matrices in equation 14 are defined as

10 0 0 . [0 @
M = and Y = . (17
k0

0 ny np, njs

The superscript b denotes that p* = p°(x,w) and K° = R°(x,w) are
boundary parameters. The dimension of each boundary parameter is
equal to the dimension of the corresponding volumetric parameter,
multiplied by meter. For vanishing p® and <°, equation 14, with a, M,
and Y defined in equations 2 and 17, reduces to the standard bound-
ary conditions for perfectly coupled fluids, i.e., [p] = 0 and [{n,]
= 0. When p" and &® are nonzero, 1/jwp® is the hydraulic boundary
permeability, &° the boundary compressibility, and 1/&* = K® the
boundary stiffness. Note that the dimension of the boundary stiffness
K is that of stiffness per meter (i.e., Pa/m). Therefore, K is also
called the specific boundary stiffness.

For elastodynamic waves, the matrices in equation 14 are defined

as
I O O O A 0O s

M = and Y = , (18)
O n11 l’l2I }’l3I i)b (0]

where p® and St are the boundary density and compliance tensors,
respectively. When p° = O (which is usually a good approximation)
andn = (0,0,1)7 (i.e., the interface is horizontal), equation 14, with
M and Y defined in equation 18, reduces to the linear slip model of
Schoenberg (1980) when St is diagonal and real-valued, to the ex-
tended linear slip model of Pyrak-Nolte etal. (1990) when S is diag-
onal and complex-valued, or to the general boundary model (includ-
ing shear-induced conversion) of Nakagawa et al. (2000) when the
nondiagonal elements of SP are also nonzero. Liu et al. (1995, 2000)
relate the parameters in the compliance tensor to the details of the
microstructure of the interface.

For electromagnetic waves, equation 14 is a generalization of the
Kaufman and Keller (1983) conductive interface model. For po-
roelastic waves, it is a generalization of the Gurevich and Schoen-
berg (1999) permeable interface model; when Y vanishes, it reduces
to the Deresiewicz and Skalak (1963) open-pore boundary condition

Figure 1. Interface between two media with imperfect coupling.

for the perfectly coupled porous solids. For electroseismic waves,
equation 14 combines the boundary conditions for electromagnetic
and poroelastic waves.

Inall cases Y obeys the symmetry relations

Y'N=-NY and Y'J=JY (19)

(Wapenaar et al., 2004), where superscript * denotes complex conju-
gation and f complex conjugation and transposition. For example,
for the acoustic and elastodynamic situations discussed above, we

have
N (0 1) J (O 1) (20)
=10/ " \1 o0
and
N_(o 1) J_(o 1) .
“\-1 0/ "7\1 O/
respectively.

CONVOLUTION-TYPE RECIPROCITY THEOREM

In general, a reciprocity theorem interrelates two independent
states in one and the same domain (de Hoop, 1966; Fokkema and van
de Berg, 1993). Here, we derive areciprocity theorem for the general
wave vector @1 described in the previous sections. We introduce two
independent states (i.e., wavefields, medium parameters, boundary
parameters, and source functions) that will be distinguished by the
subscripts A and B, (see Table 1). In the frequency domain, each of
these states obeys the general matrix-vector-wave equation 9. We
consider the interaction quantity GfKD,liz — (D,a,)"Ku,. Using
wave equation 9 as well as symmetry relations 10 and 11 for both
states, we obtain

ﬁgKDxﬁB - (DxﬁA)TKﬁB = ﬁgKéB - §£KﬁB
AT . N N

-0, K{jw(Az - A))

+ (Bp — By}, (22)
This is the local form of the convolution-type matrix-vector reci-
procity theorem. We call this convolution type because the products
in the frequency domain (afKS; etc.) correspond to convolutions in
the time domain. Next, we consider an arbitrary spatial domain D
with boundary d1) and outward-pointing normal vector n (see Figure

2). Note that d1) does not necessarily coincide with a physical bound-
ary. For the moment, we assume that the medium parameters in both

Table 1. States for the unified reciprocity theorems.

State A State B
Wavefields (X, ) ,(x, w)
Medium parameters {ALB(x,0) {ApBl(x,w)
Boundary parameters Y (%, @) Y(x, @)
Source functions $4(x, @) $x(x, w)
Domain D
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states are continuous in D. We integrate both sides of equation 22
over this domain and apply Gauss’ theorem in matrix-vector form
(equation A-5, see Appendix A) to the left-hand side. This yields

3@ G KN, fi5d’x = f {alKs; — §7Kaghd’x
aD D

- f W K{jo(Agz - A,)
D

+ (B — By)tiyd’x. (23)

Here, N, is a matrix containing the components of normal vector n,
organized in the same way as matrix D,. For example, for the acous-
tic situation Ny is defined as

0 ny ny my

n, 0 0 0
N, = . (24)
n, 0 0 0
ny 00 0

For all situations, Ny obeys the symmetry relation

KN,K = - N, = - N/, (25)

analogous to equation 12. Equation 23 is the unified convolution-
type reciprocity theorem for a domain D in which the medium pa-
rameters are continuous. It interrelates the wavefield quantities (con-
tained in 04 and 1), the medium parameters (contained in AA, AB,
B A, and B ) and the source functions (contained in §, and §p) of states
A and B. The left-hand side is a boundary integral that contains a spe-
cific combination of the wavefield quantities of states A and B at the
boundary of domain D. The first integral on the right-hand side inter-
relates the wavefield quantities and the source functions in D). The
second integral on the right-hand side contains the differences be-
tween the medium parameters in both states; obviously, this integral
vanishes when the medium parameters in both states are identical.

