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With four parameters I can fit an elephant, and with five I can make him wiggle his trunk.

John von Neumann
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ABSTRACT

Experimental data were obtained from riding a steer-by-wire bicycle on the open road while perturbing bal-
ance with impulsive forces at the seat post (lateral pertubations) as well as perturbing balance with impulsive
torques at the steering assembly (steering pertubations). The experiments were conducted at 2.6–5.6 m/s
covering both the stable and the unstable forward speed range. For the lateral pertubation experiments two
conditions were explored; normal steering and reduced torque feedback steering. Three metrics are used
to assess the effect of torque feedback on rider steer control and balance. Results failed to indicate any sta-
tistically significant difference between experimental conditions. Bicycle and rider mechanics have been
modeled using the Whipple bicycle model extended with the rider inertia. A rider control model is developed
that incorporates all of human’s sensory pathways and includes a strategy to compensate for sensory dead
time. The identified rider control parameters, stabilize the system and mimic realistic rider control behavior.
From the results the importance of the torque feedback pathway is strongly indicated. Finally for the steering
pertubations the rider control model is modified to account for the cocontraction mechanism. The model
manages to approximate the rider measured response and simultaneously captures the significance of the
intrinsic response. A high level of intersubject variability is exhibited. The hypothesis that this variability is
in fact due to the modulation of admittance in the shoulder joint is strongly suggested.

C. Christoforidis
Delft, November 2019
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1
INTRODUCTION

Bicycle riding is a fundamental part of everyday transportation in many countries around the world. Ever
since the development of the safety bicycle(two equal sized wheels, pneumatic tires, chain drive, rear wheel
propulsion and a bent front fork), almost 130 years ago, the bicycle remains one of the most prominent means
of transport [17]. With the growing concerns of sedentary lifestyles many choose the bicycle as their primary
commute vehicle with the hopes of maintaining some levels of fitness. Additionally the bicycle is the preferred
means of physical exercise for the elderly especially in the Netherlands and Denmark. Despite the fact that
riding a bicycle is an acquired skill that we learn from our early childhood and we use throughout our life, the
fundamental laws of human bicycle control are not yet understood.

According to the European Road Safety Observatory [2] in 2016 about 2.000 cyclists were killed in road acci-
dents throughout the EU. Despite the overall reduction in the road toll (down 40% from 2007), the proportion
of cycling related fatalities increased, from 6% in 2007 to 8% in 2016 [2]. In a recent study examining the en-
tries of patients to the emergency department due to traffic related accidents in the Netherlands (see Fig. C.3),
it was found that cycling accidents were the most prevalent. With over 60,000 reported cases bicycle accidents
outnumber automobile accidents more than 4 to 1. It therefore becomes clear that a lot could be done to im-
prove cycling safety. Further look at the figure will reveal that most of those accidents did not involve a second
party. In these cases the rider just fell off his bike. Although there are several potential reasons that riders lose
control of the bicycle, formulating a general model of how humans control single track vehicles could prove
invaluable in understanding the causes behind the above numbers. However, none of the researched rider
models in literature managed to completely validate their findings with real cycling data.

Following the steps of early cybernetics research in which airplane pilot modeling was pioneered by McRuer[22–
24], a plethora of authors attempted adapting McRuers crossover model in order to model the rider of a seem-
ingly much more complex task; motorcycle and bicycle riding. However, some argued that such an approach
will not work since cycling is not just a compensatory task. Moreover little concern was made to the fact that
humans try to optimize for performance while simultaneously exerting the lowest amount of control effort.
These spawned a new wave of research focusing in optimal control. This approach is based in early motor
control research in which the human brain is believed to work as a constrained optimal controller.

A further look in motor control research reveals the importance of the internal model in control, state esti-
mation and dead time compensation [9, 10, 12, 43]. The internal model theory argues that the motor system
is controlled by the constant interactions between the process and the controller. In this case the process is
the body, however in tasks like cycling the bicycle can be considered as an extension of the body. The internal
model can be used either as a tool for control in the form of the inverse model [8, 11] or as a forward model in
state estimation in combination with Kalman filters [43]. Additionally, forward models can be used in delay
compensation algorithms [26, 39].
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2 1. INTRODUCTION

Figure 1.1: The number of road users that visit the emergency department at a hospital after a traffic accident in the Netherlands in
2016. Red indicates single vehicle accidents, yellow indicates a collision with an obstacle, blue indicates multi-vehicle accident and grey
indicates other type of accidents[19].

In this work an attempt to iterate over existing rider control models is made with the goal of answering two
important questions.

• How significant is the effect of torque feedback for the balance task of bicycling?

• What is the strategy that humans use to counter the effect of sensory dead time in the balance task of
bicycling?

In order to answer the above questions system identification techniques are employed using the experimen-
tal dataset acquired within the scope of this thesis. In chapter 2 an attempt is made to investigate the effect
of haptic feedback in the task of balancing a bicycle under lateral perturbations. Non-parametric identifi-
cation was conducted on the response of 20 riders in two different experimental conditions. In the first one
the experimental bicycle operated as a normal bike while in the second the coupling between roll and steer
was modified in order to cancel the torque feedback that would naturally transfer from the front wheel con-
tact point to the handlebars. In chapter 3 the core content of this thesis is presented. A rider control model
is formulated and analysis is conducted by applying gray box identification techniques in order to investi-
gate again the importance of torque feedback but also to test the effect of time delays in sensory feedback
pathways and how these can be compensated through the use of internal model theory. In chapter 4 the
same system identification procedure is repeated for a riding dataset under steering perturbations. The rider
model is modified to account for the intrinsic properties induced by cocontraction. In appendices A to C
further details are presented on the methodology used to acquire proper measurements from the sensors of
the experimental platform.



2
THE EFFECT OF HAPTIC FEEDBACK IN THE

BALANCE TASK OF BICYCLING

1Corresponding article: G. Dialynas,C. Christoforidis, R. Happee, A. L. Schwab, The effect of haptic feedback
in the balance task of bicycling, In Proceedings of the 4th Triannual International Bicycle and Motorcycle
Dynamics Conference (2019).

2.1. ABSTRACT
The objective of this research is to study the effect of haptic steering feedback on the balancing task of a
bicycle during lateral perturbation tests, in an effort to improve two-wheeler safety. The steer-by-wire bicycle
designed and built at TU Delft bicycle laboratory is used as an experimental platform to analyze the rider
response with and without steering feedback. The response of the rider’s control actions is represented in the
time domain by means of impulse response functions (IRFs). More specifically, three metrics are defined in
order to assess both steering and balancing performance. Results failed to indicate any statistically significant
difference between experimental conditions. Although, it should be mentioned that parametric rider control
identification of the sensory systems might be prerequisite to indicate any possible changes.

2.2. INTRODUCTION
Since the birth of the safety bicycle in the 1890s, dynamics and self-stability have been subjects of numerous
discussions and bodies of research. These issues can nowadays be considered to be partly resolved [18] for
a wide range of applications. Still, the question remains on how the rider stabilizes the lateral motions of
the bicycle when it’s driven at low (unstable) forward speeds or how the rider follows a desired path; e.g. the
required control inputs and the rider learning process. These probably comprise of haptic, vestibular and
visual cues; here we will focus on the haptic cues and the task of stabilization.

Haptic systems in vehicle control are usually connected with two types of realities. One current application
of kinesthetic devices is focused on enabling the driver to feel feedback from the vehicle state when steer-
by-wire systems come into play. Steer-by-wire vehicles often need a resistance torque to prevent excessive
rotation of the steering wheel. This feedback torque is often defined by a simple relation, e.g. a function of
wheel angle, wheel torque, or vehicle state, and aims to assist the driver in achieving the desired trajectory
in real performance [14]. Similarly, haptics can also be used as a tool to improve first stages of task learn-
ing through fading guidance towards a goal [3]. On the other hand, computer simulations can be helpful
in evaluating different strategies for steering control [20], as a previous stage to its implementation, and in
development of control systems aimed to improve riding safety [21].

In this work we use the experimental steer-by-wire bicycle [6] which has been developed in the TU Delft
bicycle laboratory to study the effect of haptic feedback in the balancing task of bicycling. This is achieved
by analyzing the rider response with and without steering feedback during lateral pertubation tests. The
response of the rider’s control actions is represented in time domain by means of impulse response functions

3



4 2. THE EFFECT OF HAPTIC FEEDBACK IN THE BALANCE TASK OF BICYCLING

(IRFs). More specific, the applied steer angle and the estimated roll angle is used as a measure of control
effort and performance respectively.

The paper is organized as follows: After this brief introduction the experimental set-up and experimental
procedure are presented. Next, the methods followed by the results are described. The article ends with
the discussion and conclusion section providing further insights in an attempt to explain the findings of this
research.

2.3. METHODS

2.3.1. DESCRIPTION OF EXPERIMENTAL SET-UP
At TU Delft an instrumented steer-by-wire bicycle which is fully equipped with a number of sensors to mea-
sure the state and rider input has been designed and build, see figure 2.1. For this study measurements from
the inertial measurement unit (IMU) sensor (MPU-9250) and the steering angle encoder (RMB-20SC) are
used. In addition, a perturbator mechanism is present, which is used to excite the system. These perturba-
tions are applied by laterally pulling a rope with a force transducer in series, which is attached on the seat
post. All sensors output are logged with a sampling frequency (Fs ) equal to 1000 Hz. The measurement bicy-
cle is electrically driven and has a cruise control system, so the rider does not need to exert pedaling power
and thus eliminates the need for lower limb movement. Steering angle (δ) iss directly measured from the
absolute encoder of the upper front assembly, while the roll angle (φ) iss estimated from the IMU data using
the approach described by Sanjurjo et al. [32].

Figure 2.1: Prototype of the steer-by-wire bicycle with steering and handlebar actuators, sensors, digital controller and custom made
battery pack.

2.3.2. DESCRIPTION OF STEER-BY-WIRE CONTROLLER
To minimize the difference between the handlebar angle θ and the fork angle δ, tracking control has been
implemented. In this way, the steer-by-wire system should behave like an ordinary, mechanically steered
bicycle, when the rider applies a steer torque at the handlebar. Two proportional-differential PD-controllers
are implemented in order to provide an action-reaction torque TPD H to the handlebar and TPDF to the fork
assembly. Angular velocity θ̇ and δ̇ are estimated by taking the time derivative of angular position θ and δ

respectively, for a fixed time interval of 1 ms. The double PD-configuration can also be used to manipulate the
steer feedback torque independent of the tracking performance. The double PD-controller is of the following
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form:

TPDF = KPF (θ−δ)+KDF (θ̇− δ̇), (2.1)

TPD H = KPH (θ−δ)+KD H (θ̇− δ̇) (2.2)

with proportional gains KPH , KPF and differential gains KD H , KDF respectively. The torque TPD H is applied
at the upper servomotor, and the torque TPDF at the lower servomotor. By setting TPD H to zero a steering
configuration is created where the rider feels no reaction torque from the steering assembly (feedback "off"),
without majorly affecting tracking error performance. The current controller configuration performs with
high level of accuracy up to 3 Hz, the tracking error is kept below 3 degrees. However, in certain conditions
non-linear effects of the servomotors and tires might create a delay in the control loop effecting the tracking
error and realism of the haptic steering feel.

2.3.3. EXPERIMENTAL PROCEDURE
Twenty healthy subjects volunteered in this study. To assure safety all subjects were requested to wear protec-
tive equipment in the shape of a standards-approved bike helmet, knee and elbow pads. All participants gave
informed consent according to the guidelines of the human research ethics committee of Delft University of
Technology. All subjects were healthy and reported that they did not experience any kind of pain or injury
in the year before the experiments. The mean weight of all subjects was selected to be close to the European
population [41].

Each experiment trial consisted of four different speeds (i.e., 2.6, 3.7, 4.5, 5.6 m/s). Two individual trials were
performed in total for every speed. In the first trial steering feedback was enabled, whereas in the second trial
steering feedback was disabled. Every trial had a duration of approximately 60 seconds. All experiments were
performed across Heertjeslaan cycling path of TU Delft, the subjects were requested to ride the steer-by-wire
bicycle in all aforementioned speeds while being laterally perturbed. An additional bicycle was used from
the experiment coordinator to cycle next to the instrumented steer-by-wire bicycle and perturb the subject,
see figure 2.2. A set-up which allowed both push and pulls was initially tested but the pushes were subject to
inconsistencies. After inspecting the data of the pilot runs, it was observed that unilateral disturbances did
not affect the predictability of the perturbation, as the response of the rider was similar. For this reason the
unilateral approach was chosen. Nevertheless, to avoid any feedforward control behaviour (e.g., seeing the
coordinator preparing to pull the rope) all subjects were asked to keep their focus on the road ahead.

2.3.4. SYSTEM IDENTIFICATION
In order to remove the effects of unwanted disturbances and noise, the measured steering angle and esti-
mated roll angle signals were filtered through a finite impulse response (FIR) model. The impulse response
function is defined as the function h(τ) which when convoluted with external input w(t ) results in the output
y(t ). The output data either represents y(t ) = φ(t ) corresponding to hφ(τ) or y(t ) = δ(t ) corresponding to
hδ(τ). In discrete time the convolution can be approximated by the following equation:

y(t ) =
T−1∑
τ=0

h(τ)w(t −τ)∆τ+ v(t ) (2.3)

where T is the time length of the impulse function, which is equal to 3.08 seconds as the oscillations die out
after that point and v(t ) the remnant which is caused by unwanted disturbances. Equation C.2 is rewritten in
matrix form as follows:

y =W h + v (2.4)

where W is the matrix containing time shifted versions of the the input signal.

W =


w(0) 0 0 . . . 0
w(1) w(0) 0 . . . 0
w(2) w(1) w(0) . . . 0

...
...

...
. . . 0

w(N −1) w(N −2) w(N −3) . . . w(N −T )

 (2.5)
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Figure 2.2: Experimental trial performed across Heertjeslaan cycling path of TU Delft; Experiment coordinator cycling next to steer-by-
wire bicycle while pulling laterally the subject with a rope.

Since equation 2.4 is linear in the parameters (the coefficients of h) there exists a unique solution that can be
found through the least squares method.

ĥ = (
W T W

)−1
W T y (2.6)

Having an estimate of the IRF, the input signal is convoluted with (ĥ) in order to produce an estimate of the
output (ŷ) without the noise. The estimated responses are further smoothed using a eight-order Butterworth
filter with cutoff frequency of 10 Hz.

2.3.5. COMPARISON METRICS
In order to correctly assess if there is a statistically significant difference between the two conditions, three
metrics are defined. The first one is the Power Spectral Centroid (PSC) of measured angle (δ) defined as

(PSCx ,PSCy ) =
(∑N

n=1 f (n)Sδ(n)∑N
n=1 Sδ(n)

,

∑N
n=1 Sδ(n)2∑N
n=1 Sδ(n)

)
(2.7)

where N is the number of samples lower than 5 Hz and Sδ( f ) the power spectral density of the signal. This
metric gives an indication of the frequency which most of the power in the signal is centered around. Higher
value of PSCx will indicate more oscillatory behaviour for the steering response and can be used as a metric
of control effort.

