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Abstract

To achieve net-zero greenhouse gas emissions by 2050, the Global Wind Energy Council
(GWEC) emphasizes the need for a significant expansion in global wind power capacity. A
key factor of this growth is the upscaling of wind turbines, which increases the swept area
and exposes the blades to higher wind speeds at higher altitudes, thereby increasing energy
yield. However, this upscaling introduces significant control challenges. Larger wind turbines
increase aeroelastic complexity, with stronger nonlinear dynamics arising from increased blade
flexibility and more significant wind shear across the expanded rotor diameter. Additionally,
the increased rotor inertia delays the system response, making rotor speed regulation more
difficult under varying wind conditions.
This thesis proposes an adaptive closed-loop Subspace Predictive Control (SPC) framework
designed in an attempt to handle the complexity of larger, nonlinear wind turbines. Closed-
loop SPC is a direct Data-Driven Predictive Control (DDPC) method that does not rely on
explicit state-space modeling, but instead uses measured input-output data to predict future
outputs and compute optimal control action. For the optimal control action, it sets up a
receding horizon optimization that regulates above-rated rotor speed. This thesis focuses on
the above-rated region, where aeroelastic complexity becomes more pronounced due to higher
wind speeds and greater wind speed variations, posing significant control challenges.
To capture time-varying and nonlinear behavior more effectively, the closed-loop SPC in-
corporates Recursive Least Squares (RLS). The controller adapts to time-varying conditions
through online parameter estimation using RLS, which updates a locally linear model in
real time. Three RLS variants are examined: standard RLS without forgetting, RLS with
exponential forgetting, and RLS with directional forgetting. Standard RLS weighs all past
data equally, which may be effective when the system dynamics remain stationary but limits
adaptability to changing conditions. Exponential forgetting addresses this by placing more
weight on recent data, improving adaptiveness, but at the potential cost of losing parameter
estimation accuracy in less-excited directions. Directional forgetting refines this further by
applying forgetting selectively along the directions of incoming data, preserving excitation in
recently unexcited directions and enhancing estimation robustness.
To reduce the phase lag introduced by increased rotor inertia, wind preview information is
incorporated into the closed-loop SPC as a feedforward signal. This wind preview is included
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in the receding horizon optimization problem, enabling the controller to anticipate and proac-
tively respond to upcoming wind changes. Additionally, the wind preview is demonstrated
using more realistic measurements obtained through a LIDAR simulator.

The adaptive closed-loop SPC is validated on the DTU 10 MW reference turbine using
QBlade, a high-fidelity wind turbine simulator. Various wind scenarios, including gusts,
ramps, and turbulent inflow, are evaluated with and without wind preview feedforward. Re-
sults demonstrate that the inclusion of wind preview significantly improves rotor speed track-
ing performance and reduces pitch activity. This improvement is also observed when more
realistic LIDAR wind measurements are used in simulations with a turbulent wind field. In
the conducted wind cases, among the RLS-based adaptive closed-loop SPC strategies, ex-
ponential forgetting combined with wind preview consistently outperformed the other RLS
approaches across all scenarios evaluated in this thesis. These findings demonstrate that in-
troducing adaptiveness through forgetting, together with feedforward wind information, can
enhance closed-loop Subspace Predictive Control (SPC) performance in rated rotor speed
tracking.
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Chapter 1

Introduction

The world’s energy needs have grown significantly over the last few decades, with global energy
consumption increasing by 54% from 1990 to 2020 [1]. This increase has been driven by urban
expansion, industrial development, and the spread of digital technologies [2]. To this date,
most of the consumed energy comes from fossil fuels like oil, coal, and natural gas. However,
these sources are exhaustible and release greenhouse gases that contribute to global warming
and consequently drive climate change. The combination of the increase in energy demand
and the dominant role of fossil fuels in the supply of energy is an issue. This problem can be
solved by using cleaner, renewable energy sources. Wind energy is one such renewable source.
Although greenhouse gases are emitted during the manufacturing of wind turbines, their
operation is free of such emissions. Furthermore, wind energy holds substantial promise due
to its widespread geographic availability and the ongoing advancements in turbine efficiency
and technology [3].

The Hornsea Two Wind Farm in the United Kingdom (UK) is a good example of the potential
of wind energy. This wind farm has a capacity of 1.2 GW and can supply electricity for around
1.4 million households [4]. While large projects as these are important steps forward, wind
energy needs to grow much faster worldwide to meet long-term climate goals. The Global
Wind Energy Council (GWEC) calculated that to meet net-zero greenhouse gas emissions, a
cumulative global installation of wind turbines of 3200 GW is necessary by 2050. Currently,
906 GW of wind turbines are in operatoin globally, therefore, to reach the goal for net-zero,
another 2294 GW of wind turbines must be installed [5]. Based on the added wind capacity
from previous years, the trend shows that at this rate, only 68% of the goal for net-zero will
be achieved [5]. Research on the optimization of wind turbine design can help achieve this
ambitious goal of 3200 GW capacity by 2050.

One method of capturing more wind speed is done by wind turbine upscaling, which involves
increasing rotor size and hub height. A larger rotor diameter significantly increases the swept
area, allowing the turbine to capture more energy from the wind. Additionally, higher hub
heights enable turbines to access generally higher wind speeds available at greater altitudes,
further enhancing energy output. A survey of experts reveals that wind turbine rotor sizes
are expected to grow significantly, as illustrated by Figure 1-1 [6].

Master of Science Thesis N. van Wering



2 Introduction
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Figure 1-1: Expected growth of wind turbine size and power [6].

Furthermore, this higher power production with upscaled wind turbines results in a lower
Levelized Cost of Energy (LCOE). The LCOE is a key metric in the energy sector used to mea-
sure the cost-effectiveness of electricity generation. It is typically expressed in US Dollars per MWh
and accounts for the total costs of building and operating a power source, such as a wind tur-
bine, over its expected lifetime. In [7], upscaled wind turbines and their LCOE are analyzed,
finding that the use of 20 MW instead of 6 MW wind turbines for a 1 GW wind farm results
in a 20% lower LCOE. Between 2014 and 2019, the increase in wind turbine power capacity
already reduced the overall LCOE by more than 40% [7].

1-1 Wind turbine control and upscaling challenges

In this subsection, basic wind turbine controls are explored. Here, the basics of power curve
tracking with pitch and torque control are presented. Furthermore, challenges in wind turbine
control that arise from upscaling turbine size are discussed.

1-1-1 Basic wind turbine control

The general goal of wind turbine control is to maximize power production while minimizing
the cost of wind energy, where the latter can be achieved via load minimization. Load min-
imization is critical in reducing turbine fatigue as it reduces the amplitude and frequency of
mechanical stresses experienced by the structure. This decreases the structural degradation,
particularly for the blade, tower, and foundation, thereby increasing the wind turbine’s lifes-
pan. Power maximization involves absorbing the maximum possible amount of wind energy
by the wind turbine. However, this objective is not pursued once the rated wind speed is
reached, as the wind turbine will have already achieved its maximum power capacity by then.

Wind turbines generate aerodynamic power through the conversion of kinetic energy in wind,
described by the following equation:

Pw = Cp(β, λ)1
2ρπR

2v3,
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1-1 Wind turbine control and upscaling challenges 3

the maximum power output lead toward the high
oscillatory behavior of the rotor speed and blade
pitch angle due to the stochastic nature of wind
speed.6 To overcome the problem of oscillations, an
H-1 controller is designed to handle the smooth
behavior of blade pitch angle efficiently. The robust
control design using H-1 control technique for the
higher order systems are not efficient since the order
of controllers are too high. For the optimal perform-
ance of VSWT, linear quadratic Gaussian (LQG) con-
trol approach is applied to control the rotor speed as
well as elimination of fatigue loads on the mechanical
components (e.g., blades, shaft, and tower, etc.).7 It
proves to be credible, but due to the uncertain behav-
ior of wind speed, this method is constrained due to
high nonlinearity and complexity of VSWT. A linear
controller based on model predictive control (MPC)
for VSWT is presented in Jain et al.8 It was reported
that MPC is beneficial for VSWT, but it is very
sensitive to cost weights.9 There are several nonlinear
and intelligent control techniques applied to the
VSWT.10–13 A quasi sliding mode controller
(QSMC) for the VSWT is investigated to ensure the
torque control in Merida et al.10 To take into account
the undesirable effect of parametric uncertainties in
the VSWT, a robust backstepping controller is pre-
sented in Seker et al.11 The backstepping technique
proves to be an effective tool for nonlinear system,
but there is a substantial drawback of computational
burden. An intelligent controller for VSWT based on
permanent magnet synchronous generator (PMSG) is
investigated using artificial neural network (ANN) for
both torque and pitch control.12 A real-time fuzzy-
based adaptive controller has been designed for
pitch control of VSWT to maintain the constant
aerodynamic power.13

The quantitative feedback theory (QFT) provides a
wide scope of control design for systems by consider-
ing a large number of design specifications in the pres-
ence of uncertainties.14 It is well suited to incorporate
both time-domain and frequency-domain specifica-
tions and respective analysis. Few efforts have been
made in the literature15–17 toward QFT-based control
design for the wind turbine. The paper15 has con-
sidered only on the torque control of VSWT in
region II (refer Figure 1). In the control design speci-
fications, noise and disturbance rejection of plant
have not been considered in Cutululis and Ceanga.15

Only the pitch control of VSWT in region III (refer
Figure 1) has been reported in Bencic et al.16 without
considering noise and reference tracking design speci-
fications. Further, Singh et al.17 has concentrated only
on the torque control of VSWT in region II without
consideration of tower dynamics. These papers gener-
ally focused on either torque control15,17 or pitch con-
trol16 for the VSWT. All the design specifications
(e.g., reference tracking, disturbance, noise, etc.)
have not been considered for the QFT-based control-
ler design of VSWT.15,16 These papers have been

considered the low operating range of frequencies in
the respective control design. To the best of our
knowledge, there is not much literature available for
the controller design of VSWT using QFT.

This paper presents the development of QFT-based
robust control design of a three-bladed horizontal axis
VSWT for torque and also for pitch control. The
tower dynamics has been considered along with the
nonlinear model of VSWT, which affects the relative
wind speed and the rotor mechanics. A comprehen-
sive set of performance specifications has been
attempted to design reasonably robust performance
for an increased range of operating frequency.
Therefore, the proposed work of QFT-based robust
control design for VSWT is a novel contribution. In
order to apply QFT approach, the nonlinear model of
VSWT is linearized. The controller parameters are
obtained by satisfying the performance constraints
and specifications, to handle the uncertainty and dis-
turbances. Time and frequency responses have been
obtained for defined reference trajectories, which con-
firm to the desired specifications satisfactorily.
Additionally, to validate the robust performance of
the proposed QFT-based controller for VSWT non-
linear model, a comparative analysis has been made
with a standard wind turbine controller10,30 and a
proportional-integral (PI) controller.31 The simula-
tion results show that the controlled response has
fast convergence, high degree of tracking with very
small error in the presence of uncertainty which guar-
anteed the robust performance of VSWT.

The rest of the paper is organized as follows. In the
next section, the mechanical modeling of VSWT is
introduced. The linearized model of VSWT with
uncertainty is described in Linearized model with
uncertainty section. Problem statement with control
objectives of the paper are discussed in Problem state-
ment section. Preliminaries of QFT are introduced in
Quantitative feedback theory section. The robust con-
trol of VSWT using QFT is designed and performance
results of the proposed controller through simulation

Region-I Region-IVRegion-IIIRegion-II

Torque
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Pitch

Control

cut-inwv vwrated

Wind Speed (m/s)
cut-outwv
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Figure 1. Operating regions of variable speed wind turbine.18

Region I: no power generation; Region II: maximum/optimal

power generation; Region III: constant/rated power generation;
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692 Proc IMechE Part A: J Power and Energy 232(6)

Figure 1-2: The operating regions of a variable wind speed wind turbine [9]

where Pw is the aerodynamic power, ρ is air density, R the rotor radius, v wind speed, and
Cp the aerodynamic power coefficient, which depends on pitch angle β and tip speed ratio λ.
The tip speed ratio λ is defined as:

λ = ωR

v
, (1-1)

where ω is the rotor angular velocity. The aerodynamic power captured by the rotor is
converted to electric power. During partial load conditions, when the wind speed is below
the level required to reach the maximum power output, the control objective is to maximize
power capture. As wind speed increases beyond this point, the turbine enters the full load
region, where the electric power output is regulated and maintained at the rated power. The
rated power is defined as the maximum continuous power that the turbine is designed to
deliver [8]. The variation of the aerodynamic power output as a function of wind speed is
shown in Figure 1-2.

As shown in Figure 1-2, wind turbine operation is divided into four regions. In region I,
below the cut-in wind speed, the turbine remains idle without generating power. Region
II, between the cut-in and rated wind speeds, focuses on optimizing aerodynamic efficiency.
Here, generator torque control continuously adjusts the rotor speed to maintain an optimal,
constant tip speed ratio λ, while the pitch angle remains fixed at the position that maximizes
the power coefficient. This strategy ensures maximum aerodynamic power extraction as the
wind speed varies.

Region III spans from the rated wind speed to the cut-out wind speed. In this region,
controlling rotor speed above rated conditions is vital to prevent mechanical and electrical
overloads due to excessive aerodynamic forces. Because these forces grow significantly as wind
speed rises, generator torque alone becomes insufficient to keep the rotor speed and output
power within safe limits. Typically, the rated generator torque is maintained constant in
Region III. Thus, pitch control is employed as the main actuator, adjusting the blade pitch
angle β to regulate power to its rated value by controlling the aerodynamic torque on the
blades. This allows the wind turbine to maintain its rated power output despite increasing
wind speeds.

In Region IV, wind speeds reach or exceed the cut-out limit. For safety purposes, the turbine
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4 Introduction

undergoes shutdown procedures and ceases power production to prevent structural dam-
age [10].

1-1-2 Increased wind turbine model complexity due to upscaling

Larger wind turbines also create more challenges. The complexity of modeling the dynamics
can grow because wind speeds can differ significantly across the length of the blades, pri-
marily due to wind shear and the varying altitudes the blades sweep through. As the rotor
diameters increase, the vertical distance between the blade tips and the hub height grows,
causing the upper portion of the rotor to see substantially higher wind speeds than the lower
part. Because aerodynamic forces scale with the square of wind speed, even small changes
in wind speed can induce significant different loadings along the blades, amplifying the ro-
tor’s nonlinear aerodynamic response. The different aerodynamic forces at different sections
of the rotor require more complex dynamic models to accurately predict the turbine’s rotor
dynamics. This increases the nonlinearity of rotor speed dynamics, making it more chal-
lenging to determine the optimal pitch control input [11]. The complexity becomes more
pronounced at higher wind speeds, particularly in the rated load region. This is because the
differences in aerodynamic loading along the blade length increase significantly due to the
squared relationship between wind speed and aerodynamic loading.

The larger wind turbine blades also contribute to a larger rotor inertia. This increased inertia
results in slower dynamic responses of the rotor speed to changes in both wind conditions
and pitch angle. As a result, the wind turbine system experiences a delay in adapting to the
operational state to maximize power generation [12]. This requires advanced control methods
that can compensate the phase loss introduced by an increased rotor inertia, ensuring faster
adaptation to wind fluctuations. Feedforward control, discussed in the next subsection, plays
a crucial role in addressing this challenge.

Moreover, upscaling leads to slimmer, longer rotors due to adverse mass scaling. As the
rotor diameter increases, the mass grows faster than the structural strength if proportions
are maintained, making thick blades impractically heavy. To limit weight, the chord length
gets reduced, resulting in slimmer, more flexible blades. This increased flexibility amplifies
the nonlinearity of aeroelastic dynamics [13]. Traditional structural models often represent
the blade as a one-dimensional beam and apply linear modal analysis. While this approach
simplifies computations, it fails to accurately capture the large deflections observed in modern,
large-scale blades [14].