We now extend the reciprocity-theorem equation 23 for the situa-
tionin which D contains internal interfaces (or fractures) with imper-
fect coupling. To this end, we subdivide D into M continuous re-
gions, according toD = D, UD,- - - - UD,,, see Figure 3. Region D,
is enclosed by surface d1),, with outward-pointing normal vector n,,.
The boundaries between these regions represent the imperfect inter-
nal interfaces. Note that each internal interface is part of two surfaces
dD,,, with opposite-pointing normal vectors n,,, see Figure 3.

EE— .
X4

Figure 2. Configuration for the reciprocity theorems.

Since the medium parameters in region 1), are continuous, reci-
procity-theorem equation 23 applies to each of these regions. Sum-
ming both sides of this equation over m again yields equation 23 for
the total domain D, with an extra integral over the internal interfaces
on the left-hand side as stated by

J (6IKNiip), + (61KNig),)dx, (26)
JD

int

where dD;,, constitutes the total of all internal interfaces; the sub-
scripts 1 and 2 denote the two sides of the internal interfaces. Using
the general boundary condition 14 for imperfect interfaces and the
first of the symmetry relations in equation 19, this internal interface
integral can be rewritten as

j ! M'N(I - Z;'Z)Miid>x (27)
JD:

int

(Wapenaar et al., 2004) with

Z=~10+joY2) V(I - jwY/2). (28)

V4 obeys the symmetry relation

7N = N7, (29)

which follows from equations 19 and 28. For small Y, equation 27
simplifies to

jo J a/M'N(Y;; - Y, )Miizd>x. (30)
aDint

In the integrals in equations 27 and 30, @4, iz, and M are all chosen at

the same side of the interfaces (but which side is arbitrary).

Adding the internal interface integral of equation 27 to the left-
hand side of equation 23, we obtain

jg /KN, iidx + f ! M'N(I - Z;'Z)Miigd>x
D JD;

int

= | {2'Ks, - §TKig)d’x — f A K{jw(Az - A,)
D D

+ (B — B)Mapdx. (31)

Figure 3. Piecewise continuous domain D = D; U D, - U D,,.

Downloaded 26 Oct 2012 to 131.180.130.198. Redistribution subject to SEG license or copyright; see Terms of Use at http://segdl.org/



General wavefield representations SM9

We conclude this section by specifying equation 31 for the acoustic
situation, assuming small boundary parameters. Upon substitution
of equations 2, 3, 13, 17, 20, and 24, we obtain

A A A A . b AbY A A
(PaVip — Ui,APB)”id2X + JwJ {(Rg — RA)PaPp

abD aD,

int

b Aby A A
- (pp - PA)Ui,Anin,B”j}d2X

P P PN oA 3
= J 1Padp = Viafip — 4aPp + fia; p}d’x
D

—jo | {(kRg = Ra)pabp — (Pp — ﬁA)ﬁi,Aﬁi,B}d3X
D

_ f (B = B)papy — (B - B6 a6}, (32)
D

which has the familiar form known from, e.g., Fokkema and van den
Berg (1993) and de Hoop (1995), but with an extra integral over the
internal interfaces.

CORRELATION-TYPE RECIPROCITY THEOREM

Porter (1970) and Bojarski (1983) formulated reciprocity theo-
rems with back-propagating wavefields. Here, we extend these theo-
rems for the general wave vector i. We consider the interaction
quantity @D, + (Dyi,) 0. Since superscript 1 denotes transpo-
sition and complex conjugation, &} represents a back-propagating
wavefield. Using wave equation 9 as well as the symmetry relations
in equations 10 and 11 for both states, we obtain

A

@Dyl + (Dyiiy) g = 0385 + 850, — @ {jo(Ay - A))
+ By + B))}i. (33)

This is the local form of the correlation-type matrix-vector reciproc-
ity theorem. We say correlation type because the products in the fre-
quency domain (@8 etc.) correspond to correlations in the time do-
main. Next, we consider again domain D with boundary dID and out-
ward-pointing normal vector n, see Figure 2. For the moment, we as-
sume that the medium parameters in both states are continuous in D.
We integrate both sides of equation 33 over this domain and apply
the theorem of Gauss in matrix-vector form (equation A-4) to the
left-hand side. This yields

3& N iipd’x = f {alsy + 8lagld%x
abD D
_f ﬁ;{jw(AB_AA)
D

+ By + B} Hipd’x. (34)

Equation 34 is the unified correlation-type reciprocity theorem for a
domain D in which the medium parameters are continuous.