The variance accounted for (VAF) is used to assess the quality of the fit of the FIR model output. The runs
which scored lower than 60% were removed from further analysis as it was deemed that the model did not

sufficiently capture the characteristics of the raw signal. The VAF between ĥo f f
φ

and ĥon
φ is also used as a

metric of similarity for the roll angle response. In that case VAF is defined as :

VAFφ =
1−

var
(
ĥo f f
φ

− ĥon
φ

)
var

(
ĥo f f
φ

)
 ·100% (2.8)

Finally as a third test, the relative delay between the steering angle IRFs of the two conditions is estimated by
finding the lag value of maximum cross-correlation between the signals.
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2.4. RESULTS
An independent 2-sample t-test was conducted to compare if there was significant difference (95 % confi-
dence interval) in steering effort between conditions for all speed levels, see figure 2.3. For the low speed level
( 2.6 m/s) there was no significant difference in PSCx for "feedback on" (M = 0.79, SD = 0.08) and "feedback
off" (M = 0.76, SD = 0.10) conditions; t(38)=1.00, p=0.3222. For speed 3.7 m/s there was again no significant
difference in the metric for "feedback on" (M = 0.92, SD = 0.11) and "feedback off" (M = 0.92, SD = 0.11);
t(38)= – 1.03, p=0.3075. For 4.5 m/s there was also no significant difference in the scores for "feedback on" (M
= 0.98, SD = 0.14) and "feedback off" (M = 0.98, SD = 0.14); t(38)= – 1.04, p=0.3062. And finally, for 5.6 m/s no
significant difference was found in the PSCx for "feedback on" (M = 1.1, SD = 0.16) and "feedback off" (M =
1.1, SD = 0.16) conditions; t(38)= – 1.6, p=0.118.
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Figure 2.3: The x and y coordinate of the PSC used to determine the frequency where most of the power is concentrated.

The impulse response function of the mean rider for steer angle (δ) and roll angle (φ) is shown in figure
2.4. The variance accounted for between roll angle impulse responses (see equation 2.8) is averaged over all
participants and displayed for all speed levels in figure 2.5 (a). Similar roll angle response between "feedback
on" and off indicated by higher VAFφ values suggests matching task performance.

In addition to the variance roll test an one-sample t-test was conducted to examine if there is any delay in
the steering response between feedback on and off, see figure 2.5 (b). For 2.6 m/s there was no significant
deviation in the delay (M = – 3, SD = 25.89) from zero mean; t(19)= – 0.52, p=0.6103. However, for 3.7 m/s the
delay (M = – 20.65, SD = 25.93) was statistically significant; t(19)= – 3.56, p=0.0021. Also for 4.5 m/s the mean
of the delay (M = – 23.5, SD = 20.88) was also significantly different than zero; t(19)= – 5.03, p=0.0001. Lastly,
for 5.6 m/s there was again significant difference in the delay (M = – 19.15, SD = 18.19) from zero; t(19)= – 4.71,
p=0.0002.

2.5. DISCUSSION AND CONCLUSIONS
From the aforementioned results it is suggested that the effects of haptic feedback are minimal to non-
existent for the roll stabilization task. Neither performance (see figure 2.5 (a)) or steering effort was affected
by the removal of haptic steering feedback. Balance performance among conditions was comparatively con-
sistent (see figure 2.5 (a)). However, in the unstable speed region the variance and the number of outliers were
higher. For steering effort the null hypothesis that the PSCx metric came from independent random samples
with equal means and equal variances failed to be rejected for all speed levels. This does not undoubtedly
prove that the samples came from the same population, howbeit it gives a strong indication towards that fact.
On the other hand, for the "feedback on" the steering response was delayed (≈ 18 ms see figure 2.5 (b)) in
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Figure 2.4: The impulse response function of the mean rider for steer angle (δ) and roll angle (φ). The shaded area represents the values
within one standard deviation of the mean.
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Figure 2.5: a) Box plot of variance accounted for between roll angle impulse response functions for all speed levels. b) Box plot of
the relative delay in the estimated steering angle response between the two experimental conditions. Negative value means that the
"feedback on" signal is delayed compared to the "feedback off".

comparison to the "feedback off". This might be due to the fact that the handlebars are more inert due to the
additional steering feedback.

The lateral pull disturbances can be translated into a lean torque in the direction of forward speed and a steer
torque in the direction of the steering axis. This means that any dynamic effects that influences these torques
must be examined. The performance of the steer-by-wire controller was examined by numerical simulation
and subjective measurements. All subjects reported that they felt like riding a mechanically steered bicycle,
no adaptation period was required before the experiments. During the experiments very little motion of the
upper body was evident and steer control was expected to be the main mechanism for bicycle balance [27].
Thus, we assume that the intristic and reflexives responses of the upperbody do not affect the validity of these
results.

Physiologically there are two ways in which proprioception works in order to give the rider information re-
garding the state of the front assembly. First are the muscle spindles which by detecting changes in velocity
and position of the shoulder joint give the rider an estimation of the steering angle and steering rate of the
handlebars. Second are the Golgi tendon organs which work as force feedback sensors. The sensory infor-
mation provided by the latter sensor is what this experiment tried to invalidate. In the feedback on case,
information from the ground reaction torque of the front tire is transferred through the handlebars to the
sensory receptors of the rider arms and is used for further state estimation. In the feedback off case the steer-
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ing feedback information is lost.

Despite the change in the dynamics of the upper handlebar the response of the rider is almost identical.
Thereupon, we assume that the internal controller of the rider is either adaptive or is driven by some combi-
nation of torque or position control. In the case of torque control this would mean complete re-adaptation of
feedback gains which would have resulted in some kind of adaptation period for the participants when they
swapped steering configurations. Although, no adaptation period was needed for any of the participants.
Alternatively, in the case of position control steer angle increments are feed-through an inverse model of the
steering assembly to produce the necessary forcing element. In this case, switching between configurations,
would mean re-adaptation of the internal model of the handlebar assembly. This is much more plausible as
it mainly concerns tuning of the internal perception of handlebar inertia which can happen instantaneously.
To reveal if the later assumption is true an additional study that models the rider as position and torque con-
troller will be conducted. The identified parameters of the former and later controller might lead into further
insights regarding the conclusions of this study.
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All data and supplemental material related to this article is available online at https://doi.org/10.5281/
zenodo.3365351 (Dialynas et al., 2019).

https://doi.org/10.5281/zenodo.3365351
https://doi.org/10.5281/zenodo.3365351


3
RIDER CONTROL IDENTIFICATION IN

BICYCLING UNDER LATERAL

PERTURBATIONS USING A GRAY BOX

APPROACH

3.1. INTRODUCTION
Balancing a bicycle in motion is an acquired skill which is poorly understood. From the first appearance
of the modern bicycle in the late 1880s until now, dynamic models of uncontrolled bicycles have provided
fundamental insight into bicycle stability in relation to speed and geometry[18, 25]. Further research into
human control is needed to design safer bicycles and explore the potential of new safety systems. In depth-
analysis of the rider sensory dynamics including delays and thresholds are necessary to probe the dynamics
of the rider-bicycle balance control mechanism.

Research in the field of cybernetics started in the 1950s to advance aircraft technology and understand pilot
control. McRuer and Krendel [22] were one of the first who tried to model the human operator as a servo
system element with time delay. The so called "McRuer cross over model" was later extended to the "McRuer
precision model" which accounted for low frequency neuromuscular lags [23]. Results showed that the hu-
man tries to adapt its control strategy in order to achieve a first order integrator open loop transfer function
near the systems cross-over frequency. Among the first researchers who focused on the manual control of
bicycles were Van Lunteren et al. [40]. They used a stationary bicycle simulator and system identification
techniques to identify the rider control at a constant speed of 4.2 m/s . They described the rider as a propor-
tional– integral–derivative (PID) position controller with delay. Although, their results are questionable since
the bicycle simulator had no visual display and the obtained controller has not been experimentally vali-
dated. Roland et al. [29, 30] developed a bicycle stability and path following torque controller. The controller
consisted of an inner and outer loop responsible for roll stabilization and lateral tracking, respectively. The
stabilization controller was described as a PID with delay, whereas the tracking controller as a simple pro-
portional controller. Results showed adequate performance but validation of the simulated responses has
not been examined yet. Weir [42] developed a cross-over model for Sharp’s [36] motorcycle model in order to
identify the transfer functions of the various control input–output relations. He concluded that steer torque
response to lean angle error is the easiest way to balance a motorcycle in motion. Eaton [7] later conducted
experiments to validate both the theoretical motorcycle model of Sharp [36] and rider model of Weir [42] .
Despite the fact that, he excluded the lean torque and used only the inner roll stabilization loop as a control
input, results showed that low uncertainty was present in the estimated control parameters and low discrep-
ancy in the fitting of the steer torque responses. Hess et al. [15] attempted to introduce a task independent
handling qualities metric for bicycle control. For this reason, he developed a model with five gains, two fixed
second-order filters, and a preview time. Schwab et al. [35] recently modelled the bicycle rider using lateral
force perturbation experiments. A rider control model applying steering torque at the handlebars has been

11
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developed to explore the potential feedback of sensory cues during the bicycle balancing task. The identi-
fied rider control parameters, after model reduction, stabilize the system and mimic realistic rider control
behavior.

The majority of aforementioned modeling approaches represent the rider as a torque controller and incor-
porate system delays. Albeit, the selected delays do not attribute directly to the physical response time of the
visual, vestibular and proprioceptive system. Furthermore, none of these models include any type of internal
model control (IMC) as frequently happens in most of human motor control studies [9, 10, 12, 43]. Conse-
quently, the ability of humans to adapt and altered steering dynamics even when feedback is intermittent or
delayed has never been examined. Aside from that, the effect of haptic steering feedback in the balancing of
bicycling has never been examined parametrically . Therefore, the role of the sensory receptors and in par-
ticular of the proprioception muscle splindes (position feedback) and Golgi tendon organs (force feedback)
during the riding process remains a black box .

The aim of this study is to evaluate the performance of three different control approaches with increased
complexity and also examine the effect of handlebar torque feedback during the steering and balancing task.
The performance of all models are compared with the experimentally derived non-parametric finite impulse
responses (FIR’s) of Dialynas et al. [5]. Two metrics are used to assess the performance of the three controllers
and to analyse the impact of torque feedback on rider control. The covariance coefficient (CV) of the esti-
mated controller parameters is used as a measure of uncertainty, whereas the variance accounted (VAF) as a
measure of fitting between the simulated and actual responses.

3.2. METHODS
In this work system identification techniques are employed to develop a rider control model and investigate
the effectiveness of torque feedback via a gray box analysis. The ultimate goal is to formulate a model that best
simulates bicycle rider balance behavior. This is done by comparing the parametric results of three torque
feedback level conditions. In the first, the torque feedback loop is part of the rider control model. In the
second, it is removed by setting its corresponding gain value to zero. In the third, the effectiveness of torque
feedback is reduced by altering the plant dynamics and creating a steering configuration where the forces that
would naturally transfer from the front wheel contact point to the handlebars are canceled, similar to how the
haptics off case was implemented in the experimental condition [5]. The full methodology is summarized in
the list below:

1. Black box identification : the procedure described in [5] is followed to produce impulse response func-
tions (IRFs), through the use of a FIR model, for steering angle δ, roll angle φ, yaw angle ψ and steer
torque Tδ for four forward speed levels (2.8 , 3.6, 4.7, 5.7 ms−1). This is done in order to extract the
linear relationship between disturbance and measurements effectively filtering intrasubject variability.
In the case of Tδ instead of considering the whole bicycle rider closed loop system as a black box, the
bicycle rider open loop is chosen with input the disturbance w and output the control input Tδ (see
figure 3.1).

2. The produced IRFs hδ(τ), hφ(τ), hψ(τ), hTδ (τ) are filtered using zero-phase low pass filter with a cutoff
frequency of 10 Hz.

3. The complete dataset is split into a training and a validation subdataset. The IRFs are averaged over
each subdataset’s participants in order to produce 2 mean rider responses. The variance accounted for
VAF , between each individual’s response and the mean rider’s, is calculated. The rider with the highest
VAF for all outputs across all speed levels is chosen as the median rider of each dataset. All further
parameter estimation is conducted on the response of the median rider of the training dataset. Analysis
is chosen to be conducted on the median rider since intersubject variability was low as is shown in [5].

4. The IRFs of the median rider are convolved with the measured disturbances of each run to produce the
non-parametric output yδ(t ), yφ(t ), yψ(t ), yTδ (t ).

5. Investigating the role of steering torque:

(a) Zero Delay Model gray box identification: A gray box model is fit to the measured lateral force
and the filtered response of the FIR model for each run. This is repeated for three conditions. In
the first, the control process dynamics approximate a normal bicycle and will be referred to as
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haptic feedback on (haptics on), while the rider has the torque feedback loop connected. In the
second, the control process dynamics approximate again a normal bicycle, but the internal torque
feedback loop of the rider is severed. In the third condition the steering dynamics change to that
of steer-by-wire. This means that the coupling between roll and steer dynamics is modified. The
rider is only receiving feedback due to the inertia of the handlebar and motor drive components.
This condition is referred to haptic feedback off (haptics off).

(b) Variable Delay Model gray box identification: The model is updated with time delays. The model
is fit to the measured lateral force and the filtered response of the FIR model for each run. This is
repeated for the three conditions described above.

(c) Variable Delay Reafferent Optimal Prediction (VDROP) Model gray box identification: The gray
box model is updated with a delay compensation algorithm. The model is fit to the measured
lateral force and the filtered response of the FIR model for each run. This is repeated for the three
conditions described above.

(d) Assessment on the importance of torque feedback is made based on the the normalized covari-
ance of the identified gray box parameters and the change of VAF in the lateral force to steer angle
fit between conditions.

6. Assessment on the delay compensation strategy used is made based on the fitting performance across
gray box models. Additionally the predictor is compared with a more conventional approach found in
motor control literature.

7. The predictive capability of the VDROP model with its estimated parameters is tested by attempting to
approximate the response of the median rider of the validation dataset.

Bicycle

Rider

� �

��

Closed-loop Black Box

Bicycle Rider
� ��

�

Open-loop Black Box

Figure 3.1: The bicycle rider closed loop black box system used in the FIR model for extracting the linear relationship between dis-
turbance w and outputs φ,δ,ψ (left). The bicycle rider open loop black box system used in the FIR model for extracting the linear
relationship between disturbance w and control input Tδ (right).

3.2.1. BICYCLE MODEL
The bicycle model used is the so called Whipple-Carvalho model the dynamics of which have been expressed
in a set of linearized equations by Meijaard et al. [25]. In the original model three assumptions are made. The
first is that the rider is rigidly attached in the saddle with the mass of the arms and legs acting as a point. Sec-
ondly, the contact between tire and ground is modeled as a non slipping rolling point contact meaning that
the wheels can rotate without lateral slip. Lastly it is assumed that the total energy of the system is preserved.
The resulting non-holonomic mechanical model has three velocity degrees of freedom, the forward speed,
the rear frame roll rate φ̇ and the steering rate δ̇. The lateral motion is described by two coupled second order
differential equations given by equation (3.1).