More complex aeroelastic models are thus needed to represent the nonlinear dynamics in large
wind turbines, alongside control methods that account for these nonlinear dynamics.

1-2 Literature review

The upscaling of wind turbines introduces increased mechanical loads, nonlinear dynam-
ics, and stronger spatial wind variations. To address these challenges, this section reviews
advanced control strategies, including Individual Pitch Control (IPC), Model Predictive Con-
trol (MPC), direct Data-Driven Predictive Control (DDPC), and the use of Light Detection
and Ranging (LIDAR)-based feedforward control. These methods aim to improve control and

N. van Wering Master of Science Thesis



1-2 Literature review 5

adaptability to complex wind turbine behavior. Finally, state-of-the-art DDPC frameworks
for nonlinear system applications are discussed, with a focus on their suitability for address-
ing the control challenges posed by the increased complexity in dynamics of upscaled wind
turbines.

1-2-1 Control solutions to facilitate wind turbine upscaling

The upscaling of wind turbines introduces complex dynamics, requiring advanced control
methods. Several solutions are outlined in this section, including IPC for blade-specific pitch
control. This control method with a Multiple Input Multiple Output (MIMO) nature can
be accommodated with the discussed MPC. Furthermore, MPC can also utilize previewed
information due to employing a receding horizon method. This leads to the examination of
LIDAR wind speed information, which can be used in a feedforward control setting with pos-
sible implementation in MPC. Finally, direct DDPC gets explored, addressing the challenges
in modeling complex wind turbine dynamics.

Individual Pitch Control

Active pitch control of wind turbine blades serve the goal of rotor speed regulation and helping
to reduce aerodynamic loads. This blade pitching can be done such that all of the blades have
the same pitch, which is called Collective Pitch Control (CPC), or individually called IPC.

The method of IPC adjusts the pitch of the blades individually, such that asymmetric rotor
loading, induced by factors like wind shear, yaw misalignment, and turbulence can be brought
to a minimum [15]. Counteracting the asymmetric loads leads to more stable rotor speeds for
better rotor speed regulation and reduced mechanical fatigue. A common technique used in
IPC to handle these individual blade load effects is the Multi-Blade Coordinate (MBC) trans-
formation. In this transformation, the loads measured on each rotating blade are converted
from a rotating frame into a non-rotating reference frame. By doing so, it becomes much
clearer which parts of the load signals correspond to periodic or asymmetric effects such as
wind shear or yaw misalignment. The controller then uses this information to generate the
individual pitch signals for each blade, thereby counteracting the uneven loads [15].

This is especially beneficial for large-scale wind turbines, where greater rotor diameters lead to
greater wind speed differences across blades and therefore also different loads [16]. Since IPC
involves processing multiple inputs, like measured loads, to determine outputs of three pitch
actuators, it has a MIMO control nature. This capability makes it well-suited for handling
the increasing computational and dynamic complexities associated with larger wind turbines.

Model Predictive Control

A control method that accommodates MIMO control is MPC. MPC was developed in
1979 [17] and has since been applied in a variety of industries, such as the oil and chemi-
cal industries [18].

A short visualization of the MPC algorithm is visible in Figure 1-3 with time-step k and
control horizon N . With MPC, a plant model is utilized to predict optimal inputs, states,

Master of Science Thesis N. van Wering



6 Introduction

and outputs over a specified future interval, known as the prediction horizon. A cost function
also evaluates feasible input and output trajectories while considering constraints. An opti-
mization algorithm finds an input trajectory that minimizes the cost function. This process
is complemented by a receding horizon strategy, where the first control input of the computed
input trajectory is applied. This is visible in Figure 1-3 where the predicted control input
trajectory over horizon N is in green, and the actual used first control input is in purple.
After this, the horizon advances one timestep, and the process is repeated [19].

MPC: Receding Horizon policy

Sergio Grammatico Introduction to MPC S&C, TU Delft 13 / 32

past future 
-(---- -----► 

reference output 

predicted output 
mei:~Jred 01:.tput 

past control input 
...J l • l predicted control input 

actual 
control input 

k k+l k+2 k+N 

Figure 1-3: Visualization of the receding horizon MPC with time-step k and control horizon
N [20].

Looking at the previously discussed MPC description, there are more important features
next to accommodating MIMO control. One of them is the property of being able to handle
constraints. This could, for example, limit the pitch activity to stay within the physical limits
of the pitch actuator’s angle and pitch rate. Such a limit on the pitch activity can also reduce
the fatigue load on the pitch actuator and prevent failure [21].

Furthermore, a key feature of MPC is the receding horizon strategy, which allows the in-
corporation of preview information such as future wind speed forecasts. This enables the
controller to anticipate upcoming changes in wind speed and compensate for the phase delays
introduced by rotor inertia. These delays become increasingly significant as wind turbines
increase in size, as discussed before. In addition, due to its inherent MIMO structure, MPC
can generate distinct pitch signals for each individual blade. This makes it possible to inte-
grate IPC within the MPC framework, enabling independent pitch control per blade. As a
result, the controller can reduce the negative effects of asymmetric loading, which are more
pronounced in larger wind turbines, as discussed in the IPC subsection.

Direct Data-Driven Predictive Control

Upscaling wind turbines accentuates nonlinear behaviors, complicating the creation of ac-
curate, physics-based state-space models [22]. Developing such system models is costly and
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1-2 Literature review 7

complex, and assumptions or unmodeled dynamics can lead to mismatches, affecting con-
trol robustness and safety. This has driven interest in Data-Driven Control (DDC) control
strategies, which uses data to identify a model [23].

In DDC, sensor data can be used to identify state-space models that serve as a basis for
controller design. DDC is able to address issues like unmodeled dynamics and nonlinearity
when the data accurately reflects these behaviors in the identified state-space model [23].
While DDC makes use of a state-space model, it can also be used in a MPC framework.
This is called DDPC. With wind turbine data, such as pitch signals, rotor speed and wind
speed data, being available, DDPC has been already researched with applications on wind
turbines [24].

Direct DDPC bypasses the need for an explicit state-space model by using input-output
data to derive future control actions [25]. Within direct DDPC, methods like Subspace
Predictive Control (SPC) [26] and Data-enabled Predictive Control (DeePC) [27], similar
to MPC, employ a receding horizon optimal control framework [28]. To address the bias
introduced by noise in traditional SPC, closed-loop SPC has been proposed [29]. In addition,
this variant requires fewer parameters, showing to be beneficial with the use of an adaptive
filter in the next subsection. These direct DDPC methods can utilize constraints and receding
horizons specific to wind turbine control, constraining pitch activity and including future
wind speed information. This wind speed information can be provided by using LIDAR
measurements as will also be discussed in the next subsection.

Despite direct DDPC being labeled "direct", it is important to note that these methods do not
necessarily imply a direct mapping from data to optimal control input without any structural
model. For instance, SPC uses an intermediate output predictor constructed from past input-
output data, to implicitly describe the system’s dynamics and compute control inputs. While
this approach bypasses the need for explicit state-space identification, it still builds an output
predictor model of the system behavior through data. This is an ongoing discussion about
whether such methods truly qualify as "direct" DDPC [23].

LIDAR Measurements

Transitioning to advancements in measurement technology, LIDAR has gained interest in the
wind turbine sector for measuring wind speeds. LIDAR is a remote sensing technology that
uses laser beams to measure distances and track air movement. It is commonly used for
wind speed measurement, assessing wind potential at a site, and monitoring airflow around
turbines. Unlike traditional anemometers on tall masts, LIDAR provides a flexible, contact-
free method for accurate wind measurements at different heights and distances [30].

The fundamental principle of LIDAR is based on the emission of a laser beam, which interacts
with airborne particles. A fraction of the light is scattered back toward the receiver, and the
change in frequency due to the Doppler effect is used to infer the velocity of the particles
in the beam’s direction. This allows wind speed to be determined at various points in the
atmosphere [31].

LIDAR systems are divided into two main types based on how they detect wind: coherent
detection, which measures Doppler shifts by mixing the received signal with a stable reference
laser, and direct detection, which uses spectral filtering techniques to analyze the frequency
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shift of scattered light. Coherent detection, especially in the near-infrared range, is preferred
for wind energy applications because it is highly sensitive and works without needing addi-
tional particles in the air. By contrast, direct detection relies more on atmospheric particles,
such as aerosols or dust, to generate a sufficiently strong return signal, making it less effective
in clean-air conditions [32].

LIDAR systems can also be distinguished by their emission waveform: Pulsed-Wave (PW) or
Continuous-Wave (CW). PW LIDAR emits short bursts of laser energy and determines range
by measuring the time of flight of the pulse. CW LIDAR, by contrast, emits a continuous
beam and determines range by focusing the laser at specific distances [33]. How this LIDAR
wind speed information can be used for feedforward control is discussed in the next subsection.

Feedforward control

Recent research in wind turbine control highlight the potential of incorporating preview-
based feedforward strategies within predictive control frameworks, such as MPC [34]. When
using an anemometer, the MPC can use this measured wind speed as a constant wind speed
over the prediction horizon due to unknown future wind trajectories. However, incorpo-
rating the discussed LIDAR measurements as current and future disturbance trajectories
allows the controller to anticipate and adjust to upcoming wind changes, effectively creating
a feedback-feedforward controller [35]. As demonstrated in [36], incorporating future wind
speed information from LIDAR into the MPC framework can significantly reduce blade loads
while simultaneously requiring less pitch actuation of the wind turbine.

Building on these developments within the MPC framework, similar concepts can be extended
to the previously discussed direct DDPC, such as closed-loop SPC. The receding horizon prin-
ciple in direct DDPC, like in MPC, also enables the integration of LIDAR-based feedforward
information. An example of such an implementation is given in [37], where LIDAR distur-
bance preview knowledge is incorporated into the closed-loop SPC algorithm.

1-2-2 DDPC for Nonlinear Systems: State-of-the-art

This section provides an overview of state-of-the-art frameworks suitable for DDPC applied
to nonlinear systems, with a focus on methods capable of accurately capturing high-fidelity
nonlinear wind turbine dynamics. While these methods are broadly applicable to nonlinear
systems, their ability to represent complex dynamic behavior makes them particularly relevant
for addressing the increased control complexity in wind turbines resulting from upscaling.

Among these methods, the Wiener-Hammerstein method has emerged as a promising tech-
nique. It transforms nonlinear input–output data into a linear framework by applying static
nonlinear mappings represented by basis functions [38]. This method has shown successful
implementation to model a wind turbine’s torque and trust coefficient with suitable basis
functions [39]. However, its effectiveness is constrained by being dependent on predefined
basis functions, which may limit to capturing dynamics that extend beyond the sampled
data. A similar idea of using basis functions underpins the Reproducing Kernel Hilbert
Space (RKHS) approach. In contrast to Wiener-Hammerstein, RKHS maps the data into an
infinite-dimensional feature space using kernel functions, which allows it to capture complex
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nonlinear relationships. The so-called kernel trick enables this mapping without explicitly
computing the high-dimensional features, keeping computations tractable [40]. The chal-
lenge, however, lies in selecting an appropriate kernel, as different choices can significantly
influence system trajectories [41].

Another promising framework is the Linear Parameter-Varying (LPV) approach, which rep-
resents nonlinear dynamics as linear time-varying systems that are dependent on measurable
scheduling variables [42]. This formulation enables the application of linear design techniques
while accurately capturing nonlinear behavior. LPV models have been widely applied across
various nonlinear control problems and have shown particular success in wind turbine con-
trol [43]. A downside of LPV models is that identifying the output predictor using closed-loop
data introduces the curse of dimensionality, leading to computational challenges [44].

Lastly, Recursive Least Squares (RLS) filtering techniques handle nonlinear dynamics by
approximating them as linear time-varying systems. This approach can be interpreted as a
form of continuous local linearization, where the linear approximation adapts in real time to
capture the behavior of the underlying nonlinear system. RLS is an adaptive filter, estimating
system dynamics, and with the addition of an exponential forgetting factor, it can prioritize
new data in its model estimation [45]. However, standard RLS with exponential forgetting can
cause the covariance matrix to accumulate large eigenvalues in directions that are insufficiently
excited by new data. This inflates the uncertainty in those directions, making parameter
updates overly sensitive to incoming data points of recently less excited directions. This issue
is addressed by directional forgetting, which maintains sufficient excitation in all directions
by selectively discounting old data only when new information is available [46].

Applying exponential or directional forgetting RLS to closed-loop SPC for wind turbine con-
trol enables real-time adjustment of model parameters, to address nonlinear dynamics and
wind variability. This approach demonstrated to show promising results applied to a small-
scale wind turbine in [47]. Here, above-rated rotational speed regulation was maintained us-
ing adaptive closed-loop SPC with RLS and forgetting, demonstrating improved rotor speed
tracking performance.

Integrating RLS with forgetting methods in closed-loop SPC offers an intuitive approach by
dynamically updating the linear approximation of the system as conditions evolve, thereby
improving the local representation of nonlinear behavior. This makes it particularly well-
suited for systems with mild nonlinearities or slowly varying operating conditions, where the
local data remains representative of the system dynamics. Furthermore, its computational
efficiency makes it attractive for online implementation, as RLS eliminates the need to invert
large data matrices at every time step. Given these advantages, closed-loop SPC techniques
combined with RLS filtering will be further explored, aiming to enhance the predictive control
of the discussed nonlinear wind turbine dynamics.

1-3 Research question

The preceding sections have underscored the importance of wind energy in meeting global
energy demands and combating climate change. As wind turbines scale up in size to reduce
the LCOE and increase capacity, new challenges arise in control systems due to amplified
nonlinear dynamics. Despite advancements in control strategies like IPC and MPC, two key
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aspects remain insufficiently addressed: accommodating the complex nonlinear behavior of
larger turbines and at the same time integrating wind preview information to counteract
phase delays.

A summary of the proposed controller features, along with the corresponding issues they aim
to solve, is as follows:

• Selected RLS-based adaptive filtering within SPC: Addresses the nonlinear rotor dynam-
ics without relying on specific nonlinear models.

• Incorporation of LIDAR-derived wind preview information: Uses feedforward control to
mitigate phase delays in rotor speed regulation that arise due to increased rotor inertia.

It is hypothesized that integrating these features will lead to a control strategy capable of
effectively managing the complex nonlinear dynamics of large-scale wind turbines and im-
proving performance by proactively utilizing wind preview information. Thus, the central
research question explores how to systematically combine these elements into a cohesive and
effective control framework for large-scale wind turbines.

This leads to the formulation of the research question:

How can closed-loop SPC incorporate both an adaptive filter and LIDAR-based
wind preview information to achieve optimal above-rated rotor speed regulation
of a wind turbine?

To answer this question, the following sub-questions will be considered:

• How can the adaptive closed-loop SPC framework incorporate previewed future wind
speed information from LIDAR measurements?
Increased rotor inertia leads to slower responses to wind fluctuations, making it chal-
lenging to maintain rated rotor speed regulation. Incorporating LIDAR-based wind
preview information enables anticipatory control actions, which can compensate for the
delay introduced by the system’s slow dynamics. This sub-question aims to develop a
systematic method for integrating realistic LIDAR preview wind data into the adap-
tive closed-loop SPC framework, with the goal of enhancing rated rotor speed tracking
performance under varying wind conditions.

