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Abstract

Hardware cryptographic algorithm implementation is easy to attack by side-channel
attacks. The power-based side-channel attacks are powerful among several side-channel
attacks. This attack methods use the relationship between the leakage model and
power traces to reveal the secret key. Some existing countermeasures like mask and
hide can protect the algorithms from attacking. However, they can not break the
relationship between power traces and the leakage model. Based on the property of the
neural network, the linear relationship can be easily broken. Furthermore, the spiking
neural network is more hardware-friendly than a conventional neural network. The
design replaces the sbox in AES with a pipeline spiking neural network-based sbox and
implements it in hardware. The help of the FPGA attack platform demonstrates that
the proposed design can resist DPA, CPA, Template Attacks, and Deep Learning-based
attacks.
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Introduction 1
1.1 Motivation

The development of computers, the Internet, and communications make the world be-
comes a highly digital information world in today’s technology. The increasing reliance
on technology is also a double-edged sword, as they give a chance for the attacker
to get the data by various attack methods. It is becoming more and more essential
to secure every aspect of information and data. Encryption is a way of scrambling
data so that only authorized parties can understand the information preventing people
from economic, reputation, and privacy loss. However, encryption can not guarantee
safety due to thousands of attackers in the real world. This leads to the demand for
countermeasures and resistive attack methods.

There are already many encryption algorithms in the encryption field. And this
research focuses on the advanced encryption standard(AES)[18], also known by its
original name Rijndael. It is symmetric key encryption that is implemented in software
and hardware throughout the world to encrypt sensitive data.

While some attacks can be protected by software-based security, they cannot defend
from all attacks. For example, a device is used for data transmission, but if the attacker
gets access to the physical device, then no amount of software routine can provide
protection. Thus, this is where hardware security comes in and why it is becoming
increasingly popular with SoCs, microcontrollers, and microprocessors.

However, even the system equipped with hardware security is also vulnerable to side-
channel attacks(SCA)[32]. SCA takes advantage of patterns in the information exhaust
that hardware constantly gives off: power[32], time[17], radiation[35], noise[4], etc.
The attacks can recover the encryption key without any expensive tools. Furthermore,
attackers can perform SCA even when they can not access the device. Thus, an effective
countermeasure against SCA is becoming a hot topic recently.

Comparing with other SCA, power-based SCA has the advantage of less sensitivity
to noise, easy implementation, and focusing on the point of attack. Power-based SCA
has been proved the most powerful and attractive to many attackers. In different
abstraction levels in devices, different countermeasures against power-based SCA have
been implemented. And those of them are proven to be different degrees of success
with the cost of the area, power, speed, etc.

Therefore, this thesis focuses on the countermeasures against power-based SCA in
AES. In AES, the attackers can easily get the Hamming Weight or Distance model
from substitute phases(S-box). The other phases will give out less information even
uses good models. So the S-box is the weakest point because of the correlation between
power consumption and the leaky model. In order to break out the correlation between
those two, [54] already replaced the sbox with conventional neural network sbox in
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software. We introduce the spiking neural network into AES for hardware. Exploration
of hardware security while using artificial intelligence methods such as spiking neuron
networks to improve the resistibility of hardware AES and power efficiency.

1.2 Goal

The neural network based sbox can protect the AES from side channel attack has been
demonstrated by [54]. However, not all types of neural network can achieve the task.
In this thesis, we want to demonstrate the spiking neural network can protect the AES
in hardware aspect and find its advantages.

1.3 Methodology

1. Find a suitable spiking neural network simulator to train the network properly.

2. Building a hardware single spike neuron hardware spiking neuron network to sub-
stitute the S-box inside AES. The input information going through the S-box
would be encoded by clock-driven coding to decrease the spikes amount.

3. The SNN architecture consists of several neuron cores which use AER communi-
cation protocol to improve performance.

4. In order to do the side-channel attack. To synthesize the digital implementa-
tion and use the chipwhisperer simulation tool to get the power waveforms, and
perform DPA and CPA side-channel attacks on the proposed SNN with trained
weight.

1.4 Contribution

The contribution of this thesis work are following:

• Encoding the dataset input and then obtain the corresponding values from the
simulator. Furthermore, design the digital hardware machine learning spiking
neural network RTL model for S-box.

• Instead of using the Spice model to get the power traces, I choose to implement
the model on FPGA. The power traces collected from the FPGA can be easily
analyzed using Differential Power Analysis(DPA) and Correlation Power Analysis.

1.5 Thesis Outline

• Chapter 2 introduces the background of side-channel attacks and the details of
the implementation methods.

• Chapter 3 introduces the overview of spiking neural networks in spike representa-
tion, neural model, communication methods, and weight memory mapping.
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• Chapter 4 presents the details of the implementation of the proposed spiking
neural networks in simulator.

• Chapter 5 presents the details of the hardware design of the proposed spiking
neural network.

• Chapter 6 presents the implementation of the test model and an evaluation of the
results.

• Chapter 7 presents the conclusion from the above implemetation and the future
works needs to be done.
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Background of Advanced
Encryption Standard and
Power based Side-channel
Attacks 2
In this chapter, the Advanced Encryption Standard(AES) details are described to un-
derstand the most popular encryption algorithm. Furthermore, the power-based side-
channel attacks, which are very powerful to attack the AES, are introduced to prepare
for the experiment. Finally, the state-of-art countermeasures to power-based side-
channel attacks are listed for comparison with the thesis’s countermeasure.

2.1 Advanced Encryption Standard

AES (Advanced Encryption Standard) is a symmetric key block cipher based on substi-
tution–permutation network. It comprises a series of linked operations, some involving
replacing inputs with specific outputs (substitutions) and others shuffling bits around
(permutations). The data packet length must be 128 bits, and the key length used is
128, 192, or 256 bits. The number of rounds is different with the key length, 10 rounds
for 128 bits keys, 12 rounds for 192 bits keys, and 14 rounds for 256 bits keys. The
three AES algorithms with different key lengths are called ”AES-128”, ”AES-192”, and
”AES-256” respectively. The target in this thesis is ”AES-128”.

The AES encryption transformation function does not have the Feistel structure.
Instead, the round transformation comprises three distinct invertible uniform transfor-
mations. The linear mixing layer, the non-linear layer, the key addition layer. With
exception of the last round, each round transformation involves four operations: Sub-
Bytes, ShiftRows, MixColumns, and AddRoundKey. The decryption process is
the corresponding reverse operation. Since each operation is reversible, the plaintext
can be recovered by decrypting in the reverse order. The key for each round of encryp-
tion and decryption is obtained by the initial KeyExpansion. The workflow is shown
in Figure 2.1 [18].

Interestingly, the AES treats bytes level, representing the finite field GF(28) rather
than the bits level. AES ranges the 128 bits data into 4-byte words, which can form
the intermediate cipher result, also called State. Each column has 32 bits. The cipher
key is a rectangular matrix with four rows. Furthermore, after round transformation,
the array will create a same-type array for the next round.

2.1.1 Round transformation

In order to execute an available attack, it is necessary to understand the details of
the AES algorithms. The central part inside the AES is the round transformation

5



Figure 2.1: The AES workflow and the key expansion [52].

which contains four different operations. As mentioned above, every round has four
operations, but the last round does not have the MixColumns step.

2.1.1.1 SubBytes

The SubByte transformation is the unique layer that is the only non-linear byte sub-
stitution, operating on each state byte independently. The function is invertible and
constructed by the following two functions [8].

• First, Implementing multiplicative inverse to state in GF(28) using an irreducible
polynomial (x8 + x4 + x3 + x+ 1).

• An affine transformation will then apply on the inverse state over GF(2).

Considered the actual memory and computation complexity, storing the result as a look-
up table(LUT) in the memory like Figure 2.2 can decrease the computation complexity
but bring the memory storage problem. Figure 2.3 can better explain the subbytes
process.

As mentioned before, S-box has good non-linear properties and is resistant to linear
and differential cryptanalysis. However, the attacker can still create a leakage model
using the power traces from the device to crack the key. Instead of using the LUT,
the multiplication with two can be implemented with a shift and conditional exor. In
a straightforward implementation, the execution time of this operation will depend on
the input value. This may allow an attacker to mount a timing attack. Insert a NOP-
operations can make the execution time equal. Nevertheless, introduce the weakness
of the power analysis attack. So the use of a LUT effectively counters these types of
attacks.

2.1.1.2 ShiftRows

ShiftRows is easier to understand and more direct. The idea of shift rows is to shift the
position of states to make a more diffusion array. Figure 2.4 helps to provide a visual
operation.

6



Figure 2.2: The Sbox look up table contains the 256 cases conversion [55].

Figure 2.3: In the SubBytes step, each bytes in the array is substituted with the corresponding
value in the sbox LUT [55].

Bytes in the state matrix will shift following a standard. The first row will stay still.
The second row will shift to the left by one, in the third by two, and in the fourth by
three, illustrated in Figure 2.4.

2.1.1.3 MixColumns

In short, MixColumns is a linear transformation of the array. It contains matrix mul-
tiplication and bitwise XOR operation. The addition and multiplication will perform
over GF(28) like Equation 1.1. The multiplication will be performed on the result ma-
trix of ShiftRows. It must be noted that all the columns of the matrix will perform
this function. Moreover, the result matrix will have the same size as the original one.
Figure 2.5 shows the MixColumns process.

b0
b1
b2
b3

 =


2 3 1 1
1 2 3 1
1 1 2 3
3 1 1 2



a0
a1
a2
a3

 (1.1)
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Figure 2.4: In the ShiftRows step, bytes in each row of the array are shifted cyclically to the
left [55].

Figure 2.5: In the MixColumns step, each column of the array is multiplied with a fixed
polynomial [55].

2.1.1.4 KeyExpansion and AddRoundKey

The AES will perform Addroundkey at the beginning. In other words, the plaintext
will do bitwise xor with the original key. In the round transformation, Addroundkey
will apply a key expansion process to generate the round keys.

The AES key expansion algorithm inputs a four-word (16-byte) key and produces a
linear array of 44 words (176 bytes). That key is sufficient to provide a four-word round
key for the initial AddRoundKey stage. The expansion key algorithm is resistant to
known cipher analytic attacks. The key will be divided into four 32bits words. Each
added word w[i] depends on the immediately preceding words. The word whose position
is a multiple of 4, a g function is used. The other words will perform XOR operations.
Figure 2.6 describes the generation of the key and the g function. The key expansion
can be done beforehand to enhance the operations, and Rijndael can be specified in
terms of this expanded key.

Moreover, AES performance in software is low unless performance-optimized im-
plementations are used like T-tables (precomputed tables and require memory). The
large key size makes it hard for an attacker to use a brute force attack. However, those
cryptographic devices still leak some side-channel information that the attacker can
obtain to decipher the secret.
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Figure 2.6: The KeyExpansion involves the XOR operations and g function [18].

2.2 Power Analysis Attacks

As has been mentioned above, AES is the standard algorithm to protect the device from
attack. In recent years, several attack methods have stood out. Their primary goal is
to reveal the key inside the device. The implementation measures are various. Based
on the different categories standard, the attack measures can have several different
categories. The most straightforward criterion is the Passive and Active. As the name
suggests, the Passive way reveals the secret key by measuring the physical properties
of the cryptographic devices. The device usually leaks execution time information,
power consumption information, and memory cache information when the device works.
When the attacker performs an Active attack, they typically put some special input
data and manipulate the environment to make it unusual. The abnormal information
can reveal the secret key. This thesis aim at power analysis attack. Due to the easy
implementation methods, the power attack analysis is prevalent and powerful to those
standard security algorithms. It brings a threat to many cryptographic devices. From
the reliability view and security side, it is essential to give more attention to the power
consumption at the hardware register level.