We now extend this reciprocity theorem for the situation in which
D contains internal interfaces with imperfect coupling, see Figure 3.
Since the medium parameters in region D,, are continuous, reciproc-
ity theorem 34 applies to each of these regions. Summing both sides
of this equation over m again yields equation 34 for the total domain

D, with an extra integral over the internal interfaces on the left-hand
side, as stated by

f (6 Nyiig), + (6Nig),)d>x. (35)
aD:

nt

Using the general boundary condition 14 for imperfect interfaces
and the second of the symmetry relations in equation 19, this internal
interface integral can be rewritten as

f o M7J(I - (Z)™'Z ) Miid*x (36)
i

(Wapenaar et al., 2004), with

72 =1+ jwY2) ' 1 - joY'/2). (37)

Note that Z' obeys the symmetry relation

7'y = J(Z), (38)

which follows from equations 19 and 37. For small f(, equation 36
simplifies to

jo f MY, - Y)Miizd’x. (39)
ar int

Adding the internal interface integral of equation 36 to the left-hand
side of equation 34, we obtain

3€ | Nyigd®x + f A \M7J(I - ()" Z)Miizd*x
Jb JD;

nt
= f {6i8, + §hagldx — f ol {jw(Ay — A))
D D

+ By + B)}apdx. (40)

Note that when the medium and boundary parameters, sources,
and wavefields are identical in both states, this reciprocity theorem
reduces (omitting the subscripts A and B) to

2R f a'sd’x =3€ "N, iid’x
D abD
+ f 6'{- 203(A) + B + Bf}ad’x
D

+ f a'M7J(I - (Z))'Z)Mad%, (41)
it
where R and J denote the real and imaginary part, respectively. Note
that this form of the reciprocity theorem represents a power balance
for each of the wave phenomena treated in this paper. The term on the
left-hand side represents the power generated by the sources in D.
The first term on the right-hand side represents the power-flux prop-
agating outward through dD), the second term the power dissipated
by the medium in D (which vanishes for real-valued A and zero ]§),
and the last term the power dissipated by the ir}ternal imperfect inter-

faces dDj, (which vanishes for real-valued Y, as in the linear slip
model of Schoenberg, 1980).
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We conclude this section by specifying equation 40 for the acous-
tic situation, assuming small boundary parameters. Upon substitu-
tion of equations 2, 3, 17, 20, and 24, we obtain

Ab AbE\ A% A
{(KB — K&y )DaPs

int

PEIN PEIN 2 .
(PaVip + U aPp)nid7X + JwJ

aD ab,

b Ab*\ A% A 2
+ (P — Pa )Ui,Anin,an}d X

A% A A% A A¥ A A% A
= f {Pads + Oiafin + GsPp + fi40;pyd°x
D
. A AR AK A ~ A%y AF A
- JwJ {(Rg = R)PaPE + (P5 — PA)Ui,AUi,B}d3X
D

- f (B + BV prps + (BY + BY)0; 40, g1 x,
D

(42)

which has the familiar form known from, e.g., Fokkema and van den
Berg (1993) and de Hoop (1995), but with an extra integral over the
internal interfaces.

GREEN’S MATRIX

The wavefield vector 6i(x, ) and the source vector §(X, w) are L
X1 vectors, where the value of L depends on the type of wavefield
considered. A Green’s function is defined as the wavefield that
would be obtained if the source were an impulsive point source &(x
— x')8(1), or, in the frequency domain, a point source 8(x — x') with
unit spectrum. Since the source vector § contains L different source
functions, we may define L different Green’s wavefield vectors. We
define the /th Green’s wavefield vector (with 1 =</=<L) as the causal
solution of general wave equation 9 with boundary condition 14,
with source vector §(x, w) replaced by i,8(x — x'), where i, is the L
X 1 unit vector (0,---,1,---,0)7, with ‘1” on the /th position. Hence,
in the space-frequency domain the /th Green’s wave vector obeys the
relations

joAg + Bg + D,g, = i,6(x - x') (43)
and
[Mg] = - joY(Mg), (44)

where g, = g,(x,x’, w) is the Ith L X 1 Green’s wave vector observed
at x, due to a point source of the /th type at x’. Due to their causal be-
haviour in the time domain, the components of these Green’s vectors
obey the Kramers-Kronig relations.

Equations 43 and 44 each represent L matrix-vector equations for
the L Green’s wave vectors g;, with 1 =/=L. For example, for the
acoustic situation (L = 4), equation 43 reads

f 0 0 93\ [ GPUx,x',w)

) ox —x')
do ¢ 00 &ixxe | |0
b 0 7 0 ég’q(x,x’,w) - 0 ’
g 0 0 5 ég”q(x,x’,w) 0

(45)
forl = 1 (with /) = jok + brand { = jwp + bv),

7 9 dy s é{’l’f(x,x’,w) 0

¢ 0 0 Erixx e | | ax-x)
d 0 Z’ 0 égj{(x,x’,w) a 0 ’
d3 0 3 ég:{(x,x’,w) 0

(46)

for [ = 2, etc. The superscripts of the Green’s functions refer to the
type of observed wavefield at x and the source type at X', respective-
ly; the subscripts denote the different components. We now combine
the L Green’s vectors into a Green’s matrix and the L source vectors
into a source matrix,

~

(gl gl gL)(va,vw) = G(X,X,,Q)), (47)

(@ ...0...i)0x-x")=I8x - x'), (48)

where é(x,x’, w) is the L X L Green’s wavefield matrix and I is the
L X L identity matrix. With this notation, equations 43 and 44 for /
= 1...L canbe combined into

joAG + BG + D,G =158(x - x') (49)

and

[MG] = - joY(MG), (50)

respectively. These are the general wave equation and boundary con-
dition for the Green’s matrix G(x,x o).