• How can standard RLS, exponential forgetting, and directional forgetting be used for
feedforward closed-loop SPC to adapt to nonlinear rotor dynamics?
This subquestion investigates how different RLS-based adaptation strategies enable
closed-loop SPC to approach the nonlinear and time-varying behavior of wind turbine
dynamics. The focus lies on three specific methods: standard RLS without forgetting,
exponential forgetting, and directional forgetting. Each strategy reflects a different
trade-off between memory of past data in its parameter estimation and adaptability to
time-varying system dynamics. Investigating how these different RLS filtering strategies
affect the adaptive updating of the closed-loop SPC local linearizations may provide in-
sight into effectively modeling the nonlinear behavior of wind turbines and maintaining
rated rotor speed regulation under varying wind conditions.
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• How do the developed adaptive closed-loop SPC with wind preview algorithms perform in
above-rated rotor speed regulation when applied to a nonlinear wind turbine simulation?
The adaptive closed-loop SPC algorithms are evaluated in nonlinear wind turbine sim-
ulations using QBlade [48]. The study focuses on the above-rated regime, where higher
wind speeds lead to pronounced nonlinear rotor dynamics and increased control chal-
lenges. The simulations are used to investigate the impact of different RLS forgetting
strategies within a closed-loop SPC framework, as well as the benefit of wind speed
feedforward preview on maintaining stable rotor speed regulation.

1-4 Outline

This thesis is structured into four chapters. The first chapter emphasizes the critical role of
wind energy in achieving sustainable energy goals. It elaborates on the specific challenges
arising from the upscaling of wind turbines, and explains how larger scales amplify nonlinear
dynamics. Furthermore, this chapter introduces the necessity and potential advantages of
using DDPC control methods, setting the foundation for the subsequent research question.

The second chapter presents the formulation of an adaptive closed-loop SPC framework in-
corporating disturbance feedforward control. It details the systematic development of a data-
driven output predictor built entirely from historical input-output measurements, describes
the integration of RLS estimation to adaptively update system parameters, and integrates
exponential and directional forgetting to manage changing operating conditions. This chapter
addresses this research’s first two sub-questions.

The third chapter applies this adaptive closed-loop SPC framework to a nonlinear wind tur-
bine simulation called Qblade, with the goal of rated rotor speed regulation. It first outlines
the simulation setup, including the Qblade and LIDAR simulators. Moreover, it explores the
controller’s performance across varying wind scenarios, such as gusts, ramps, and turbulent
wind flows. The effectiveness of incorporating wind preview and different RLS forgetting
methods into the adaptive closed-loop SPC is assessed through a comprehensive sensitiv-
ity analysis and performance comparison. This chapter addresses this research’s third sub-
question .

The final chapter summarizes the results of this research, highlighting the key advantages
and disadvantages of the different proposed adaptive closed-loop SPC algorithms in effec-
tively addressing nonlinearities and enhancing rated rotor speed tracking. It concludes with
recommendations for future research directions.

Master of Science Thesis N. van Wering



12 Introduction

N. van Wering Master of Science Thesis



Chapter 2

Adaptive closed-loop SPC with
disturbance feedforward

This chapter presents an adaptive closed-loop Subspace Predictive Control (SPC) framework
with disturbance feedforward, which is later applied in this thesis to a nonlinear wind turbine
simulation. As a direct Data-Driven Predictive Control (DDPC) method, closed-loop SPC
avoids explicit state-space modeling and requires fewer parameters than state-space-based
predictive control. An adaptive Recursive Least Squares (RLS) filter continuously updates
the linear system approximation. Wind disturbances, such as Light Detection and Ranging
(LIDAR) measurements, are incorporated through a feedforward structure by integrating
preview information into the receding horizon control framework. By jointly adapting the
system dynamics and incorporating wind preview information, the approach targets improved
rotor speed regulation in large-scale wind turbines.

To structure the development of this framework, Section 2-1 outlines the problem setup,
including notation and key assumptions. Section 2-2 derives the output predictor of closed-
loop SPC with disturbance information. Section 2-3 presents an adaptive version of closed-
loop SPC where the output predictor is estimated via RLS, along with a square root estimation
method incorporating exponential and directional forgetting. The resulting RLS closed-loop
SPC with forgetting, which is subsequently discussed, builds upon the work in [37, 47].

2-1 Setup and assumptions

This section describes the fundamentals of the closed-loop SPC algorithm applied on an
unknown system where input, output, and disturbance signals are accessible. This system
features a single output, as well as a control and disturbance input channel.
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14 Adaptive closed-loop SPC with disturbance feedforward

2-1-1 Model structure

For the introduction of the SPC frameworks, an unknown discrete-time Linear Time-Invariant
(LTI) system is assumed. The system is assumed to be in a minimal state-space representation
and is observable, with Gaussian white noise having a zero mean [26]. The input-disturbance-
output data sets are assumed to be generated by a discrete-time LTI system, represented in
state-space form with an innovation model:

xk+1 = Axk +Buuk +Bwwk +Kek,

yk = Cxk +Duuk +Dwwk + ek,
(2-1)

with xk ∈ Rn, uk ∈ Rm, wk ∈ Rq, ek ∈ Rl, and yk ∈ Rl, representing the state vector,
control input, external disturbances, innovation noise, and the measured output respectively.
The index k ∈ Z refers to discrete-time steps. The innovation noise ek is assumed to be an
ergodic, zero-mean white noise process with a covariance defined as E[eke

⊤
k ] = Wδkj , where W

is positive definite (W > 0). The Kronecker delta δkj equals one if k = j and zero otherwise.
The system dynamics are represented using the matrices A ∈ Rn×n and B ∈ Rn×m. The
system matrices A ∈ Rn×n, Bu ∈ Rn×m, Bw ∈ Rn×q, K ∈ Rn×l, C ∈ Rl×n, Du ∈ Rl×m, and
Dw ∈ Rl×q are also referred to as the state, input, disturbance, Kalman gain, output, input-
output direct feedthrough, and disturbance-output direct feedthrough matrices, respectively.
Furthermore, it is assumed that the system with n states is in its minimal representation and
controllable. The disturbances wk are treated separately from the inputs uk because they
cannot be controlled. In the representation given by Equation 2-1, the term ek is eliminated
from the first equation, leading to a system representation in the predictor form:

xk+1 = Ãxk + B̃uuk + B̃wwk +Kyk

yk = Cxk +Duuk +Dwwk + ek

(2-2)

where the matrices Ã = A−KC and
[
B̃u B̃w

]
=

[
Bu Bw

]
−K

[
Du Dw

]
are introduced

for shorter notation. The (̃·) notation is used to indicate parameters associated with the
predictor model in Equation 2-2.

2-1-2 Notation

Before deriving the equations for the SPC algorithm, it is important to define some notation
first. The collected data is arranged in block-Hankel matrices. A block-Hankel matrix has
the following form:

Ui,s,N =


ui ui+1 · · · ui+N−1
ui+1 ui+2 · · · ui+N

...
... . . . ...

ui+s−1 ui+s · · · ui+N+s−2

 ∈ Rms×N

where the first index i refers to the time index of its top left entry, the second index s refers
to the number of block rows in the block-Hankel matrices, the third index N refers to the
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number of columns. To construct the block-Hankel matrix, N + s − 1 data samples are
required. Similarly, the block matrices Yi,s,N ∈ Rℓs×N , Ei,s,N ∈ Rℓs×N , and Wi,s,N ∈ Rqs×N

are defined to represent output, noise, and disturbance data, respectively. The second index
s is omitted when the block-Hankel matrices have only a single block-row. This is applied to
state sequences, resulting in Xi,N ∈ Rn×N , as defined by:

Xi,N =
[
xi xi+1 · · · xi+N−1

]
.

Similarly, a data vector is represented as:

ui,s =
[
u⊤

i u⊤
i+1 · · · u⊤

i+s−1

]⊤
.

Stacked data vectors containing outputs, inputs, and disturbances are defined as follows:

zi,s =
[
y⊤

i,s u⊤
i,s w⊤

i,s

]⊤
.

Additionally, block-Toeplitz matrices are defined as:

Ts(A,B, C,D) =


D 0 0 . . . 0
CB D 0 . . . 0
CAB CB D . . . 0

...
... . . . . . . ...

CAs−2B CAs−3B · · · CB D

 ,

where A, B, D and 0 are matrices of suitable dimensions, here 0 is the zero matrix, and the
number of block rows is again denoted by s. Using this definition, and given a positive integer
future window length f ∈ Z>0 the following specific block-Toeplitz matrices are defined:

T u
f = Tf (A,Bu, C,Du) ∈ Rℓf×mf ,

T w
f = Tf (A,Bw, C,Dw) ∈ Rℓf×qf ,

Hf = Tf (A,K,C, I) ∈ Rℓf×ℓf ,

where I is an identity matrix of appropriate dimensions. Moreover, an extended observability
matrix is given by:

Γf =


C
CA
CA2

...
CAf−1

 ∈ Rℓf×n.

Finally, the extended controllability matrix is defined as:

Kp(B) =
[
Ap−1B Ap−2B · · · B

]
∈,

Ky
p = Kp(K) ∈ Rn×ℓp Ku

p = Kp(Bu) ∈ Rn×mp Kw
p = Kp(Bw) ∈ Rn×qp,
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with positive integer past window length p ∈ Z>0 and Kz
p =

[
Ky

p Ku
p Kw

p

]
∈ Rn×(ℓ+m+q)p.

Matrices Γ̃f , T̃f and K̃p are defined in the same way as their counterparts without the tilde,
with A, Bu, and Bw replaced by Ã, B̃u, and B̃w, respectively. With exception of the block-
Toeplitz matrix H̃f , which is defined as H̃f = Tf (Ã,K,−C, I).

2-1-3 Assumptions

The following assumptions are considered throughout this thesis:

• Assumption 1. A stationary Kalman gain K from Equation 2-2 exists, ensuring that
the eigenvalues of Ã lie strictly within the unit circle [49].

• Assumption 2. The past window length p is selected to be sufficiently large, so that
based on Assumption 1, the powers of Ã decay to zero exponentially. This allows the
approximation Ãp ≈ 0, which is commonly adopted to simplify the analysis by neglecting
the effect of the initial state [50].

• Assumption 3. The disturbance and input signal is considered quasi-stationary, ensuring
the convergence of time averages used in computations involving the input sequence [51].

• Assumption 4. The input sequence u = col (u1, . . . , uk), the disturbance sequence w =
col (w1, . . . , wk), and the output sequence y = col (y1, . . . , yk) are considered, where k
denotes the total number of data points.

The inputs are assumed to be persistently exciting of order mL + n and disturbance
sequence of qL+ n with k ≥ L. That is, the following Hankel matrices[

U1,L,k−L

Y1,L,k−L+1

]
,

[
W1,L,k−L

Y1,L,k−L+1

]

are of rank mL + n and qL + n, respectively. Furthermore, it is assumed that L ≥ d,
where d denotes the lag of the observability matrix. It then follows that the combined
input and disturbance sequences provide sufficient excitation. Consequently, the output
sequence becomes uniquely determined by the system dynamics and is representative
of its behavior [27].

2-2 Disturbance feedforward SPC

This section describes the construction of an output predictor using data-organized Hankel
matrices, incorporating feedforward disturbance information. Additionally, the closed-loop
SPC variant is introduced, which is preferred over traditional SPC as it requires fewer pa-
rameters to estimate, making it especially suitable for the RLS parameter estimation method
described in Section 2-3.
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2-2-1 Obtaining the data equation

To characterize the system’s behavior without relying on the identification of a particular
state-space model, historical input-disturbance-output data is used to construct an output
predictor that forecasts future outputs over a specified time horizon. This subsection intro-
duces the fundamental data equations essential for deriving the output predictor used in SPC.
By utilizing the previously introduced notation, the system outputs are described as a func-
tion of an initial state combined with output, input, disturbance, and innovation trajectories.
The formulation begins at time step k = i, as illustrated in Figure 2-1, and considers a past
window of length p and a prediction window of length f . The system in Equation 2-1 can be
reformulated in a so-called lifted representation, a structure frequently employed in subspace
identification methods [52]. In this context, the lifted form is obtained by iterating the state
and output equations in Equation 2-1 over p steps to get the input and output at step k+ p:

xk+p = Apxk +
p−1∑
j=0

Ap−1−j
(
Bu uk+j +Bw wk+j +K ek+j

)

yk+p = CApxk +
p−1∑
j=0

CAp−1−j
(
Bu uk+j +Bw wk+j +K ek+j

)
+Du uk+p +Dw wk+p + ek+p.

(2-3)

By applying the previously introduced block-Toeplitz and extended controllability matrices,
along with the indexing convention shown in Figure 2-1, the system and output evolution of
Equation 2-3 can be expressed in a compact matrix form. In this formulation, the state x
is propagated over p steps to obtain the future state xk+p, referred to as xip . Output y is
propagated over a future window of length f , resulting in a stacked vector of outputs from
step k + p to k + p+ f − 1, denoted as yip,f . This yields the following expressions:

xip = Apxi +Ku
pui,p +Kw

p wi,p +Ky
pei,p (2-4a)

yip,f = Γfxip + T u
f uip,f + T w

f wip,f +Hfeip,f (2-4b)

Furthermore, the system in Equation 2-2 can be lifted similarly as:

xip = Ãpxi + K̃u
pui,p + K̃w

p wi,p + K̃y
pyi,p (2-5a)

yip,f = Γ̃fxip + T̃ u
f uip,f + T̃ w

f wip,f + (I − H̃f )yip,f + eip,f (2-5b)

For Data-Driven Control (DDC), it is desirable to minimize the effect of elements that cannot
be directly measured, such as the initial states sequence xi in Equation 2-5a. A common
assumption in subspace identification, as stated in Assumption 2, is applied to eliminate the
effect of the initial state sequence. Hence, the unknown state sequence can be rewritten as:

xip = Ãpxi + K̃z
pzi,p ≈ K̃z

pzi,p ⇐ p≫ 0. (2-6)

When the approximation of Equation 2-6 gets applied to Equation 2-4b and Equation 2-5b,
the previously defined data equations for the output can be rewritten respectively as:
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yip,f = Γf K̃y
pyi,p + Γf K̃u

pui,p + Γf K̃w
p wi,p

+ T u
f uip,f + T w

f wip,f +Hfeip,f (2-7a)
yip,f = Γ̃f K̃y

pyi,p + Γ̃f K̃u
pui,p + Γ̃f K̃w

p wi,p

+ T̃ u
f uip,f + T̃ w

f wip,f + (I − H̃f )yip,f + eip,f (2-7b)

To further develop this framework, it is useful to explore the structural properties of the
involved matrices. By comparing Equation 2-7a and Equation 2-7b and since Hf is invertible
it follows that [53]: [

Γf K̃z
p T u

f T w
f Hf

]
= H̃−1

f

[
Γ̃f K̃z

p T̃ u
f T̃ w

f I
]
. (2-8)

This shows that the innovation form in Equation 2-7a and the predictor form in Equation 2-7b
can be easily related to each other. This relation is demonstrated to be helpful in the next
subsection.
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Figure 2-1: In this figure, the offline data collection set is divided into two subsets, blue and
green, to establish the identification of the output predictor for closed-loop SPC. In standard
SPC, the identification horizon fID is typically chosen equal to the prediction horizon f , whereas
in closed-loop SPC identification is instead carried out with a fID = 1. Furthermore, the most
recent p measurements are used to initialize the optimal controller, and then the controller predicts
the inputs and output over the future horizon of length f . This figure is based on a figure used
in [37].
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2-2-2 Constructing an output predictor