The instant power consumption of a device depends on two factors which are data-
dependency and operation-dependency [37]. The digital circuit consists of many CMOS
inverters, which consist of transistors. The power consumption of an inverter consists
of two parts which are the static power consumption P stat and dynamic power con-
sumption Pdyn.P stat is typically very low. However, with the growth of the modern
process technologies, P stat increases significantly. Pdyn is still the dominant part of the
power consumption. The Pdyn occurs when the output signal switches (e.g. 0 - 1, 1
- 0 ). The output capacitance in a circuit usually needs to be charged or discharged
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Power Analysis Attack List

Non-profiled Attacks Profiled Attacks

Simple Power Analysis (SPA) Template Attack
Differential Power Analysis (DPA) Deep Learning based Template Attack
Correlation Power Analysis (CPA)
Higher Order Differential Power Analysis
(HODPA)

Table 2.1: Power Analysis Attacks List.

according to the change of input value when the switch occurs. It has a great impact
on power. The short-circuit current caused by the instant short of PMOS and NMOS
also provides large power consumption. The power analysis attacks track the power
during execution. After that, they perform mathematical/statistical analysis with the
traces to reveal the key. The attacker usually uses the special leakage model, which
correlates with the secret key bit under operation to get the key.

In addition to the passive and active classification method, the profiled and Non-
profiled criteria can also divide power analysis attacks into two parts. The profiled
attacks are considered the most potent because the attacker needs to have a clone of
the device and input particular plain text and secret keys to create a template. In that
particular case, the attacker can reveal the secret key with the template. In comparison,
the non-profiled attacks need the attackers to know the cryptographic algorithm and
not the devices. The substantive difference between profiled attacks and non-profiled
attacks is that the profiled attacks can have access to the device. However, the attackers
can not always perform profiled attacks in reality because they can not always have
control of those cryptographic devices. On the other side, the non-profiled attacks can
still threaten those devices even the attacker can not get the device. It is needless
to say that a good understanding of those various attack methods can help security
engineers to design a resistant device. Thus, an explanation of those attack methods
and summary has an outstanding contribution to this research. Table 2.1 shows the
popular Power Analysis Attack methods and each one will be explained in the following
subsections.

2.2.1 Non-Profiled Attacks

For the non-profiled attacks, it is weaker than profiled attack from the assumption.
Because attackers can not access the device and only have plaintext and ciphertext
information, they need to obtain many power traces and use statistical analysis to
reveal the key. As the Table 2.1 shows, non-profiled attacks has SPA, DPA, CPA, and
HODPA. With the countermeasure development, traditional attacks methods like DPA
and CPA can not succeed in recovering the key. So HODPA comes out, which is the
method to deal with some protected devices.
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2.2.1.1 Simple Power Analysis

When attackers perform SPA, the voltage drop and up showed in the power traces leak
the information to the attackers. However, only using SPA can not reveal the key. It
can help to locate the interesting point in the traces. From Figure 2.7, the attackers can
infer that the device starts to do nine AES encryption round at 0.3ms. Furthermore, at
4.1ms, the last round is performed. Because the final round does without Mixcolumn
processes, the 4ms traces becomes different from previous power traces. However, it is
impossible to reveal the AES key only from one power trace.

Figure 2.7: Power consumption of the AES encryption[37].

However, the SPA can still play a role in some implementations. For example,
Figure 2.8 shows the unprotected RSA implementation. When multiply occurs, the
power trace leak ’1’ information outside; meanwhile, the square operation leaks ’0’
information. Once the attackers get the whole power trace of RSA implementation,
they can get the final key.

Figure 2.8: square-and-multiply RSA implementation[37].

The attacks which only use one or few power traces to recover the key are treated
as SPA [37]. Thus, the manual effort compared to other methods is larger. Moreover,
the lousy signal-to-noise ratio makes SPA challenging to use.
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2.2.1.2 Classical 1-bit Differential Power Analysis

The power traces in Figure 2.9 contain the information of instruction sequence and
have also been affected by the manipulated data values [32]. However, the measurement
error and noise sometimes conceal the data power variations. So some attacks aimed
at revealing the data power information come out. For example, DPA involves dealing
with many power traces, and hypothesis key statistical analysis can recover the secret
key. The DPA attacks have seven steps. At first, the attackers need to collect many
power traces with varying inputs. And then select sensitive intermediate values like
sbox result in AES. As sbox is commonly used and the attackers can know sbox. Then,
for each possible value of K, compute the hypothesis result like S(p ⊕ k). They are
choosing one bit in the hypothesis result like MSB or LSB. According to the value of
that bit, partition the power traces into two groups ’1’ ’0’ , compute the mean and get
the difference of those two means. Because AES 8 bits key has 256 cases, the attackers
can get 256 differential power traces graphs. One of them has the peak power traces
is the correct key for that bit. The essential idea behind it is that if a wrong key is
implemented, the intermediate data is uncorrelated to the actual power traces by the
device. Moreover, in theory, the mean difference would approach zero, causing the
difference in power traces graphs to flat. As showed in the Difference plots for the key
guesses, the attacker can determine the 119 is one of the key. Thus, this model can use
1-bit to recover one byte key. This processes needs to be repeated several times to get
the full key. To be more specific about DPA, following list explains more details about
DPA.

Figure 2.9: Difference plots for the key guesses[37].

1. Select point of interest In AES, the first operation in each round is SubByte.
As mentioned in the AES part, the first inputs of the first SubByte are plaintext
and original key. The SubByte operation is a byte level and non-linear function.
This makes it suitable for attacker to perform DPA.
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2. Measure power traces The attacker needs to collect the random plaintexts
power traces with a constant key. The amount of traces may vary from different
algorithms. In Equation 2.1 and Equation 2.2, the P is the recorded plaintexts,
and the T is the corresponding power traces. Moreover, the n represents the
measurement point, and the d represents the number of random plaintexts.

P =
[
p0 ... pd

]
(2.1)

T =


t0,0 ... t0,n
. ... .
. ... .
td,0 ... td,n

 (2.2)

3. Compute hypothetical S-box intermediate value After collecting the power
traces, the attackers can choose one byte in the plaintext and all the possible
keys (e.g., AES key 256 cases) to perform SubByte S(p ⊕ k). The attackers will
perform these steps many times and choose different bytes until all the 128 bits
key are recovered. Equation 2.3 shows the hypothesis intermediate results.

S =


S0,0 ... S0,255

. ... .

. ... .
Sd,0 ... Sd,255

 (2.3)

4. Partition traces into two groups In classical 1-bit DPA, the T power traces
array can be divided into two groups based on one bit in the S intermediate value
array. For example, the MSB bit of the first column in the S array(key 00 case).
If MSB bit is 1, add this trace into group A in Equation 2.4. If MSB is 0, add
this trace into group B in Equation 2.5.

A =


t0,0 ... t0,n
t2,0 ... t2,n
t3,0 ... t3,n
. ... .
td,0 ... td,n

 (2.4)

B =


t1,0 ... t1,n
t4,0 ... t4,n
t7,0 ... t7,n
. ... .

td−1,0 ... td−1,n

 (2.5)

5. Compute average and two groups means difference In this step, each group
needs to average the power trace to get more robust power traces. And then do
the subtraction of A and B to get the correlation of hypothetical key and real key.
If the key is correct, a large peak will show in the different power traces. While
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if the key is incorrect, the power traces will become flat, as the graph shows.
Equation 2.6 shows the collection of each maximum value in each subkeys.

D =
[
d0 d1 ... d255

]
(2.6)

6. Identify the correct key After comparing all the 256 different difference power
traces in D, The attacker can determine which hypothesis key is the correct key
byte.

7. Repeat the processes In order to get the full byte key, the attacker need to
repeat step 3 - 6 several times. However, the power traces is still the same, which
can save time for the attacker.

This attack method tells the truth that the cryptographic device depends on inter-
mediate value is still vulnerable to the attack. If the attackers find a suitable point of
interest, they can perform the corresponding DPA on this device. This method still has
its limitation, the 1-bit guess is time consuming. So a different more powerful method
will be introduced in the next section.

2.2.1.3 Correlation Power analysis

As mentioned above, the power consumption is compromised of two part Pstat and Pdyn.
Comparing to Pstat,Pdyn takes over the dominant part. The data inside the device moves
from 1 to 0 (or vice versa), the capacitance needs to be (dis)charged. Some leakage
models can represent this kind of switch in the data, like the Hamming Distance and
the Hamming Weight. The correlation power analysis (CPA) is the method to use
those hypothetical power consumption and the measured power traces to do statistical
analysis. The correlation coefficient can determine the linear relationships between
data. So, the attacker can use the correlation coefficient in CPA statistical analysis
to reveal the secret key [12]. In order to get full understanding of the CPA, the two
generic leakage models details needs to be explained.

Hamming-Distance Model : The HD model is very suitable for data transmission
and register simulation. The power consumption of the data bus is proportional to the
HD model. The registers are triggered by the clock signal so that they only change
in each clock cycle. However, there are many glitches inside combinational cells in
combinational cells, which makes it difficult to simulate. Because the HD describes
the transition of data, the calculation methods count how many transitions happen.
For example, an 8-bit data ”0100 0011” transfers to ”0000 0000”, three transitions are
causing HD to 3. And the HD model assumes all the transmission contribute to the
power consumption equally. In order to use HD model, the attacker usually needs to
know the previous or following values in the algorithms. So they needs to know a little
about the algorithm.

Hamming-Weight Model : The HW model counts the number of logic ones in
the n-bit bus. It is usually used when the attacker has no idea about the algorithms.
Because the HW model only describes the current state of the data and ignores the
processed before and after data, it can not simulate the device’s transition. However,
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CMOS device’s power consumption largely depends on data transitions. So this model
is not very well to CMOS devices. But in some special cases, this kind model can be
used. Furthermore, a easy way to calculate the HD is HD = HW (v0 ⊕ v1).

The following is the steps of a correlation coefficient based power analysis.

1. Select point of interest It is same that the AES sbox is still the interest point
of CPA.

2. Measure power traces Like the DPA step 2, the CPA records the random
plaintext data as a P array in Equation 2.7. For each plaintext during encryption,
the same key is used to simulate actual conditions. And the collected power traces
is the array T like Equation 2.8.

P =
[
p0 ... pd

]
(2.7)

T =


t0,0 ... t0,n
. ... .
. ... .
td,0 ... td,n

 (2.8)

3. Compute hypothetical sbox result In AES, the small subkeys have 256
choices. To guess the correct result of the key, all 256 keys need to do SubByte
with each plaintext to get a hypothetical sbox array S like Equation 2.9.

S =


S0,0 ... S0,255

. ... .

. ... .
Sd,0 ... Sd,255

 (2.9)

4. Compute hypothetical H by leakage model The CPA step 2 and step 3 are
the same as the DPA step 2 and step3. Unlike DPA step 4, dividing the power
traces into two groups, the CPA uses the leakage model HD or HW to calculate
hypothetical traces to simulate the corresponding power consumption. Equation
2.10 shows the hypothetical traces array.

H =


h0,0 ... h0,255
. ... .
. ... .
hd,0 ... hd,255

 (2.10)

5. Compute the Pearson’s Correlation One way to evaluate the correlation be-
tween the hypothetical power traces and measured power traces can help identify
the correct key. Equation 2.11 named Pearson’s Correlation is a helpful tool to
find the relationship. Furthermore, i is the column from the H array, and j is the
column from the T array. All the g values can build a G array like Equation 2.12,
which is used to choose the best guess key. For each subkey i, find the highest
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value of this row. Then, comparing the 256 maximum value, the location of this
column is the best key. It correlated more with the measured traces than any
other guess. Note that the value is the absolute value. The linear relationship is
the most interesting point. The time information can omit either.

gi,j =

∑d
0(hk,i − µh,i)(tk,j − µt,j)√∑d

0(hk,i − µh,i)2
∑d

0(tk,j − µt,j)2
(2.11)

G =


g0,0 ... g255,n
. ... .
. ... .
g0,0 ... g255,n

 (2.12)

6. Put together the best subkey together And after above steps, the attackers
only get one byte key. So in order to get the full key, 16 times processes needs to
be performed.

Figure 2.10 shows a 7-bit subkey correlation coefficient graph, we can infer from the
graph that 42 is the most related key.

Figure 2.10: Correlation result for 7-bit subkey [38].