Note that the wave vector u(x,w) and the Green’s matrix
é(x,x’ ,w) obey the same linear wave equation with the same linear
boundary conditions, but with different source functions, $(x, w) and
I18(x — x’), respectively. Hence, we may apply the superposition
principle to express the wave vector as

i(x,w) = f G(x,x",0)8(x', w)d3’, (51)
D

s

where 1; is the domain occupied by the source distribution. In the
following, we derive representations for the Green’s matrix
G(x,x',w), and, implicitly via equation 51, for the wave vector
u(x, ).

CONVOLUTION-TYPE REPRESENTATION

We consider again the piecewise continuous domain ) with
boundary D and outward-pointing normal vector n (Figure 3). We
assume that the boundaries between the different regions are imper-
fectinterfaces; the combination of all internal interfaces is represent-
ed by dDy,.

We derive a convolution-type representation for the Green’s ma-
trix. To this end, we let the Green’s matrix introduced in the previous
section, with the point source at x = x’, play the role of state A in the
unified reciprocity theorem of equation 31. For the medium parame-
ters as well as for the boundary parameters, we introduce back-
ground values; hence, the Green’s matrix in state A is defined in a
background medium. This is denoted by bars above the parameter
matrices as well as the Green’s matrix, see Table 2. A similar Green’s
matrix, but with its point source at x = x”, will play the role of state
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B. The medium parameters in this state are the actual parameters,
and, consequently, the Green’s matrix in state B is defined in the ac-
tual medium, again see Table 2.

Consider the following property of the delta function

j 8(x = xu(x)d’x = xp(x"u(x"), (52)
D

where yp(x') is the characteristic function for domain D, defined as

1 forx" e D
1

xp(x') = > for x" € dD (53)
0 forx' e R*\{D U aD}.

Upon substitution of the states of Table 2 into the convolution-type
reciprocity theorem (equation 31), using this property of the delta
function, we obtain

xp(XNKGT(x".x", 0)K - xp(x)G(x' X", )

:3@ KG’(x,x’,w)KN,G(x,x", w)d*x
aD
+f KG(x,x",0)KAH(x, 0)G(x,x", w)d’x
D

+ f KG'(x,x’, w)KAﬁb(x, w)f}(x,x”, w)d’x,
an

int

(54)

with the contrast functions AH and AHP defined as
AH = jo(A - A) + (B - B), (55)
AH® = KM'N{I - Z"'Z}M. (56)

Equation 54 is the general convolution-type representation of the
Green’s matrix. Applications are discussed in a later section. Here,
we derive a reciprocity relation for the Green’s matrix. To this end
we replace the background parameters in state A by the actual pa-
rameters; hence, the last two integrals on the right-hand side of equa-
tion 54 vanish. Then, we replace D by R?, to make the characteristic
functions in the left-hand side of equation 54 both equal 1. Finally,
we assume that outside some sphere with finite radius, the medium is
homogeneous, isotropic, and nonporous, which implies that the first
integral on the right-hand side vanishes as well (Sommerfeld radia-
tion conditions, Born and Wolf, 1965; Pao and Varatharajulu, 1976;
de Hoop, 1995). This leaves

KG'(x"x",0)K = G(x',X",0). (57)

Of course a similar relation holds for the Green’s matrix in the back-
ground medium. Equation 57 formulates source-receiver reciprocity
for a piecewise continuous medium with imperfect interfaces. For
example, for the acoustic situation, we have

Gra  — Gy - Gy = GuY

o e el o |
Apf A Av.f Av.f ®".x",@)

-G% Gy, Gy, GEy

SR S S

Gra CA;{’l,f é{;f é{gf

. AU GV G

- Gl Gl,l Gl,2 Gl,3 (X’ X" (1.)) (58)
Gy Gy 6ol Gh
Gy Gyl GRh GRY

CORRELATION-TYPE REPRESENTATION

For the derivation of a correlation-type representation of the
Green’s matrix, we substitute the states of Table 2 into the reciproci-
ty theorem of correlation-type (equation 40), which gives

Xo(X)G' (XX, 0) + xp(x')G(x' X", )

:jg Gi(x,x",0)N,G(x,x", w)d2x
D
+f (_}"'(x,x’,w)AI:I(x,w)é(x,x”,w)d3x
D

+ f G (x,x/, w)Aﬁb(x, w)f}(x,x”,w)dzx, (59)
D,

int

with the contrast functions AH and AH® now defined as

AH = jo(A - A" + (B + BY), (60)

AHP = M7TJ{I - (i')—'Z}M. (61)

Equation 59 is the general correlation-type representation of the
Green’s matrix.