The equations presented earlier incorporate historical data from two distinct data windows,
depicted in green and blue in Figure 2-1. This section focuses on deriving a causal predictor
for future outputs used for closed-loop SPC, denoted by ŷîp,f . The aim is to determine how
the outputs from the blue section can be described using the input, output, and disturbance
data from the green section, along with the input and disturbance information from the blue
section. Furthermore, a key characteristic of closed-loop SPC is the use of a future window
defined as fID = 1 during the identification process. This approach involves focusing only on
the top block-row of one of the data equations, as the top block-row remains identical. This
selection is intentional, as it ensures that during closed-loop operation, the inputs and noise
utilized for identification remain uncorrelated. By doing so, this method minimizes identi-
fication bias, which could otherwise degrade the controller’s performance [54]. Additionally,
this formulation requires estimating fewer parameters, which is particularly advantageous for
the adaptive RLS algorithm discussed later.
The used dateset for identification has a length of N̄ and is typically selected to ensure that
the number of columns N , where N = N̄ − p, in the block-Hankel matrices is significantly
larger, typically by a factor of 100, than p and fID [26]. The historically collected data
is divided into two overlapping sections: the "past" and the "future". These sections are
visually represented as green and blue bars, respectively, as shown in Figure 2-1. Data
from the green segment is structured into block-Hankel matrices, with inputs organized as
Ui,p,N , disturbances as Wi,p,N , and outputs as Yi,p,N . Similarly, the blue segment is used to
construct matrices Uip,1,N , Wip,1,N , and Yip,1,N . For this purpose the starting index for the
future window, ip = i+ p, is introduced.
To derive the closed-loop SPC algorithm, additional data matrices are incorporated. Specif-
ically, the last p input-disturbance-output samples of the dataset, associated with a dashed
arrow pointing left, are organized into yî,p, uî,p, and wî,p. Starting from î = i + N̄ − p. The
vectors ŷîp,f , uîp,f and wîp,f all corresponding to the dashed arrow pointing to the right,
are considered in the future horizon. Among these, ŷîp,f and uîp,f are apriori unknown and
treated as optimization variables, whereas the future disturbance wîp,f is assumed to be fully
known, as it is measurable ahead of time.
The objective of this disturbance-feedforward closed-loop SPC is computing optimal future
inputs, uîp,f , such that ŷîp,f follows a predefined reference trajectory rîp,f with the influence
of a known disturbance wîp,f . This is done by the formulation of an output predictor that is
linearly dependent on known and unknown data trajectories.
Following this concept, and based on Equation 2-7, the proposed output predictor of the
innovation form and predictor form are respectively:

ŷîp,f = Γ̂f K̃z
pzî,p + T̂ u

f uîp,f + T̂ w
f wîp,f , (2-9a)

ŷîp,f = ̂̃Γf K̃z
pzî,p + ̂̃T u

f uîp,f + ̂̃T w
f wîp,f + (I − ̂̃Hf )ŷîp,f , (2-9b)

Here, (̂·) denotes that the vectors and matrices that are estimated. The output predictors
in Equation 2-9 predict outputs over a horizon f , as indicated in Figure 2-1, where also
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20 Adaptive closed-loop SPC with disturbance feedforward

the indices of î and îp are defined. In Equation 2-9a, corresponding to the innovation form,
the output predictor is defined explicitly, as the predicted output ŷîp,f appears only on the
left-hand side. In contrast, the predictor form in Equation 2-9b is defined implicitly, as ŷip,f

appears on both sides of the equation.

Closed-loop SPC utilizes only the top block row of the output predictors in Equation 2-9
for identification, which is identical for both the innovation and predictor forms due to their
shared structure. This block row consists explicitly of CK̃z

p, Du, and Dw, and therefore yields
the same identified matrices in both cases during the identification step. Although the full
predictor structures differ, both formulations can be employed for closed-loop SPC, as will
become clear later in this section.

The top block rows can be easily estimated with a linear regression approach, which can be
solved through the following least squares formulation:

[
ĈK̃z

p D̂u D̂w

]
= arg min

θ

∥∥∥∥∥∥∥Yip,1,N − θ

 Zi,p,N

Uip,1,N

Wip,1,N


∥∥∥∥∥∥∥

2

F

, (2-10)

where ∥ · ∥F denotes the Frobenius norm and θ is the optimization variable representing
the estimated Markov parameters. This least squares equation for identifying the Markov
parameters is constructed from the Hankel data matrices defined in Figure 2-1, with the data
trajectories in the green and blue bars. The solution for the Markov parameters that are
estimated with the solved identification problem in Equation 2-10 is unique if the input and
disturbance data is sufficiently persisting exciting of order m(p+fID) +n and q(p+fID) +n,
respectively, giving Assumption 4. Due to the persistently exciting conditions the data matrix
on the right-hand side of the Markov parameters θ in Equation 2-10 should have full row rank.
Meaning the amount of columns N of the Hankel matrices should be N ≥ (m + q + ℓ)p +
(m+ q)fID. This condition of the full rank ensures that the right inverse of the data matrix
on the right-hand side of the Markov parameters exist, enabling a unique solution to the
least-squares problem.

The goal is to construct one of the output predictors as introduced in Equation 2-9a and
Equation 2-9b. This is needed to formulate the closed-loop SPC problem to predict the
outputs over the full future horizon for the receding horizon control method. However, the
least-squares identification step in Equation 2-10 provides only the first block row of this
predictor. Constructing the rest of the block rows start with looking again at Assumption 2,
which state that Ãp ≈ 0. With this assumption, the lower triangular block rows in Γ̃f K̃u

p can
be approximated to zero as shown here:

Γ̃f K̃u
p =


CÃp−1B̃u CÃp−2B̃u · · · CB̃u

0 CÃp−1B̃u · · · CÃB̃u
... . . . . . . ...
0 · · · 0 CÃp−1B̃u

 , (2-11)

with Assumption 2, the same form as shown above can be approximated for Γ̃f K̃y
p and Γ̃f K̃w

p .

Looking at Equation 2-11, it becomes clear that the upper triangle block rows are time shifted
versions of the estimated Markov parameter ĈK̃z

p in Equation 2-10. With the help of this
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assumption, the matrices of the output predictor in predictor form matrices in Equation 2-9b
can be fully formulated including H̃f [45]. Another way to obtain the full set of block rows in
Equation 2-9b, starting from the first identified block row, is to form them recursively over
the prediction horizon f . This procedure produces the same predictor form output predictor
as in Equation 2-9b. Finally, to express the predictor in innovation form, the relationship in
Equation 2-8 is used. This demonstrates how the predictor form matrices can be transformed
into the innovation-form matrices, leading to the complete formulation in Equation 2-9a. Both
output predictor formulations can be used within the receding horizon control implementation
of closed-loop SPC.

2-3 Recursive solution of the parameter estimation problem

This section develops an adaptive SPC scheme by recursively estimating the system’s Markov
parameters. To maintain adaptability, an exponential forgetting factor is applied in the
recursive least squares (RLS) algorithm, weighing old data exponentially less than recent
data. A square root formulation is introduced to enhance numerical stability, and directional
forgetting is employed to relax excitation conditions. In the context of this thesis, the method
will eventually be used to approach the nonlinear dynamics in the wind turbine simulation
by adaptively determining local linearizations from data.

2-3-1 Recursive Least Squares (RLS)

This subsection outlines the process of estimating the Markov parameters in real-time through
a RLS approach. The derivation begins with a least-squares-based estimation of the predic-
tor Markov parameters, as defined in Equation 2-10. The formulation in Equation 2-10
addresses offline identification from a batch of input-disturbance-output measurements gath-
ered in Hankel matrices. For the RLS, a reformulation is applied to adapt to the arrival of
new input-disturbance-output samples at each time instant. To arrive at the RLS, first the
least-squares problem in Equation 2-10 is repeated in a shorter notation as follows:

θ̂k = arg min
θ

∥∥Yip,1,N − θΦk

∥∥2
F
, (2-12)

with:

Φk =

 Zi,p,N

Uip,1,N

Wip,1,N

 , θ =
[
CK̃z

p Du Dw

]
,

The full-rank least-squares solution of Equation 2-12 is expressed as:

θk = Yip,1,N Φ⊤
k

(
ΦkΦ⊤

k

)−1
. (2-13)

Equation 2-14, denotes the data regressorϕk+1 at timestep k + 1, which is appended at each
time step as an additional column to Φk resulting in Φk+1.

ϕk+1 =

 zî,p

uîp,1
wîp,1

 (2-14)
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22 Adaptive closed-loop SPC with disturbance feedforward

Relating the time update k + 1 to Figure 2-1 it can be interpreted as appending the newly
obtained data to the past data sequence, giving N̄ + 1 total data points assuming i = 1.
Similarly, the current output measurement yk+1 is added to Yip,1,N . This ensures that the
new data is incorporated into the Markov parameter estimation θ̂k+1 of the next time step.

With yk+1 and ϕk+1 being available, the least-squares problem can be formulated as:

θk+1 =
(
Yip,1,N Φ⊤

k + yk+1ϕ
⊤
k+1

) (
ΦkΦ⊤

k + ϕk+1ϕ
⊤
k+1

)−1

︸ ︷︷ ︸
=Pk+1=I−1

k+1

. (2-15)

The covariance matrix Pk and the information matrix Ik are defined as:

Pk =
(
ΦkΦ⊤

k

)−1
, Ik = ΦkΦ⊤

k .

Since directly inverting Φ⊤
k Φk + ϕk+1ϕ

⊤
k+1 at every time step would be computationally ex-

pensive, we apply the Matrix Inversion Lemma [55]:

Pk+1 =
(
P−1

k + ϕk+1ϕ
⊤
k+1

)−1

= Pk − Pkϕk+1
(
1 + ϕ⊤

k+1Pkϕk+1
)−1

ϕ⊤
k+1Pk.

(2-16)

It is worth noting that this expression involves inverting a ℓ × ℓ matrix only, so a scalar for
ℓ = 1. Substituting the expression for Pk+1 from Equation 2-16 and the previous estimate θk

from Equation 2-13 into the parameter update in Equation 2-15 yields:

θk+1 = θk

(
I − ϕk+1

(
1 + ϕ⊤

k+1Pkϕk+1
)−1

ϕ⊤
k+1Pk

)
+ yk+1ϕ

⊤
k+1Pk+1

= θk − θkϕk+1
(
1 + ϕ⊤

k+1Pkϕk+1
)−1

ϕ⊤
k+1Pk︸ ︷︷ ︸ +yk+1ϕ

⊤
k+1Pk+1.

(2-17)

This equation updates the parameter vector θk+1 using the new data yk+1 and the updated
covariance matrix Pk+1. The term

(
1 + ϕ⊤

k+1Pkϕk+1
)−1

ensures that the update is weighted
appropriately based on the new data. Furthermore, the underbraced part in Equation 2-17
can be rewritten in the following form:

(
1 + ϕ⊤

k+1 Pkϕk+1)−1 ϕ⊤
k+1Pk

=
(
1 + ϕ⊤

k+1Pkϕk+1
)−1 (

1 + ϕ⊤
k+1Pkϕk+1 − ϕ⊤

k+1Pkϕk+1
)
ϕ⊤

k+1Pk

= ϕ⊤
k+1

(
Pk − Pkϕk+1

(
1 + ϕ⊤

k+1Pkϕk+1
)−1

ϕ⊤
k+1Pk

)
Substituting Pk+1 of Equation 2-16 in the above equation results in:

(
1 + ϕ⊤

k+1 Pkϕk+1)−1 ϕ⊤
k+1Pk = ϕ⊤

k+1Pk+1
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This reformulation of the underbraced part in Equation 2-17 enables the parameter update
to be expressed in a more compact form:

θk+1 = θk + ϕ⊤
k+1Pk+1 (yk+1 − θkϕk+1) (2-18)

After computing the covariance update using Equation 2-16 and applying it in the final
parameter update expression in Equation 2-18, the parameter vector θk+1 is updated based
on the prediction error yk+1 − θkϕk+1 and the RLS gain ϕ⊤

k+1Pk+1. This gain increases when
the regressor ϕk+1 excites a direction with high uncertainty, and decreases when the direction
is associated with higher confidence.

2-3-2 Exponential forgetting RLS

In practice, RLS without forgetting may suffer from reduced adaptability, as older data can
dominate the estimation. To overcome this limitation, a forgetting mechanism is commonly
incorporated to reduce the influence of past data and emphasize recent data.

In exponential forgetting, the forgetting factor 0 < λexp < 1 determines the relative weighing
of past data. From a least-squares perspective, data that is n time steps old is weighted by
λn

exp, which decreases exponentially with n and converges to zero. This ensures that older
data has diminishing influence over time. A common way to relate the forgetting factor λexp

to its effective memory length Nw is given by [56]:

Nw = 1
1− λexp

. (2-19)

This modification ensures that the RLS algorithm maintains a finite memory, rather than
accumulating information indefinitely. Explicitly in RLS formulation, this approach enhances
the adaptiveness of the parameter estimates by preventing the covariance matrix from becom-
ing overly confident in certain directions, which would correspond to eigenvalues converging
to zero. To implement exponential forgetting, the covariance matrix is scaled by the factor
λ−1

exp before applying the standard covariance update of Equation 2-16. This leads to the
following intermediate step:

P̄k = 1
λexp

Pk. (2-20)

Substituting P̄k into the covariance update in Equation 2-16 yields:

Pk+1 = P̄k − P̄kϕk+1
(
1 + ϕ⊤

k+1P̄kϕk+1
)−1

ϕ⊤
k+1P̄k

= 1
λexp

Pk −
1

λexp
Pkϕk+1

(
λexp + ϕ⊤

k+1Pkϕk+1
)−1

ϕ⊤
k+1Pk.

(2-21)

In practical implementations, finite numerical precision can cause the covariance matrix in
the RLS approach to lose its positive definiteness after repeated covariance updates. When
the covariance matrix becomes ill-conditioned, its smallest eigenvalues becomes sensitive to
rounding errors and may turn negative. As a result, the matrix can lose its positive definite-
ness. To prevent this, the implementation of the square-root algorithm described in [57] is
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24 Adaptive closed-loop SPC with disturbance feedforward

adopted in this work. Rather than updating the covariance matrix itself, this method work
with a Cholesky factor and use orthogonal transformations at each iteration. This ensures the
factor remains numerically stable and preserves the covariance matrix its positive definiteness.

For the square-root method Pk = RkR
⊤
k , with Rk being the lower-triangular Cholesky factor

of Pk. The covariance update of Equation 2-16 with Cholesky factor Rk incorporated is given
as [57]:

Rk+1R
⊤
k+1 = 1

λexp
RkR

⊤
k −

1
λexp

RkR
⊤
k ϕk+1

(
λexp + ϕ⊤

k+1RkR
⊤
k ϕk+1

)−1
ϕ⊤

k+1RkR
⊤
k . (2-22)

The above equation can the subsequently be factorized in a pre- and post-array as follows:

 1 λ
− 1

2
expϕ⊤

k+1Rk

0 λ
− 1

2
expRk


︸ ︷︷ ︸

pre-array

Q =

 γ
− 1

2
k+1 0

Gk+1γ
− 1

2
k+1 Rk+1


︸ ︷︷ ︸

post-array

, (2-23)

with:
γk+1 =

(
1 + 1/λexp + ϕ⊤

k+1RkR
⊤
k ϕk+1

)−1

Gk+1 = RkR
⊤
k ϕk+1

(
λexp + ϕ⊤

k+1RkR
⊤
k ϕk+1

)−1

By taking the transpose of both sides of Equation 2-23 and multiplying them, it can be verified
that this results in Equation 2-22. The process involves forming a pre-array as in Equation 2-
23 and applying orthogonal transformations Q to achieve a lower-triangular post-array. From
this post-array, the updated Cholesky factor Rk is derived. The parameter update is then
expressed as follows:

θk+1 = θk +Gk+1 (yk+1 − θkϕk+1) (2-24)

2-3-3 Directional forgetting RLS

With exponential forgetting, uniformly forgetting all past information can cause the informa-
tion matrix I to become singular over time if the regressors ϕk do not explore all directions in
Rn, a problem linked to persistent excitation. To address this, in [46] a directional forgetting
method is introduced, which decomposes the information matrix as Ik = I(1)

k + I(2)
k , where

updates are orthogonal to I(1)
k and I(2)

k is a rank-one matrix satisfying I(2)
k ϕk = Ikϕk. This

decomposition ensures only the direction of new data is forgotten. Similar to exponential
forgetting, an intermediate update step is performed on the covariance matrix. In the case of
directional forgetting, this update is first expressed using the information matrix Īk, which
is then transformed back into covariance form P̄k to complete the covariance update Pk+1.