2.2.1.4 Higher order Differential Power Analysis

With the development of attack methods, there are also countermeasures occur to
prevent the device from attacking. Masking and Hiding is the main trend coun-
termeasures. They will be introduced in later. However, like higher-order DPA and
template-based DPA can succeed attacking Masking. The DPA and CPA which is
discussed above only use one intermediate value. So these power analysis attacks are
treated as first-order power analysis attacks. If several intermediate value is used , the
this is called high-order power analysis attacks.
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The mask conteract attacks by mask the plaintext or the key at the begining. How-
ever, even the mask is used, the operation in the algorithms will keep the mask in-
formation. If the attacker uses more intermediate value, they can recover the masked
key. In practical, second-order attack is sufficient to exploit the leakage . And the two
intermediate value can be two value masked by the same mask or a masked value and
corresponding mask [40].

2.2.2 Profiled Attacks

In this attack method, the attackers control the device and can build a good leakage
model by using this device. Then this model, also called template, can be used to exploit
the actual power traces secret information. The profiled attacks have two processes,
which are profiling and extraction. The profiling step is offline and aims at capturing
the behavior of the model. In the profiling step, the model may need thousands of
power traces. However, the benefit is that this model can extract secret keys in the
same device by a few power traces. The attacker can use the same template to attack
the different user’s keys in the same device. And based on the way of manipulating
data, there are many different methods. For example, the template power analysis and
deep learning based power analysis is now the advanced side channel attack.

2.2.2.1 Template Attacks

Before to describe the details of template attacks, it is necessary to understand what
is a multivariate distribution and how to use it in the extraction processes. Take noise
distribution as an example, the noise signal always exists to influence the measured
result. It is like xresult = xactual + noise. A Gaussian distribution can describe this
random variable value. Figure 2.11 describe this more straightforward. F(x) is the
probability density function and indicates the final result. The attacker can use this
model in the extraction to identify the correct key. If the probability density is very
small, the guessed key may be wrong. However, this only works for one measurement,
the multivariate distribution can help to model several random values.

Figure 2.11: The Gaussian Distribtuion indicates the possibility density distribution [50].

For example, if there are two random values, X and Y. Calculating each Gaussian
distribution are not helpful because they are independent. They do not have any
correlation. So it is necessary to model them together (X, Y). Equation 2.13 is the
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three random values model. Equation 2.14 shows the mean array of this model.

∑
=

 V ar(x) Cov(x, y) Cov(x, z)
Cov(y, x) V ar(y) Cov(y, z)
Cov(z, x) Cov(z, y) V ar(z)

 (2.13)

µ =

µxµy
µz

 (2.14)

However, the probability density distribution will look like more complicated than

just one variable value. f(x) = 1√
(2π)k|

∑
|
e

−(x−µ)T
∑−1(x−µ)
2 . After the attacker gets the

probability density distribution, they can put k point of one power trace into this model.
If the f(x) is high, then this might be the correct key (vise versa).

1. Creating the template

(a) Select target operation It is the same as first-order attacks, the higher-
order attack also need to find a attack operation to implement attack. In
AES, the sbox is usually protected by the mask. So the related sbox operation
XOR is the interested point.

(b) Measure power traces Because the attackers need to build a good distri-
bution to model the power traces, the tens of thoudsands of power traces are
needed. The measured power traces is array T like Equation 2.15.

T =


t0,0 ... t0,n
. ... .
. ... .
td,0 ... td,n

 (2.15)

(c) Compute hamming weight and divide into 9 model and calculate
the mean of those model If the attacker builds a distribution model for
every key, it will be considerable work. Another clever method to reduce the
workload is to model the strong relation between a leakage model and target
operation. The relationship between the Hamming weight and the Sbox can
help the attacker reduce the model to only nine models. The H array like
Equation 2.16 is the hamming weight value data. And then, divide the power
traces into nine groups and calculate the according mean of each group as
Equation 2.17.

H =


h0
h1
h2
...
hd

 (2.16)
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M =


m0

m1

m2

...
m8

 (2.17)

(d) Find point of interest In this case, the attackers do not need to create a
model for every key or point of power traces. Because the key does not affect
the whole power traces, and the high sample rate records some more points.
In other words, the sample rate is faster than the operation rate, and some
extra points can be omitted. One of the simplest method to find the point
of interest(POI) is the sum of differences method like Equation 2.18.

Di =
i∑

j=0

(Mi −Mj) (2.18)

Based on Equation 2.18, a sum of differences graph can be got like Figure 2.12.
As the graph shows, the attackers need to pick the highest value as the POI

Figure 2.12: Points of Interest [50].

and then ignore the near N numbers because of the extra sample point reason.
Then repeat the process again to get the enough points of interest.

(e) Create the template After the attacker already find the points of interest,
then they can find a mean and covariance matrix for every key (256 in AES).
Take key 01 as an example, there are T traces of key 01 and tj,i means the
number j trace at POI i. Then the mean of POI can be calculated like
µi = 1

d

∑d
j=0 tj,POI . Equation 2.19 shows the array of those means.

µi =


µ0

µ1

µ2

...
µi

 (2.19)

Based on the mean, calculating the variance can use υi = 1
d

∑d
j=0(tj,POI−µi)2.

Then the covariance can be calculated like ci,j = 1
d

∑d
k=0(tk,i − µi)(tk,j − µj).

At last, for every group, the attacker can get an array containing variance and
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covariance to indicate the possibility distribution of the input power trace.
Equation 2.20 shows the multiple random model coefficient array.

∑
=


υ1 c1,2 c1,3 ...
c2,1 υ2 c2,3 ...
. . .
. . .

 (2.20)

1. Using the template

(a) Identifies the target operation Like the other methods, the Sbox is the
target operation.

(b) Measure power traces Comparing to the other attack methods, this
method may need lesser measured power traces.

(c) Creating POI array After getting the power traces, the attackers only
needs the point of interest power traces points. D traces of n points of
interest power traces array can be collected like Equation 2.21.

A =


a0,0 ... a0,n
. ... .
. ... .
ad,0 ... ad,n

 (2.21)

(d) Correlate the array with template Then using the f(x) function for
every row in array A, the attackers can obtain the possibility distribution of
the guessed key.

(e) Combining the results One way to evaluate the f(x) is to multiply them
together. However, after multiplying those values, the result may be too
large or small to fit. So an alternative way is to do a log calculation and then
compare the different results to determine which key is the most relative.

2.2.3 Deep Learning-based Side Channel Attack

As mentioned above, the template attack usually needs pre-processing and finding the
point of interest to reduce the noise influence, alignment, and dimension reduction [29].
So, the pre-processing procedure is essential and based on human manipulation. More-
over, some machine-learning-based side-channel attack also needs the pre-processing
and POI. However, according to some studies, the Deep learning-based side-channel
attack(DLSCA) may not need to do the pre-processing and POI steps, enhancing the
possibilities of success.

The creating template steps are different from the classical template attack. After
collecting the power traces, the attacker already knows the intermediate value after
the operation, like the sbox result or hamming weight. So, the attackers can use
the power traces and the intermediate value as input data and the label of a neural
network to create an inference model. Furthermore, the property of Convolution Neu-
ral Network(CNN) is that it is good at image classification. Although the noise and
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measurement methods impact data dramatically, the CNN can still have the ability to
identify the correct result by advanced input data augmentation technique. Figure 2.13
shows the training process with CNN.

Figure 2.13: CNN procedure for intermediate value [29].

After getting the trained CNN model, the attacker can use it for unknown power
traces to get the relative value as array A. Array A indicates the possible result of the
power traces. Then, like steps in the CPA, the 256 hypothetical subkey leakage model
array can be built. The attacker needs the hypothetical array B and the template array
A to identify which result has the highest value. After that, the attacker can decide
which key is the correct result.

All in all, the DLSCA can avoid the pre-processing and POI steps. The steps are
more straightforward than the classical template attack. However, the main factor is
the trained CNN model. If the input power traces is too random and have little to
train, the attack can not guarantee success. So, the amount and the regularity of the
input power traces are essential for this attack method.

2.3 Countermeasures

The attack methods above are all interested in attacking the S-box in the AES al-
gorithms. Because the attackers use the S-box operation can get the intermediate
value for DPA, CPA, and Template attack. The intermediate value can recover the
relationship between the actual power traces and the correct key. So there are many
countermeasures to change the power consumption in the device. At least to reduce the
dependency of those power relationships. The recent countermeasures can be divided
into two major classes, hide and mask. Hide aims to hide the power relationship by
adding random power or consuming equal power every clock. However, hide sill uses the
same intermediate value as the unprotected algorithms use. The mask mainly replaces
the intermediate value and still gets the correct result. In that way, the attackers can
not use their already known intermediate value to attack this protected algorithm.
Furthermore, the mask can be used either at the cell level or algorithms level. It is more
popular than hiding in the scientific field and is widely discussed. Both of them are
independent of the relationship between the power traces and the intermediate data.
The big difference between hiding and mask is whether use the same intermediate data
as the unprotected device. The following section will introduce more details of the
hide and the mask countermeasures to understand resisting attacks methods better.
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Table 2.2 shows the two mainstream countermeasures.

Side-Channel Attack Countermeasure List

Hide Mask

Table 2.2: Power Analysis Attacks Countermeasures List.

2.3.1 Hide

The purpose of hiding is to counteract the attack method by cutting the relationship
between power consumption and data operations. The designer can design the device
to consume the same power every clock or random power consumption. Although
those two ways are too ideal for implementation, there are still approaches to get
the desired result. One method to random or equal the consumption is to change the
operations power characteristic directly. Thus, those proposals belong to the amplitude
dimension approaches. The other one is called the time dimension approach, which
changes the operation time during one execution. So if the operations of the algorithms
are randomized during the execution, the power consumption also will become random.
The following subsections will describe some hiding countermeasures from the time
dimension and amplitude dimension.

2.3.1.1 Time dimension

The power trace needs to be pre-processed from the CPA and some machine-learning-
based power analyses, and the POI is essential for the attacker to perform a successful
attack. Moreover, the point of interest highly depends on the operations. If the algo-
rithm’s operation can run at a different time during each execution, the power traces
will become more random [37]. Furthermore, the designer usually uses two methods in-
serting dummy operations and shuffling to change the composition of the power traces.
The below is the details of those two approaches.

1. Inserting dummy operations
The motivation of inserting dummy operations is to change the operation run
time. The designer can implement this either on algorithms side or on hardware
side. For example, some dummy operations is inside the C code to resist attacks.
And the number of hummy operations differs from each other. The more random
the number of dummy operations between algorithms operations, the more ran-
dom the power traces. While in the hardware side, the designer can add random
delay of FIFOs in pipeline architectures [34]. The random delay FIFOs can make
the data stay random when the algorithms run. Thus, the execution time will
change. Moreover, the throughput will decrease as the inserting dummy opera-
tions consumes more time.

2. Shuffling
As some operations’ sequence can be changed and the algorithms can still work
correctly. In other words, the AES 16 SBOX substitution usually works in a fixed
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order. If the order sequence can be shuffled every time the AES is executed,
the random number of sequences is difficult to attack. Furthermore, the shuffle
has less impact on throughput, like inserting dummy operations. However, the
shuffle can only be used in some limited positions because some sequences in the
algorithms can not be upset. So, the shuffling and inserting dummy operations
are usually combined to protect the algorithms.

2.3.1.2 Amplitude dimension

In the time dimension, two methods to randomize the power consumption are described.
In the amplitude dimension, the power characteristic can directly be modified to ran-
domize the power and even balance the power in every operation. The noise and signal
power has a significant influence on the real power. Furthermore, to increase the noise,
the noise power will dominate the whole power. On another side, to decrease the op-
eration power to a degree, the operation power will become equal and make the power
trace flat.

1. Increasing the noise
The straightforward way to increase the noise in the device is to add the noise
generator module. The generator can then add extra noise into the device to
distort the power. In the hardware aspect, the more independent operations run,
the more noise generated. So a wider datapath hardware architecture is more
difficult to attack. Moreover, in the [45], the storage elements are distributed,
and the algorithms are changed based on the logistical datapath, which can help
the device resist attack.