Mq̈ + vC1q̇ + [
g K0 + v2K2

]
q = f (3.1)

where q is a vector containing the roll and steer angles, f is a vector containing the roll and steer torques, g
is the gravitational acceleration and M, vC1, g K0 + v2K2 are the "mass", "damping" and "stiffness" ratios in
matrix form respectively. The entries in the constant coefficient matrices M,C1,K0,K2 are calculated from
a set of 25 bicycle parameters related to inertial and design properties of the steer by wire bicycle (see ta-
ble 3.5).
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Figure 3.2: The Whipple-Carvalho bicycle model consists of four rigid bodies: rear wheel R, rear frame B, front frame H and front wheel
F connected via hinges. The center of mass locations are expressed relative to the x - and z -coordinates shown (with origin at P and
y pointing towards the reader). The other parameters shown are the steer axis tilt λ, wheelbase w and trail c. The model at its most
expanded form is described by 25 parameters.[25]

To determine the stability of the open loop system in a straight ahead motion the characteristic polynomial
derived from

det
(
Mλ2 + vC1λ+ g K0 + v2K2

)= 0 (3.2)

is solved for a forward speed range from 0 to 10 ms−1 whereλ are the eigenvalues of the system (see figure 3.3).
The two interesting eigenmodes defined by the locus plot are the weave and capsize. The weave corresponds
to an oscillatory mode as can be seen by the existence of imaginary parts and represents a motion in which
the bicycle sways about its heading. This oscillatory motion exponentially fades when forward speed is larger
than 4.4 ms−1. The capsize on the other hand has an eigenvector dominated by lean and leads to a gradual roll
drift to infinity when the eigenvalue crosses the zero line around 6.2 ms−1. Since in the experimental setup
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Figure 3.3: Root locus plot of the steer by wire bicycle. Dotted red lines indicate the imaginary part of
the eigenvalues while dotted blue show the real part. The stable region (marked between the

magenta lines) corresponds to speeds 4.4/ v / 6.2 ms−1

the task could not be isolated to purely balance the equations are extended to include heading. Heading rate
ψ̇ is defined as a linear combination of steer angle δ and steer rate δ̇ as expressed by Meijaard et al. [25] in
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equation (3.3).

ψ̇= vδ+ cδ̇

w
cosλ (3.3)

When modeling the haptics off case of the steer-by-wire bicycle the dynamics of the plant need to change
accordingly. In that configuration, the forcing steering input is directly proportional to steering acceleration,
for this reason the constant coefficient matrices of 3.1 become :

M =
[

M11 M12

0 IFxx

]
, C1 =

[
0 C112

0 0

]
K0 =

[
K011 K012

0 0

]
, K2 =

[
0 K212

0 0

] (3.4)

where IFxx is the moment of inertia of the decoupled upper handlebar assembly (see table 3.5).

For control purposes equation (3.1) is expressed in state space form with state vector x = [φ̇, δ̇,φ,δ,ψ]T , forc-
ing input f = Tδ and output equal to the full state. The bike is assumed to be controlled only by a steering
torque because according to both Moore [28] and Weir [42] the rear frame roll angle is mainly controlled by
steering.

ẋ = Ax+BTδ+Hd w (3.5)

y = Cx+DTδ (3.6)

where matrices A,B ,C ,D, Hd are defined by:

A =
−M−1vC1 −M−1(g K0 + v2K2)

I2 0
0 c·cosλ

w 0 v ·cosλ
w

 ,B =
[

M−1

0

]
(3.7)

C = I5,D = 0 (3.8)

Hd =
 M−1

[
lg

cs

]
0

 (3.9)

Hd is the matrix defining the dynamics of the lateral disturbance w . In this case the force application point
was lg distance from the ground. The constant cs coefficient is due to the coupled roll to steer dynamics and
is selected as a fraction of w similar to Schwab et al. [35]. This results in an additional torque perturbation Tδ
in the handlebars.

3.2.2. RIDER CONTROL MODEL
The complete high level overview of the model is shown in figure 3.4. The output state of the bicycle is con-
catenated with the steering torque to produce the complete vector of sensory inflow. The measurements
attributed to the vestibular, visual and proprioceptive system of the human body are delayed and fed into
a prediction algorithm that uses an internal model of the process dynamics to forward the measurements
in time. This is made possible by the use of the efference copy, which is an internal copy of an outflowing,
movement-producing signal generated by the motor system. The controller is just a pure gain block with
free parameters to be estimated through gray box system identification. The final control forcing input is
produced after passing through a transfer function simulating the neuromuscular dynamics.

The neuromuscular dynamics block works as a second order filter to simulate the limitations of the human
response. In state space form this block is expressed by :

ẋnm =
[

0 1
−ωc

2 −2ζωc

][
Tδ
Ṫδ

]
+

[
0
ωc

2

]
a (3.10)

ynm = [
1 0

][
Tδ
Ṫδ

]
(3.11)
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Figure 3.4: Block diagram of the complete rider-bicycle model.

where a is the controller output representing the efferent neural signal, ζ is the damping coefficient and ωc

is the cutoff frequency. The latter two parameters are chosen according to muscular activation dynamics
present in the shoulder joint [13].

The steer angle δ and steer rate δ̇ feedback is attributed to the muscle spindles, while the torque feedback
is made possible with the help of the Golgi tendon organs. The roll and heading angle come from the vi-
sual system. Lastly the roll rate feedback is attributed to the vestibular system but it may also result from
vision.

The bicycle model of equations (3.5) and (3.6) is combined with the neuromuscular dynamics block of equa-
tions (3.10) and (3.11) to create a combined plant with state x = [φ̇, δ̇,φ,δ,ψ,TδṪδ]T ,input a and w and
output y = [φ̇, δ̇,φ,δ,ψ,Tδ]T . The equivalent model block diagram is shown in figure 3.8. In order to make
possible the implementation of the predictor which is discrete in nature the state space representation of the
combined plant is discretized by zero order hold with a time step of 0.005 s. For a look into how this time
step affects simulation integration error refer to figure D.9. Additionally, in order to make the measured and
parametric ouptut signals comparable with simulation, they are resampled from 1000 hz to 200 hz.

THE VARIABLE DELAY REAFFERENT OPTIMAL PREDICTOR

Neuromuscular delays prohibit effective (high bandwidth) motor control. Hence a range of studies propose
the CNS to employ control strategies that compensate for the effect of time delays through feedforward ele-
ments. The most basic predictor is the Smith predictor, which has been explored in motor control research
by Miall et al. [26]. The Smith predictor compensates for time delays through the use of an internal forward
model of the controlled dynamics and an internal model of the sensory delay pathways (see figure 3.5). The
forward model works by utilizing an efferent signal of the control input while the comparison between pre-
diction and measurement is trying to simulate the human’s ability to distinguish between reafference and
exafference. Unfortunately the most basic Smith predictor scheme does not work for unstable open loop sys-
tems [37]. In this work a modification to the normal Smith predictor scheme is suggested. In place of the
forward model a discrete optimal predictor (DOP) is used that forward simulates the amount of steps accord-
ing to the model of sensory delay (see figure 3.6). This works like a resetting forward model that is updated
every time step by the delayed state so the predictor loop does not become unstable. Because every sensory
pathway has different delay, the conventional DOP is adapted to work with a variable time delayed state in-
put. This adapatation is illustrated with a simplified example in the block scheme of figure 3.7. The attentive
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reader will notice that the internal model for the DOP requires full state feedback, however in the model only
6/7 states are fed back (Ṫδ is missing). To work around that the predictor keeps in "memory" the forward
simulation output from the first step of the tapped delay line. This is used in the next iteration to complete
the state vector. When the model of the neuromuscular dynamics is perfect the estimation of Ṫδ will also be
perfect since the disturbance dyanmics have no influence on the neuromuscular dynamics. The DOP with-
out the Smith correction can still work and has been implemented by van der Kooij et al. [39] for modeling
stance control but it leads to predictions that do not contain any reaction to the effect of the disturbance on
the state. The block diagram of the predictor can be seen in figure 3.8.
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Figure 3.5: Block diagram of the basic Smith Predictor scheme. The Smith Predictor uses an internal forward model to predict the delay-
free response ŷ of the process. It then compares this prediction with the desired setpoint r to decide what adjustments are needed
(control u). To prevent drifting and reject external disturbances, the Smith predictor also compares the actual process output with a
prediction ŷd that takes the dead time into account. The gap ye = yd − ŷd is fed back and contributes to the overall controller input.
Note that ye amounts to the perceived state mismatch delayed by the duration of dead time.

Figure 3.6: The discrete optimal predictor consists of a tapped delay line. The tapped delay line used in this work is a forward simulation
of the discretised dynamics of the bicycle including neuromuscular dynamics. It uses the efference copy of the known previous control
input an and the delayed estimate yd

n . A∗
m and B∗

m are the best available discrete approximation of these dynamics.
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3.2.3. PARAMETER ESTIMATION
In order to assess the effectiveness of the torque feedback loop, three models of incremental complexity are
used. In the first the feedback pathways are fed into the controller without delays. In the second delays are
added. The third one compensates for time delays by the use of the VDROP. The three models have the con-
troller gains as free parameters. More specifically, the gains are estimated by fitting the model output into the
non-parametric data-set derived in [5]. The gains were estimated by minimization of the cost function

VN (θ) = 1

N

N∑
k=1

0.8

(
ŷδk (θ)− yδk

)2(
yδk

)2 +0.16

(
ŷψk (θ)− yψk

)2

(
yψk

)2 +0.04

(
ŷTδ

k (θ)
)2

(
yTδ

k

)2

 (3.12)

where θ is a vector containing all the free parameters, ŷδ and ŷψ are the outputs of the simulation for the
measured external disturbance w and the vector of parameters θ for steer angle δ and heading angle ψ re-

spectively, while yδ and yψ are the outputs of the non-parametric model. Finally yδk , yψk , yTδ
k are the absolute

maximum allowable values of the signals and are equal to 0.4 rad, 0.4 rad and 10 Nm respectively.

The first two terms of the cost function are trying to match the steering and heading response of the para-
metric model with that one of the non-parametric model, while the third on minimizes the amount of input
torque generated in order to produce the best possible fit while maintaining minimal control effort. The
weights are chosen heuristically. The weight factor between yaw and steer error is chosen as 1:5 as it is found
that this gives the best possible imporovment in roll and yaw fit with no major drop in steering angle fit. For
optimization the genetic algorithm with a fitness limit of 0.03 is first used in order to produce a good starting
parameter vector for gradient descend algorithm to take over, which finally finds the closest possible estimate
of the global minimum. For the genetic algorithm a crossover fraction of 0.85 along with a population size 10
times the length of the parameter vector is used.

The gains attributed to the muscle spindle sensors (Kδ and Kδ̇) are constrained to be only positive. The as-
sumption is that they work like a delayed steering stiffness and damping. Additionally, the gains Kψ and Kφ

are constrained to fall between -250 and 250 kgm2 s−1. When left unconstrained these parameters drive the
whole gain vector to unrealistic values for insignificant amount of fitting performance increase (< 0.1%).

The impulse response function of the median rider is used. This is determined by taking the mean impulse
response function of each measured output and finding the participant which had the highest variance ac-
counted for between the individual response and the mean across all speed levels for all filtered outputs. Each
system was identified for three different model conditions:

1. 6 feedback pathways including torque feedback

2. 5 feedback pathways excluding torque feedback

3. 6 feedback pathways including torque feedback but bicycle dynamics are switch to "haptics off".

In the thrid condition the internal model used in the predictor is not updated to reflect the changed bicycle
dynamics. This assumption is made due to the fact that no adaptation time was noted in the experiments for
any of the participants when switching the steering configurations so significant tuning of an internal model
is not realistic.

As metric of model validity the variance accounted for between parametric and non-parametric output is
used, defined as

VAFd(θ) = 1−
n∑

k=1

(
yd (k)− ŷd (k,θ)

)2
/

n∑
k=1

(
yd (k)2

)
(3.13)

where d = {φ,δ,ψ}.

In order to assess the importance of the torque feedback, the uncertainty of each parameter is found. Param-
eters with the lowest uncertainty contribute more to the fit so they are deemed more important. To find the
uncertainty the covariance matrix is estimated from :

covθ̂ =VN (θ̂)H(θ̂)−1 (3.14)

with H(θ̂) = ∂2VN

∂θi∂θ j
(3.15)
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where θ̂ is the closest estimate to the true parameter vector θ∗ that produces the true global minimum and
H is the hessian matrix numerically estimated by the gradient descend algorithm. However, since bigger
parameters are going to have naturally larger variances the diagonal values are normalized by the parameter
value to produce the coefficient of variation.

CVi =

√√√√√σ2
θ̂i

θ̂2
i

(3.16)

where σ2
θ̂i

are the diagonal elements of covθ̂ .

3.3. RESULTS

3.3.1. ZERO DELAY MODEL
The results of the zero delay model for the median rider are presented in table 3.2. A VAF of over 90 % is
easily achieved for both steer angle and heading, while for roll the discrepancy is larger. A look into how the
model approximates the measured rider input and bicycle states for the forward speed of 2.8 ms−1 is seen
in figure 3.9. For a look into how the model approximates the response of the rider for all forward speeds
refer to figures D.1 and D.2. Even in the ideal case with zero delays, the model inputs seems to lag behind the
measured applied rider torque.

From the coefficient of variation, no real difference between the levels of normalized uncertainty is noted.
However, VAFδ drops more than 15-20% when Tδ feedback is turned off (see table 3.2), which indicates sig-
nificant impact on the fit. Additionally, the steering angle and torque response becomes substancially more
oscillatory when Tδ feedback is turned off (see figure 3.10). Roll stabilization performance does not seem
to be affected, however steering effort considerably does. Regarding the haptics off case, where the intent is
to simulate the steering feel the participants experienced in the second experimental condition, the level of
steering fit degradation is small (< 3% see 3rd column of table 3.2).

3.3.2. VARIABLE DELAY MODEL
The same procedure is repeated for the gray box model but now introducing delays in all feedback pathways.
For δ and δ̇which are attributed to the muscle spindle sensors and for the torque feedback which is attributed
to the Golgi tendon organs a delay of 25 ms is chosen [4, 38]. For the feedback states attributed to visual
feedback such as the roll angle φ and yaw angle ψ a much greater delay of 200 ms is chosen [16]. Finally for
the vestibular roll rate feedback a delay of 50 ms is implemented [1].