Directional forgetting, represented by Īk, is defined as:

Īk = IkΠ⊥
ϕk

+ λdirIkΠϕk
, (2-25)
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2-3 Recursive solution of the parameter estimation problem 25

where Πϕk
and Π⊥

ϕk
project onto ϕk and its orthogonal complement, respectively. They are

defined such that both projections are symmetric, ensuring that Īk inherits the symmetry of
Ik, which is crucial since Īk will later be inverted to obtain the covariance matrix for the RLS
update. The orthogonal projection matrices in Equation 2-25 are defined as:

Πϕk
= ϕkϕ

⊤
k Ik

ϕ⊤
k Ikϕk

, Π⊥
ϕk

= I −Πϕk
. (2-26)

Next, to arrive at a formulation where it becomes clear how λdir is applied across the full Ik

the expression Π⊥
ϕk

= I −Πϕk
is substituted into (2-25) yielding:

Ik = Ik − (1− λdir)IkΠϕk
(2-27)

Defining the matrix Mk as [46]:

Mk = (1− λdir)ϕkϕ
⊤
k Ik

ϕ⊤
k Ikϕk

and substituting the projection matrix Πϕk
from Equation 2-26 into Equation 2-27 results in

the compact form:
Īk = (I −Mk)Ik (2-28)

In the expression above, I −Mk is called the forgetting matrix. It has a single eigenvalue of
λdir along the direction of ϕk, while all other eigenvalues remain equal to one , ensuring that
forgetting is applied selectively in the subspace containing new information.

As mention before, in RLS a covariance matrix is updated, so Pk = I−1
k is needed. To get

this inverse, the inverse of Equation 2-28 is taken and results in:

P̄k = Pk + αkϕkϕ
⊤
k , (2-29)

where αk = 1−λdir

λdirϕ⊤
k

Ikϕk
≥ 0.

To make sure that α is correctly specified, ϕk needs to be nonzero. This can be easily
implemented with a dead zone defined as αk = 0, if ∥ϕk∥22 < ϵ. This can also be used
to set ϵ bigger than zero based on the noise present in the data. This prevents forgetting
in directions of ϕk, which carries mostly noise rather than informative data. Looking at
Equation 2-29, clearly no-forgetting is applied with αk = 0.

A limitation of the directional forgetting algorithm is its reliance on the matrix Ik to compute
αk in equation Equation 2-29. This requirement necessitates either simultaneous updates of
the information and covariance matrices or repeated matrix inversion of Ik. A more effi-
cient alternative is the previously discussed square-root formulation, leveraging the Cholesky
decomposition Pk = RkR

⊤
k .

Substituting this into the update Equation 2-29 yields:

R̄kR̄
⊤
k = RkR

⊤
k + αkϕkϕ

⊤
k
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which can be implemented as:

[ √
αkφk Rk

]
︸ ︷︷ ︸

pre-array

Q =
[

0 R̄k

]
︸ ︷︷ ︸
post-array

, (2-30)

Here, Q serves as an orthogonal transformation to make the first column of the post-array
exist out of zeros. With the help of Equation 2-30, αk can now be written as:

αk = 1− λdir

λdir

1∥∥∥R−1
k ϕk

∥∥∥2

2

,

which avoids explicit matrix inversion by using forward substitution.

In short, directional forgetting integrates seamlessly into an RLS framework, ensuring for-
getting occurs only when sufficient new data is available, reducing the need for persistent
excitation.
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Chapter 3

Simulation setup and results

3-1 Simulation setup

This section introduces the simulation environment used to evaluate the adaptive closed-
loop Subspace Predictive Control (SPC) with wind preview integration for rated rotor speed
tracking. The high-fidelity wind turbine simulator QBlade and the DTU 10 MW reference
wind turbine are described, which together provide a realistic and nonlinear test environment
representative of large-scale wind turbine operation. In addition, a Continuous-Wave (CW)
Light Detection and Ranging (LIDAR) simulator is presented to model the effects of upstream
wind measurements and generate preview information for disturbance feedforward used in the
adaptive closed-loop SPC algorithm. Finally, the procedure for open-loop data collection is
outlined, which provides the data used to initialize the output predictor with the estimated
initial Markov parameters, later used for the controller design in section 3-2.

3-1-1 Wind turbine simulator and wind turbine model

Wind turbine simulator

To evaluate the performance of the adaptive closed-loop SPC on a wind turbine simulation,
the high-fidelity simulation environment QBlade is utilized. To this end, QBlade has been
specifically designed to enable the application of advanced simulation models within the wind
turbine design and certification process, aiming to balance high-fidelity modeling, with com-
putational efficiency. This has been done by exploiting modern hardware capabilities, such
as GPU-based parallelization, to perform accurate and large-scale aeroelastic simulations at
manageable computational costs [48]. Among its advanced aerodynamic solvers, QBlade em-
ploys the Unsteady Blade Element Momentum (UBEM) method to accurately model rotor
flow dynamics, which is crucial for analyzing blade load distributions. UBEM builds upon
the classical Blade Element Momentum (BEM) theory, which assumes steady-state condi-
tions and relies on a balance of aerodynamic forces at each blade section. By incorporating
time-dependent effects, such as dynamic inflow and wind shear, UBEM extends this approach
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to capture time-varying dynamics caused by changing wind conditions and wind turbine dy-
namics [58]. These load distributions directly influence the aerodynamic torque generated by
the rotor, and therefore play a critical role in shaping the rotor speed dynamics relevant to
the rotor speed tracking.

Furthermore, a notable feature of QBlade is its Software in Loop (SIL) interface, allowing
the simulation engine to function as a Dynamic Link Library (DLL). This enables external
applications to programmatically load projects, control simulation loops, and exchange data
in real-time with QBlade, facilitating integration with tools like Python and MATLAB. In
this thesis, the SIL feature of QBlade is used in combination with MATLAB.

In summary, QBlade’s high-fidelity dynamics make it a powerful tool for realistic wind turbine
simulations, providing a detailed representation of the nonlinear behaviors inherent to large-
scale turbines. However, this level of detail introduces additional challenges for control design,
as the system can exhibit variability depending on the operating point due to the nonlinearity.
To address this, adaptive closed-loop SPC will be employed in this thesis to continuously
update the predictive model, thereby enabling adaptation to changing wind turbine operating
conditions. This approach helps bridge the gap between theoretical controller design and
real-world performance, where adaptation to varying conditions is essential when using high-
fidelity models.

Wind turbine model

The reference wind turbine used in this study is the DTU 10 MW wind turbine model, devel-
oped by the Technical University of Denmark (DTU) [59]. Given the ongoing trend toward
larger wind turbines, the 10 MW rating of the DTU wind turbine makes it representative of
current large-scale onshore wind turbine designs. Additionally, this reference turbine ensures
compatibility with the utilized simulation framework QBlade. An overview of the main design
characteristics of the wind turbine are summarized in Table 3-1.

Table 3-1: Overview of main design parameters for the DTU 10 MW reference wind turbine [60].

Description Value
Rated power 10 MW
Rotor setup Upwind configuration with three blades
Control strategy Variable speed and collective blade pitch
Drivetrain Medium-speed drivetrain with a multi-stage gearbox
Rotor Diameter / Hub Diameter 178.3 m / 5.6 m
Hub height 119 m
Wind Speed Limits (cut-in / rated / cut-out) 4 m/s / 11.4 m/s / 25 m/s
Rotor Speed (cut-in / rated) 6 RPM / 9.6 RPM
Rated generator torque 1.99× 105 Nm
Blade pitch range 0◦ to 90◦

Maximum blade pitch rate 10◦/s
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3-1-2 LIDAR simulator

Accompanying the simulated wind turbine will be a LIDAR simulator which can mimic the
effects of a real-life LIDAR system. To utilize the LIDAR simulator, a choice has to be
made between the Pulsed-Wave (PW) and CW, which were discussed in section 1-2-1. Each
approach has advantages and disadvantages. PW LIDAR provides range resolution, meaning
it can capture wind speed at multiple distances along the beam path simultaneously by
sending out short laser pulses and measuring the time of flight of the backscattered signal. In
contrast, CW LIDAR emits a continuous beam and sets the measurement distance optically,
which creates a range-dependent weighting of the backscattered signal. In [33] it is shown
that for ranges under 125 m, CW LIDAR achieves a lower Root Mean Squared Error (RMSE)
for wind estimations than PW LIDAR. In this work, the relevant measurement distances
remain at a single distance below 125 m, making CW LIDAR the chosen method.

The measurement process of CW LIDAR relies on focusing a continuous laser beam at a
specific range, defining the region around a focal point from which most of the backscattered
light is collected. This region is known as the probe volume, and it determines where along the
beam axis the wind information is most effectively gathered. The system measures Doppler
shifts in the backscattered signal to determine wind speed. The strength of the backscatter
signal from each axial position contributes to the final wind speed reading. To model the
spatial sensitivity of the measurement, a Lorentzian weighting function F (∆) is employed. In
the simulator, the CW LIDAR measurement is computed as a weighted sum of wind velocities
along the beam axis, where the weights of the Lorentzian profile peak at the focal distance
and decay symmetrically with the distances above and below it. This Lorentzian function is
expressed as:

F (∆) = Γ
π(∆2 + Γ2) (3-1)

where ∆ is the axial distance from the focal plane. The parameter Γ in the Lorentzian is the
half-width of the weighting function, meaning the distance at which F (∆) drops to half of
its maximum value [61]. The range resolution in CW LIDAR is therefore determined by the
optical system’s focusing capability rather than time gating, as in PW LIDAR systems.

In Equation 3-1 Γ is defined as follow:

Γ = ψd2

πA2 ,

For the equation of Γ, parameters for the industry-used ZephIR LIDAR system are available.
The parameters which mimic the LIDAR effect of the ZephIR LIDAR are [33]:

• ψ = 1.55× 10−6 m: The laser wavelength.

• A = 28× 10−3 m: The beam radius,

and d the focal distance in meters. At longer distances, the probe volume in CW LIDAR
expands significantly, which can lead to averaging effects and reduced spatial resolution.
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Figure 3-1 illustrates how increasing the focal distance d reduces high-frequency fluctuations
of the turbulent wind field measurements, confirming that a larger probe volume leads to
stronger averaging effects.

Figure 6. Examples of (a) range weighting errors for a variety of F and (b) measurement angle errors for a
variety of θ. The measurements in (b) involve focal distances less than 10 m, so all visible discrepancies from
the true wind speed are solely due to geometrical errors.

cause another source of spatial averaging error. The arc length that the focal point traverses during a sample
period is equal to

l =
2πrω

50
(10)

where ω is the rotational rate of the LIDAR in s-1 and r is the scan radius as defined in Fig. 2 (b). Our
studies of this source of error show that the blurring effect causes insignificant errors for ω less than 4 Hz.
Since it is unlikely that a spinning LIDAR would scan at a rate higher than 4 Hz, we have ignored this source
of error. It is possible that the resolution of the wind files used during simulation is not high enough to
reveal the severity of the spatial averaging that would occur. Investigating the effect with higher resolution
wind fields is an area of future work.

III. Simulation Results

Simulations were performed in FAST to assess the performance of CW LIDAR in realistic preview
measurement scenarios. All wind fields used were generated for use with a 5 MW turbine model with a
hub height of 90 meters. RMS wind speed measurement errors were analyzed for a forward staring LIDAR
(θ = 0) at the hub location to assess the effects of range weighting alone for a variety of wind conditions. Ideal
preview control systems might include LIDAR units mounted in the blades so that preview measurements
can be made in front of outboard sections of the blades, avoiding geometrical measurement errors. However,
since a more economical and realistic method involves placing a single scanning LIDAR angled off of the x
axis in the spinner of a turbine, we analyze spinning LIDAR performance for different blade span positions
and preview distances.

A. Wind Conditions

In order to test the performance of CW LIDAR in realistic wind environments, simulations were run using
a variety of wind files generated with the Great Plains-Low Level Jet (GP LLJ) spectral model in TurbSim,
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Figure 3-1: Effect of focal distance d on ZephIR LIDAR measurements: wind speed measure-
ments obtained using a Lorentzian-weighted ZephIR LIDAR model are compared with the true
wind speed. The figure shows how increasing the focal distance d, resulting in a broader probe
volume, averages out high-frequency wind fluctuations of the wind field.

3-1-3 Simulation overview

The simulation environment is configured by initializing QBlade with the 10 MW DTU wind
turbine model and applying the simulation parameters defined in this section via MATLAB,
utilizing QBlade’s SIL interface. The simulation parameters are chosen to ensure that all
relevant data required for the design of the adaptive closed-loop SPC for rated rotor speed
tracking will be accessible through QBlade. The key simulation parameters are summarized in
Table 3-2. The used sampling time of 0.05s is chosen to match the high-fidelity multiphysics
solver of QBlade.
The wind turbine is actuated through a single input channel (nu = 1) representing the pitch
angle command β. The pitch actuator is subject to the following operational limits defined
in the QBlade DTU 10MW project file:

βmin = 0◦, βmax = 27◦, ∆βmax = 10◦/s.

The simulations feature a single measured output (ny = 1), the rotor speed Ω. Furthermore,
a single disturbance channel (nw = 1) is defined by the wind speed v.
The rated generator torque is set to Trated = 1.99 × 105Nm, corresponding to the torque
necessary to achieve rated power when operating at the rated rotor speed.
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Additionally, the discussed CW LIDAR simulator, based on the commercial ZephIR system
described in subsection 3-1-2, is also included in the simulation. An overview of the corre-
sponding parameters is provided in Table 3-2.

Table 3-2: Simulation parameters used in QBlade for the 10 MW DTU wind turbine model and
the CW LIDAR simulator.

QBlade simulator parameters
Parameter Value
Sampling time, Ts 0.05 s
Number of outputs, ny 1
Number of inputs, nu 1
Number of disturbances, nw 1
Rated generator torque, Trated 1.99× 105 Nm
Reference: rated rotor speed, Ωr 9.6 rpm
Minimum pitch control angle, βmin 0◦

Maximum pitch control angle, βmax 27◦

Maximum pitch control rate, ∆βmax 10◦/s
LIDAR simulator parameters

Parameter Value
Sampling time, Ts 0.05 s
Laser wavelength, ψ 1.55× 10−6 m
Beam radius, A 28× 10−3 m

3-1-4 Open loop data collection

For the design of the adaptive closed-loop SPC, an initial dataset is collected to initialize
the output predictor and its Markov parameters. In this work, the initial dataset is obtained
through open-loop data collection, allowing free design of input and disturbance excitations
within the system’s physical limits. In contrast, closed-loop operation may limit the input
variation due to the controller, potentially resulting in less informative data for identification.
The relevant signals for the parameter identification are the pitch angle uk = βk, which acts
as the input to the system; the rotational speed yk = Ωk, representing the measured output;
and the wind speed wk = vk, serving as a measurable disturbance. The data collection is
performed by stimulating the wind turbine simulation with excitation input and disturbance
signals. For the blade pitch angle, a pseudo-random binary sequence that generates pitch
inputs with a variation of ±2◦ is employed. The input variations saturate with the maximum
pitch rate of the wind turbine to realistically capture the actuator’s response time. The pitch
input variation in ◦/s is set so that it has enough time to saturate before the next input is
applied. The wind speed is perturbed around a nominal value by a stochastic component
defined as

vk = 15 + 0.5 ξk,

where ξ(k) is a normally distributed random variable with a variance of one, introducing
a wide spectrum of frequency components into the system. These input and disturbance
signals are designed in an attempt to make the excitation sufficiently rich of order p+fid +n,

Master of Science Thesis N. van Wering



32 Simulation setup and results

allowing the dynamics to be accurately captured. However, since the underlying wind turbine
simulation exhibits nonlinear dynamics, the identified parameters will possibly only provide
a local linear approximation.