2. Decreasing the signal power
The power analysis can reveal the slight differences in the power traces. So making
all the operations consume equal power can enhance the security of the device.
Moreover, this is not trivial. One straightforward way to make power equal is to
use a filter. The filter can be used on the device to make the power constant.
Because all the power is based on the CMOS cell on the device, a dedicated cell
can be designed. If every cell can consume constant power, then the whole power
trace will become flat.

2.3.2 Mask

Even if the device has a data dependency power consumption, the mask method can
break the relationship because the mask does not use an intermediate value like the
unprotected device. Moreover, the mask can be applied to the algorithms level and cell
level. The basic idea of the mask is to use an attacker’s unknown value and the original
intermediate to create a new value to use in the algorithms. For example,vm = v ⊕m
use m to do xor operation with original sbox input value. And sometimes the operation
can be changed according to the purpose. The mask is usually used to the plaintext
and the secret key. Thus, the encryption output is the masked result too. So, the
algorithms need to convert the masked data into the original one. Nevertheless, the
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attack can not perform this step, and the power traces they got is not like the normal
one. Furthermore, the intermediate value needs to be masked all the time. In other
words, the masked intermediate value may become the original one by accident. So, it
is crucial to pick the mask and mask time carefully. And several different numbers of
masks will decrease the performance.

As the power analysis mentioned, the power analysis can work because of the re-
lationship between the intermediate data and the power consumption. So the mask
methods try to protect the device by a mask the intermediate value, which directly de-
stroys the relationship. Furthermore, because the masked intermediate value’s power
distribution does not depend on the original intermediate value, this can only resist
first-order DPA. In order to resist higher-order DPA, the secret sharing scheme needs
to be used. It means several masks are used on the intermediate value. It has been
proved that n masks can resist n-th order DPA [13]. However, more masks are used
leads to more memory resources and more computation time. Hence, to resist the
higher-order DPA, the hiding and mask methods are combined.
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Background of Spiking Neural
Network 3
In order to understand the meaning of the spiking neural network(SNN), the back-
ground needs to be described. This chapter introduces the traditional artificial neural
network and the characteristics of spiking neural networks. The different encoding
methods have a significant influence on SNN. Three primary encoding methods are
introduced. Furthermore, some hardware implementations of spiking neural networks
are also described to guide the thesis.

3.1 Artificial Neural Network

Artificial Neural Network (ANN) like Figure 3.1 is used to simulate human brain intel-
ligence. The idea was come out firstly in 1943 by Warren McCulloch and Walter Pitts.
This model contains the inputs ,calculation and outputs. Those three different parts
can imitate the information transmission in the brain. The input is like dendrite. The
calculation function is like the cell itself. The output is like a synapse that transmits
the spike to the next dendrite. At that time, the neuron can not learn by themselves.
The weights are fixed numbers. Until 1949, Hebb introduced the learning rate, which
lay the foundation for learning algorithms. In 1958, a simple two-layer neural network,
called Perceptron, led research in neural networks. However, Minsky pointed out that
the perceptron can only solve simple linear classification tasks. So until 1986, the neural
network was in the winter period. Rumelhart and Hinton introduced the backpropa-
gation (BP) algorithms which helped the neural network return to the research field.
Recent research demonstrated that the ANN could be used in auto driving, computer
vision, and voice recognition. Nowadays, the neural network has more layers and more
neurons than before. So the calculation becomes more and more complex. A new neu-
ral network that works more like a real human brain called a spiking neural network,
can solve this problem.

Figure 3.1: Artificial Neural Network Architecture[11].
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3.2 Spiking Neural Network

The ANN has already lasted for fifty years. However, in the biological neuron model,
the actual information transmission can be imitated by the voltage in the circuit. Some
scientists introduced a new generation neural network, spiking neural network. It can
diminish the distance between deep learning and neuroscience. The SNN uses the spikes
to imitate the biological-inspired manner by discrete function. This section introduces
some details of the spiking neural network. It can help the reader get a compact brief
intuition of the spiking neural network [48].

3.2.1 Neuron Model

The neurons in the cell throughout the nervous system transmit information. As shown
in Figure 3.2, the neuron consists of three major parts. It transmits information by
electricity. Before the neuron sends the information to the next motor neuron, it needs
to receive a chemical message from the former neuron on its dendrites around the cell.
The cell body then converts this chemical message into an electrical message through
the neuron, and the electrical message is called the action potential. This neuron
impulse then travels through the high-speed channel axon, which is covered with a
myelin sheath. At the axon terminal, the electrical one is collected and converted to
the chemical message. The axon terminal can then convert the chemical message to the
next neuron. The connecting point between different neurons is called the synapse. The
analog neural network imitates the function in the neuron. However, they use the fixed
number rather than the electrical pulse to transmit information and do not consider
the time information. Inspired by the activities of neurons, some neuron models to
imitate the actual activity of neurons are invented, like Hodgkin–Huxley model, the
integrate-and-fire model, and the Izhikevich model. Many of them have already been
demonstrated can be used in the implementation.

Figure 3.2: The Neuron in the Brain[51].
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3.2.1.1 Hodgkin-Huxley Model

The Hodgkin-Huxley (H&H) model was firstly invented in 1952 [26]. It is a
conductance-based model which describes the ionic mechanisms underlying the initia-
tion and propagation of action potential in squid giant axon [26]. It is a mathematical
function that consists of many non-linear differential functions. The basic theory can
be explained by Figure 3.3. It treats every component as electrical elements. It has
three different processes, voltage-gated ion channels, leak channels ,and pumps and
exchangers. However, this model is hard to be implemented in the silicon compared to
the other model. Its complexity constrains its usage range.

Figure 3.3: The Hodgkin-Huxley model[56].

3.2.1.2 Izhikevich Model

The Izhikevich model combines the biological plausibility of Hodgskin-Huxley dynamics
and the computational efficiency of integrate-and-fire neurons [28]. It can be used in
large scale neuron systems. However it still has the limitation that the spike shape is
always the same. There are four parameters that determine the spiking and bursting
behaviour of the neurons. Various parameters can result in various firing patterns.
Equation 3.1 and Equation 3.2 explain the input voltage change. With the change of
a,b,c,d four different parameters, the neuron can have several different types.

v = 0.04v2 + 5v + 140− v + I (3.1)

u = a(bv − u) (3.2)

With the condition Equation 3.3:

ifv ≥ 30mv, v ← c, u← u+ d (3.3)

3.2.1.3 Integrate-and-Fire Model

The integrate-and-fire (I&F) model is the widely used model in the spiking neural
network. Because it is very simple compared to the other models, it was first born
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in 1907 by Lapicque. Moreover, the mechanism can be described by Equation 3.4.
When the input stimulus comes, the membrane potential increases over time. After the
membrane potential exceeds the threshold, a new spike is generated, and the membrane
potential is set to reset value.

Figure 3.4: The action potential the fire period, refractory period , and the reset state [46].

However, this model still has its limitation. It can not describe the refractory period
in the real neuron activity. The membrane potential will increase to infinite. The leaky
integrate-and-fire(LIF) model can be used to solve this problem. Figure 3.4 shows the
voltage change inside LIF model and Equation 3.4 explains its mechanism.

I(t)− Vm(t)

Rm

= Cm
dVm(t)

dt
(3.4)

3.2.2 Spike Encoding

In the spiking neural network, the information can be encoded by many different ways.
Different encoding methods give different impact on the neural network. There are
three major popular encoding methods, rate coding , temporal coding ,and population
coding. The following sections give a detail description of three coding methods. And
the final result judgement criterion is determined by the frequency rate or the arrive
time of spikes, which is different from the criterion in the ANN. Figure 3.5 shows the
firing coding general SNN structure.

Figure 3.5: General Structure of SNN[27].

28



3.2.2.1 Rate Coding

Rate coding is a widely used coding method in the spiking neural network. The prin-
ciple of the rate coding is that the neurons corresponding to inputs with the highest
intensities fire more frequently. In other words, the scheme treats the input pixel as a
firing rate and converts it into Poisson spike train with firing rate [24]. The firing rates
can be used to describe the properties of sensory or cortical neurons. There are two
calculation methods for calculating firing rates. Firstly, the spike-count rate, also called
temporal average, can be obtained by counting the spikes number during the trial time
and divided by the trial time. The time window period needs to be set corresponding
to the input stimulus. The advantage of spike-count rate is that it can be obtained
by only one trial but at the cost of losing all temporal resolution in neuron response
during this trial [57]. The second scheme is the time-dependent firing rate that aver-
ages the number of spikes during a short interval, divided by the interval. The same
input sequence needs to be repeated several times. The time-dependent firing rate is
an effective way to evaluate neuron activity. However, it can not be used to imitate
the neuron in the brain because the neuron in the brain can not wait for the repeated
input sequence. Nevertheless, the neuron in the experiment can use this method to get
a more precise firing rate.

3.2.2.2 Temporal Coding

The temporal coding like time-to-first coding is that the neuron fire first with the
highest intensity. In other words, the larger the input pixel is, the more information is,
the earlier it fires a spike.

3.2.2.3 Population Coding

Population coding scheme is one way to describe method by the connection activity
between neurons. For example, the spike times of several input neurons are used to
represent the input data. Figure 3.6 shows the three different encoding method.

Figure 3.6: Three Different Encoding Schemes [43].
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3.2.3 SNN Learning Method

One of the most used learning algorithms is spike-time-dependency plasticity(STDP).
The STDP changes the weight in proportion to the pre-synaptic firing rate and the
temporal rate of the changes of the activity on the post-synaptic side [5].

Figure 3.7: Biological observation of STDP weight change [5].

In Figure 3.7, the horizontal axis represents the time differences between neurons.
Moreover, the vertical axis represents the change of weight. It can be concluded from
Figure 3.7 that the positive changes occur when the pre-synaptic spike before the post-
synaptic spike, and the closer the time difference is, the larger the change is. The
negative changes occur on the opposite when the pre-synaptic spike after the post-
synaptic spike. The changes diminish to zero when the time differences become larger.
And the temporal vicinity of the post-synaptic spike changes the weight significantly.

3.2.4 SNN Hardware Implementation

Greatly boosts deep learning spiking neural networks both in the scientific and engi-
neering fields [49]. According to the implementation methods, the SNN hardware plat-
forms can be categorized as multi-processor [30], FPGA [41], or analog/mixed-signal [7].
However, most of the platforms using analog circuits are mostly based on the fact that
complex mechanisms can be implemented with transistors in the subthreshold regime
compared to digital circuits. Analog implementation can faithfully create large-scale
neuromorphic circuits and complex bio-plausible tasks. However, digital implementa-
tion can also realize bio-plausible mechanisms. Many different bio-plausible models are
also created to fit hardware implementation. Machine learning may choose simple IF
and LIF models to achieve high accuracy and power-efficient hardware implementation.
The advantage of digital implementation of spiking neural networks is that a complex
multiplier operation can be reduced to addition and compared to MAC operators in
ANN. Thus, the digital SNN can only use adders to replace MAC, reducing operations
complexity and improving power efficiency.
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Several groups already create some different spiking neural network hardware. For
example, the Neurogrid [6] designed and built by Stanford University is a neuromorphic
system for simulating large-scale neural models in real time [6]. The SpiNNaker, cre-
ated by the University of Manchester, consists of several ARM processors. The ARM
architecture provides the ability of parallel computing with custom digital multi-core
chips. Up to 16,000 neurons and 8 million synapses can be simulated in a single chip
[1]. Moreover, the TrueNorth created by IBM is a processor that contains 5.4 billion
transistors. The purpose of the processor is pattern recognition. The creative method
behind TrueNorth is neuromorphic computing. Furthermore, because the asynchronous
clock principle can speed up the data transmission and consume less power, the Dy-
namic Neuromorphic Asynchronous Processor(DYNAP) [47] combines inhomogeneous
sub-threshold analog circuits, and fast programmable digital circuits were created. The
designer can implement the spike-based neural processing architectures on this chip.
It solves the von Neumann bottleneck problem. The real-time multiplexed commu-
nication of spiking events can also be harnessed. The intel also created a processor
named Loihi with many cores by the intel’s 14-nm process. It has a unique program-
able microcode learning engine for on-chip training [42]. And the adaptive self-training
event-driven SNN can be implemented effectively on the chip. The European human
brain project also created a chip named BrainScaleS in the 180 nm process. And it can
not use pre-programmed code but evolves with the real electronic circuits.