The results of the variable delay model for the median rider are presented in table 3.3. Despite the fact that
significant delay is introduced into the system the torque feedback loop manages to compensate maintaining
a VAFδ of over 90 % for low speed levels (see table 3.3). In figure 3.11 the delayed response of the simulated
compared to the real rider is visible between the red and blue lines in the rider torque graph. This is further
exaggerated in the two remaining conditions resulting in much more oscillatory steering responses with a
visible impact on roll stabilization (see figure 3.12). The coefficient of variation of the Kδ parameter in the
haptics on with Tδ feedback connected is the highest especially for the two highest speed levels, which indi-
cates that this parameter is not significant for the fit. Between Tδ feedback on and feedback off, a much larger
drop in VAF is noted. Additionally, contrary to the zero delay model an equally significant drop in the fit is
noted for the haptics off case (see 3rd column of table 3.3).

3.3.3. VARIABLE DELAY REAFFERENT OPTIMAL PREDICTION MODEL
The VDROP model of figure 3.8 is implemented with a variable time delay among sensory pathways equal to
the values used in the variable delay model. It is assumed that the internal model of bicycle and neuromus-
cular dynamics along with the internal model of the inherent time delay responsible for prediction is perfect
for controlling the normal bicycle dynamics (A∗ = A∗

m). However in the haptics off case, where the steering
dynamics change, the internal model is not updated in simulation on purpose. This falls inline with what was
noted during the experiments where the subjects adapted to the new bicycle dynamics instantaneously, so a
full "re-calibration" of the forward model is too far fetched. This way the extent to which the Smith prediction
principle can counter forward model inaccuracies is also tested.
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The optimization results for the VDROP model are presented in table 3.4 for the median rider. From the VAFs
and the signals shown in figure 3.13 it is visible that the quality of the fit is comparable with the ideal zero delay
case. In the haptics on with Tδ feedback condition Kδ̇ shows disproportionately higher CV which indicates
lower importance for the fit for the steering rate feedback. However, in the haptics on without Tδ feedback
case, the gain Kδ shows the highest uncertainty (see table 3.4). Similar drop in VAFδ is present as in the
zero delay model when Tδ feedback is turned off, which shows significant importance of the Golgi tendon
organ sensory pathway. Furthermore, the steering response exhibits the same oscillatory behavior when
torque feedback is completely disabled (see figure 3.14 ). However, the predictor manages to compensate in
the haptics off case and achieve good fit which is not present in the variable delay model(see table 3.4). In
figure 3.18 the gains estimated for the median rider as a function of speed for all torque feedback conditions
are presented. Consistent trends could only be discerned for the heading gain Kψ.

In figures 3.15 to 3.16 a complete comparison between rider models for all feedback conditions is presented.
The response shown is the result of the first lateral perturbation of each individual run. The zero delay and
prediction models exhibit almost identical responses as it was evident from the over 90% fit achieved. The
variable delay model lags behind in both the produced control input and bicycle output, as is expected. Worth
noting the lag in the control input of the prediction model in the first few milliseconds after the perturbation.
Despite that fact the VDROP model compensates and achieves similar output as the idealized zero delay case.
This is a result of the fact that no matter how good the prediction algorithm is the human has no knowledge
of the future so the response from the controller will start after the first state information arrives from the
feedback pathways which are delayed. The forward model in this case does not help predict the state as it has
no information of the external disturbance.

Finally, in order to assess the effectiveness of the predictor, the VDROP model is compared with an imple-
mentation of the prediction algorithm without the Smith correction, meaning the predictor consists of just
the adapted DOP (see figure 3.7). For the comparison the gains estimated from the zero delay model are used,
so as to remove any potential adaptation that might give the VDROP model an advantage. The effect of the
undelayed estimate using both approaches is seen in figure 3.17a.

From the left plot of figure 3.17a it is visible that the estimate of the state improves due to the fact that the
effect of the disturbance on the state albeit delayed is added back to the optimal prediction. Worth noting
that both prediction strategies produce satisfactory results and manage to stabilize the system. However, the
main advantage of VDROP is its ability to correct for internal model inaccuracies. In figure 3.17 the results of
a simulation using VDROP model is compared with the results of the adapted DOP but in this case internal
model imperfections are introduced. This is done by replacing the perfect forward model with the one used
for the haptics off steering dynamics. The reasoning behind that is based on the assumption that the human
has a reduced perception of bicycle dynamics that does not take into account the fact that roll also affects
the state of the handlebar assembly. In figure 3.17b it is visible that VDROP manages to achieve comparable
performance to the perfect internal model case while adapted DOP fails.

VALIDATION

Similar to how the median rider of the trainning dataset is calculated, the median rider of the validation
dataset is determined. The VDROP model with its estimated parameters is tested by determining the variance
accounted for between the non-parametric response of the validation dataset and the simulation output. The
results can be seen in seen in table 3.1. For a more detailed look into how the simulated signals approximate
the measured response refer to figures D.7 and D.8 of appendix D.

Table 3.1: Validation results. VAFs of the VDROP model between the simulation output and the non-parametric response of the median
rider of the validation dataset for all forward speed levels.

v (ms−1) VAFφ VAFδ VAFψ
2.5 69.86 90.39 91.73
3.7 72.40 80.02 96.18
4.4 70.51 95.32 87.78
5.6 73.76 85.28 91.18
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Table 3.2: Results for the zero delay model as estimated for the median rider for all speed levels. Results are presented for the three
conditions. Haptic on/off differentiates based on the dynamics of the bicycle model, while "with or w/o Tδ feedback" differentiates
based on the structure of the rider control model. The values of the gains are presented as well as their corresponding uncertainty level
measured by the coefficient of variation CVi . Additionally, the variance accounted for of the orientation outputs between parametric
and non parametric signals is also presented. The derivative gains (Kφ̇,Kδ̇) are measured in kgm2 s−1 while the proportional gains

(Kφ,Kδ,Kψ) are measured in kgm2 s−2. The torque feedback gain KTδ is dimensionless.

Bicycle Model → Haptic On Haptic Off
Rider Model → with Tδ feedback w/o Tδ feedback with Tδ feedback

Forward Speed Value CV (10−4) Value CV (10−4) Value CV (10−4)

Kφ̇ -77.17 114.86 -22.46 29.77 -115.36 213.52
2.8 ms−1

Kδ̇ 2.26 73.57 2.58 18.93 8.76 187.30
Kφ -164.88 132.25 -24.50 73.14 -248.24 217.05
Kδ 32.75 150.14 3.76 140.96 29.67 215.07
Kψ -63.22 133.29 -9.85 53.71 -93.44 223.02
KTδ 3.51 176.20 - - 7.53 223.83
VAFφ 77.80 82.79 78.37
VAFδ 98.34 79.19 98.20
VAFψ 93.46 93.51 93.74

Kφ̇ -109.94 146.98 -21.30 35.99 -78.28 61.00
3.6 ms−1

Kδ̇ 8.22 139.00 3.30 24.78 9.09 51.11
Kφ -248.47 147.39 -34.64 71.54 -229.14 84.40
Kδ 50.78 147.72 6.48 130.57 53.16 92.96
Kψ -132.13 152.08 -17.74 61.92 -103.75 74.49
KTδ 4.52 167.24 - - 6.89 64.17
VAFφ 79.92 85.93 80.89
VAFδ 98.83 86.40 97.08
VAFψ 95.33 97.95 95.15

Kφ̇ -92.50 117.34 -27.29 46.40 -102.63 40.87
4.7 ms−1

Kδ̇ 4.81 183.05 4.25 41.56 11.24 28.38
Kφ -183.03 135.64 -38.17 76.43 -249.74 74.10
Kδ 22.57 237.51 2.65 591.87 63.36 88.33
Kψ -165.42 126.89 -33.78 63.74 -188.67 58.81
KTδ 3.42 174.23 - - 8.98 13.88
VAFφ 77.03 83.06 78.60
VAFδ 97.57 80.27 95.57
VAFψ 91.41 97.03 92.48

Kφ̇ -83.90 117.61 -31.12 43.99 -76.30 47.12
5.7 ms−1

Kδ̇ 5.83 142.87 5.58 40.62 10.91 30.23
Kφ -166.08 127.89 -43.64 67.14 -208.33 83.09
Kδ 14.85 98.10 1.14 1836.39 79.44 75.47
Kψ -186.77 128.56 -49.82 52.31 -176.96 69.82
KTδ 3.24 185.07 - - 8.45 29.67
VAFφ 79.17 84.03 80.30
VAFδ 97.51 84.09 94.71
VAFψ 90.97 96.41 91.56
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Table 3.3: Results for the variable delay model as estimated for the median rider for all speed levels. Results are presented for the three
conditions. Haptic on/off differentiates based on the dynamics of the bicycle model, while "with or w/o Tδ feedback" differentiates
based on the structure of the rider control model. The values of the gains are presented as well as their corresponding uncertainty level
measured by the coefficient of variation CVi . Additionally, the variance accounted for of the orientation outputs between parametric
and non parametric signals is also presented. The derivative gains (Kφ̇,Kδ̇) are measured in kgm2 s−1 while the proportional gains

(Kφ,Kδ,Kψ) are measured in kgm2 s−2. The torque feedback gain KTδ is dimensionless.

Bicycle Model → Haptic On Haptic Off
Rider Model → with Tδ feedback w/o Tδ feedback with Tδ feedback

Forward Speed Value CV (10−4) Value CV (10−4) Value CV (10−4)

Kφ̇ -68.53 38.72 -14.93 37.52 -28.19 35.15
2.8 ms−1

Kδ̇ 2.09 110.32 2.30 32.17 2.65 13.18
Kφ -146.29 72.07 -16.98 92.51 -79.20 78.41
Kδ 22.18 95.38 4.62 103.75 10.51 93.36
Kψ -40.34 56.18 -3.78 116.84 -14.53 67.08
KTδ 3.52 64.80 - - 2.59 29.48
VAFφ 81.15 69.61 80.01
VAFδ 93.43 23.34 66.84
VAFψ 93.78 69.67 83.30

Kφ̇ -51.02 56.62 -15.40 55.90 -21.25 51.31
3.6 ms−1

Kδ̇ 2.50 170.45 2.81 50.20 2.79 17.72
Kφ -120.51 85.28 -22.82 102.83 -76.41 90.89
Kδ 16.58 153.27 3.94 243.76 17.14 84.92
Kψ -43.06 79.41 -7.37 147.32 -13.30 103.52
KTδ 3.42 62.79 - - 3.09 21.20
VAFφ 82.85 79.48 73.14
VAFδ 91.63 53.29 52.83
VAFψ 95.10 84.88 71.58

Kφ̇ -51.78 64.60 -19.26 349.70 -14.88 55.92
4.7 ms−1

Kδ̇ 2.75 160.68 4.42 438.96 3.04 20.62
Kφ -136.22 105.15 -27.02 111.78 -48.91 115.90
Kδ 3.21 1156.00 0.01 492609.67 16.01 99.26
Kψ -64.43 87.60 -14.29 412.99 -10.82 119.48
KTδ 3.70 63.91 - - 2.61 30.62
VAFφ 77.86 71.14 63.73
VAFδ 81.63 36.19 15.61
VAFψ 90.32 80.57 55.71

Kφ̇ -38.58 136.91 -19.65 110.85 -10.10 62.29
5.7 ms−1

Kδ̇ 1.13 2085.75 5.42 128.32 3.08 21.38
Kφ -120.59 120.57 -33.34 117.63 -30.95 133.76
Kδ 0.00 3969013.40 0.01 280859.33 18.46 79.69
Kψ -60.65 95.03 -19.20 183.00 -8.17 131.56
KTδ 4.27 191.50 - - 2.58 26.58
VAFφ 73.65 70.08 49.58
VAFδ 77.99 40.64 -
VAFψ 84.32 79.50 39.90
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Table 3.4: Results for the VDROP model as estimated for the median rider for all speed levels. Results are presented for the three condi-
tions. Haptic on/off differentiates based on the dynamics of the bicycle model, while "with or w/o Tδ feedback" differentiates based on
the structure of the rider control model. The values of the gains are presented as well as their corresponding uncertainty level measured
by the coefficient of variation CVi . Additionally, the variance accounted for of the orientation outputs between parametric and non
parametric signals is also presented. The derivative gains (Kφ̇,Kδ̇) are measured in kgm2 s−1 while the proportional gains (Kφ,Kδ,Kψ)

are measured in kgm2 s−2. The torque feedback gain KTδ is dimensionless.

Bicycle Model → Haptics On Haptics Off
Rider Model → with Tδ feedback w/o Tδ feedback with Tδ feedback

Forward Speed Value CV (10−4) Value CV (10−4) Value CV (10−4)

Kφ̇ -111.62 152.10 -22.44 28.45 -123.53 27.90
2.8 ms−1

Kδ̇ 1.80 234.11 2.62 14.59 8.62 35.62
Kφ -248.74 151.15 -24.17 84.44 -239.60 18.65
Kδ 45.60 150.24 4.05 147.97 22.82 90.52
Kψ -94.18 156.50 -9.03 65.63 -91.07 14.16
KTδ 4.66 170.99 - - 7.93 27.78
VAFφ 78.80 82.33 80.67
VAFδ 98.21 68.99 97.59
VAFψ 94.04 90.77 94.95

Kφ̇ -94.83 125.80 -22.08 33.58 -97.15 115.92
3.6 ms−1

Kδ̇ 3.33 404.51 3.34 17.01 9.68 75.60
Kφ -249.80 64.02 -37.61 80.02 -249.84 214.29
Kδ 58.12 63.15 7.44 140.22 50.23 247.35
Kψ -125.36 97.89 -17.72 66.95 -119.20 160.68
KTδ 4.24 91.84 - - 7.57 95.88
VAFφ 81.66 86.50 83.35
VAFδ 97.33 79.27 96.15
VAFψ 96.13 96.97 96.80

Kφ̇ -120.38 145.55 -27.59 56.00 -164.59 112.31
4.7 ms−1

Kδ̇ 0.24 4252.46 4.15 59.72 22.39 106.46
Kφ -249.40 133.42 -37.98 90.28 -249.82 107.93
Kδ 29.49 210.73 2.67 665.03 14.70 649.60
Kψ -222.31 143.06 -31.24 81.57 -209.12 111.47
KTδ 5.75 141.98 - - 13.87 78.12
VAFφ 79.21 81.88 80.97
VAFδ 97.07 70.43 90.44
VAFψ 92.97 95.43 95.93

Kφ̇ -83.24 24.27 -27.53 46.08 -146.38 35.81
5.7 ms−1

Kδ̇ 0.65 1394.64 4.31 43.06 28.45 31.76
Kφ -169.81 13.03 -44.71 92.82 -246.85 116.80
Kδ 8.29 278.33 4.13 493.77 29.42 401.88
Kψ -185.36 6.72 -43.34 72.02 -211.40 56.88
KTδ 4.49 72.85 - - 15.81 10.28
VAFφ 82.35 85.06 80.57
VAFδ 96.12 75.40 87.27
VAFψ 93.83 97.03 93.59



24
3. RIDER CONTROL IDENTIFICATION IN BICYCLING UNDER LATERAL PERTURBATIONS USING A GRAY BOX

APPROACH

3.4. DISCUSSION
In an effort to iterate over the rider control model of Schwab et al. [35] the VDROP model is created that
manages to incorporate sensory time delays and strongly suggests towards the importance of torque feedback
in the balancing task of cycling. The VDROP model achieves high VAFs between its simulation output and
the FIR filtered measured output across the four forward speed levels tested. Acceptable perfomance is also
achieved when the model is tested with a validation dataset.