The input, disturbance and outputs signals are measured and preprocessed by centering
and scaling them. The open-loop signals are scaled from [−1, 1] via a symmetric min-max
approach. Each variable x is first centered by xcenter = (xmax + xmin)/2 and then scaled by
xhalfRange = (xmax − xmin)/2. Here xmin and xmax are the minimum and maximum expected
values of the data. The symmetric min-max transformation is formulated as:

x̃k = xk − xcenter
xhalfRange

.

This symmetric min-max scaling mitigates differences in magnitude of the data and improves
numerical conditioning for the Hankel-based identification.

After preprocessing the data, the Hankel matrices are formed and the Least Squares (LS)
solution of Equation 2-10 can be solved to compute the Markov parameters in terms of the
Moore-Penrose inverse denoted with † [26]:

θ̂0 = Yip,1,N



Yi,p,N

Ui,p,N

Wi,p,N

Uip,1,N

Wip,1,N



†

Here, θ̂0 is defined as the initial guess of Markov parameters,
[
ĈK̃z

p D̂u D̂w

]
, which form

the first block row of the output predictors in Equation 2-7 used for closed-loop SPC. The
length of the past windows p, future window f , and the column dimension N will be selected
based on a sensitivity analysis in the next section.
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3-2 Adaptive closed-loop SPC controller design

The goal of this section is to formulate an adaptive closed-loop SPC controller that can be
applied to the DTU 10 MW wind turbine model in QBlade for rated rotor speed tracking
under realistic and nonlinear operating conditions. To achieve this, the section first defines the
adaptive closed-loop SPC control problem by specifying the required initialization parameters,
data structures, cost function, and constraints, followed by the complete control algorithm
described in Algorithm 1. Subsequently, the influence of key design parameters is examined,
including the past and future windows, cost weights, forgetting factors, and initialization
settings, with particular attention to their relevance in the context of wind turbine control.

3-2-1 Optimal control problem formulation

In this subsection, the algorithm of the adaptive closed-loop SPC is formulated. Before the
formulation of the algorithm, the initial parameters and data sequences to start the algorithm
are defined.

To construct the regressor and determine the dimensions of the relevant matrices introduced
later in this subsection, the past window p and the future window f for closed-loop SPC
must first be specified. The future window f defines the receding horizon length and sets
the horizon for both future output prediction and optimal control in this case. Another key
parameter required for initializing the algorithm is the initial θ0, consisting out of the Markov
parameters in Equation 3-2 obtained from the open loop data described in subsection 3-1-4.
The initial uncertainty of the estimated parameters θ0 is defined with the covariance matrix
P0 and is also used for the initial Recursive Least Squares (RLS) update of the Markov
parameters when new data becomes available. To adapt the model to changing dynamics,
the discussed forgetting factors λexp and λdir are introduced, influencing the covariance matrix
update during parameter estimation.

The tracking performance is weighted by the positive semi-definite matrix Q, while the control
effort is penalized by the positive definite matrix R. These matrices shape the relative impor-
tance between following the output reference trajectory and minimizing input variations. The
reference trajectory rîp,f will be used as a reference for the the rated rotor speed tracking.
To ensure physically feasible inputs, input constraints and rate constraints are incorporated.
Specifically, the input sequence u is constrained to belong to the set U , determined by actu-
ator saturation limits of the pitch angle βmin ≤ u ≤ βmax as defined in Table 3-2. The rate
of change of the input ∆u is constrained by ∆U , reflecting actuator rate limitations, specifi-
cally ∆u ≤ ∆βmax, also defined in Table 3-2. Once these quantities have been specified, the
adaptive closed-loop SPC algorithm is fully defined and proceeds according to Algorithm 1.
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Algorithm 1 Adaptive closed-loop SPC
start loop

1: With Markov parameters θk recursively obtain the matrices for the predictor form output
predictor ŷîp,f , as defined in Equation 2-9b.

2: Solve the predictive control problem:
min

∆uîp,f ,ŷîp,f

(ŷîp,f − rîp,f )⊤Q(ŷîp,f − rîp,f ) + ∆u⊤
îp,f

R∆uîp,f

s.t. ŷîp,f = ̂̃Γf K̃z
pzî,p + ̂̃T u

f uîp,f + ̂̃T w
f wîp,f + (I − ̂̃Hf )ŷîp,f

u ∈ U , ∆u ∈ ∆U ,
3: Apply the first element uîp,1 of the optimal input sequence as control input
4: Construct regressor vector ϕk+1 with past data zî,p, control input uîp,1, and known dis-

turbance wîp,1, following the structure in Equation 2-14.
5: Update the covariance matrix Pk to Pk+1 with new data regressor ϕk+1, using the square-

root method outlined in Equation 2-23.
Based on the chosen forgetting method, a preliminary covariance update is employed,
resulting in the use of P̄k for the covariance update Pk+1 instead of Pk. The expression
for P̄k is given in Equation 2-16 for exponential forgetting and in Equation 2-29 for
directional forgetting.

6: Update Markov parameters θk to θk+1 using the square-root RLS parameter update de-
scribed in Equation 2-24. This square-root RLS update is implicitly equivalent to the
traditional RLS parameter update, which is stated here for simplicity:
θ̂k+1 = θ̂k + Pk+1ϕk+1

(
yk+1 − θ̂kϕk+1

)
7: k ← k + 1;

end loop

As visible in the adaptive closed-loop SPC Algorithm 1, it first constructs the output predictor
in predictor form. Then, it formulates and solves an optimization problem over the future
horizon f to determine the optimal control inputs, aiming to achieve the desired tracking
of the output reference and stick to the system’s constraints. The optimization algorithm is
similar to that of Model Predictive Control (MPC), but the difference is that, in the case
of SPC, a direct data-driven output predictor is applied to the predictive control framework
instead of a state-space model. Similarly, as in MPC, only the first control input within the
optimized control horizon f is applied to the system. Subsequently, the output predictor in
predictor form is updated using the RLS algorithm, which may be applied without forgetting,
or with exponential or directional forgetting, depending on the selected adaptation strategy.
Next, the window in Figure 2-1 moves with one sample to the right by including the newly
available data, and the algorithm will repeat itself again. In this work, the optimization
problem in step 5 of Algorithm 1 is solved with the help of the Quadratic Programming (QP)
solver provided by CasADi [62].

3-2-2 Effect of parameter variations

This subsection presents an examination of the effect of parameter variations in the adap-
tive closed-loop SPC scheme described in Algorithm 1. It considers key design parameters
involved in the formulation of the output predictor and controller, including the past and
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future windows, cost weights, and initial covariance settings. The forgetting factors are also
examined, consisting of the exponential and directional forgetting strategies. The relevance
of these parameters in the context of wind turbine control is discussed throughout.

Past window p

The parameter p defines the number of system parameters that are used for estimation of
the output predictors in Equation 2-7, together with the later discussed future window f .
In offline identification, p is typically set to be larger than the expected maximum model
order, often several times, to ensure that all relevant dynamics are captured [52]. However,
in recursive schemes such as RLS, selecting a larger p has important implications. It directly
increases the computational effort, since more parameters must be updated at every iteration.
Moreover, it slows down the convergence rate of the of the parameter estimation algorithm,
as more parameters require sufficient excitation and data to be accurately estimated [51].
Additionally, to satisfy Assumption 2, p is set large enough so that Ãp ≈ 0, allowing the effect
of the initial state to be neglected. Also, p plays a role in satisfying Assumption 4, enabling
the formulation of a unique output predictor based solely on input-disturbance-output data.
Nevertheless, while p must be sufficiently large to capture the essential wind turbine dynamics,
it should not be excessively large to avoid overfitting. An overly large p may result in the
model capturing high-frequency noise, such as wind-speed measurement noise or pitch-sensor
noise, which do not represent the true system behavior.

Future window f

For the case of this thesis, the future window f equals both the prediction and control horizon
of the adaptive closed-loop SPC, meaning the same window is used to predict system outputs
and to determine the number of future control inputs to be optimized. The prediction horizon
f is selected so that the prediction interval encompasses the key dynamics of the system. For
wind turbine control, it is particularly important that f is large enough to incorporate the slow
dynamics inherent in the system, such as the rotor speed response to the pitch input caused
by inertia. Additionally, the control horizon f defines how many future control moves the
optimizer can adjust, this creates a trade-off between the ability to plan inputs proactively and
the associated computational complexity. Moreover, extending the future window increases
the role of the model accuracy, as prediction errors propagate over time and can result in
suboptimal control inputs on the real system.

In this thesis, the future window is extended by incorporating wind speed predictions obtained
from the LIDAR simulation. Incorporating wind speed LIDAR information allows the adap-
tive closed-loop SPC to foresee upcoming wind variations, leading to potentially improving
disturbance rejection and overall performance. However, because these LIDAR predictions
contain uncertainty, a longer horizon can also propagate prediction errors if the wind speed
forecasts deviate from actual wind conditions. In summary, choosing f involves balancing
the benefits of additional predictive insight against the risks of computational complexity and
potential forecast inaccuracy.

Weights Q and R, constraints and reference

Within the framework of adaptive closed-loop SPC, the weighting matrices Q and R are used
to trade-off between disturbance rejection and pitch actuator usage. Furthermore, constraints
are set to meet the pitch saturation limits and pitch rate constraints, ensuring robust and
safe system performance. The constraints, are defined in Table 3-1, and include a pitching
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rate limit of 10◦/s, with pitch angle limits set between 0◦ and 90◦. Furthermore, the rated
rotor speed is regulated with weights applied to deviations from the 9.6 RPM reference, also
specified in Table 3-1.

Forgetting factor λ

The forgetting factors λexp of exponential forgetting and λdir of directional forgetting are
essential parameters in adding adaptiveness to RLS. To prevent the covariance matrix to
shrink unbounded during the covariance matrix update, the forgetting factors must be chosen
such that 0 < λ < 1 for both methods.

In the case of exponential forgetting with λexp strictly less than unity, older data points
are exponentially discounted, thereby allowing the estimator to adapt more effectively to
recent changes. The effective memory length of the estimator for exponential forgetting is
approximated by:

Nw = 1
1− λexp

.

If this effective window is too short, the rapid discounting of past information can lead to loss
of excitation. This results in an illconditioned covariance matrix with eigenvalues that blow
up in the unexcited directions. Consequently, selecting the forgetting factor is a trade-off
between the speed of adaptation to parameter changes and maintaining relevant information
to maintain excitation. When the current Markov parameters do not adequately reflect shifts
in current wind conditions, a lower forgetting factor enables the model to adapt faster to recent
wind conditions. While the forgetting factor of exponential forgetting is applied to the entire
covariance matrix, directional forgetting only discounts old data which lies in the direction
of new incoming data. This selective forgetting helps preserve information in persistently
unexcited directions, thereby maintaining numerical stability while still enabling adaptation
in the directions where system dynamics are changing.

Initial covariance P

The initial covariance P is typically chosen to balance the acceleration of parameter conver-
gence during the initial phase of estimation with the level of confidence in the initial parameter
estimates. This choice determines the flexibility in adjusting the Markov parameters during
the RLS process, especially with no-forgetting [51].
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3-3 Wind cases

This section introduces the wind inflow scenarios used to evaluate the performance of the
adaptive closed-loop SPC algorithm under different operating conditions. Three wind cases
are defined: a Mexican hat wind gust (wind case I), a wind speed ramp (wind case II),
and a turbulent wind field with LIDAR preview measurements (wind case III). These cases
are designed to test the adaptive closed-loop SPC both with and without feedforward wind
preview, for disturbance rejection capabilities and adaptability. The defined wind cases will
be used in the following section to analyze the simulation results and compare the effect of
different forgetting strategies in adaptive closed-loop SPC.

3-3-1 Wind case I: Mexican hat wind gust

This subsection utilizes a wind profile consisting of a steady-state wind speed of 15 m/s,
on which a Mexican hat-shaped gust is superimposed. This gust has a total duration of 10
s, and reaches a peak amplitude of 3 m/s. The gust is symmetric around its center and
includes both an increase and decrease in wind speed, causing a disturbance that temporarily
pushes the system out of its operating point. Moreover, ergodic zero-mean white noise with
a standard deviation of 0.15 m/s is superimposed on the wind signal. This is an attempt
to add excitation to the data which can be beneficial for the accuracy of the RLS Markov
parameter estimations, especially during steady-state conditions where excitation levels are
typically low.

The transition of the gust does not permanently move the system to a new operating point,
but rather perturbs it briefly, making it a good candidate for analyzing the system’s ability to
reject disturbances and return to the original steady-state without fully moving to a new
operating point. It is particularly valuable to evaluate the adaptive closed-loop SPC in
scenarios where adaptation to a new operating region is not yet the goal. This wind case
assumes perfect wind preview, meaning the controller has access to exact future wind speed
values.
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Figure 3-2: 15 m/s baseline wind speed profile with a Mexican hat gust starting at 120 seconds,
amplitude of 3 m/s, and duration of 10 seconds. Ergodic zero-mean white noise with a standard
deviation of 0.15 is superimposed for excitation.
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3-3-2 Wind case II: Wind ramp

In this subsection, a wind speed ramp is introduced to test the adaptive closed-loop SPC under
more pronounced changes in operating conditions. The wind profile consists of a steady inflow
of 15 m/s onto which a ramp is superimposed with a duration of 20 s and a ramp rate of
0.18 m/s2. The complete wind profile is shown in Figure 3-4. As in wind case I, ergodic
zero-mean white noise with a standard deviation of 15 m/s is added to maintain excitation
for the RLS estimator.
This case is particularly relevant for analyzing how the output predictor of the adaptive
closed-loop SPC adapts when the system transitions to a new operating point. In contrast to
wind case I, which focused on disturbance rejection near a fixed operating point, wind case II
directly tests the ability of the controller to adapt its model in response to a persistent change
in wind conditions. As in wind case I, perfect wind preview is assumed for this scenario.
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Figure 3-3: A 15 m/s baseline wind speed with a wind ramp, lasting for 20 s, and increasing
at a rate of 0.18 m/s2. Additionally ergodic zero-mean white noise is superimopsed on the wind
profile with a standard deviation of 0.15 m/s.