Selecting an implementation method is a design choice that needs to follow a design
rule as our design replaces the S-box in AES, which is an embedded design and is not a
large-scale neuromorphic design. Our task is like a classification task in machine learn-
ing. SNN, compared to ANN, is more hardware-friendly and thus attracts researchers
and engineers. Hardware AES is usually implemented on portable devices. Thus SNN
is suitable for hardware AES implementation. When in the application-specific do-
main, ASIC or FPGA implementation of SNN is proved to improve hardware efficiency
ann get more than 97% accuracy for MNIST dataset classification in just hundreds of
nanojoules. Table 3.1 shows the state-of-the-art SNN hardware digital implementation.

Items
Park
ISSCC’19[44].

Chen
JSSC’18[14].

Yin’17[59].
Chuang
ACM’20[16].

Types Digital Digital Digital Digital

Technology 65nm(simulated) 10nm 28nm(simulated) 90nm

Inference Energy(uJ/inf.) 0.24 1.70 0.286 0.59

MNIST Accuracy(%) 97.83 97.9 96.86 98.01

Chip size(mmˆ2) 1.87 1.72 1.65 0.2

Table 3.1: State of the art digital SNN implementation.

Different application has employed power/accuracy tradeoff technics. Although
ANN hardware implementation has a similar power consumption, it costs almost 3x
larger area compared to other SNN hardware accelerators. And in some implementa-
tions employ energy/accuracy trade-off technics, which would improve power efficiency
in losing accuracy. It demonstrates that a digital implementation of SNN can be used
in real-life applications.No matter what kind of design methodology is adopted. People
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need to describe the complex electronic system in the SOC era to select a suitable
system architecture, divide the software, and divide the software-hardware, and simu-
late algorithms. To measure the security of the hardware, performing attacks on the
back end is too late. To better understand the design, establishing a chip model is an
effective way to make chip architecture decisions early.
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Spiking Neural Network
Simulator Implementation 4
In this section, the proposed spiking neural network needs to be simulated by the
simulator. However, many different simulators can simulate the spiking neural network.
It is essential to find a simulator that can get the hardware friendly values. So in the
following sections, the characteristics of the snn simulators are described. And the
details of the implemented snn are described.

4.1 Spiking Neural Network Software Implementation

Machine Learning(ML) is the best alternative method to replace conventional human
coding for AI. Significantly, the deep learning methods can do classification tasks, image
recognition, and speech recognition. So a helpful simulator system for deep learning is
needed. Furthermore, in some unique aspects like the finance field, much data needs
to be processed fast and find the best point to invest in. By the way, the IT engineers
need to achieve a reasonable inference as soon as possible. The learning time for a new
module can not be very long. Otherwise, it can not capture the great point. Nowadays,
based on the effort of many researchers, many advanced systems play an essential role in
the industry field and research field. Many systems choose to use python to implement
the module.

Choosing a python module has many advantages. First, a great library ecosystem
can help designers save build time for a neural network. A library contains the pre-
written class and functions to be chosen directly. By doing this, the designer does not
need to code the function by themselves. Second, Python is an easy code language to
get familiar with. The low entry barrier can help the designer to pick up the module
more quickly. Furthermore, the Python is very flexible for the designer to use. The
designer can choose a comfortable style to code the neural network. However, the
execution speed of Python compared to C/C++ is slow because everything in Python
is an object which costs more memory access. In C/C++, the pointer directly points to
the first data of an array. In Python, the pointer points to the buffer of other pointers,
which makes for inefficient memory access [36]. However, in this thesis, this is not a
big issue because of the small neural network structure.

The main trends library for the artificial neural network is Pytorch and Tensorflow.
Google designed Tensorflow, and the Pytorch has similar functionality. Compared to
the Numpy library, Pytorch and Tensorflow have the advantage of building the GPU
module. The Numpy can only be used on the CPU. Getting the benefit from the modern
GPU computation power, the neural network can be trained faster. Furthermore,
Tensorflow and Pytorch have their strengths. The PyTorch is more researcher-friendly
than Tensorflow, because the extended new classes and functions are easy to add to
the library. Moreover, the advanced research paper has many Pytorch based modules.
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In the computational graph aspects, the Pytorch can define graph on the go, which is
helpful for the variable-length inputs in RNN [36]. One more powerful computational
device named TPU can also be used for neural network training. However, the TPU is
only supported by Tensorflow. Furthermore, many companies prefer Tensorflow to the
Pytorch for production purposes.

As for SNN, some laboratories also create a simulator to simulate complex human
brain activities. For instance, Genesis, NEURON, Brian, Brian2, NEST, and Bindsnet
are commonly used. Some simulators are based on the Pytorch library like Bindsnet.
Some are created from the bottom. They all can train the spiking neural network
and gets a reasonable inference. However, many of the libraries are built by one more
language. As has been mentioned above, some languages have a faster execution time
at the lower level structure. And in some high levels, Python or Matlab are used to
build the structure faster. Thus, when a tailored structure needs to be implemented,
the designer needs to change the structure to two different languages, both high level
and low level. This is not flexible for the designer. So the Bindsnet based on the
Pytorch has all the Pytorch advantages. Moreover, the Bindsnet can be connected to
the unique hardware and get a fast inference.

4.2 Bindsnet implementation

It is owing to the torch.Tensor object in the Pytorch, the Bindsnet, can be implemented
on the CPU and GPU. And the torchvision.datasets have been added into the library
for evaluating the ability to spike neural networks for image recognition tasks. The
Bindsnet can be used for the unsupervised learning task and supervised-learning task.
And the big difference between the spiking neural node and the artificial neural node
is that the spiking node integrates the input during the time. The SNN considers time
as the third dimension, and it has the advantage of dealing with time-related tasks.

The neuron’s characteristic is mainly dependent on their weights. In other words,
the synapses connected to the neuron have a contribution to the neuron activity. And
the weight needs to be trained based on the input spikes and output labels. So, a
suitable learning mechanism is important for a spiking neural network. The Bindsnet
library provides the bindsnet.learning module to update the weight. It contains popu-
lar learning methods, including Hebbian learning, a variant of spike-timing-dependent
plasticity (STDP), and less well-known methods such as reward-modulated STDP
(MSTDP) [25].

Different from the ANN, the neuron of SNN has some different types that can con-
struct the NN. So the bindsnet.network.node can provide several neural nodes to
let the designer choose. Moreover, the bindsnet.network.topology can give the con-
nection types in the networks. Different connection types have different performances
in various situations. Furthermore, the t variance has a significant impact on the per-
formance. If the variance is considerable, the simulation time will become very long,
but better accuracy, and vice versa. The designers determine this trade-off depending
on their design.
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4.2.1 ANN

The initial idea to replace the sbox with a neural network is from Snet [54]. In that
thesis, they use a multiple target neural network in software to make it resistant to
side-channel attacks. And they collected the traces on the MCU. The output of that
ANN has eight different neuron nodes. Each node can represent one bit of the result
of an eight bits sbox. The mechanism is that each bit has different integer results like
+456, -134. Then, based on the integer sign, it generates 1 when the sign is positive
(vice versa). A multiple-target neural network can save many memory resources in
the hardware. Furthermore, they also optimize the neural network by removing the
bias, quantizing the weight, and constraining the weight range. On the other hand, the
output result of sbox has 256 different. The neural network can also be constructed
with 256 output targets. In this thesis, two different versions of ANN are built to get
a deep understanding of the S-net project. Those two neural networks are built with
Pytorch library. Table 4.1 shows the comparison of two types ANN.

Artificial Neural Network

types structure accuracy

Multiple targets 8-80-8 100%

Single target 8-96-256 100%

Table 4.1: Sbox Artificial Neural Network.

Thanks to the flexibility of the Pytorch library, the structure of the neural net-
work can be changed many times until the best structure. The network is a class in
the Pytorch containing characteristics of the layer and the activation functions. The
chosen activation function is based on the tasks. In this thesis, the Relu function is
chosen. The best advantage of Relu functions is that it does not activate all the neu-
rons simultaneously. Furthermore, the dataset and data loader library let the designer
build their own data library for their specific task, which is very helpful for different
scientific researches. After building the specific training datasets, the neural network
can train by themselves with the learning algorithms. The Pytorch provides the back-
propagation methods. With the help of the loss function and the optimizer, the weights
and bias in the neural network will be updated automatically. The difference between
the multiple targets and the single target is the loss function, also called criterion. In
the multiple targets, the BCEWithLogitsloss() function can help to get the multiple
loss together and train the neural network. The single targets neural network uses the
normal loss functions to do the training process. Finally, both of them can reach 100%
accuracy, which can replace the sbox with artificial neural network totally. The weights
are float64 now.

In order to make them more suitable for hardware implementation, quantization like
fixed-point methods can help convert the weights to fewer bits with a bit of accuracy
loss. In the Pytorch library, the quantization library can help convert the weights from
float64 to integer or float32. Three different quantization methods can choose whether
to quantize weight and activation. The straightforward way is dynamic quantization
which only quantizes the weight with activation read/write float. The static quanti-
zation, also called post-training quantization, is the second one to quantize both the
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weights and activation function after training. The quantization aware training can
quantize the weight and activation functions during training. Then after getting the
integer weight result, the hardware can be implemented with fewer resources.

4.2.2 ANN to SNN conversion

The ANN is so popular that some researchers want to convert ANN directly to SNN.
The bridge to convert the ANN to SNN is essential. Fortunately, there is a strong
correlation between the Relu functions and the firing rate in the SNN. By using Relu
function and removing bias, the problem of negative representation of values can be
solved. The Relu function is an estimater of IF neuron’s firing rate. And the output of
the Relu function is proportional to the spikes number of IF neurons. Based on this,
the ANN to SNN conversion can be possible. Furthermore, the weight normalization
can decrease the weight that the Relu function does not overestimate. So based on the
effort of [20], the previous ANNs can be converted to SNN. But, the Bindsnet SNN is
fire rate based SNN. The SNN’s accuracy is determined by the highest fire rate. Thus,
the multiple targets ANN can not be converted to the firing rated SNN. Because the
output neurons fire the spikes can not indicate it has the highest fire rate. So, the single
target ANN can be converted to the SNN with the help of Bindsnet.

As ANN is built on Pytorch, so a pytorch based SNN library to convert the ANN is
more straightforward. Then, the Bindsnet library contains a conversion library which
can convert the Pytorch based ANN directly. As has been mentioned above, the weight
quantization method can reduce the resources usage in the hardware. However, the
quantized neural network based on quantization library in Pytoch can not be directly
converted to SNN in Bindsnet. The weights still need to be quantized. The Fxp library
[2] is a python library for fractional fixed-point arithmetic and binary multiplication
with Numpy. The weight stored in the neural network can be extracted as numpy
array and converted to fixed point type by the Fxp library. And the bits of weights
are determined by the designer. In order to choose the smallest bits, various fractional
bits needs to be test. Figure 4.1 shows the different fractional bits effects on the ANN
accuracy.

Figure 4.1: Different Fractional Bits Accuracy.

Then with the help of ann to snn functions, the ANN can be converted to the SNN.
Besides, the Bindsnet provides the monitor in the library to monitor the spikes and
network structure. Figure 4.2 describes the structure of SNN.
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Figure 4.2: SNN structure.

The quantized weight used in the SNN is the same as the quantized weight used
in the ANN. However, the accuracy in those two neural networks is different because
of the different mechanisms of those two neural networks. The accuracy of those two
neural networks with different fractional bits are in Figure 4.3. It shows that the ANN
reaches 100% at 3 bits and the SNN reaches 100% at 7 bits. Then 7bits weight is the
best weight value in this Bindsnet SNN and can be used in the hardware SNN module.

Figure 4.3: ANN and SNN Accuracy with different fractional bits.