APPLICATIONS

Here we discuss a number of applications of the general convolu-
tion-type and correlation-type representations. This overview is not
exhaustive but serves as an illustration.

Table 2. Green’s states for the unified representations.

State A State B
Wavefields é(x,x’,w) G(x,x", )
Medium parameters {i,f’;}(x,w) {A.B}x,0)
Boundary parameters ‘3{ (x,0) }A{(x, )
Source functions I15(x - x') I15(x - x)
Domain D
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Forward wavefield extrapolation

The most straightforward application of the convolution-type rep-
resentation (equation 54) is forward wavefield extrapolation. Con-
sider the configuration of Figure 4. The boundary JD consists of an
acquisition surface d1), and a hemisphere dl), in the upper half-space
with its midpoint at x’. The source domain [, is sited below the ac-
quisition surface d1),. When we let the radius of the hemisphere go to
infinity and assume that beyond some finite radius the medium is ho-
mogeneous, isotropic, and nonporous, the contribution of the bound-
ary integral over dl), vanishes. Assuming the contrasts AH and AHP
defined by equations 55 and 56 are negligible in ), we obtain from
equation 54 (using equation 57)

Gx' X', w) = - f G .x,0)N,G(x,x", w)dx.  (62)

D

Multiplying both sides by §(x”, ) and integrating over the source
domain I;, we obtain (using equation 51)

ux',w) = —f (_}(x’,x,w)NXﬁ(x,w)dzx. (63)
b,

This expression formulates forward extrapolation of the wavefield
u(x, w) at acquisition surface dD,, because of sources below this sur-
face, to any point X’ above this surface. By substituting the vectors
and matrices for the acoustic situation, we obtain

pA(X,7w) == f {(_;p’q(xr’x’w)ﬁj(xaw)
b,
+ G{_’i’f(x’,x,w)ﬁ(x,w)}njdzx, (64)
0i(x', ) = —f {GH(xX' %, )6(x, )
b,

+ Gﬁ}f(x’,x, w)p(x, w)pn;d’x, (65)

which are the well-known Kirchhoff-Helmholtz integrals (Morse
and Feshbach, 1953; Berkhout, 1985), with many applications in

Figure 4. Configuration for forward wavefield extrapolation.

seismic modeling (Frazer and Sen, 1985; Hill and Wuenschel, 1985;
Wenzel et al., 1990; Druzhinin et al., 1998). Equation 63 is the gener-
alization of the Kirchhoff-Helmholtz integral for any of the wave
phenomena considered in this paper.

Inverse wavefield extrapolation

An expression for inverse wavefield extrapolation follows in a
similar way from the correlation-type representation in equation 59.
Consider the configuration of Figure 5. The boundary dID now con-
sists of an acquisition surface dl),, a horizontal surface Jl); between
x’ and the source domain D, and a cylindrical surface dD.,; with a
vertical axis through x’ (Figure 5 is a side-view of this configura-
tion). When we let the radius of this cylindrical surface go to infinity,
the contribution of the boundary integral over dl. vanishes for
body waves. The boundary integral over ), contains an evanescent
wave contribution and a contribution proportional to the square of
the reflection coefficients of the interfaces in domain D (Wapenaar
and Berkhout, 1989). Ignoring these contributions and assuming
that the medium and interfaces in D are lossless and the contrasts AH
and AHP defined by equations 60 and 61 are negligible in D, we ob-
tain from equation 59 (using equation 57)

G(x’,x",w) = —J K(}*(x',x,w)KNxé(x,x",w)dzx,

My
(66)

or, using equation 51,

ﬁ(x’,w):-j KG™(x',x,w)KN,ii(x,w)d’x. (67)
an

0

This expression formulates inverse extrapolation of the wavefield
i(x, w) at acquisition surface JD,, because of sources below this sur-
face, to any point X’ between this surface and the sources. Itis a gen-
eralization of the Kirchhoff-Helmholtz integral for inverse wave-
field extrapolation (Schneider, 1978; Berkhout, 1985; Bleistein,
1987; Tygel et al., 2000), with applications in seismic migration. Un-
like in the derivation of equation 63 for forward extrapolation, we as-
sumed that the medium and interfaces in ) are lossless. When the
medium and/or interfaces in D are not loisless, we can choose the

reference parameters as follows: A = A*, B = — Bf,and Y = Y*. As
a consequence, the contrast functions AH and AHP defined by equa-
tions 60 and 61 are zero, so equations 66 and 67 remain valid. How-
ever, this f:hoice of reference parameters implies that the Green’s

function G(x’,x, ) propagating through the reference medium is

oD, n
rrrrrr X
aDcyl G*(XI’ V
e r—e X’g G(X, x", w)
G(x', x",a))/
D,

Ds

Figure 5. Configuration for inverse wavefield extrapolation.
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growing exponentially (to compensate for the exponential decay in
the wavefield @i(x, w)). Hence, the implementation of the inverse ex-
trapolation integral for attenuating media should be done with ut-
most care to avoid instabilities (Mittet et al., 1995; Zhang and Wap-
enaar, 2002).