Since in the control scheme the feedback is defined as negative, positive feedback gains produce torques op-
posite to the direction of the state that they act on. In that case a positive Kδ works like a normal restoring
spring and a positive Kδ̇ as a dissipative damper. This was a design choice for all gains related to muscle spin-
dles, in order to simulate lower spinal reflexes which lead to increased stiffness and damping of the handlebar
assembly. This is the reason the index of dispersion for the gain Kδ is so large for the cases where the estimate
is near zero (see table 3.3). The gradient descent algorithm if left unbounded would result in values lower
than zero which would lead to a physiologically impossible reflex response.

On the other hand, the proportional and derivative roll gains are consistently negative among all models for
all forward speeds and all torque feedback level conditions. This falls in line with what is the main balancing
strategy for single track vehicles; the so called "steer into the fall". Controller gain Kψ always being negative
means that the rider steers into the direction that heading is diverging, which is due to the countersteering
effect. Countersteering is used by single-track vehicle operators, such as cyclists and motorcyclists, to initiate
a turn toward a given direction by momentarily steering counter to the desired direction. Gain Kψ also ex-
hibits a consistent trend in all feedback conditions for all the rider models tested. It decreases as the forward
speed increases (see figure 3.18). This might indicate that heading is what modulates the response as forward
speed increases. As speed increases and the bicycle becomes more and more self stable the rider shifts focus
towards heading correction and less towards roll stabilization.

While the delayed control input of the rider is expected in the variable delay model, a noticeable delay can be
discerned even in the ideal zero delay model (see figure D.2). This occurs because of the lag induced by the
neuromuscular transfer function (see equations (3.10) and (3.11)), the parameters of which do not seem to
fall in line with the measured behavior as the response of the rider to the disturbance in the non-parametric
model is much faster.

Major discrepancies can be discerned in the non-parametric rider torque and the parametric torque for all
models in the haptics off with Tδ feedback condition (see figures 3.15 and 3.16). A choice was made to opti-
mize the fit of the haptics off case with the non-parametric data-set of the haptics on condition, so as to make
the impact of the change directly comparable. The non-parametric data-set of the haptics off experimental
condition could have been used but that would invalidate the purpose of the analysis, which is to see to what
extent different torque feedback levels can approximate the same rider response.

While the assumption that steering is the only active control input for the task of bicycle roll stabilization is
correct, a secondary task is not taken into account by leaving the upper body unconstrained, which revolves
around balancing of the torso and head. As a result, VAFφ never reaches values higher than 85 %. This as-
sumption was confirmed by performing a non linear model simulation, where bicycle and rider where mod-
eled as an inverted pendulum with torsional spring and dampers in the two hinges. It was found that when
the rider-bicycle connection is compliant, the level of lean for the first overshoot reaction is larger compared
to the case where both pendulums are rigidly connected (see figure D.10). Consequently, the degree to which
the rider can extrapolate information from their vestibular system to make deductions on the state of the
bicycle is debatable, since the vestibular system measures roll rate and acceleration of the head and not the
actual bicycle frame. However since this remains consistent among conditions, the effectiveness of the torque
feedback loop will remain analogous acrross conditions.

A conclusion on the importance of Tδ feedback can not be made by looking at the coefficient of variation,
however the impact on fitting performance is significant. This is indicated by the fact that when the torque
feedback loop is severed VAFδ drops by at least 15% for all models tested. Even in the variable delay model,
torque feedback is potent enough to compensate for the delays and achieve over 90 % fit in steering response
for the lower forward speeds (see table 3.3). This could be, because torque inherently includes acceleration
information and can give the rider a preview of how the rest of the state is going to evolve. However, in
the haptics off condition, where the torque feedback is not physiologically severed but lessened due to the
changed steering dynamics, major degradation in fitting performance was only noted for the model with
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uncompensated time delays. In this case torque feedback is still proportional to the steering acceleration so
the "preview" information is not completely lost. However the rider receives no input for the effect of the
disturbance because the torque that would naturally transfer through the front wheel contact point is filtered
by the uncoupled fork-handlebar connection. Despite all that, in the VDROP model, V AFδ did not drop more
than 8% and V AFφ, V AFψ showed an even more insignificant drop, which could explain why no difference
was found between steering configurations in the experiments conducted in [5].

The pattern noted by the coefficient of variation of the derivative steering angle gain in the VDROP model
indicates that when Tδ feedback is present, the reflexive modulation of steering damping does not contribute
to the successful rejection of lateral disturbances (see table 3.4). This was further confirmed by removing the
δ̇ feedback loop and noting that the VAFδ did not drop substancially (< 1% see table D.1) . However without
Tδ feedback, it seems that δ feedback becomes the least important for the fit (see table 3.4).

The prediction strategy used manages to utilize the Smith principle to enhance the optimal predictions of the
adapted DOP with information of the effect of the disturbance on the state through reafferent pathways and
simultaneously compensate for internal model inaccuracies. Note that in the haptics off case the internal
mode was not updated to reflect the changed dynamics, but the predictor manages to filter out the small
discrepancies by comparing the forward model output with the delayed state measurements.

Given the above findings regarding the importance of torque feedback the VDROP model with Tδ feedback
in the haptics on configuration was tested against a validation dataset to ensure its prediction capability for a
different set of measurements. By taking into consideration the level of inter subject variability that is present
in all human related tasks the results are more than acceptable (see table 3.1).

3.5. CONCLUSIONS
In an effort to iterate over existing rider control models, the VDROP model is created that successfully ac-
counts for sensory delays by the use of an internal forward model. It is shown that implementation of delay
without some compensation does not produce results that match the experimental data. A prediction strat-
egy is developed that manages to circumvent the inability of the conventional Smith predictor to work on in-
herently unstable open loop systems by implementing a resetting forward model (DOP). The results matched
the measured non-parametric outputs with a good level of fit. Additionally, the model is found to be robust
towards internal model inaccuracies.

Furthermore the importance of the sensory inflow from the Golgi tendon organs was thoroughly examined.
From the results it is therefore concluded that a proper rider control model should include the torque feed-
back pathway. Contrary to what the results of the analysis done by Dialynas et al. [5] indicated, this work
suggests that torque feedback is in fact crucial to the execution of the balancing task. However the torque
feedback in the experiments was not physiologically neutered and state information could be deduced by
the remaining inertial properties of the handlebar. Even though a steer-by-wire system decouples the roll
and steer dynamics the remaining inertial feedback of the handlebar components (haptics off) was proven
to be adequate for the rider to achieve comparable performance between conditions. Further, experiments
with negative stiffness applied at the handlebars could be conducted to cancel out inertial steering effects to
validate experimentally these results.
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Table 3.5: Whipple model parameters for the steer-by-wire bicycle shown in figure 3.2.

Parameter Symbol Value
wheel base w 1.03m
trail c 0.0665m
steer axis tilt (π/2− head angle ) λ π\10
rear wheel R
radius rR 0.6858m
mass mR 8.5 kg
mass moment of intertia (IRxx , IRy y ) (0.095625,0.19125) kg m2

rear body and frame assembly B
position centre of mass (xB, zB) (0.4,−0.6)
mass mB 95kg

mass moment of inertia

 IBxx 0 IBxz

0 IBy y 0
IBxz 0 IBzz

  9.2 0 2.4
0 11 0

2.4 0 2.8

kg m2

front handlebar and fork assembly H
position centre of mass (xH, zH) (0.9,−0.66)
mass mH 1.5kg

mass moment of inertia

 IHxx 0 IHxz

0 IHyy 0
IHxz 0 IHzz

  0.05892 0 −0.00756
0 0.06 0

−0.00756 0 0.00708

kg m2

front wheel F
radius rF 0.6858m
mass mF 1.84kg
mass moment of inertia

(
IFxx, IFy y

)
(0.096,0.195)kg m2

battery rack b
position centre of mass (xb, zb) (0.4,−0.55)
mass mH 4kg

mass moment of inertia

 IHxx 0 IHxz

0 IHyy 0
IHxz 0 IHzz

  0.02 0 −0.02
0 0.04 0

−0.02 0 0.02

kg m2

Table 3.6: Mass, damping and stiffness matrices for the bicycle model from figure 3.2 according to the parameters from table 3.5. Haptics
On refers to the bicycle model used that is subject to the normal bicycle dynamics while Haptics off refers to the model parameters with
the decoupled steering dynamics.

Haptics On

M0 =
[

129.560969317222 1.90339264112109
1.90339264112109 0.153300561290599

]
, C1 =

[
0 37.686356977648515

−0.540721349837341 1.003016812829302

]
K0 =

[ −104.1937454016045 −1.7093813017294
−1.7093813017294 −0.4997649614618

]
, K2 =

[
0 97.758506542423220
0 1.724635288121681

]
cs = 0.014408, lg = 0.84

Haptics Off

M0 =
[

129.560969317222 1.90339264112109
0 0.096

]
, C1 =

[
0 37.686356977648515
0 0

]
K0 =

[ −104.1937454016045 −1.7093813017294
0 0

]
, K2 =

[
0 97.758506542423220
0 0

]
cs = 0, lg = 0.84
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Figure 3.7: Example that illustrates the adaptation necessary for the DOP to work with variable delay signals. States x1, x2 are delayed
according to their individual dead times. Since x1 has smaller delay value, it is further delayed through a model of the remaining delay to
synchronize with x2. The delayed state vector enters the tapped delay line until the point when the forward simulation produces an esti-
mate of x1 that is concurrent with its measurement; in this case after 2 steps. At that point the reafferent correction is performed shown
in red. After the correction the tapped delay line continues normally. Matrices A∗

m and B∗
m are the best available discrete approximation

of the system dynamics, u0 is the known previous control input (efference copy).
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Figure 3.8: Block diagram of the Variable Delay Reafferent Optimal Prediction Model. A∗ ,B∗, H∗
d are the discretized matrices of the

combined plant dynamics, di is the amount of delay in times steps per sensory channel and dmax the maximum value of those. Matrices
A∗

m ,B∗
m express the dynamics of the internal model of the process. When the internal model is assumed to be perfect A∗

m = A∗ and B∗ =
B∗. First the delayed measurements are all further delayed upto the maximum amount of delay among signals in order to synchronize
them. The delayed output measurement is forwarded in time (dmax times) in the tapped delay line to produce the first undelayed
estimate of the output ŷ p . When a less delayed measurement of a certain state becomes available the tapped delay line state register
is updated with that measurement. This way the accumulation of forward simulation error is minimized. Output ŷ p is again delayed
through a model of the internal time delay. The difference between this re-delayed prediction with the delayed measurements creates the
error e which is added back to ŷ p to create the final corrected prediction ŷc . Finally, ŷc is fed into the pure gain block K , the parameters
of which are estimated through the gray box optimization procedure, which produces the control input a, representing the neural signal
sent to the muscles.
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Figure 3.9: Comparison between parametric model output (Zero Delay Model), non-parametric model output and measured signals for
the lowest speed level for the case where torque feedback is present in the rider control model and bicycle is operating under the "haptics
on" dynamics.
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Figure 3.10: Steering, roll angles and input rider torque compared among torque feedback levels for
the forward speed of 2.81 ms−1 in the Zero Delay Model. Response of the first disturbance in the run

is shown.
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Figure 3.11: Comparison between parametric model output (Variable Delay Model), non-parametric model output and measured signals
for lowest speed level for the case where torque feedback is present in the rider control model and bicycle is operating under the "haptics
on" dynamics.
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Figure 3.12: Steering, roll angle and input rider torque of the median rider compared among torque
feedback levels for the forward speed of 2.81 ms−1 in the Variable Delay Model. Response of the first

disturbance in the run is shown.
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Figure 3.13: Comparison between parametric model output (VDROP Model), non-parametric model ouput and measured signals for the
lowest speed level for the case where torque feedback is present in the rider control model and biccyle is operating under the "haptics
on" dynamics.
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Figure 3.14: Steering, roll angles and input rider torque compared among torque feedback levels for
the forward speed of 2.81 ms−1 in the VDROP Model. Response of the first disturbance in the run is

shown.
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(a) Comparison between the three rider models for forward speed 2.81 ms−1
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(b) Comparison between the three rider models for forward speed 3.6 ms−1

Figure 3.15: Steering angle δ, roll angle φ and steering torque Tδ compared among the three rider models implemented for all torque
feedback conditions, for the two lowest speed levels for the response of the median rider to the first perturbation of each run. Non
parametric output included for reference.
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(a) Comparison between the three rider models for forward speed 4.67 ms−1
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(b) Comparison between the three rider models for forward speed 5.71 ms−1

Figure 3.16: Steering angle δ, roll angle φ and steering torque Tδ compared among the three rider models implemented for all torque
feedback conditions, for the two highest speed levels for the response of the median rider to the first perturbation of each run. Non-
parametric output included for reference.
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(a) Comparison between true roll rate, and predicted roll rate using the Variant Delay optimal Predictor (VDROP) and the Discrete Optimal Predictor
(DOP).In the left graph a perfect internal model is used while in the right graph imperfections are introduced.

5 10 15 20 25 30 35 40 45 50 55
-5

-4

-3

-2

-1

0

1

2

  
  

(d
e

g
)

 Perfect Internal Model

5 10 15 20 25 30 35 40 45 50 55

Time    (s)

-8

-6

-4

-2

0

2

4

  
 (

d
e

g
)

 Imperfect Internal Model

VDROP

DOP

(b) Roll angle φ compared between the Variant Delay optimal Predictor and the Discrete Optimal Predictor . In the top graph a perfect internal model is
used while in the bottom graph imperfections are introduced.

Figure 3.17: Results of the simulation using imperfect internal model. In (a) the state estimate of the roll rate is compared among
prediction algorithms, while in (b) the roll stabilization response to a prolong run subject to the different prediction strategies is shown.
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Figure 3.18: Feedback control gains (K ) as a function of forward velocity (v) for the different torque feedback levels for the median
rider in the VDROP Model. Error bars indicate the standard errror of the mean calculated from the covariance matrix calculated by
equation (3.14).
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APPROACH

4.1. METHODS

4.1.1. EXPERIMENTAL PROCEDURE
Twenty healthy subjects volunteered for this study. To assure their safety, all subjects were requested to wear
protective equipment in the shape of a standards-approved bike helmet, knee and elbow pads. All partic-
ipants gave informed consent according to the guidelines of the human research ethics committee of Delft
University of Technology. All subjects were healthy and reported that they did not experience any kind of pain
or injury in the year before the experiments. The mean weight of all subjects was selected to be close to the
European population [41].