3-3-3 Wind case III: Turbulent wind

In this section, a turbulent wind field with an average wind speed of 15 m/s and a turbulence
intensity of 16% is simulated. This wind field is treated as a wind preview in a more realistic
way by applying a LIDAR simulator. For this, the ZephIR LIDAR described in subsection 3-1-
2 is used with a focal distance d of 60 m. The effect of the LIDAR simulator on the actual wind
speed is shown in Figure 3-11. Additionally, ergodic zero-mean white noise with a standard
deviation of 0.1,m/s is added to the LIDAR measurements to simulate measurement noise.
The turbulent wind, due to its constantly fluctuating wind speed, provides variety in exci-
tation directions that can benefit the parameter estimation, but also creates a challenge to
the slow dynamics of the wind turbine. Moreover, this case tests the performance of the
adaptive closed-loop SPC under imperfect preview conditions, where the disturbance feed-
forward relies on LIDAR measurements. This allows evaluation of the controller’s ability
to reject disturbances, adapt its model to changing conditions, and maintain performance
despite uncertainty in the wind preview.
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Figure 3-4: Turbulent wind field with an average wind speed of 15 m/s, turbulence intensity
of 16%, and superimposed ergodic zero-mean white noise with a standard deviation of 0.15 m/s.
The corresponding LIDAR measured wind profile of the turbulent wind preview simulation is also
shown.

3-4 Simulation results

This section presents simulation results that showcase the performance of the adaptive closed-
loop SPC controller when applied to above-rated rotor speed regulation. The analysis begins
by assessing the controller’s sensitivity to tuning parameters and the impact of different for-
getting strategies in the RLS estimator, which affect the adaptation of the output predictor.
Reference tracking accuracy and control effort are both evaluated for the selection of suit-
able parameter values. With the selected parameters fixed, further simulations explore how
the controller performs under varying wind conditions, including the integration of LIDAR-
based wind preview information. These scenarios illustrate the controller’s ability to adapt
to changing dynamics and to anticipate wind disturbances.

3-4-1 Sensitivity analysis

This subsection presents a sensitivity analysis to identify suitable tuned parameters for the
adaptive closed-loop SPC controller. To evaluate the impact of these parameters, a perfor-
mance metric based on the accumulated cost is defined. This cost is computed separately for
the control input variation ∆u and the output tracking error (y − r) as:

Jy =
∑ [

∆u⊤
k ∆uk

]
Ju =

∑ [
(yk − rk)⊤ (yk − rk)

]
.

(3-2)

Here, Jy and Ju represent the accumulated costs for output tracking error and input variation,
respectively. The output-related cost is selected as the primary performance metric since the
control objective of this thesis is rated rotor speed reference tracking. This objective is
directly captured by the accumulated output tracking error. The change in input is included
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as a secondary metric to provide insight into the required control effort. While smoother pitch
actuation can reduce actuator wear and dynamic loads, such load reduction is not explicitly
targeted in the control design of this thesis.

Before presenting the sensitivity analysis, a few setup details should be clarified. The initial
Markov parameters are estimated from open-loop data, as described in subsection 3-1-4, using
a batch size of N = 1000. Slightly lower or higher values of this batch size did not affect the
sensitivity analysis results. The pitch controller input is sampled with a period of Ts = 0.05 s,
matching the sampling time used in the QBlade simulation. The initial covariance matrix
P0 is initialized as an identity matrix with appropriate dimensions, as this choice has been
found to offer a good balance between adaptability and confidence in the initial estimate of
the Markov parameters. Moreover, the simulation is allowed to reach a steady state during
the first 80 seconds, after which the sensitivity analysis is conducted for the remainder of the
simulation, up to a total duration of 280 seconds. To enhance excitation, small perturbations
were introduced to the system by adding Gaussian noise with a standard deviation, σ = 0.01,
to the pitch input.

The first sensitivity analysis addresses the impact of the controller parameters: the past
window length p, future window length f , and the weight matrices Q and R. This analysis
is performed under the wind conditions described for wind case I in subsection 3-3-1, with
the wind profile being available as a feedforward preview and the gust starting at t = 120 s.
This simulation attempts to capture both steady-state behavior and disturbance rejection
of the Mexican hat wind gust. The tuning of the past window length p, future window
length f , and weight matrices Q and R was performed iteratively. This yielded the values
p = 10, f = 80, Q = 1, and R = 1 to obtained the best performance by balancing tracking
accuracy and control activity. The optimal values were determined through a sensitivity
analysis, where each parameter was varied independently while fixing the others at their
previously identified optimal values. As shown in Figure 3-5, this analysis confirms that these
settings minimize the cumulative cost of input and output.

The past window length p = 10 is expected to give the best performance due to the influence
of p on the uniqueness of the output predictor based on Assumption 4 and reducing the
effect of the unknown initial state bias based on Assumption 2. The worse results for p > 10
can possibly be explained by the presence of past values in the regressor vector that reflect
outdated dynamics during the wind gust. The moderate value of p also prevents overfitting
to noise and avoids a slow convergence rate in the parameter estimation process of RLS. The
choice of a future window length f = 80 seems to capture the slow dynamics of the wind
turbine while providing enough foresight to anticipate and reject the effect of the wind gust.
A longer f could increase sensitivity in performance to model inaccuracies in the output
predictor. Moreover, the selected values Q = 1 and R = 1 provide a balanced trade-off
between the competing objectives of reference tracking and control effort. If Q is set larger
relative to R, the controller places too much emphasis on tracking the output, potentially
causing abrupt pitch changes and higher control activity, this effect becomes evident for
Q = 102 and larger in Figure 3-5. Furthermore, increasing R may slow down the system’s
response and leads to higher tracking errors, which becomes noticeable starting from R = 10
in Figure 3-5.

For the tuning of the forgetting factors, wind case II from subsection 3-3-2, with the ramp
starting at t = 120 s, is used to assess whether adaptivity through forgetting in RLS improves
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Figure 3-5: Sensitivity analysis, with wind case I, of the past window p, future window f and
the weights Q and R with wind preview.

performance when the system must transition to a new operating point due to a wind ramp.
In this analysis, the past window length p = 10, future window length f = 80, and weight
matrices Q = 1 and R = 1 are fixed to the previously identified optimal values. The sensitivity
analysis focuses on varying the forgetting factors for both exponential ( λexp ) and directional
( λdir ) forgetting. These were tuned iteratively under two scenarios: without wind preview
and with perfect wind preview. The corresponding performance results are presented in
Figure 3-6.

Without wind preview, the best performance in terms of combined accumulated input and
output cost was achieved using exponential forgetting with λexp = 0.995. For directional
forgetting, the lowest cost was obtained with λdir = 0.9. In exponential forgetting, the inverse
of the forgetting factor is applied to the prior covariance matrix Pk to obtain the preliminary
covariance matrix P̄k, inflating all directions equally regardless of recent excitation. This
uniform inflation of uncertainty maintains its adaptability. In contrast, directional forgetting
inflates the covariance matrix selectively, only in the subspace excited by the most recent
regressor. This targeted inflation avoids unnecessary forgetting in unexcited directions by
only modifying the covariance matrix in the direction of the most recently excited regressor.
As a result, when forgetting is applied, a lower forgetting factor such as λdir = 0.9 is needed
to introduce sufficient uncertainty.

With wind preview available, exponential forgetting again yielded the lowest cost at λexp =
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0.995. This suggests that this forgetting factor seems to maintain the relevant approximate
data memory window Nw of Equation 2-19, short enough for adaptability and long enough
to maintain enough excitation. Notably, the performance of directional forgetting improved
as λdir → 1, indicating that it offered no clear advantage in this scenario. As shown in
Figure 3-6, reducing the forgetting factor below unity did not yield performance gains. A
possible reason is that directional forgetting inflates the parameter covariance in directions
already well-explained by the measured disturbance, leading to unnecessary adaptation and
no significant improvement in parameter estimation accuracy.
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Figure 3-6: Sensitivity analysis of the exponential forgetting factor λexp and directional forgetting
factor λdir with and without wind preview of wind case II.

For the sensitivity analysis of the forgetting factors under wind case III, characterized by
turbulent wind conditions with LIDAR preview, the same iterative tuning procedure was
followed. Once again, exponential forgetting with λexp = 0.995 yielded the lowest combined
cost in terms of accumulated input and output performance. Similar to the results observed in
wind case II with preview, directional forgetting did not offer any performance improvement
over the case with no-forgetting. For this scenario, and similar to the earlier assumption
that the presence of a turbulent wind preview already provides sufficient information for the
estimator, the effectiveness of selectively inflating uncertainty through directional forgetting
is reduced.

A summary of the selected controller parameters, including the tuned forgetting factors for
both with wind preview and without wind preview scenarios, is provided in Table 3-3.
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Table 3-3: Selected controller parameters used for the adaptive closed-loop SPC algorithm.
Including sampling time, window lengths, and weights. It also lists the excitation signal properties
on the inputs and the tuned forgetting factors for both scenarios: with (w/) and without (w/o)
wind preview.

Parameter Value
Sampling time, Ts 0.05 s
Initialization time to reach steady state, tss 80 s
Past window length, p 10
Future window length, f 80
Output weight, Q 1
Input weight, R 1
Initial covariance matrix, P0 I

Superimposed excitation signal on pitch input Gaussian noise, σ = 0.01
Exponential forgetting factor, λexp (w/o wind preview) 0.995
Directional forgetting factor, λdir (w/o wind preview) 0.9
Exponential forgetting factor, λexp (w/ wind preview) 0.995
Directional forgetting factor, λdir (w/ wind preview) 1 (no-forgetting)

3-4-2 Wind case I without controller, excitation and wind preview

To investigate the behavior of the parameter adaptation with RLS under minimal excitation,
a scenario is considered where the wind turbine operates at steady-state conditions with a
constant input pitch angle of u = 10.45, and the closed-loop SPC controller is disabled. The
Gaussian white noise excitation on the pitch input, as described in Table 3-3, is switched off
after 80 seconds. Throughout the remainder of the simulation, no further input excitation
is introduced, and wind preview is also disabled. For clarity, recall that the RLS gain is
defined as ϕ⊤

k+1Pk+1, which is a crucial part of the Markov parameter update in Equation 2-
18. Moreover, wind case I is used, where a wind gust occurs at t = 800 seconds. However,
since wind preview is not available in this scenario, the gust is treated by the estimator as an
unknown disturbance. This setup allows for an analysis of how a period without excitation
influences the evolution of the Markov parameters and their sensitivity to prediction errors
caused by the varying wind speed of the gust from the different forgetting methods.

In the case of exponential forgetting, the trace of the covariance matrix increases significantly
over time, as shown in Figure 3-8. The forgetting factor λexp = 0.995 is applied uniformly
to all directions of the prior covariance matrix. As a result of the lack of persistent input
excitation, many directions of the covariance matrix remain poorly excited and accumulate
large eigenvalues, which generally results in high parameter uncertainty. Due to the inflated
covariance, even a slight change in the excitation direction can lead to a large RLS gain,
resulting in a significant Markov parameter update, as visible in Figure 3-8. Apart from the
wind gust at t = 800 s, it is already visible that small prediction errors during steady-state
conditions lead to large Markov parameter updates, reaching magnitudes on the order of 1012.
This highlights the estimator’s extreme sensitivity with the lack of input excitation.

In contrast, the no-forgetting strategy results in a more bounded covariance matrix as visible
in Figure 3-7. This is due to the continued shrinking of the covariance in the initially excited
directions, leading the estimator to become increasingly confident in its parameter estimates
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over the steady-state period. Consequently, when the gust causes a relatively large predic-
tion error, the regressor gives a small RLS gain due to the high confidence captured in the
covariance matrix, resulting in only small parameter updates.
Directional forgetting applies forgetting selectively in the directions of new input excitation.
At steady state, these directions continue to be forgotten, which prevents overconfidence. As
a result, the covariance matrix retains more uncertainty compared to the no-forgetting case.
When the gust appears, the resulting prediction error leads to parameter updates that are
higher than in the no-forgetting case, but less aggressive than the exponential forgetting case.
This results in a more balanced adaptation under low-excitation conditions.
While the true system parameters are unknown and, therefore, a direct validation of the esti-
mated Markov parameters is not possible, the simulation results still showcase some charac-
teristic behavior of each forgetting strategy in the absence of excitation and with the disabled
controller.
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Figure 3-7: Comparison of simulation results using RLS under different forgetting strategies
without wind preview and control, using wind case I. The excitation described in Table 3-3
superimposed on the input is removed after tss = 80 s. The left column illustrates the rotor
speed, pitch control and absolute value of prediction error of the rotor speed (|Ω− Ω̂|). The right
column presents the trace of the covariance matrix (Trace(P ), log-scale) and the change in Markov
parameters (∥∆θ∥2). Three distinct simulations are compared: SPC RLS without forgetting, with
directional forgetting (λdir = 0.9), and with exponential forgetting (λexp = 0.995). The bottom-
right subplot (∥∆θ∥2) stacks the three plots, each corresponding to one forgetting method,
highlighting the evolution of parameter adaptation over time.
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3-4-3 Wind case II without wind preview

In this scenario, the adaptive closed-loop SPC simulations are analyzed with the wind ramp
used in wind case II without wind preview. In this case, the system is driven to a new
operating point by applying the wind ramp of the earlier described wind case II with the
ramp starting at t = 120 s.

As shown in Figure 3-8, the SPC algorithm without any forgetting does not fully reject the
disturbance and the rotor speed settles around 9.8 rpm, showing a steady-state tracking error.
it is also visible that the trace of the covariance matrix remains bounded for no-forgetting.
However, what is not visible in the figure is that in the absence of forgetting, the eigenvalues of
the covariance matrix tend to converge to zero over time, particularly during the steady-state
phase before the ramp. This makes the covariance matrix increasingly confident, especially
in the directions corresponding to the steady-state operating point. This results in small
updates in the estimated Markov parameters when new dynamics are introduced. Looking
again at Figure 3-8, when the rotor speed increases sharply, passing the rotor speed of 11
rpm, the controller reacts with a large pitch input to compensate. The input reaches the
maximum pitch angle of 27◦, and both the rotor speed and pitch subsequently oscillate before
settling. As soon as this oscillation starts, it induces a significant spike in the prediction error
and a noticeable update in the Markov parameters. This suggests that despite the confident
covariance matrix, the algorithm still shows some degree of adaptiveness in response to pre-
diction errors, together with the additional excitation from the oscillating pitch input. This
behavior can be explained by the RLS gain increasing as the regressor excites directions in the
covariance matrix that were previously less excited. Consequently, the matrix multiplication
ϕ⊤

k+1Pk+1 produces larger values and, together with the rising prediction error, the Markov
parameter updates increase. As a result, the model shows more adaptiveness to the new
operating point than at the beginning of the wind ramp. Although the rotor speed and pitch
input eventually settle, the Markov parameters after the oscillations and increasing prediction
errors still lack sufficient adaptiveness and accuracy to make the controller fully return to the
rated rotor speed reference.

When exponential forgetting is employed, the covariance matrix inflates to a significantly
high covariance trace compared to no-forgetting and directional forgetting. This causes the
RLS estimator to maintain higher RLS gains. The inflated uncertainty allows the algorithm
to adapt quickly to recent data but also leads to covariance windup, where poorly excited
directions in the covariance matrix accumulate large eigenvalues. This windup effect on
the covariance matrix is visible in Figure 3-8 with a large trace of order 106. As shown in
Figure 3-8, the arrival of the wind disturbance ramp causes a sudden increase in the prediction
error, resulting in the estimator making large parameter updates in an effort to improve the
accuracy of the estimated Markov parameters. These abrupt updates modify the identified
relationship between the pitch input and rotor speed. Consequently, the closed-loop SPC
generates fluctuating rotor speed predictions over time, resulting in a non-smooth control
input trajectory. This results in oscillations in the input, as seen in Figure 3-8, and introduces
additional excitation, which temporarily reduces the trace of the covariance matrix. At one
point, the parameters seem to be more accurately adapted to the new operating point, as
can be seen in the performance of the rated rotor speed tracking and pitch control activity.
Even as the response settles, the parameters continue to update at a noticeable rate due to
exponential forgetting, which persistently discounts older data and inflates the covariance

Master of Science Thesis N. van Wering



46 Simulation setup and results

matrix sufficiently to maintain sensitivity to new samples. Furthermore, while looking at
the trace of exponential forgetting, it is visible that after a certain time, the increase of the
trace becomes more constant around the order of 106. This behavior can be understood
from the covariance update in Equation 2-21. Here, it is visible that the first term 1

λexp
Pk

increases the covariance trace. However, this increase in uncertainty also leads to a larger
product of Pkϕk+1, even when the excitation does not increase. Eventually, the increase in the
covariance trace due to 1

λexp
Pk gets balanced with the subtraction in Equation 2-21 related

to the corrections of the new data with a larger product of Pkϕk+1.