Boundary integral representation (perfect interfaces)

We derive arepresentation for the scattered wavefield above a per-
fectly coupled interface. Consider the configuration of Figure 6, in
which dD, represents an interface. Assuming the contrasts AH and
AHP defined by equations 55 and 56 are negligible in D, we obtain
from equation 54 (using equation 57)

Gx' X", 0) = G(x',x",0)

- J G .x,0)N,G(x,x",w)d>x.  (68)
aD,

We define the Green’s matrix as a superposition of an incident and a
scattered contribution, as stated by

G(x.x",0) = G™(x,x",w) + G*(x,Xx",w),  (69)
where (}“‘“(X,x”,w) = G(x,x", w). Equation 68 remains valid when
outside D, i.e., in the lower half-space, the actual and reference me-
dium parameters are different. We choose the reference parameters
in the lower half-space such that they are continuous across dl);, and
homogeneous, isotropic, and nonporous beyond some finite domain
in the lower half-space. Consequently,

J (_}(X’,x,w)Nxéi"C(x,x”,w)dzx =0; (70)
an,
hence,

G(x' X", w) = — f G(x',x, )N, G*(x,x", w)d?x, (71)
a,

or, using equation 51,

*(x’,w) = - f G(x',x, 0)N 0% (x, 0)d’x. (72)
aD,
Note the analogy with equation 63 for forward wavefield extrapola-
tion. The main difference is that @ in equation 63 is the upgoing
wavefield because of sources below dD,, whereas G**! in equation 72
is the upgoing scattered wavefield at interface JD, because of sourc-
es above this interface. This scattered wavefield can be expressed in
terms of a reflection operator acting on the incident wavefield at dD,.
For example, for the acoustic situation, it can be written as
N, *U(x, w) = — R(x, @) KN, "*(x, w), where R(x, @) is the local an-
gle-dependent reflection coefficient. This is a generalization of what

is commonly known as the Kirchhoff approximation (Bleistein,
1984).

Boundary integral representation (imperfect interfaces)

The derivation for the scattered wavefield above an imperfect in-
terface is somewhat different. The interface is now represented by
dDyy, whereas dD is a sphere with infinite radius. From equation 54,
we thus obtain (using equation 57)

~

G(x' X", 0) = G(x' X", 0)

- f a(x’,x,w)Aﬁb(x,w)G(x,x", w)d’x,
‘g]Dim

(73)

with AHP defined by equation 56. Various choices are possible for
the reference medium. Let us choose a reference medium that is
identical to the actual medlum except that it has an interface with

perfectcoupling, i.e., Y 0O, and henceZ = 1. For AHP, we thus ob-
tain (assuming small Y)

AH® = KM'N{I - Z\M ~ joKM'NYM. (74)

Moreover, for this choice, the reference Green’s function

G(x',x", ) in equation 73 is equal to the actual Green’s function
f}(x’,x”, ®) in equation 68.

Equation 73 is an integral equation of the second kind for
é(x’,x”, w). Itcan be solved iteratively, according to

{G(x' X" w)}¥ = G(x' X", w)

- f G(x',x,w)AH(x, »)
JD

int

X{G(x,x", )} Vd%x, (75)

fork=1, with

(G X", 0)}? = G(x' X", ). (76)

Volume integral representation

The derivation for a volume integral representation is similar to
that for the imperfect interfaces, but instead of the contrast function
AH?" at the internal interfaces, we consider the contrast function AH

G(x, X", @)

Figure 6. Configuration for boundary integral representation.
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in D, see Figure 7. For dl) we take again a sphere with infinite radius.
Hence,

~

G X", 0) = GKx' X", 0)
—f (_}(X',X,w)Aﬁ(x,w)é(x,x",w)d&,
D

(77)
with AH defined by equation 55. The iterative solution of this inte-
gral equation is given by

{G X" ) = G(x' X\ w)
- J G(x',x,0)AH(x,0)
D

X{G(x,x", )} Vd’x, (78)

fork=1, with

{G(x' X", 0)}? = G(x' X", ). (79)

For k = 1, equation 78 is the Born approximation, which is frequent-
ly used as arepresentation of primary data in modeling and inversion
(Cohen and Bleistein, 1979; Raz, 1981; Bleistein and Cohen, 1982;
Tarantola, 1984; Miller et al., 1987; Wu and Toksoz, 1987; Orista-
glio, 1989). For k> 1, equation 78 represents a Neumann series ex-
pansion, which can be used for modeling primaries as well as inter-

Figure 7. Configuration for volume integral representation.

a) G(x', X", »)
dD, X' X

=

Figure 8. Configuration for multiple elimination.

nal multiples. For a discussion on the convergence aspects, see
Fokkema and van den Berg (1993). Applications for the prediction
of internal multiples in nonlinear inversion are discussed by, e.g.,
Snieder (1990), Ten Kroode (2002) and Weglein et al. (2003).