Each experiment trial consisted of four different speeds (i.e., 2.6, 3.7, 4.5, 5.6 m/s). All experiments were
performed across Heertjeslaan cycling path of TU Delft, the subjects were requested to ride the steer-by-
wire bicycle in all aforementioned speeds while being perturbed. Bilateral fixed magnitude steering torque
perturbations were applied to the upper motor of the steer-by-wire bicycle through a mobile phone interface
An additional bicycle was used from the experiment coordinator to cycle behind the instrumented steer-by-
wire bicycle and perturb the subject (see figure 4.1). From the twenty initial participants the data of fourteen
ended up being used in this study, due to hardware related malfunctions which rendered the data of the rest
unusable.

4.1.2. SYSTEM IDENTIFICATION
The system identification procedure described in chapter 3 is also followed for this chapter. First a black box
identification using the FIR model is conducted in order to extract the linear relationship between distur-
bance and measurements effectively filtering intrasubject variability. This is done for both steering angle δ
and roll angle φ. As will be later shown the intersubject variability is significant contrary to the lateral pertur-
bation experiments. For this reason the gray box identification of the proposed rider control model is fitted
on the individual responses of all participants instead of the median.

RIDER CONTROL MODEL

The full block diagram of the bicycle-rider system is shown in figure 4.2. Process P consists of the bicycle
dynamics given by equations (3.5) and (3.6). However since for this work the heading control is assumed to
be insignificant, the equations of motion (EOM) are not extended with heading as an extra state. Additionally,
the disturbance dynamics matrix H d changes in order to account for the fact that 100% of the perturbation
is transferred in the steering assembly, which means that lg = 0 and cs = 1. Finally, element M22 of the mass

37
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Figure 4.1: Experimental trial performed across Heertjeslaan cycling path of TU Delft; Experiment coordinator cycling behind the steer-
by-wire bicycle perturbing the subject through the mobile interface.

matrix M is increased by 0.21 kgm2 to account for the additional inertia induced by the passive rider [34]. The
full sensory signal vector including steering angle δ, roll angle φ, roll rate φ̇, steer rate δ̇, and steering torque
Tδ after being delayed by τi are fed into the pure gain block Kr e f . Delay values are the same as the ones
used for chapter 3. The produced neural input a is filtered through the neuromuscular dynamics block Gnm

(see equations (3.10) and (3.11)) to produce the reflexive component of the final control input to the process.
Note that from now on "reflexive" will also refer to delayed subconsious and consious control not only neural
reflexes. As has been proven by motor control studies for the shoulder a significant part of the final forcing
input is regulated through a different pathway; cocontraction [33] . Cocontraction refers to the simultaneous
activation of antagonist muscles around a certain joint. This provides the nervous system with a way to adapt
the mechanical properties of the limb to changing task requirements without going through the neuromus-
cular lag and delay limitations of the reflexive response. In the model this is simulated by feeding δ and δ̇

to the pure gain block Ki nt .The state space representations of the aforementioned systems are discretized by
zero order hold with a time step of 0.005 s. For a look into how this time step affects simulation integration
error refer to figure D.9. Additionally, in order to make the measured and parametric output signals compa-
rable with simulation, measured signals are resampled from 1000 hz to 200 hz. For gray box identification 7
parameters in total are used. Five parameters for the five gains of Kr e f and two parameters for the two gains
of Ki nt .

The gains are estimated by fitting the model output into the non-parametric data-set by minimization of the
cost function :

VN (θ) = 1

N

N∑
k=1

0.16

(
ŷδk (θ)− yδk

)2(
yδk

)2 +0.8

(
ŷφk (θ)− yφk

)2

(
yφk

)2 +0.04

(
ŷTδ

k (θ)
)2

(
yTδ

k

)2

 (4.1)

where θ is a vector containing all the free parameters, ŷδ and ŷφ are the outputs of the simulation for the
measured external disturbance w and the vector of parameters θ for steer angle δ and heading angle φ re-

spectively, while yδ and yφ are the outputs of the non-parametric model. inally yδk , yφk , yTδ
k are the absolute
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Figure 4.2: Block diagram of the bicycle-rider system. System P consists of the bicycle dynamics. Controller blocks Kr e f and Ki nt are pure
gain blocks the parameters of which are estimated through gray box identification. The former works as the main reflexive controller
with output the neural input a, while the latter is the intrinsic controller with output the intrinsic steering torque input T i nt

δ
System

Gnm represents the neuromuscular dynamics and its output is the reflexive steering torque input T
r e f
δ

. Reflexive and intrinsic inputs
combined give the complete steering torque input Tδ to process P. All sensory inflow is delayed by τi s where i is the corresponding
element of the sensory inflow vector.

maximum allowable values of the non-parametric signals and are equal to 0.4 rad, 0.4 rad, 10 Nm respec-
tively.

The first two terms of the cost function are trying to match the steering and roll response of the parametric
model with that one of the non-parametric model, while the third on minimizes the amount of input torque
generated in order to produce the best possible fit while maintaining minimal control effort. The weights are
chosen heuristically. For optimization the genetic algorithm with a fitness limit of 0.03 is first used in order to
produce a good starting parameter vector for gradient descent algorithm to take over, which finally finds the
closest possible estimate of the global minimum. For the genetic algorithm a crossover fraction of 0.85 along
with a population size 10 times the length of the parameter vector is used.

To assess fitting performance the VAF for φ and δ is used as defined by equation (3.13).

4.2. RESULTS

4.2.1. NON PARAMETRIC MODEL
The level of fit of the non-parametric model to the measured signals as a function of forward speed is seen
in figure 4.3 for all 14 participants. The VAF is significantly low for both outputs which indicates that there is
significant variability of the individual rider response within the trials; especially for the lowest forward speed
level.

The impulse response functions produced by fitting the FIR model into the measured data for roll and steer
is seen in figure 4.4. The results show great variability amongst participants.
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Figure 4.3: Box plot of the VAF between measurements of δ and φ and non-parametric outputs yδ and yφ respectively for all forward
speed levels.

4.2.2. PARAMETRIC MODEL
The proposed rider control manages to match the non-parametric outputs with an overall good level of fit be-
tween both roll and steer (see figure 4.7). The roll shows comparatively lower fit performance but increases as
forward speed gets bigger. This indicates some potential bicycle model inaccuracy which leads to mismatch
in steer-roll coupling dynamics for low speeds. In figures 4.5 and 4.6, the response of the first participant is
compared with the simulated rider model output and the results show great similarity even for the control
input.

The seven gains estimated for all participants are shown in figure 4.8 and table 4.1. Approximate linear trends
are noted for all gains. Additionally, the intersubject variability for the forward speed level of 2.6 ms−1 is
disproportionally higher than the rest, as noted by the much larger standard deviation in all gains. In figure 4.9
the decomposition of the input signal as the rider responds to the first perturbation of each forward speed
level’s run is shown. The intrinsic torque T i nt

δ
initially acts as expected countering part of the perturbation

torque, after that however it acts as a regulatory mechanism, mirroring the reflexive response.

Table 4.1: Mean and standard deviation of all controller gains as estimated for the 14 participants.

v (ms−1) Kφ̇ (kgm2 s−1) Kδ̇ (kgm2 s−1) Kφ (kgm2 s−2) K r e f
δ

(kgm2 s−2) KTδ (−) K r e f

δ̇
(kgm2 s−1) K i nt

δ
(kgm2 s−2)

µ σ µ σ µ σ µ σ µ σ µ σ µ σ

2.68 -55.10 24.88 1.66 1.72 -89.90 114.97 6.60 8.14 -0.99 0.29 10.14 2.57 25.89 24.41
3.68 -37.16 12.15 3.81 2.04 -48.48 14.75 8.82 8.94 -1.04 0.05 9.54 2.72 30.19 9.36
4.49 -29.57 8.52 4.27 1.25 -43.72 17.69 12.13 11.47 -1.02 0.08 8.97 2.61 39.82 14.24
5.63 -23.72 7.26 5.67 2.51 -37.68 16.46 13.40 14.29 -1.00 0.08 7.79 2.47 52.89 15.44
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Figure 4.4: Impulse response functions estimates produced by the FIR model roll (a) and steer(b) for all forward speed levels. The closer
a response is to the mean rider the more red the lines.
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Figure 4.5: Comparison between parametric model output, non-parametric model ouput and measured signals for the two lowest speed
levels for the first participant.
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Figure 4.6: Comparison between parametric model output, non-parametric model ouput and measured signals for the two highest speed
levels for the first participant.
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Figure 4.7: Box plot of the VAF between non-parametric output of δ (right) and φ (left) and parametric outputs ŷδ and ŷφ for all forward
speed levels.
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Figure 4.8: Mean of estimated gains as a function of forward speed. Error bars indicate one standard deviation of the mean.

4.3. DISCUSSION
As seen by figure 4.3 the VAF is relatively low especially for roll angleφwhich means that significant variations
in rider response within the same trial are present. This shows that the participants adapted their strategies
as the trial went forward, consciously choosing to be more compliant or stiff depending on the situation. De-
spite the fact that the experimental procedure was conducted in a much more proper manner than in the
lateral perturbation experiment, meaning that subjects could in no way expect the bilateral perturbations
sent through the wireless interface, the nature of the steering perturbation is such that allowed the partic-
ipants to damp out big parts of the disturbance through cocontraction. One of the goals of this study is to
investigate the balance between reflexive response and cocontraction. However since we assume the bicycle
to be linear time invariant for fixed forward speeds we expect consistent rider behavior as a function of speed,
which means that the large intrasubject variability can not be captured by the model.
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Figure 4.9: Steering torque response to the first perturbation (dashed yellow) of the first participant as a function of time. The input is
decomposed in the intrinsic component(orange) and the reflexive component (blue).

The lowest forward speed level displays disproportional level of variability as shown by the huge standard
deviation margins across estimated parameters (see figure 4.8). This indicates that the intersubject variability
present for that speed level is significantly higher. This could be an after effect of the fact that the lowest speed
level was always the first run or it could show that the effect of unmodelled non-linearities such as upper body
motion are much more pronounced in that speed range. Although trial runs were conducted beforehand at
various speed levels, some participants may not have adapted to the system completely which caused them
to exhibit significant variance in their response.

Negative proportional and derivative gains for roll angle φ indicate the reliance on the so called "steer into
the fall" mechanism. Modulation of steering stiffness is dominated by cocontraction as the reflexive Kδ stays
close to zero across speed levels (see figure 4.8). An increasing reliance on intrinsic steering stiffness as speed
increases is noted. On the other hand, the intrinsic modulation of steering damping is lessened as speed
increases, in favor of the reflexive pathway (see figure 4.8). What is more interesting however is the way the
intrinsic and reflexive components of the control input interact with each other in order to create the final
applied rider torque. The torque generated by cocontraction initially acts as a way to lessen the impact of
the perturbation as seen by the first few milliseconds in the intrinsic signal of figure 4.9. During optimization
of the parameters the intrinsic gains are tuned in order to best counter initial impact on the steering states
by the perturbation. However since we assume a time invariant system the same parameters act on the later
milliseconds as well, creating the weird mirroring effect between reflexive and intrinsic components. This
upon initial observation seems counter intuitive since it seems that the reflexive controller is fighting against
the intrinsic one. The reason why this happens is the fact that the reflexive response is dominated by the
"steer into the fall" strategy of control, while the intrinsic mechanism is trying to achieve steering angles
and rates equal to zero. In reality the intrinsic response of the rider is not time invariant. At the first few
milliseconds of the perturbation cocontraction is active while afterwards when the rider needs to actually
balance the bike by steering into the fall cocontraction is lessened and the reflexive is the main mechanism
of control. In a more realistic model this behavior should be captured.

4.4. CONCLUSIONS
In conclusion the rider model created manages to achieve a good level of fit and simultaneously captures the
significance of the intrinsic response when countering steering torque perturbations. A high level of intersub-
ject variability is exhibited. The hypothesis that this variability is in fact due to the modulation of admittance
in the shoulder joint is strongly indicated. Despite all that, the assumption that for constant speeds the sys-
tem is time invariant does not seem to hold ground as noted by the irregular effect of cocontraction in the
later stages of the rider response.





5
DISCUSSION

In an effort to answer the research question regarding what is the importance of the torque feedback path-
way in the balance task of cycling, a set of experiments were conducted using the experimental steer-by-wire
platform that allowed us to create a unique steering configuration in which the steering assembly works like
a decoupled master to the fork ("haptics off"). From the initial analysis of the raw measurements and the
non-parametric impulse responses, results suggested that the effects of torque feedback are minimal to non-
existent for the roll stabilization task. Neither performance (see figure 2.5 (a)) or steering effort is affected by
the removal of steering torque feedback. Balance performance among conditions is comparatively consistent
(see figure 2.5 (a)). However, in the unstable speed region the variance and the number of outliers are higher.
For steering effort the null hypothesis that the PSCx metric came from independent random samples with
equal means and equal variances failed to be rejected for all speed levels. This does not undoubtedly prove
that the samples came from the same population, howbeit it gives a strong indication towards that fact. Ad-
ditionally, for the "haptics on" the steering response was delayed (≈ 18 ms see figure 2.5 (b)) in comparison
to the "haptics off". This is attributed to the fact that the handlebars are more inert due to the additional
steering feedback, so the human response is "lagged" by the additional forcing dynamics.

From the analysis done on the gray box rider control model of chapter 3, it is found that the impact on the
steering response from the removal of the torque feedback pathway is quite significant; VAFδ drops by at least
15% for all models tested. Even in the variable delay model, torque feedback is potent enough to compensate
for the delays and achieve over 90 % fit in steering response for the lower forward speeds (see table 3.3). This
could be, because torque inherently includes acceleration information and can give the rider a preview of
how the rest of the state is going to evolve. However, in the haptics off condition, where the torque feedback
is not physiologically severed but lessened due to the changed steering dynamics, major degradation in fitting
performance was only noted for the model with uncompensated time delays. In this case torque feedback is
still proportional to the steering acceleration so the "preview" information is not completely lost. However
the rider receives no input for the effect of the disturbance because the torque that would naturally transfer
through the front wheel contact point is filtered by the decoupled fork-handlebar connection. Despite all that,
in the VDROP model, V AFδ did not drop more than 8% and V AFφ, V AFψ showed an even more insignificant
drop, which could explain why no difference was found between steering configurations in the IRFs.

The prediction algorithm used in the VDROP model manages to utilize the Smith principle (see figure 3.5) to
enhance the optimal predictions of the adapted discrete optimal predictor (see figure 3.7) with information
of the effect of the disturbance on the state through reafferent pathways and simultaneously compensate
for internal model inaccuracies. In figure 3.17b it is visible that VDROP manages to achieve comparable
performance to the perfect internal model case while adapted DOP fails.

As future work the VDROP model can be extended to account for the fact that sensory feedback pathways
are inherently noisy. However, incorporating noise, without a way to compensate for it, is not realistic as has
been shown by motor control research [43]. The accepted way in literature is to optimally fuse the output of
an internal model with the the measurements through a Kalman filter.