However, the Bindsnet SNN is still a fire-rate-based neural network. The output
neuron will generate several spikes during the time window. So, in the hardware,
fewer spikes can reduce the power consumption, which is the target of spiking neural
networks. In the [31], it introduces a one-spike neural network. The neurons in this
network only fire one time to reduce the power consumption. The sources code is in
[31], it uses a new supervised learning method which uses temporal coding rank-order-
coding. Different from the fire rate coding, the firing order in the rank-order coding can
carry the information. Thus, the first fire neuron in the output neurons determines the
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class. This model is well suited for hardware implementation than the fire-rated one.
In the following section, a new Pytorch-based SNN can be used to generate a one-spike
neural network which is well suited for the hardware implementation.

4.3 SpikingJelly implementation

The SpikingJelly [21] like Bindsnet is also built based on the Pytorch. It is beneficial
for the engineer who is familiar with Pytorch. Different from the bindsnet, it uses
the surrogate gradient learning method to train the neural network. The SNN is like
the RNN. The neuron’s input is the voltage increment, and the output spikes are
determined by comparing current voltage with the threshold. And then, the voltage
is reset to zero or the reset value. The RNN can use differentiable gating functions
like tanh function to train the neural network. However, the SNN activation function
is not differentiable. Furthermore, SNN can not be trained by gradient descent and
back-propagation. So, a differentiable function similar to the activation function can
replace the function so that the SNN can use the back-propagation learning method.
In SpikingJelly, the recommended surrogate gradient function is a sigmoid function
similar to the firing spike mechanism. And it can be used to replace the gradient of
the spiking function. So different neuron models like IF, LIF, and EIF models can be
implemented based on the surrogate gradient function. The neuron model has basic
variance like threshold voltage, step time, and reset voltage. The designer can change
those values corresponding to their purpose.

After solving the learning problem, the spiking neuron can be embedded into the
neural network as an activation function in the artificial neural network. Then the
ANN will be converted to SNN. The training method in the SNN is to let the network
run several step times and collect the number of output spikes during the step times.
Moreover, the target neuron usually has the maximum number of spikes. The loss
function in the SNN is also firing frequency. So the multiple target model can not
be implemented either. Based on their research, the MSE optimizer has the best
performance for training. The SNN is a memory-state neural network. So the whole
network needs to be reset before each forward process. The SpikingJelly also provides
the spikes and voltage monitor to monitor the network. Figure 4.4 can describe how
the SNN works.

4.3.1 Sbox spiking neural network

The sbox spiking neural network is very similar to the one in the Bindsnet. However,
the SpikingJelly one uses an 8-24-256 structure. After the experiment, the time window
is chosen 7, which has the smallest multiple firing output. In other words, the target
label output neuron can fire seven spikes during time steps. However, there is another
neuron may also fire two or one spike during time steps. The correct result can be chosen
by comparing those fire rates. Nevertheless, if the model is used in the hardware, a
fire rate comparator needs to be designed, which will add extra effort. So the fewer
multiple neurons fire, the better the neural network is. After weight quantization, only
six results have two output neurons fire, which is not trivial. However in the bindsnet,
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Figure 4.4: SNN Output Neuron Spikes and Voltage.

almost three or four output neurons will fire spikes. The output spikes can be explained
more straightforward with Figure 4.5. Figure 4.5 indicates that the result neuron fires
spike at every time step and other neuron do not fire spikes, which is suitable for
hardware design. And the spiking neural network can reach 99% accuracy. The all
zero inputs is a special case for spiking neural network. Because no spikes can transfer
information between layers.

Figure 4.5: Sbox SNN Output Neuron Spikes.

After getting the trained SNN, the post weight quantization needs to be applied like
Bindsnet SNN. The neural network can reach 100% after weight quantization except
the special case. Furthermore, the all float64 bits can be converted to 8bits integer.
The SNN can still keep 100% accuracy but have some multiple output neuron spikes.
However, only 6 results have this situation which is not a trivial.

4.4 Comparison

There are many powerful spiking neural network simulators. However, the hardware
SNN can maximize the advantage of SNN, a suitable simulator for hardware needs to
be selected. Two different models based on two different libraries can handle the sbox
task. Table 4.2 shows the characteristics of two SNN simulator. The SpikngJelly based
SNN compared to bindsnet based SNN has several advantages. For instance, the SNN
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structure is smaller, and the weights are 8 bits integers. Furthermore, the SpikingJelly
based SNN can also transfer one spike in the neural network like S4NN [31]. Although
two models use the same loss function, fire rate, the SpikingJelly one simultaneously
has fewer multiple neuron fires. Those advantages can help reduce hardware resources,
memory storage, and power consumption. So the inference hardware design will be
based on the SpikingJelly model.

Spiking Neural Network

Simulator Bindsnet based SpikingJelly
based

Structure 8-96-256 8-24-256

Accuracy 100% 100%

Loss function fire rate fire rate

Spikes type multiple spikes one spike

Weight format 8bits integer + 7bits fractional bits 8bits integer

Table 4.2: Sbox Spiking Neural Network.
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Spiking Neural Network
Hardware Implementation 5
In this chapter, the proposed spiking neural network is implemented in the hardware.
Each part in the RTL models is described. Moreover, the simulation results are posted
to verify the functionality of each part.

5.1 IF Neuron model

To imitate the biological behavior in neural networks, an integrate-and-fire neuron
model can be used to describe the synaptic inputs and the injected current that it
absorbs. In other words, to achieve IF neuron and optimize the resources in hardware,
some designs and adaptions need to be made.

5.1.1 Model adaptation

IF neuron model can be simply looked at as three main processes: integration of inputs,
pulse input, and the triggers action potentials in terms of the threshold.

Initially, the binary number system is usually used in digital circuits to represent
all types of information inside the computers. There are several types of number repre-
sentation techniques, like fixed-point representation and float point representation. In
the training phase, the spiking neural network model usually will use 16 bit or 32-bit
float point weights and bias to train the network. However, the disadvantages of using
float point numbers in hardware are that more storage and computation resources will
be needed. The fixed point representation can solve this problem and still keep an
acceptable accuracy. This representation has a fixed number of bits for the integer
part and fractional part. The designer can decide the fixed number of bits. As in this
thesis, transforming a 32bit float point to 8bit fixed-point number can help to save 4x
resources.

Secondly, in order to build a phenomenological model of neuronal dynamics, the
critical voltage for spike initiation by a formal threshold v. If the voltage u(t) reaches v,
the neuron fires a spike to the next synapses. This moment defines the firing time t [22].
Although the elementary laws from the theory of electricity can describe the mechanism,
the continuous voltage calculation can not be achieved in a digital system. Because
a digital circuit works with digital signals, where all values are discrete. Therefore
action potentials are reduced to ’events’ that happen at a precise moment in time [22].
A neuron cell will receive spikes from the front end, which is like a good insulator.
Moreover, the short I(t) carrying weight is injected into the neuron, it will charge the
neuron. The neuron will work like a capacitor C with Equation 5.1. To implement
the input addition in the digital circuit, just using adder and register can achieve the
addition when the input spike comes in and keep the value until comparing with the
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threshold.

I(t) = C
dV (t)

dt
(5.1)

On the other hand, after the front neuron has already transferred all the addresses
of the spikes. A neuron fire enables signal will let the membrane compare with the
threshold.

5.1.2 Architecture

As explained above, a flexible modular has been proposed, including all the functions
and control logic in the neuron.

Figure 5.1 is the digital block of IF neuron. This neuron model has six input ports,
including the clock reset signal, three control signals, and one data signal. The input
weight data is chosen from the ROM by the address of input spikes. The done en signal
indicates the end of the spikes address transmission, making the continuous-time into
discrete-time. Once the done en signal comes into the neuron, the neuron will determine
whether this neuron can fire spike and reset the membrane to zero. Moreover, the Fired
and Next signals can help to control the add processes in the neuron. The Next signal
shows that the new address is different from the previous address. The Fired signal can
make the neuron only fire one clock time and save the fire power. Only when Next is
true and Fired is false, the add processes will work to add new weight into membrane
potential.

Figure 5.1: Digital block of a neuron.

Go deep into next level of the neuron, shown in Figure 5.2. The neuron consists of
sequential and combinational logic. The reset signal will reset all the sequential signals
to zero. There are two registers in this neuron. One will keep the add process data
membrane, and the other will determine the fire signal. Two combinational blocks for
the internal add signal and compare block with the threshold.

To be more specific, the whole working process will be explained below. Firstly, it
will receive a reset signal to set all the signals to the original state. The weight data
will change corresponding to the input address of the AER communication bus in the
high-level Neuron Core automatically. When a new address comes in, the Next signal
will let the neuron do add process. After all the new address weight has been added to
the membrane potential, the done en signal will let the neuron compare to determine
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Figure 5.2: Digital implementation of the neuron equations.

whether to fire a spike and reset the membrane. If a new spike is fired, the Fired signal
will let the fire signal be zero. Then a simple neuron period will end and start again
when a new AER address comes in.

5.1.3 Simulation

Figure 5.3 shows the simulation waveform of the neuron model in the ModelSim. All
the signals worked properly as the above workflow. The weight data will change every
clock keeping the next signal activated. Several clock cycles later, the done en signal is
activated, and therefore in the next clock cycle, the neuron fires the spike. The Fired
is stimulated by the fire spike and stops fire spike firing. Finally, the neuron finishes
generating impulsed and resets every internal signal to zero.

Figure 5.3: Neuron simulation.

5.2 AER protocol

The neuron core can read the address information from the Address-Event Represen-
tation(AER) bus. The AER protocol only uses one digital bus line to broadcast the
complete address information serially. In order to achieve the asynchronous AER pro-
tocol, the encoder generates several corresponding binary addresses to the receiver chip,
where a decoder decodes the binary address to spike pulse again. The four-phase hand-
shake protocol can achieve the communication by an acknowledge signal and a ready
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signal [9]. The AER design adds some changes to the [39] to make it more suitable for
this thesis.

However, the AER is designed by an encoder, which is different from the asyn-
chronous AER protocol to keep all designs in an asynchronous process. The syn-
chronous AER can also read the spikes from neurons to send the neural address to the
next layer through the AER bus.

Moreover, the encoder consists of a priority encoder, which can compress multiple
binary inputs into a decimal outputs address. And the encoder can solve the address
transmitting out-of-order problem. It transmits addresses one by one in every clock
cycle.

5.2.1 Design and Architecture

Figure 5.4 shows the AER block and the input and output ports. The clk and rst port
is the normal port for all the block. The start full empty fifo out zero and cal finished
ports are used to control the control block to control the work flow of the AER. The din
and aer ports are the data communication ports for input and output respectively. The
load and fifo out en ports are control inputs, which receive the control block output
signals.

Figure 5.4: Digital block of AER.

The start port indicates the AER starts to work and reset the inside FIFO to zero.
Then the control block sends the load signal, making the FIFO store the input spike
vector. Then the FIFO generates a full signal to stimulate the control state from
the load state to the calculation state. In the thesis case, the substitute(sbox) deals
with 128 bits vectors consisting of 16 8-bit vectors. The 8-bit vector, for example,
”0000 0101”. A ”1” means the input neuron has a spike pulse. There are two spikes in
this vector. Then the AER can write 2 to the AER address bus. At the next clock cycle,
the AER address bus would transmit 0. In order to keep order and avoid collapsing,
the AER address data can be written to the bus every clock cycle. After finishing
transmitting the AER address of one 8-bits vector, the cal finished port generates one
pulse to change the state of the control block. Then the control block would be a fire
state which can give a fire enable signal to the neuron layer to fire the spike to the next
layer. Then, the control block would generate one fifo out en pulse to let the AER deal
with the next 8-bit vector. Finally, after all the 16 8-bit vectors have been processed,
the FIFO produces an empty signal to stop the air and make the control state idle until
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the next start signal.

Figure 5.5: AER Schematic.

Clearly, the RTL level of the AER is shown in Figure 5.5. The area consists of three
major parts, asynchronous FIFO, a priority encoder to transfer spike information to
address information, an inside control logic part. The user can work properly with the
inside control logic and the external control signal.

Firstly, the FIFO loads all 16 8-bit vectors. Using the ”0000 0101” as an example,
if the inside spikes and pri in are zero, the FIFO gets the fifo out en signal from the
control block, the priority encoder can get a new 8-bit vector. In the next clock cycle,
the priority encoder translates the 8-bit vector from left to right. When detecting a ”1”
the corresponding position address, ”2” is immediately transmitted to the user address
bus. Then the priority encoder generates another inside spikes signal ”0000 0001”,
which determines the next step.