Surface-related multiple prediction and
elimination (convolution approach)

Surface-related multiple prediction and elimination was intro-
duced by Berkhout (1985) and Verschuur et al. (1992) and it was
based on reciprocity theory by Fokkema and van den Berg (1993)
and van Borselen et al. (1996). The latter approach is generalized for
the wave phenomena discussed in this paper as follows. Let dID con-
sist of the acquisition surface dl), and a hemisphere JD; with infinite
radius in the lower half-space (we assume that, beyond some finite
radius, the medium in the lower half-space is homogeneous, isotro-
pic, and nonporous). The Green’s matrix f}(x’,x”, w) in this configu-
ration (with x’ and x” at 1)) represents the actual data, including the
multiples related to Dy, see Figure 8a. In the half-space below dl),,
the reference medium is specified as identical to the actual medium.
In the upper half-space, the reference parameters are homogeneous,
isotropic, and nonporous, and specified as continuous across dl.

Hence, the Green’s matrix (_}(x’,x”, w) in the reference medium rep-
resents the data without surface-related multiples, see Figure 8b. The
relation between the two Green’s matrices follows from equation 54
and is given by

G(x' X", w) - G(x', X", w)

= f G(x',x,0)N,G(x,x", )dx. (80)
aD

0

This expression can be used as the basis for modeling as well as elim-
ination of surface-related multiples. For modeling applications, we
assume that (_}(x’,x”, w), the response without surface-related multi-
ples, is known. Then G(x’,X", w), the response with surface-related
multiples, can be found by solving equation 80 iteratively, according
to

{(A;(X,vx,,v w)}(k) = (_}(X',X”,a))

- J G(x',x,0)N{G(x,x", )} Vdx,
aD,

(81)

for k= 1. The initial estimate is given by the response without multi-
ples; hence,

(G X", 0)}? = G(x',x", ). (82)

When equation 80 is used for multiple elimination, then f}(x’,x”, )
is the known response, and equation 80 is solved iteratively, accord-
ing to
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{Gx' X" 0)}¥ = G(x' X", 0)
+f {G(x',x,0)}* N, G(x,x", w)dx,
Dy
(83)

for k= 1. This time, the initial estimate is given by the response with
multiples; hence,

G X", o)} = G(x' X", w). (84)

The product under the integral in equation 83 represents a convolu-
tion process, producing high-order multiples from primaries and
lower-order multiples, which, after addition to the first term, com-
pensate the multiples in G(x’,x", ).

Surface-related multiple prediction and
elimination (correlation approach)

Schuster (2001) and Berkhout and Verschuur (2003) suggest an
alternative to the convolution-based multiple prediction and elimi-
nation approach, based on correlations. For the configuration dis-
cussed above, assuming in addition that the medium is lossless, we
obtain from equation 59

KG (x'.x",0)K + G(x’,x”,w)

=f KG*(x',x,0)KN,G(x,x", w)d*x
an

0

+f K(_}*(x',x,w)KNxf}(x,x”,w)dzx. (85)
D

1

The products under the integrals in equation 85 represent a correla-
tion process, producing primaries and low-order multiples from
higher-order multiples. Unlike in the convolution representation, the
integral along dD); in equation 85 does not vanish when the medium
in the lower half-space is homogeneous, isotropic, and nonporous
beyond some finite radius. On the other hand, it vanishes due to scat-
tering loss when the medium in the lower half-space is sufficiently
inhomogeneous (Wapenaar, 2006).

Interferometry (correlation approach)

Seismic interferometry deals with the generation of new seismic
responses by cross-correlating wavefield measurements at different
receiver positions (Claerbout, 1968; Weaver and Lobkis, 2001;
Schuster, 2001; Wapenaar et al., 2002; Campillo and Paul, 2003;
Derode et al., 2003; Schuster et al., 2004; Sabra et al., 2005; Draga-
nov et al., 2007). The measurements take place in the actual medium,
s0, the basic expression for interferometry is obtained by taking the
reference state equal to the actual state in the representation of the
correlation-type, equation 59. Using the symmetry properties of G,
A.B,Z’, and N, this yields

yo(x)G(x' X", 0) + xp(x )G (X", X', »)

=- % é(x’,x, w)NXéT(X",X,w)dZX
aD
+f (A}(X,,X,w)AI,:I(X,w)(A;T(X”,X,w)d‘%X
D

+ f G(x’,x,w)KAfIb*(x,w)K(A}T(x",x, w)d’x,
ab;

int

(86)

with
AH = - 203(A) + B + BT, (87)
AHP = M%{J - ZTJZIM. (88)

Equation 86 is a general representation of the Green’s matrix be-
tween x” and X’ in terms of cross-correlations of observed fields at x”
and x’ because of sources at x on the boundary Jl), on the internal
imperfect interfaces dD,,, as well as in the domain D. The inverse
Fourier transform of the left-hand side is yp(x")G(x',x",1)
+ xp(x")G7(x",x’,— 1), from which G(x’,x", 1) is obtained by taking
the causal part (assuming x” is located in D). When the medium and
interfaces are lossless, it suffices to have sources on JD only, see Fig-
ure 9. Note that JD is not necessarily a closed surface: When the me-
dium is sufficiently inhomogeneous Jl) can be an open surface
(Wapenaar, 2006). On the other hand, when the medium is dissipa-
tive throughout D and the radius of JD is sufficiently large, the
boundary integral vanishes and sources are required throughout D
(Snieder, 2006; Snieder et al., 2007).