Finally, for the second set of experiments in which the participants are tasked with balancing under steering
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impulse perturbations, a similar analysis is conducted. Much greater intrasubject and intersubject variability
is noted ( see figures 4.3 and 4.4). An effort to fit the same model as the one used for the lateral perturbations
is made but the effect of passive rider dynamics on the response is so significant that it results in low VAF even
for the ideal zero delay case. For this reason the model is enhanced by incorporating a second controller that
modulates the intrinsic stiffness and damping of the shoulder joint. The updated model captures the signifi-
cance of the cocontraction mechanism achieving a good level of fit (see figure 4.7). An increasing reliance on
intrinsic steering stiffness as speed increases is noted (see figure 4.8). On the other hand, the intrinsic mod-
ulation of steering damping is lessened as speed increases, in favor of the reflexive pathway (see figure 4.8).
However, the assumption that for constant speeds the system is time invariant does not seem to hold ground
as noted by the irregular effect of cocontraction in the later stages of the rider response (see figure 4.9). If
further conclusions are to derived a more thorough analysis of the model needs to be conducted by doing a
proper parameter sensitivity analysis similar to how it was done in chapter 4.

Although a direct comparison between the rider models of chapter 3 and chapter 4 is not applicable as the
former incorporates heading as a feedback gain while the latter does not, some insights can be still be gained
from the comparison of the identification results. First of all the the "steer into the fall" mechanism is promi-
nent in both as can be seen by the negative proportional and derivative roll angle gains. However, while in the
lateral perturbations modulation of steering stiffness and damping are of little to no importance the opposite
is the case for the steering perturbation control model. In the zero delay model, gain Kδ was successfully
deprecated without significant drop in VAF . When delays and the prediction algorithm was introduced Kδ̇

exhibited similar effect when removed. On the other hand in the controller of chapter 4 these two gains are
so important that even in the case with zero delays the model was unable to match the measured response
because of the lag induced by the neuromoscular dynamics. For this reason the intrinsic controller was added
that enhances the effects of steering stiffness and damping through the cocontraction mechanism. Interest-
ing is the difference between KTδ values. In the controller of chapter 3 the torque gain is positive while in
the control model of chapter 4 it is negative and strangely close to one. Further insight into the importance
of torque feedback for the steer perturbation experiment can be gained by performing a similar analysis as
shown in chapter 3.



6
CONCLUSIONS

In an effort to iterate over existing rider control models, the VDROP model is created that successfully ac-
counts for sensory delays by the use of an internal forward model. It is shown that implementation of delay
without some compensation does not produce results that match the experimental data. A prediction strat-
egy is developed that manages to circumvent the inability of the conventional Smith predictor to work on in-
herently unstable open loop systems by implementing a resetting forward model (DOP). The results matched
the measured non-parametric outputs with a good level of fit. Additionally, the model is found to be robust
towards internal model inaccuracies.

Furthermore, the importance of the sensory inflow from the Golgi tendon organs was thoroughly examined.
From the results it is therefore concluded that a proper rider control model should include the torque feed-
back pathway. Contrary to what the results of the analysis done by Dialynas et al. [5] indicated, the results of
chapter 3 suggest that torque feedback is in fact crucial to the execution of the balancing task. However the
torque feedback in the experiments was not physiologically neutered and state information could be deduced
by the remaining inertial properties of the handlebar. Even though a steer-by-wire system decouples the roll
and steer dynamics the remaining inertial feedback of the handlebar components (haptics off) was proven
to be adequate for the rider to achieve comparable performance between conditions. Further experiments
with negative stiffness applied at the handlebars could be conducted to cancel out inertial steering effects to
experimentally validate these results.

As far as the steering perturbation experiment is concerned, the rider model created (see chapter 4) manages
to achieve a good level of fit and simultaneously captures the significance of the intrinsic response when
countering steering torque perturbations. A high level of intersubject variability is exhibited. The hypothesis
that this variability is in fact due to the modulation of admittance in the shoulder joint is strongly indicated.
Despite all that, the assumption that for constant speeds the system is time invariant does not seem to hold
ground as noted by the irregular effect of cocontraction in the later stages of the rider response.
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A
CALIBRATION OF INERTIAL

MEASUREMENTS

The fixed body angular velocities measured by the Inertial Measurement Unit (IMU) are biased due the im-
perfect orientation of the sensor axis (see figure A.1). The goal is it to allign system xyz with the global coor-
dinate system XYZ. To achieve this the euler angle offesets are calculated by using the measurements from
MPU-9050’s built in accelerometer.

Figure A.1: Bicycle with body fixed sensor axis x-y-z (B) and global axis XYZ (G).

Different orders of rotation affects the end configuration. For this study the intrinsic order Z-Y’-X” is adopted
which is equivalent to the extrinsic X-Y-Z (roll-pitch-yaw). The inverse rotation matrix that described the
above rotation sequence is :

Rx y z = Rx (φ)Ry (θ)Rz (ψ) =
 cosθcosψ cosθ sinψ −sinθ

cosψsinθ sinφ−cosφsinψ cosφcosψ+ sinθ sinφsinψ cosθ sinφ
cosφcosψsinθ+ sinφsinψ cosφsinθ sinψ−cosψsinφ cosθcosφ


(A.1)
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(a) Configuration i = 1

(b) Configuration i = 2

Figure A.2: a) The bicycle’s desired Z axis is aligned with the vector of gravitational acceleration. The bike was validated to be completely
upright by the use of a calibrated commerical IMU (MTw Awinda). b) The bicycle’s desired X axis is aligned with the vector of gravitational
acceleration. The door was validated to be completely vertical by the use of a calibrated commerical IMU (MTw Awinda). g is the vector
measured by the accelerometer which oposite to the gravitational acceleration.

where φ is the angle of rotation around axis X, θ is the angle of rotation around axis Y and ψ is the angle of
rotation around axis Z. Equation (A.1) maps a vector from the global system G to the body fixed system B.
In order to estimate the euler angle offsets the bike was configured in two different ways to align the gravity
vector with the z and x axis respectively. The readings from the accelerometer are expressed in the sensor
frame (B). Equation (A.2) is used to solve for the euler angle offsets. Unfortunately the three equations have
only two degrees of freedom so two configurations are required so as to solve for all three angles.

In the first, i = 1 and g 1 = [0 0 1]T (see figure A.2a) (note that the vector of accelerations is normalized)
with equation (A.2) solving for θ and φ. The lack of any dependence on the yaw angle is intuitive to under-
stand since a rotation around the z-axis is aligned with the gravitational field and accelerometers are com-
pletely insensitive to rotations about the gravitational field vector. Consequently in the second, i = 2 and
g 2 = [−1 0 0]T which leads to equation (A.2) solving for ψ and θ (see figure A.2b).
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i x
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 1√
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i z
2
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Solving equation (A.2) for the angles we get :

φo = t an−1

(
GB

1y

GB
1z

)
(A.3)

θo = t an−1

 GB
1x√

GB
1y

2 +GB
1z

2

 (A.4)

ψo = t an−1

 −GB
2y√

GB
2x

2 +GB
2z

2

 (A.5)

From equations (A.3) to (A.5) the euler angle offsets calculated are inserted into rotation matrix Rxyz. The
transpose of the result (A.6) is then used to transform the IMU measurements from the coordinate frame
B to the coordinate frame G which is consistent with the linearized equations of motion defined in equa-
tion (3.1).

RIMU = RT
xyz(φo ,θo ,ψo) =

 0.9939 −0.006106 −0.1105
0.006069 1.0 −0.000675

0.1105 0 0.9939

 (A.6)





B
ORIENTATION ESTIMATION FROM INERTIAL

MEASUREMENTS

In order to properly assess the state of the bicycle when comparing it with the Whipple model, measurements
of roll angle φ and yaw angle ψ are necessary. However the steer-by-wire bicycle has no way of measuring
either. For this reason an estimation method is required that can approximate these angles by using mea-
surements from already existing Inertial sensors. A distinction is made between methods that can estimate
the euler angles when the whole signal is available for processing and for methods that can produce real-time
estimation.

B.1. OFFLINE ESTIMATION METHODS
An estimation of the roll and yaw angle can be made by using the angular rates measured by the gyroscope.
However euler angle rates and angular velocities are not equivalent as the former are dependant on order
of rotation while the latter are a vector expressed in the body frame. For this reason an expression needs
to be formulated that connects the two. Since the euler angle rates are expressed in the local frame of that
particular rotation sequence, appropriate rotation matrices need to be used to transform them into vectors in
the final body fixed frame (B). The order of rotation used here is the intrinsic X-Y’-Z” (roll-pitch-yaw).

 Bωx
Bωy
Bωz

=
 0

0
ψ̇

+B RG

 0
θ̇

0

+B RG
G RF

 φ̇

0
0

 (B.1)

where Bωx , Bωy , Bωz the angular rates maeasured by the gyroscope and F,G the local cooridnate systems
after the first and second rotation respectively. Note that these measurements are corrected for the imperfect
orientation of the IMU sensor by tranforming with matrix RIMU (see equation (A.6))

 Bωx
Bωy
Bωz

=
 1 0 −sinθ

0 cosφ cosθ sinφ
0 −sinφ cosφ cosθ

 φ̇

θ̇

ψ̇

 (B.2)

Simply solving equation (B.2) for the euler angle rates yields the expressions that can be used to calculate the
roll and yaw rates from gyroscope measurements.

φ̇= (Bωy sinφ+Bωz cosφ
)

tanθ+Bωx ≈ Bωx (B.3)

ψ̇=
Bωy sinφ+Bωz cosφ

cosθ
≈ Bωy sinφ+Bωz cosφ (B.4)
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The newly calculated euler angle rate signals can now be numerically integrated to produce the correspond-
ing euler angles. However, a way needs to be found to account for the accumulating integration error. When
the whole signal is available, which is true only in offline (post-processing) applications, two methods were
tested for approximating euler angles. The first method removes the drift simply through the use of a high-
pass filter. All frequency content under 0.05 Hz is filtered. The second method, removes the drift by sub-
tracting the resulting line from a linear regression. Worth noting here that for the yaw angle this will produce
good approximations only when the median of the true signal is around zero, which was mostly true since
the subjects tried to keep straight heading in order to avoid falling outside the boundaries of the bicycle lane.
For the roll angle this assumptions is confidently made since the signal is expected to be centered around
zero. The disadvantage of the high-pass filter was that magnitudes of signals are slightly attenuated, while
the disadvantage of the linear regression detrending is that a bias can be introduced if the median is not
zero.

B.2. ONLINE ESTIMATION METHODS
With no prior knowledge of the resulting drift another method needs to be found to correct the integration
output. Fortunately there are existing ways with which two unreliable sources of a signal can be combined in
order to produce a more reliable one. For this a secondary source of pseudo measurements is needed.

My first naive implementation was to calculate the roll from the accelerometer data by assuming that gravity
is the only force captured in the accelerometer readings. The formulation of the estimators is identical to the
equation (A.3). However, this is not ideal for the particular application of single track vehicles since lateral
accelerations due to centrifugal forces heavily change the accelerometer measurements.

Sanjurjo et al. [31] used equations B.5 and B.6 as pseudo absolute measurements. Note that B.6 is directly
dirived from the second equation of B.2. They explain that equation B.5 is more reliable for angles close to
zero and equation B.6 is more reliable for larger roll angles, for this reason a weighted sum of the two methods
is employed B.7 that follows the weighting function B.8 .

φd = tan−1
(
ωB

z v

g

)
(B.5)

φω = tan−1

(
ωB

y

ωB
z

)
(B.6)

φm =Wφd + (1−W )φω (B.7)

W = exp

(
− φ̂

2

φ
2

)
(B.8)

where W is the weighting fucntion, φ̂ is the last available estimation of roll and φ
2

is a constant that can be

used to adjust the weighting function. Sanjuro et al. used φ
2 = 0.05.

For the sensor fusion algorithm both a simple complimentary filter and a Kalman filter were tested. The
complementary filter works by combining the desirable low-frequency characteristics of the absolute mea-
surements with the desirable high-frequency characteristics of the euler integration output.

φ̂k = (1−α) · (φ̂k−1 +Bωx,k ·d t
)+α ·φm (B.9)

where k is the current iteration of the microcontroller and α is a constant, such that 0 <α< 1. The larger the
α, the more pseudo absolute measurments are ’trusted’. Asα goes to zero the estimate is mainly based on the
integration output.

On the other hand, Kalman filters are also often used as state estimators when multiple measurement sources
need to be combined into a single more reliable one. Often the output of a model is combined with absolute
measurements and an estimation of the state is made by dynamically weighting the two sources of informa-
tion. In this case a simple plant model is created which has φ̇ ≈ Bωx as input and produces the roll angle of
the next time step given the previous one. In order to account for biases in the angular rate sensor an extra
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Figure B.1: a) Comparison between pseudo-absolute measurements. Both sources were fused with the integration output via a Kalman
filter. The blue line is the result of the measurements used by Sanjurjo et al. [31] while the orange line is the result of the estimation
produced using the accelerometer equation (A.3).b) Comparison between sensor fusion algorithms. For reference the output of the
offline linear regression detrending is shown as a black dotted line.

state bx is added to the model. The complete formulation is given by :[
φ̂

b̂x

]−
k

=
[

1 −d t
0 1

][
φ̂

b̂x

]+
k−1

+
[

d t
0

]
Bωx,k−1 (B.10)

The results are shown in figure B.1. In figure B.1a it is visible that the naive implementation using the as-
sumption that the accelerometer only registers the gravitational acceleration does not work. However, for
the first few seconds after turning on the bike the assumption is correct and a good initial condition esti-
mate can be extracted in order to use as initial condition in the sensor fusion algorithm of choice. As far as
the sensor fusion algorithm is concerned the results are shown in figure B.1b. A complimentary filter with
α= 0.0022 is used, while for the Kalman filter the process covariance matrix and measurement variance were
equal to:

QP =
[

9e−4 0
0 3e−4

]
d t (B.11)

QS = 0.5 (B.12)

Additionally the initial covariance matrix was equal to zero which means that the filter at the start "trusts" the
model output; the Euler integration output. As a reference the result from the linear regression detrending is
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also presented. The graph indicates that both methods successfully approximate the reference result. Fur-
thermore, it is clear that with this general system model, only a slight performance gain (if any) can be gained
by using the Kalman filter. Additionally, the implementation of the complimentary filter is far simpler and
consequently much less computationally expensive. Had the Kalman filter been implemented on a system
where an accurate dynamic model was present , the Kalman filter would – in pretty much all cases – trump
the simpler complimentary filter. For this reason the complimentary filter approach was chosen for the on-
line implementation of roll estimation in the steer-by-wire bicycle, considering the limiting clock speed of
microcontroller Teensy 3.6.