Then the inside spikes compares with an all-zero 8-bit vector to determine whether
the translation process is done. If not, the inside spikes comes back to the prior-
ity encoder as pri in to continue the address transmitting process. As in the above
case, the encoder still needs to transmit another ”0” address information. By the way,
the fault address output of the encoder is ”8”, which is out of the address range of the
input vector. If the inside spikes is all zero, the pri in gets a new fifo out and generates
a done en signal. Besides, the fifo out is determined by the report of FIFO, where a
fifo out en signal would get from the control block when the control state is in CAL
state. A posedge detector would generate a pulse for the cal finished to change the
control state from the CAL state to the FIRE state. After the fire state returns to
CAL state, the FIFO reads a new vector for the pri in. The FIFO works flow is like
Figure 5.6, which is different from the design in [39].

In order to avoid writing data out of order, the design in the previous has the
restriction for load data. It loads one 8 bit vector in every cycle and processes the
translating meanwhile. However, in this thesis design loads all the 16 8-bit once, which
can solve the load data problem. And adding some logic pulse to makes the clock more
compact.

In the thesis, there are two layers, AER protocol is applied to both layers. The
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Figure 5.6: FIFO work flow.

second layer AER has a slight difference from the first layer. Because the first layer
generates a 24 vector to the second layer, the priority encoder needs to be extended to
24 spikes detector. The address range extends to 0 23. Another difference is that the
FIFO workflow would change. The FIFO loads all 128 bits of data in one clock cycle
in the first layer and reads the data in the following clock cycles. Because the second
layer needs more time to process the 24 bits vector, the following new 24 bits vector
arrives at the second layer when the second layer deals with the old one. So, the second
FIFO is capable of writing and reading the data separately. In other words, the FIFO
can write data and read data simultaneously. Additionally, the empty signal indicates
the end of the substitute process.

All ”0000 0000” inputs have their unique transfer channel for the first AER and
the second AER. In this thesis, the fifo out zero port is used to control the logic and
transfer the corresponding zero information. If the system needs to load an all-zero
vector into the FIFO, the control logic can use a load signal to help.

5.2.2 Simulations

The AER simulation in the Modelsim is shown in Figure 5.7 and Figure 5.8. In the
waveform, it can display the detail of behaviors when the neural network starts to work.

As shown in the waveform Figure 5.7, the AES address default output is ”8”. In
the next layer’s weight room, address 8 stores zero, which has no impact on the calcu-
lation of membrane potential. When the start signal comes into the neural network, a
load signal is activated to stimulate the ram to store the spikes in. After the store is
finished, the control logic sends a fifo out en signal to the address transmission process
according to the above functionality. The AER address port starts to send ’6’ ’4’ ’1’
corresponding to the spikes in the 8-bit vector. It can be expressed in the pri in and
inside spikes signal. After transmission is finished, the cal finished signal and done en
signal are stimulated to stop the cal and go to the next FIRE state, shown in the neuron
stimulation waveform. Until the next fifo out en True signal comes, the FIFO would
not send a new 8-bit vector to the priority encoder.

In Figure 5.8 shows the second AER protocol behaviors. The default AER address
output is 24. When a new spikes in arrives at the second AER layer, the load signal is
activated, and the ram starts to load the spikes into the ram. And then wait for the
fifo out en, the air starts to send the addresses ’21’ ’16’ ’11’ ... ’5’ like the first layer
are. Differently, the ram also loads the spikes in when the load signal is ’1’. The ram
in the waveform shows appropriately.
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Figure 5.7: First layer AER simulation.

Figure 5.8: Second layer AER simulation.

5.3 Neuron Core

Directly transmitting the AER address information to the IF neuron brings to a mess
of the design. The neuron core consists of several IF neurons, some control logic part
and weight ROM can help to make the design more tight and neat. With the help of the
neuron core, the memory of the weight data can be distributed in the whole architecture.
The neuron core can work in parallel, reducing the computation and storage complexity
of different layers of neural networks. Thus, using proper communication protocols like
AER and router can enhance the throughput in the chip. A well-designed mapping
strategy is also essential and can fully exploit the capability of the neural network[10].

Therefore, in this chapter, the details of the neuron design are described. The AER
address using block can be used to detect whether the new address is not the same as
before and allow the IF neuron to do the calculation process. After the IF neuron has
finished the calculation process, the core can also stop the IF neuron from firing and
send the spikes to the next layer. That is called FIRED control block.

5.3.1 Design and architecture

The main design idea comes from [33] and adding some modifications. The Neuron Core
block is like Figure 5.9. The global clk and rst signal can drive the Neuron Core to
work. The done en comes from the AER protocol block, which can determine whether
the IF neuron should fire spikes. The input spike addr can read the aer address data
from the aer address communication bus. When the whole layer finishes the calculation,
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the control logic sends the Next step signal to make the Neuron Core fire spikes to the
next layer. The Output spikes bus is used to send the spikes to the next layer. The
Done signal tells the control block, the firing process is finished, and the control state
is switched to the IDLE state.

Figure 5.9: Digital block of Neuron Core.

Going deep into the schematic of the Neuron Core like Figure 5.10, the internal
signal control logic can be explained more clearly. The default data of pri addr is
”1000” which is out of the input address range. Once the Neuron Core reads a new
address, the pri addr will compare with the new address and generate a Next signal to
drive Neuron Array to calculate. Besides, the pri addr is updated to the new address
in this clock cycle. When a new address is read in the next clock cycle, the pri addr
has already been updated to the old one and can determine whether the new address is
different from the old one. Meanwhile, the ROM weight array sends the corresponding
weight data to the Neuron Array.

In the Neuron array, the working mechanism has been described in the IF neuron
section. The combinational logic creates the Fired signal. Thus it can change as the
same as Fire signal and give feedback to the Fire signal to stop the Fire signal. However,
the out Fired signal can last until the Next step signal comes. When done en and Fired
are activated, the Done signal can tell the control logic at the end of the Neuron Core
and send the Next step signal. Once the Fired Control receives the Next step signal
from the control block, the Fired Control sends the 24 bits to vector Output spikes to
the next layer.

Figure 5.10: Digital block of Neuron Core Schematic.
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5.3.2 Simulation

In Figure 5.11, the simulation waveform is also created by the Modelsim in order to
show the functionality of neuron core. In the timeline simulation, there are all the
signals mentioned above for a better explanation.

The weight ROM array stores all the weight data. There are 24 IF neurons in
this neuron core as the new input spike addr is the key to starting the neuron core’s
workflow. Because of this, When a new address ’6’ is read by the bus, the Neuron Core
starts to work. The next signal is activated until the calculation process is finished.
Then, Fire, Fired, and out Fired signal gets the 24 vector spikes information, waiting for
the Next step to send the spikes to the Output spike. Meanwhile, the Output spike only
lasts for one clock cycle. The waveform exhibited the same workflow as the schematic’s
explaination.

Figure 5.11: Neuron Core simulation.

5.4 SNN Emulation

As introduced in the introduction section, three main modules have been proposed
to build a spiking neural network inference. The IF neuron module, the aer address
protocol, and the Neuron core are the essential parts of this system. Besides, the
control logic parts are also significant to connect the different parts to make them work
properly.

In this section, different from previous sections to describe one of the major parts
in the spiking neural network, this section intends to introduce the whole system how
to build by the proposed digital modules in the above sections. In other words, how to
connect those modules in order to get a neural network to perform the substitute task.
Moreover, if the resource is available, thousands of neuron layers can be implemented
in the spiking neural network following the construction standard.

5.4.1 Design and Architecture

First of all, a neural network consists of some neuron layers, consisting of several neurons
core. The input 128 vector data works as 128 continuous spikes are received into
the hidden layers. And the hidden layers perform the corresponding functionality to
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transmit the spikes inside the neural network. Finally, the output obtains the substitute
results and passes to the outside.

Figure 5.12: Digital block of SNN Schematic.

As shown in Figure 5.12, the aer 1 is responsible for building the communication
bridge between different layers. The aer modules can store the input spikes and trans-
late the position of the spikes to the address information. Then, transmitting the
address information to the Neuron Core to obtain the appropriate weight data. Addi-
tionally, the done en signal generated from aer module also can stop the neuron.

In this thesis, the two-layer consists of the two different control logic, the most
important module to drive the whole system to work. The first layer consists of three
major parts: aer 1, one neuron core consisting of 24 IF neurons, and a control 1 module.
The first layer can send 24 vector stimuli to the next layer every time due to 24 IF
neurons. Because the number of spikes in every input 8 bits vector is different, the 24
vector transmission time interval would be variable. It is the same in the second layer
due to the different spikes in the second input 24 vector. The second layer consists of five
different parts. The aer 2 can read address and write input 24 vectors into FIFO, which
can help speed up the process. Because the output has 256 different results, the second
layer consists of 256 neurons, which are divided into four neuron cores consisting of 64
IF neurons. When one classification task is completed, only one-second layer neuron
fires one spike to the encoder. The encoder then translates this spike to the 8-bit vector
as the substitute process acts. The following FIFO then absorbs this 8-bit vector into
FIFO. When the FIFO gets 16 8-bit vectors, the second layer broadcasts the 128 bit to
the outside, indicating one substitute process is finished.

Additionally, the control logic is built by the Moore finite state machine(FSM) whose
output values are determined by the current state. In Figure 5.13 and Figure 5.14, two
FSM workflows establish the functionality of the first layer and second layers’ func-
tionality. The first layer control state has four states: IDLE, LOAD, CAL, and FIRE.
When the system starts to work, a start signal drives the IDLE to the LOAD state.
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After the first FIFO stores all the 128-bit vectors, a full signal works as load finished
signal stimulates the LOAD state to the CAL state. In the CAL state, the control
logic sends the fifo out en signal to read the 8-bit vector from the FIFO and do the
calculation process. After the calculation processes are finished, the FIRE states fire
the spikes to the next layer. If the FIFO is not empty and the layer is already fired, the
control logic returns to the CAL state to calculate the next new 8-bit vector. When
the FIFO is empty, the control logic receives the substitute finished signal and goes to
the IDLE state to wait for the next start signal to restart the whole process.

Figure 5.13: First Layer Control State.

The second layer control state is almost the same as the first layer control state.
Because of the different mechanisms of the second FIFO, the second Moore FSM can
work appropriately without the load state. The load first finished signal can work
as the start signal in the first control logic to simulate the whole system. And the
substitute finished signal is not the empty signal like the first control logic, while it is
the full signal in the output FIFO.

Figure 5.14: Second Layer Control State.

Those two control logic make the whole system work successfully and make the work
state easily controlled. With the help of the control, all the spikes can only fire in one
clock cycle.
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5.4.2 Simulation

In this section, the simulation result comes from the Modelsim. As shown in Figure 5.15,
after several clocks when the 128 bits was loaded in the module, the first layer finished
the process and transmitted the 24-vector spikes to the second layer. In the meanwhile,
the second layer started to do its calculation. However the second layer did not finishes
its first process when the first layer already sent its second spikes. The fifo between the
first layer and the second layer can store the second 24 vector spikes waiting for the
second layer to do second process. In Figure 5.16 yellow line position, the second layer
finished its process and sent the spike to the outside encoder.

Figure 5.15: First Layer Spike Simulation.

Figure 5.16: Second Layer Spike Simulation.

Figure 5.17 shows the final result after ten rounds in AES algorithm.

Figure 5.17: Substitute Result.
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Experiment 6
This chapter describes the experimental platform, the power traces collection method,
and the side-channel attack scripts, including DPA and CPA. Finally, a data analysis
conclusion and demonstration are described.