The application of equation 86 in its current form requires inde-
pendent measurements of the impulse responses of different types of
sources at all x involved in the integrals. The right-hand side can be
modified into a direct cross-correlation (i.e., without the integrals) of
diffuse field observations at x” and x’, the diffusivity being caused by
a distribution of uncorrelated noise sources, either on dD) (for loss-
less media) or in D (for dissipative media) (Wapenaar et al., 2006).

Equation 86 has also important applications in efficient modeling
and inversion (van Manen et al., 2005, 2006). As mentioned above,
for the lossless situation, only the boundary integral over JD needs to
be evaluated. Hence, by modeling the responses of a distribution of

Figure 9. Configuration for interferometry (correlation approach).
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Figure 10. Configuration for interferometry (convolution approach).

sources on the 2D boundary, equation 86 allows us to determine the
responses of all possible sources in the 3D volume enclosed by the
boundary. This is very useful, for example, in nonlinear inversion,
where the Green’s functions between all possible pairs of points in a
volume are needed (see e.g., Weglein et al., 2003).

Interferometry (convolution approach)

When the dissipation of the medium is significant, interferometry
according to the correlation approach requires a distribution of
sources throughout the medium. As an alternative, Slob and Wap-
enaar (2007) and Slob et al. (2007) propose a convolution approach
to interferometry. Taking the reference state equal to the real state in
the convolution-type representation of equation 54 and using the
symmetry property of G gives

Do) = xpx NG X", 0)

=§; G(x',x,0)N,KG'(x",x,0)Kd’x.  (89)
abD

This is a representation of the Green’s matrix between x” and X’ in
terms of cross-convolutions of observed fields at x” and x’ due to
sources at x on the boundary Jl) only. Note that one of the observa-
tion points should be inside this boundary and the other outside, see
Figure 10 (otherwise, the left-hand side of equation 89 vanishes).
There are no restrictions with respect to the losses in the medium.
The application of equation 89 requires independent measurements
of the impulse responses of different types of sources at all x € dl); a
modification for uncorrelated noise sources is not possible for the
convolution approach.

CONCLUSIONS

Starting with a unified matrix-vector-form wave equation and
boundary conditions for acoustic, electromagnetic, elastodynamic,
poroelastic, and electroseismic waves, we derived general convolu-
tion- and correlation-type wavefield representations. We discussed
applications including forward and inverse wavefield extrapolation,
boundary integral representations for perfect and imperfect interfac-
es, volume integral representations (the Born approximation and the
Neumann series expansion), multiple elimination, and seismic inter-
ferometry, the latter two both in terms of convolutions and correla-
tions. Each of these applications is a generalization of the well-es-
tablished acoustic representations for any of the wave phenomena
governed by the unified wave equation.
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APPENDIX A

THE DIVERGENCE THEOREM OF GAUSS
IN MATRIX-VECTOR FORM

For a scalar field a(x), the divergence theorem of Gauss reads

f da(x)d*x = jg a(x)nd>x. (A-1)
D

aD

Here, we modify this theorem for the differential operator matrix Dy
appearing in equations 1 and 9. Let D,, denote the operator in row /
and column J of matrix D,. The symmetry of D, (equation 12) im-
plies D;; = D;;. We define a matrix Ny, which contains the compo-
nents of the normal vector n, organized in the same way as matrix D,.
Hence, N;; = N,;, where N, denotes the element in row / and column
J of matrix N,. If we replace the scalar field a(x) by a,(x)b,(x), we
may generalize equation A-1 to

j Dlj{al(x)bj(x)}d3x=é al(X)bJ(X)NIJd2X’ (A-2)
D D

where the summation convention applies to repeated capital Latin
subscripts, which may run from 1to4, 6, 12, 16, 18, or 22, depending
on the choice of operator D,. Applying the product rule for differen-
tiation and using the symmetry property D;; = D,;, we obtain for the
integrand in the left-hand side of equation A-2,

Dl](albj)

aiDyby + (Dyap)by,
a’Db + (D,a)’b, (A-3)

where a and b are vector functions, containing the scalar functions
a,(x) and b,(x), respectively. Rewriting the integrand in the right-
hand side of equation A-2 in a similar way, we obtain the divergence
theorem of Gauss in matrix-vector form

J {a"D,b + (D,a)"b}d’x :3@ a’N,bd’x. (A-4)
D aD

Finally, we consider a variant of this equation. We replace a by Ka,
where K is the real-valued diagonal matrix introduced in equations
10-12, obeying the property K = K-'. Using equation 12, we thus
obtain

f {a”’KD,b — (Dxa)TKb}d3x=4; a’KN,bd’x. (A-5)
D abD
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