The above pseudo-absolute measurements can only be used to estimate the roll angle. However there is a way
to extract an estimation of the yaw relative to the magnetic north by using the magnetometer sensor, which
is also part of the IMU. This is similar to how modern smartphones can work as a compass. Similar to how an
estimation of the roll angle was made by equating the accelerometer readings with reference position where
the gravitational acceleration is completley aligned with the bike’s z-axis, the same can be done by equating
the magnetometer readings with the reference position of the bike’s x axis pointing towards the magnetic
north. The magnetometer in this reference position are

B r e f = B

 cosζ
0

sinζ

 (B.13)

where B is the geomagnetic field strength and ζ is the angle of inclination of the geomagnetic field measured
downwards from horizontal. Both values vary over the earth’s surface. Detailed geomagnetic field maps are
available from the World Data Center for Geomagnetism. Fortunately, both B and ζ cancel out in the final
formulation of the estimator.

�

�

�

�
� ����

� ����

�


�

Figure B.2: Magnetic Field vectors in the reference position.

The measured magnetometer readings B p after three rotations are described by equations :

B p = Rxyz(φ,θ,ψ) ·B

 cosζ
0

sinζ

+
 Vx

Vy

Vz

 (B.14)

where Rxyz the rotation matrix defined in equation (A.1) and Vx ,Vy ,Vz are the components of the Hard-Iron
vector, which is a fixed magnetic offset adding to the true magnetometer sensor output. The Hard-Iron offset
is the sum of any intrinsic zero field offset within the magnetometer sensor itself plus permanent magnetic

http://wdc.kugi.kyoto-u.ac.jp/igrf/


B.2. ONLINE ESTIMATION METHODS 59

fields within the PCB generated by magnetized ferromagnetic materials. It is quite normal for the Hard-Iron
offset to greatly exceed the geomagnetic field. Therefore an accurate Hard-Iron estimation and subtraction
are required.

The Hard-Iron offset can be estimated if we consider that the set of all 3d points defined by every magnetome-
ter reading lies in the surface of a sphere with radius B . In the presense of the offset, the center of the sphere
would be displaced by the Hard-Iron Vector V . The components of vector V can be estimated by fitting the
magnetometer measurements to the equation:(

B p −V
)T (

B p −V
)= B 2 (B.15)

Equation (B.15) was solved with the gradient descend method by minimizing the sum of the squared differ-
ence between the right and left hand side of the equation. The resulting Hard-Iron Offset Vecotor was :

V = ( −22.03 −26.14 −1.651
)

[µT] (B.16)

In figure B.3 the locus defined by the set of vectors measured by the magnetometer is displayed. It is visible
that after the correction the measurements lie on the surface of a sphere with center in the origin and radius
approximately equal to 1 a.u.

Figure B.3: The blue dots are the locus of the magnetometer readings before correcting for the hard iron offset. The red dots are the locus
of the magnetometer readings after correcting for the offset. The magnetometer readings have been normalized so that 1 a.u= 49.0913 µT
which is the Magnetic Field Intensity for the approximate location of TU Delft (Latidude 52° 0’ 0" N and Longitude: 4° 22’ 0" E).

Having estimated V from equation (B.14) by assuming θ ≈ 0 we get :

B f = B p −V = R x (φ)R z (ψ) ·
 B cosζ

0
B sinζ

 (B.17)

RT
x (φ)

 B f x

B f y

B f z

=
 cosψB cosδ

−sinψB cosδ
B sinδ

 (B.18)

 B f x

B f y cosφ−B f z sinφ
B f y sinφ+B f z cosφ

=
 cosψB cosδ

−sinψB cosδ
B sinδ

 (B.19)
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Figure B.4: Comparison of online yaw angle estimation.Red dotted line is the pure estimation from the magnetometer data. Orange line
is the drifted euler integration output. Blue line is the result of the complimentary filter sensor fusing the other two signals. For the
complimentary filter a = 0.00027.

By dividing the y and x component of equation (B.19) we get:

ψ̂= t an−1

(
B f z si nφ̂−B f y cosφ̂

B f x

)
(B.20)

where φ̂ is the estimate of roll angle obtained from the aforementioned methods. Equation (B.20) can now
be used as a source of pseudo-absolute measurements for the sensor fusion algorithm of choice. Regarding
signal fusion the same things apply as in the roll angle estimation case. Finally since we want the yaw angle
relative to the starting position and not relative to the magnetic north the value of the first yaw estimation is
subtracted from all subsequent computations.



C
ESTIMATION OF RIDER TORQUE

Given the steer rate (δ̇) and acceleration(δ̈), moment of inertia (IH ), motor damping (bm) and the torque
applied by the handlebar motor (TPD H ) the equation of motion of the upper handlebar assembly can be
formed (see Fig. C.1) and solved for the uknown rider input torque (TH ).

TH = δ̈IH + δ̇bm −TPD H (C.1)

Figure C.1: Free body diagram of the upper handlebar assembly.

C.1. STEER RATE AND ACCELERATION
Since only the steering angle is directly measurable, a way needs to be found that produces accurate esti-
mations of steer rate and steer acceleration. Simple numerical differencing techniques proved ineffective
as noise effects were magnified resulting in completely corrupted second derivatives, even after filtering the
original signal to a cutoff frequency of 10 Hz.

To combat this problem a piecewise cubic interpolation technique using the cubic spline function was used.
The principle of this method is simple. Third order polynomilas are fitted between the datapoints. This
results in a signal that is identical to the original but instead of discrete points, it is represented by the union
of polynomial functions. After this point the steer rate and acceleration can be easily obtained by taking the
derivatives of the polynomials. the result of the method is seen in figure C.2.

C.2. STEERING SHAFT MOMENT OF INERTIA AND VISCOUS FRICTION
In order to make estimation of applied rider torque, the damping coefficient and the inertia of the steering
shaft needs to be determined. There are multiple ways to measure inertia of complex geometries. Here an
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Figure C.2: Steering angle signal with its derivates produced by the piecewise cubic spline
interpolation method.

estimation through a simple exprimental setup is chosen.

By connecting the steering shaft with two extension springs (see Fig.C.3) and measuring the oscillations of
the steering angle δ, a mechanical system is created where it it has to obey equation C.2.

IH δ̈ (t )+bm δ̇ (t )+2Kα2δ (t ) = 0 (C.2)

where K the spring elastic constant and α the moment arm shown in figure C.3.

Figure C.3: Spring-handlebar assembly where α is the moment arm.

The springs ( K = 555N /m and slack length of 0.03m) are attached to the handlebar and the system is per-
turbed. The measured steering angle signal from one of the perturbation tests is shown in figure C.4.The
steering rate and acceleration signals are derived by the methods descirbed in section C.1. Equation C.2 is
then applied to all discrete time steps and so the system of equations C.3 is created.

δ̈1 δ̇1

δ̈2 δ̇2
...

...
δ̈N δ̇N


[

IH

bm

]
=−2Kα2

δ1
...
δN

 (C.3)

where N the length of the recorded signal.
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Since equation C.3 is linear in the parameters, the solution of the regression problem can be approximated
by the use of the least squares method.

[
IH

bm

]
=−2Kα2



δ̈1 δ̇1

δ̈2 δ̇2
...

...
δ̈N δ̇N


T 

δ̈1 δ̇1

δ̈2 δ̇2
...

...
δ̈N δ̇N



−1 

δ̈1 δ̇1

δ̈2 δ̇2
...

...
δ̈N δ̇N


T δ1

. . .
δN

 (C.4)

The system is perturbed 15 times so 15 sets of inertia and damping ratios are computed. The mean of the
these was taken and resulted in IH = 0.0960 kg m2 and bm = 0.2663 N s−1
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Figure C.4: Result of the first of fifteen oscillations. Blue lines indicate the measured signals while the
black dotted line is the output of the model given the values of inertia and damping estimated with

the least squares method.
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C.3. MOTOR TORQUE INPUT VALIDATION

C.3.1. DESIGN OF TORQUE SENSOR
In order to validate that the torque exerted by the handlebar motor results in equivalent input rider torque a
torque sensor is designed and attached to the steering shaft. The most common torque sensor measurement
principle uses bonded strain gauge technology, where the strain gauges are bonded to a suitably designed
shaft.

In the torsion of a cylindrical shaft the strain is measured by the angle of twist or angular deflection. Unfor-
tunately stain gauges can only detect compressive and tensile strain. The strain gauges are placed with such
an orientation that the shearing stress is replaced by its equivalent principal stresses. The angle and the mag-
nitude of the principal stresses are calculated by the use of the Mohr Circle. In this case the principal tension
and compressive stresses are of the same magnitude as the shearing stress and are active at an angle of 45
degrees since it is considered that no external compressive or tension force is present.

In order to design a proper cylindrical shaft for the torque sensor the diameter of the shaft is chosen such
that the strain measured in the strain gauges is within the detectable range (εmi n = 10−5 , εmax = 6 ·10−4). For
this application, a hollow cylindrical shaft made of aluminum( AL7075−O)is used so the unknowns are the
inner and outer diameters. The strain is given in relation to the stress by Hooke’s law for isotropic materials
by equation (C.5). The shearing stress is in turn given by equation (C.6).

ε= σ · (1+ν)

E
(C.5)

where ν the Poisson’s ratio and E the Young’s Modulus (Pa)

τ= T · r

J
(C.6)

where J is the polar moment of inertia (m4), r the distance from center to stressed surface in the given po-
sition (mm), T the twisting moment (N m). The polar moment of inertia of a circular hollow shaft can be
expressed as

J = π · (D4 −d 4)

32
(C.7)

where d is shaft inside diameter (mm) and D is the shaft outside diameter (mm).

By inputing the above equations into a MATLAB script figure C.5 was produced. The figure was created for
a fixed inner diameter of 12mm, due to limitations in the machining process. It is evident that the lower the
width of the shaft the higher detection of the low level torques. For this reason a width of 2 mm was chosen.
This still means that torques below 0.2N m are not detectable. However the purpose of the torque sensor is
not to provide acurate online measurements but to validate the input torques from the handlebar motor. The
design of the resulting part is shown in C.6.
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Figure C.5: Principal tensile strain in the 45 degree angle for various shaft widths (w).

Figure C.6: Schematic of the hollow shaft.

Because it is not an ideal hollow cylinder , the shearing stress calculated analytically from the above equa-
tions needs to be validated. A static load simulation in SolidWorks is done to see how much different is the
shearing stress on the external surface. As it turns out the simulation showed a shearing stress similar to the
one calculated by the equations. In C.7 the simulation results for a loading of 10N m is shown. For compar-
ison the resulting shearing stress calculated analytically is 10.0874 ·106N /m2. For proper measurements of
strain the gauge placement should gravitate towards the middle to avoid the spikes of shearing stress near the
intersections between the main shaft and the cylindrical heads (see fig. C.7)

C.3.2. RESULTS
In order to validate that the commanded torque in the handlebar motor is the same as the one actually ap-
plied in the handlebar, a trial identification run was conducted to simulate steer torque levels of the experi-
ments. The signal of the input motor torque is compared with the output of the custom made torque sensor.
The results are shown in figure C.8. The mismatch of the two signals for values lower than 0.5N m is attributed
to the fact that the sensor’s strain gauges cannot accurately measure the strain in the material to produce re-
aliable ouput as determined analytically beforehand. Also during the measurements a slight bias of the sensor
was noted when 0 < δ < π\2. Despite the aforementioned , the resulting Variance Accounted For (VAF) was
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Figure C.7: Shearing stress for 10N m loading in the axial direction.

equal to 90.77% and was deemed that the motor command torque is indeed what is beeing applied in the
steering shaft so in all subsequent calculation it was taken as ground truth.
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Table D.1: Estimated gains with normalized uncertainty and VAFs for the VDROP model with steering rate δ̇ feedback removed from the
loop.

v (ms−1) Value CV (10−4) v (ms−1) Value CV (10−4)

2.8
Kφ̇ -94.37 66.88 3.6 -76.35 128.90
Kδ̇ - - - -
Kφ -249.85 53.30 -249.84 105.40
Kδ 53.69 42.89 67.47 92.39
Kψ -88.83 60.95 -115.48 124.48
KTδ 4.82 66.41 4.51 126.15
VAFφ 79.36 80.90
VAFδ 97.40 97.13
VAFψ 94.28 95.33

4.7
Kφ̇ -119.44 141.14 5.7 -108.88 133.46
Kδ̇ - - - -
Kφ -249.98 129.63 -227.62 122.66
Kδ 30.59 108.31 8.17 520.30
Kψ -221.80 141.62 -248.72 133.19
KTδ 5.80 134.27 6.08 129.43
VAFφ 79.21 81.13
VAFδ 97.07 96.99
VAFψ 92.96 92.74
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Figure D.1: Comparison between parametric model output (Zero Delay Model), non-parametric model output and measured signals
(training dataset) for the two lowest speed levels for the case where torque feedback is present in the rider control model and bicycle is
operating under the "haptics on" dynamics.
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Figure D.2: Comparison between parametric model output (Zero Delay Model), non-parametric model output and measured signals
(training dataset) for the two highest speed levels for the case where torque feedback is present in the rider control model and bicycle is
operating under the "haptics on" dynamics.
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Figure D.3: Comparison between parametric model output (Variable Delay Model), non-parametric model output and measured signals
(training dataset) for the two lowest speed levels for the case where torque feedback is present in the rider control model and bicycle is
operating under the "haptics on" dynamics.
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Figure D.4: Comparison between parametric model output (Variable Delay Model), non-parametric model output and measured signals
(training dataset) for the two highest speed levels for the case where torque feedback is present in the rider control model and bicycle is
operating under the "haptics on" dynamics.
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Figure D.5: Comparison between parametric model output (VDROP Model), non-parametric model ouput and measured signals (train-
ing dataset) for the two lowest speed levels for the case where torque feedback is present in the rider control model and biccyle is
operating under the "haptics on" dynamics.
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Figure D.6: Comparison between parametric model output (VDROP Model), non-parametric model output and measured signals (train-
ing dataset) for the two highest speed levels for the case where torque feedback is present in the rider control model and bicycle is
operating under the "haptics on" dynamics.
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Figure D.7: Comparison between parametric model output (VDROP Model), non-parametric model ouput and measured signals (val-
idation dataset) for the two lowest speed levels for the case where torque feedback is present in the rider control model and biccyle is
operating under the "haptics on" dynamics.
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Figure D.8: Comparison between parametric model output (VDROP Model), non-parametric model output and measured signals (val-
idation dataset) for the two highest speed levels for the case where torque feedback is present in the rider control model and bicycle is
operating under the "haptics on" dynamics.
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Figure D.10: Results of the double pendulumn simulation. The bicycle rider lateral motion is modelled as an inverted pendulumn
consisting of two rods (rod with mass m1 is the bicycle while rod with mass m2 is the rider) connected by two hinge joints. In each joint a
certain torsional stiffness and damping is applied. For a stiff bicycle rider connection (k2 = 12000 kgm2 s−2) and for the more compliant
one (k2 = 12000 kgm2 s−2). For the simulation m1 = 20 kg,m2 = 80 kg, l1 = 0.8 m, l2 = 0.2 m, a = 0.8,b = 1,k1 = 3000 kgm2 s−2,b1 =
50 kgm2 s−1,b2 = 10 kgm2 s−1. In the plot on the right angle φ1 is shown which is equivalent to the bicycle roll angle state.
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