6.1 Platform

In order to perform the power side-channel attack on the target design, it is necessary to
use a method to collect the power traces of the design. However, it is time-consuming to
wait for the actual product. And in the post-silicon stage, the design is hard to change.
Thus, the designer needs to check whether the design is resistant against the SCA on
the design stage. Some EDA tools can help analyze the design in the pre-silicon stage
like [23]. It usually uses the RTL code to design the hardware first and then synthesize
the RTL code to the netlist. Then the place and route process would put the synthesis
netlist on the target silicon technology and connection resources. After that, the power
analysis EDA tool can obtain the power traces for data analysis. Alternatively, using
the Spice model to simulate the circuit characteristics [19]. Figure 6.1 shows the work
flow of using Spice model to perform DPA.

Figure 6.1: The DPA work flow of Spice model [19].

Except for the simulation process above, the FPGA can also provide the power-based
side-channel attack in reality. The flexibility of FPGA has an excellent advantage for
the designer to implement the digital design. Furthermore, the FPGA is a real-time
application that it can simulate the actual power in reality. However, only using the
FPGA is insufficient. Power measurement equipment needs to be used to collect the
power trace. The chipwhisperer & CW305 board [15] is power analysis equipment
on FPGA implementation of AES. The chipwhisperer-lite tool shown in Figure 6.2
integrates high-speed power measurement, programmer, and fault-injection. And the
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designed algorithms are implemented on the CW305 FPGA board like Figure 6.3. This
FPGA also has ARM Cortex-M1 Cortex-M3 to run.

Figure 6.2: Chipwhisperer-Lite tool.

Figure 6.3: CW305 FPGA Board.

Like the Spice model-based SCA, Figure 6.4 shows the workflow of the FPGA-based
SCA experiment. Firstly, building the RTL model and then the model needs to be run
on the FPGA. Use the whisperer-lite board to collect the corresponding power traces
and perform power analysis. If the model is resistant then it is a security hardware. If
not, this model need to be improved.

Figure 6.4: Experiment Flowchart.
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6.2 SNN Sbox Power Analysis

After collecting the power traces of the SNN sbox based AES in the FPGA, the power-
based side-channel attack needs to be performed on those power traces. As mentioned
in chapter 2, several different power analysis methods can reveal the secret key. In this
thesis, both the Non-profiled Attacks and the Profiled Attacks will be performed to
test the ability of SNN Sbox. The four mainstream attack methods will be adopted.
They are 1-bit DPA, CPA, Template Attack, and DLSCA. The power traces points are
up to 8000. From Figure 6.5, there are ten power consumption blocks. They indicates
the ten rounds in the AES. It indicates the AES runs correctly. And comparing the
result shows that the AES works well after replacing the sbox with SNN based sbox.
The total power traces is up to 10000.

Figure 6.5: AES Power Traces.

6.2.1 Classical 1-bit DPA

First of all, the most straightforward attack method DPA, among those four ways,
needs to be performed first. The data analysis script is based on [58]. However, its
classification criteria is based on the hamming weight of the hypothesis sbox result. So,
I changed it to the classical 1-bit DPA criteria. It divides the power traces into two
groups based on 1 bit in the hypothesis sbox result. Because the correct key result will
have a peak, and the uncorrelated key result has a almost flat line. So it is easy to
determine the correct result by comparing the maximum value among 256 graphs. The
hardware unprotected sbox using GF(28) calculation and affine transformation is set as
the baseline to compare with the SNN sbox implementation. Unlike directly comparing
the result of the guessing key with the correct key, partial guessing entropy is more
helpful in analyzing the result. The partial guessing entropy, also called rank analysis,
is a metric to rank the correct key. It can indicate how robust the implementation is.
Figure 6.6 is the first byte rank analysis baseline result and snn sbox rank analysis.

The original sbox’s rank becomes one at 2000 power traces. In other words, the
correct key ranks first among the guess keys, and the original sbox is attacked success-
fully. However, the SNN sbox even uses 10000 power traces can not reveal the correct
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Figure 6.6: DPA Rank Analysis(original vs SNN).

key and the correct key is ranking outside 100. It demonstrates that the SNN sbox can
protect implementation from DPA.

6.2.2 CPA

Furthermore, the CPA is slightly better than the DPA. Because CPA needs fewer
power traces than DPA [3], thanks to the scripts in [53], the CPA analysis can be easily
implemented. The CPA uses Pearson’s Correlation to determine which subkey is the
correct result. However, the SNN sbox can still resist the CPA. The Hamming distance
model is used in CPA to model the power consumption. The unprotected original sbox
CPA rank analysis and protected SNN Sbox CPA rank analysis show in Figure 6.7 and
Figure 6.8.

Figure 6.7: Unprotected Original Sbox CPA Rank Analysis.

From Figure 6.7 and Figure 6.8, the unprotected sbox’s rank will decrease with
the increase of the power traces. Moreover, some bytes’ ranks decrease to one quickly.
However, the ranks in the protected SNN sbox fluctuate randomly. Most of the ranks
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Figure 6.8: Protected SNN Sbox CPA Rank Analysis.

are out of range 50. And, even the number of power traces becomes larger, the rank
becomes bigger. It demonstrates that the SNN sbox can avoid the implementation from
CPA.

6.2.3 Template Attack

One of the profiled attacks, template attack, is more potent than the non-profiled
attack. Before implementing the attack, the template of the target needs to be created.
Moreover, the template is created by random key power traces. First of all, the 10000
power traces need to be sorted according to the hamming weight. And selecting the
points of interest can reduce the data analysis load. Figure 6.9 shows the points of
interest. However, it is different from the usual. There are many peaks in Figure 6.9.
It may indicate that the template attack did not work. After selecting enough points
of interest, the multivariate distributions at each point for each Hamming weight can
be built. Then it is time to perform the attack. The final result is determined by the

Figure 6.9: Template Attack Points of Interest.

maximum data in the result array. The resulting array is updated when the template
evaluates new attack power traces. However, even 10000 power traces were calculated,
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the final result is different from the correct result. Then rank analysis in Figure 6.10
and Figure 6.11 show the result more reasonably. It is the same as the CPA and
DPA rank analysis. The template attack rank of unprotected sbox decreases with the
number of power traces increases. However, the SNN sbox protected implementation
ranks fluctuate, and most of them are out of rank 100. In other words, the template
attack can not attack it successfully.

Figure 6.10: Unprotected Original Sbox Template Attack Rank Analysis.

Figure 6.11: Protected SNN Sbox Template Attack Rank Analysis.

6.2.4 DLSCA

As in the template attack, the points of interest Figure 6.9 is too challenging to de-
termine which points are good to select. So deep learning-based side-channel attacks
can help to solve this problem. The DLSCA does not need pre-processing to select

58



points of interest. And it already demonstrates that the baseline can be attacked by
the template attack. So it does not needs to perform it again with DLSCA. The SNN
sbox needs to be tested by DLSCA. Figure 6.12 shows the rank analysis. It can be
concluded that the SNN Sbox also resist the DLSCA and the rank is almost out of 100.

Figure 6.12: SNN Sbox DLSCA Rank Analysis.

6.3 Performance Analysis and Comparison

In the work of S-Net [54], they used standard ANN in the software to protect AES from
attacking. Instead of comparing the software ANN and hardware SNN, the comparison
of hardware S-Net and SNN Sbox is needed. The comparison is based on AES-128.
Both of them can resist the above four implementations.The original unprotected AES
requires 10 clock cycles for one encryption. The hardware S-Net requires 913 clock
cycles for one AES-128 encryption. However, the SNN Sbox needs 2750 clock cycles
for one AES-128 encryption. The SNN Sbox is three times slower than the S-Net.
The AES-128 has ten rounds for one encryption. So each round in the S-Net needs
approximately 91.3 clock cycles to do substitution for 8 bits input. And the SNN
sbox requires approximately 275 clock cycles for sixteen 8 bits inputs. If the S-Net
works in pipeline for 16 inputs, it requires 91.3 × 16 ÷ 2 = 730.4 clock cycles. So
the SNN is quicker than S-Net when both of them are used in the pipeline mode.
As for the resources aspect, the corresponding resources of those two different AES
implementation are shown in Table 6.1 and Table 6.2. The S-Net hardware uses more
memory and DSP resources than the SNN hardware because the S-Net uses 16 blocks
to substitute in parallel and sacrifices the area. Furthermore, the SNN structure is
larger than the S-Net in theory. So the SNN uses the pipeline principle to reduce the
resources used and sacrifices the speed. As for the power consumption aspect, the total
On-Chip Power of S-Net is 0.570W, and SNN is 0.488W. The SNN saves power.

Furthermore, the SNN can not be stimulated by the all-zero input. So the all zero
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Resource Estimation

LUT 24146

LUTRAM 16

FF 7749

IO 44

BUFG 2

Table 6.1: SNN based Sbox AES Hardware Resources.

Resource Estimation

LUT 15583

FF 7475

BRAM 128

DSP 128

IO 42

BUFG 4

Table 6.2: S-Net based Sbox AES Hardware Resources.

input case is replaced by a LUT in the SNN sbox. Thus the implementation is not
complete compared with S-Net. However, the input has 256 different cases, and the
all-zero case is only a particular case. Figure 6.13 uses the Hamming Distance to
describe the distribution of nine input classes. The number of all zero cases is so small
that it can be ignored in the whole process. Due to the pipeline SNN, the leakage power
can be hidden in the processes.

Figure 6.13: The Distribution of Nine Input Classes.
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Conclusion and Future Work 7
This chapter restates the purpose of this thesis and gives a conclusion of this work.
Furthermore, some future work can be implemented on this work.

7.1 Conclusion

The side-channel attack is a powerful attack method to reveal secret keys in AES.
There are already two countermeasures Hide and Mask. However, those two attack
methods can not disconnect the relationship between the power traces and the final
result. Because of the non-linear characteristic of neural networks, the neural network
can disconnect the relationship. In this thesis, a spiking neural network is selected
rather than a normal neural network. The simplest neural model I&F model was
chosen for the hardware implementation. Two different SNN simulators were applied
to obtain better hardware-friendly parameters. However, the learning methods in the
two simulators are different. In order to get low resource utilization, some optimizations
were implemented in the SNN model. The bias was removed, and the weight’s bits were
quantized to integer rather than float. And the spiking neural network implemented
in the hardware is only one spike neural network. In other words, the neurons in the
model only fire once during each classification, which can save much power compared
to the several spikes models.

In order to test the SNN sbox AES, four experiments were implemented. They
all indicate that the designed SNN sbox aes can resist power-based SCA. The reason
that the SNN can resist the SCA has two significant reasons. The first one is that the
calculation process can break the relationship between power traces and the leakage
model. The second one is that the 128 bits sbox substitute process can hide the
information inside the power traces. The sbox is usually 8 bits and replaces 8 bits every
time. Because the SNN has two layers, while the second layer does the calculation to
indicate the 8 bits result, the first layer can calculate the next 8 bits data. And the
next 8 bits of data are variable, leading to variable power traces. Owing to those two
reasons, the SNN sbox AES is secure against these attacks.

Although the SNN in this thesis can not achieve multi-target detection like S-Net,
the hardware structure of the SNN sbox is much simpler than the S-Net. It does not
need the multiplier inside the FPGA so that the usage of DSP resources is zero. And
the power consumption of SNN is smaller than the S-Net, which demonstrates the
hardware friendly of SNN. And the two layers work simultaneously that can enhance
the complexity of power consumption.
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7.2 Future Work

Although this SNN sbox can resist these attack, it still needs to be improved.
First of all, this SNN is only single target SNN. The SNN can be converted to multi-
targets SNN. Then the output layer only needs 8 outputs rather than 256 outputs
neurons. In this way, the amount of memory to store weight can be reduced and
also the number of connection can be reduced. After that, this multi-targets SNN can
compare with ANN based sbox hardware implementation to demonstrate whether SNN
based sbox implementation is better.

Secondly, because the all zero input can not stimulate the SNN to transmit spikes,
in this thesis the SNN do not consider the all zero condition. However, the all zero
inputs may leak power information to the attackers. So the designer can add some
extra bits to represent the all zero situation or some other methods.

Furthermore, the SNN replacement method can be used in some other substitution
algorithms like DES. Whether snn based sbox works well in the other algorithms needs
to be investigated.

The communication AER protocol inside the SNN can only transmit one address
every clock cycle. This is very time-consuming. So asynchronous protocol can be
considered to use to increase the communication speed.
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