In contrast with exponential forgetting, directional forgetting limits its forgetting to just the
direction excited by the new data, sparing directions that are not driven by the disturbance.
By not forgetting all prior information exponentially over time, it prevents large Markov
parameter updates and a possibly smoother transition to the new operating point. This is
also visible at the trace of the covariance matrix in Figure 3-8, which is significantly lower than
exponential forgetting and around the same as with no-forgetting. The difference with no-
forgetting is that directional forgetting avoids shrinking the uncertainty for excited directions,
thereby avoiding the singular values in these direction to go to zero. As a result, it has a
higher level of uncertainty in these directions, maintaining the adaptability. For the controller,
directional forgetting provides a middle ground. The controller can still adjust to unmodeled
disturbances or slow changes by adding uncertainty to the covariance matrix with forgetting,
but it does so in a more controlled manner that avoids the violent swings in parameter updates
that occur with exponential forgetting. Furthermore, the covariance matrix’s trace remains
bounded, so the Markov parameters remain more constant. The Markov parameter changes
shown in Figure 3-8 stay significantly below exponential forgetting, but are larger than without
forgetting. Once the system settles after the wind ramp, the parameter updates remain
closer to zero, demonstrating that directional forgetting balances stability and adaptiveness
without the aggressive Markov parameter changing characteristic of exponential forgetting.
As a result, the transitions in control inputs and rotor speed remain relatively smooth and
stable even during adaptation. This is visible in Figure 3-8, where after the wind ramp
the rotor speed deviates briefly but then returns steadily toward the reference with only a
small oscillation in the pitch input. This shows that the closed-loop SPC with directional
forgetting can respond to disturbances in this case without introducing instability in the form
of oscillations.

To quantify performance, the metric defined in Equation 3-2 is used again, which evaluates
both the accumulated reference tracking error and the accumulated change in control in-
puts. Without explicitly computing this metric, Figure 3-8 already visually suggests that the
no-forgetting case performs the worst. To qualitatively compare exponential and directional
forgetting, the accumulated cost metrics are evaluated. Directional forgetting yields an accu-
mulated input cost of 5.00 and an output cost of 13.9, whereas exponential forgetting results
in a higher input cost of 13.4 and output cost of 22.3. These results confirm that directional
forgetting achieves the best performance in this case among the three strategies, offering a
favorable trade-off between tracking accuracy and control effort.
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Figure 3-8: Comparison of simulation results using closed-loop SPC with RLS under different
forgetting strategies without wind preview, using wind case II. The left column illustrates the
rotor speed, pitch control and absolute value of prediction error of the rotor speed (|Ω − Ω̂|).
The right column presents the trace of the covariance matrix (Trace(P ), log-scale) and the
change in Markov parameters (∥∆θ∥2). Three distinct simulations are compared: SPC RLS
without forgetting, with directional forgetting (λdir = 0.9), and with exponential forgetting
(λexp = 0.995). The bottom-right subplot (∥∆θ∥2) stacks the three plots, each corresponding
to one forgetting method, highlighting the evolution of parameter adaptation over time.

3-4-4 Wind case II with wind preview

In this subsection, the wind preview is available. Here, the adaptive closed-loop SPC incor-
porates the anticipated wind ramp directly into its feedforward structure, transforming the
disturbance from an unknown input into a known one. Again using the wind case II where
the wind ramp starts at t = 120 s.

Looking at the no-forgetting case in Figure 3-9, it is visible that the trace of the covariance
matrix remains on the order of 100, and the changes in the estimated Markov parameters show
a negligible peak when the wind speed ramp begins. This limited change arises because, prior
to the ramp, the no-forgetting RLS has again already become confident in certain directions,
leaving less adaptiveness for further adjustment during the disturbance. Consequently, the
Markov parameters remain nearly unchanged, as visible in Figure 3-9. As the future wind
ramp enters the prediction horizon, the controller, relying on a somewhat mismatched output
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predictor, responds with an excessively high pitch to compensate for the wind increase, causing
a temporary dip in rotor speed. Nonetheless, despite this brief tracking error and the lack of
parameter update, the no-forgetting RLS closed-loop SPC still maintains reasonable control
performance. This suggests that incorporating wind preview into the output predictions
can partially compensate for the model’s near-static nature, enabling a partial disturbance
rejection.

When wind preview is available, exponential forgetting proves beneficial, as shown by the
near-perfect rotor speed reference tracking in Figure 3-9. Exponential forgetting continuously
discounts older data while emphasizing the most recent wind conditions, which are more
relevant to the current operating scenario. Because the forgetting is applied in all directions,
the parameter estimates adapt more rapidly. As demonstrated in Figure 3-9, this adaptation
allows the controller to generate smoother control signals, tightly regulating the rotor speed
during the ramp in the wind speed. Furthermore, Figure 3-9 shows that the trace of the
covariance matrix remains significantly high on the order of 108. However, unlike the previous
example where a high covariance trace led to overcorrection of the Markov parameters, this
issue does not arise when wind speed preview information is incorporated.

Directional forgetting did not appear to provide performance improvement over no-forgetting
as discussed in the sensitivity analysis and is, therefore, left out of the results.

To quantitatively compare no-forgetting and exponential forgetting, the accumulated cost
metrics are evaluated again. No-forgetting yields an accumulated output cost of 6.24 and
an input cost of 7.83, whereas exponential forgetting results in a significantly lower output
cost of 1.93 and input cost of 0.0872. These results quantitatively confirm that exponential
forgetting achieves the best performance in this case.
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Figure 3-9: Comparison of simulation results using closed-loop SPC with RLS under different
forgetting strategies with perfect wind preview, using wind case II. The left column illustrates the
rotor speed, pitch control and absolute value of prediction error of the rotor speed (|Ω− Ω̂|). The
right column presents the trace of the covariance matrix (Trace(P ), log-scale) and the change
in Markov parameters (∥∆θ∥2). Two simulations are compared: SPC RLS without forgetting
and with exponential forgetting (λexp = 0.995). The bottom-right subplot (∥∆θ∥2) stacks the
two plots, each corresponding to one forgetting method, highlighting the evolution of parameter
adaptation over time.

3-4-5 Wind case II with and without wind preview

In this example, wind case II with the ramp starting at t = 120 s is used. Only this time
at t = 150 s, the wind speed preview information is lost and set to zero. When the wind
preview is available, exponential forgetting showed to be beneficial in the previous example
with improved rotor-speed tracking performance. This exponential forgetting approach will be
compared to a combined method that simultaneously applies both directional and exponential
forgetting. The motivation for this stems from the observation made earlier in this section
that directional forgetting can be advantageous when no wind preview is available. Intuitively,
merging exponential and directional forgetting may improve performance when the wind
preview is initially present but later disappears.

The RLS algorithm incorporating both directional and exponential forgetting first applies di-
rectional forgetting, followed by exponential forgetting within the same time step. Referring
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to the preliminary covariance modifications introduced for the individual forgetting meth-
ods, this combined approach can be described as follows. First, the preliminary update for
directional forgetting is applied, as defined in Equation 2-29:

P̄k = Pk + αkϕkϕ
⊤
k ,

followed by the preliminary update for exponential forgetting, as defined in Equation 2-20:

P̄k = 1
λexp

Pk.

For this combined directional and exponential forgetting algorithm, the directional forgetting
factor λdir = 0.9 is used, which was determined as optimal from the sensitivity analysis with
wind case II without wind preview. Moreover, the exponential forgetting factor is set to
λexp = 0.995, which was found to be optimal in the sensitivity analysis with wind case II for
both cases, with and without wind preview.

Looking at Figure 3-10, it is visible that with only exponential forgetting, the wind-speed ramp
initially produces good reference tracking. However, once the wind preview disappears at 150
seconds, the purely exponential forgetting method shows significant oscillatory behavior. In
Figure 3-10 a large peak in the change of Markov parameter can be noted as the algorithm
attempts to compensate for the increase in prediction error after losing the wind preview
information when set to zero. To reject the disturbance within the pitch-to-rotor speed
relationship, exponential forgetting once again over-corrects the Markov parameters with the
the controller increasing the pitch input up to its maximum value of 27◦. The resulting
oscillatory behavior in both the input and output introduces additional excitation, which
temporarily decreases the trace of the covariance matrix, as shown in Figure 3-10. Although
the oscillations eventually decrease, convergence to the reference remains slow.

When the adaptive closed-loop SPC with both exponential and directional forgetting is used,
Figure 3-10 shows that the performance during the period with wind-speed preview remains
similar to that of exponential forgetting alone. As indicated by the previous example, where
directional forgetting on its own did not improve rotor-speed tracking, exponential forgetting
suggests to add the most relevant adaptation to this part of the simulation. Once the wind
preview disappears, the benefits of directional forgetting seem to become more evident. The
algorithm selectively identifies the direction of excitation, and it more effectively learns the
relationship between the pitch input and the rotor-speed output in the absence of accurate
wind speed information. It seems that, under the changing conditions in this example, the
combined forgetting method captures the best aspects of both approaches. Also visible in
Figure 3-10 is that the change in parameter, after losing the wind preview, is more moderate
as with only exponential forgetting. Furthermore, the trace of the covariance matrix does
not seem to suddenly decrease as much as with exponential forgetting. This can be caused
by the less exciting input trajectory compared to the oscillating input with only exponential
forgetting.

For a quantitative performance comparison, the accumulated costs of the performance metric
obviously confirms the better performance of the combined forgetting method. The input and
output costs for the combined forgetting method are 0.349 and 5.89, respectively, while the
exponential forgetting method yields significantly higher costs of 311 for the input and 99.8
for the output.
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Figure 3-10: Comparison of simulation results using closed-loop SPC with RLS under different
forgetting strategies with lose of wind preview at t = 120s, using wind case II. The left column
illustrates the rotor speed, pitch control and absolute value of prediction error of the rotor speed
(|Ω − Ω̂|). The right column presents the trace of the covariance matrix (Trace(P ), log-scale)
and the change in Markov parameters (∥∆θ∥2). Two simulations are compared: SPC RLS with
exponential forgetting (λexp = 0.995), and with exponential and directional forgetting combined
(λexp = 0.995 and λdir = 0.9) . The bottom-right subplot (∥∆θ∥2) stacks the two plots, each
corresponding to one forgetting method, highlighting the evolution of parameter adaptation over
time.

3-4-6 Wind case III with LIDAR preview

In this example, the turbulent wind case III with LIDAR wind preview measurements is used.
Figure 3-11 shows that the method without forgetting struggles to track the reference rotor
speed during the LIDAR measured turbulence wind speed simulation, using wind case III.
While good performance has been demonstrated with more stable wind speeds, the fluctuating
nature of turbulent wind causes the relatively static Markov parameters, even with available
wind speed information, to struggle in consistently tracking the rotor speed with the closed-
loop SPC. The relatively high prediction errors in Figure 3-11 suggest that the control input
may be based on flawed predictions, leading to suboptimal results.

Exponential forgetting delivers the best performance, as visible in Figure 3-11, by capturing
short term variations in dynamics more effectively and reducing prediction errors. Even
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though the wind preview obtained from the LIDAR simulator contains measurement errors
compared to the true wind speed, the adaptive closed-loop SPC still tracks the reference rotor
speed tightly under exponential forgetting.

Once again, directional forgetting did not appear to provide performance improvement over
no-forgetting with LIDAR wind preview, as mentioned in the sensitivity analysis, and is
therefore left out of the results.

According to the performance metric, the no-forgetting case resulted in an input cost of 46.3
and an output cost of 44.8, while exponential forgetting achieved a significantly lower input
cost of 5.53 and an output cost of 35.2. This reflects a substantial better performance for
exponential forgetting in both control effort and tracking accuracy under turbulent wind speed
conditions with LIDAR preview.
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Figure 3-11: Comparison of simulation results using closed-loop SPC with RLS under different
forgetting strategies with LIDAR wind preview, using wind case III. The left column illustrates the
rotor speed, pitch control and absolute value of prediction error of the rotor speed (|Ω− Ω̂|). The
right column presents the trace of the covariance matrix (Trace(P ), log-scale) and the change
in Markov parameters (∥∆θ∥2). Two simulations are compared: SPC RLS without forgetting
and with exponential forgetting (λexp = 0.995). The bottom-right subplot (∥∆θ∥2) stacks the
two plots, each corresponding to one forgetting method, highlighting the evolution of parameter
adaptation over time.
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3-5 Concluding remarks on the simulations

Exponential forgetting continuously discounts older data, which maintains adaptability but
sometimes leads to significant parameter swings and overshoot for example in the case where
wind preview is unavailable. However, it has shown to be very effective in scenarios where
wind preview is available, as it is able to quickly adapt parameters to recent wind conditions.
The adaptive closed-loop SPC with no-forgetting and without wind preview during the wind
ramp case performed the worst among all tested scenarios. In this configuration, the absence
of wind speed information and the lack of parameter adaptation significantly limited the
controller’s ability to maintain rated rotor speed tracking during and after the wind ramp.
Nonetheless, when wind speed information was incorporated through feedforward control, a
significant improvement in performance was observed. The addition of wind preview enabled
the controller to better anticipate future disturbances, partially compensating for the lack of
model adaptation.
Directional forgetting inflates covariance only in directions excited by new information, pro-
viding more controlled adaptation. It outperforms no- and exponential forgetting in the case
where no wind preview is available. Although, its advantages disappear when explicit wind
disturbance modeling is available, leading to results similar to no-forgetting. A combined
approach, using both exponential and directional forgetting, achieved swift adaptation with
wind preview and maintained performance when preview became unavailable, offering robust
performance across diverse wind scenarios. During turbulent wind conditions, exponential
forgetting again showed better performance by rapidly tracking frequent wind speed changes.
In this case no-forgetting also tracks the rated rotor speed effectively but remains less respon-
sive when observing changes in the Markov parameters. This reduced responsiveness may
explain its lower performance compared to exponential forgetting.
As shown in Table 3-4, the accumulated input and output costs for each forgetting strategy
across the evaluated wind scenarios show how the different adaptive closed-loop SPC config-
urations perform relative to each other. These cost metrics quantify how well the controller
tracks the rated rotor speed (Jy) while minimizing control effort (Ju). Notably, the adaptive
closed-loop SPC with exponential forgetting and wind preview consistently outperforms the
other forgetting strategies across all evaluated wind scenarios. This performance gain is at-
tributed to its ability to rapidly adapt to recent wind conditions while compensating for the
slow rotor dynamics using wind preview information.

Table 3-4: Accumulated input and output costs sorted by wind case and forgetting strategy.

Wind case Forgetting strategy Output cost Jy Input cost Ju

II (no preview) No-forgetting 30.7 1.53 · 103

II (no preview) Directional 5.00 13.9
II (no preview) Exponential 13.4 22.3
II (with preview) No-forgetting 6.24 7.83
II (with preview) Exponential 1.93 0.0872
II (preview loss) Exponential 99.8 3.11 · 102

II (preview loss) Exponential + directional 5.89 0.349
III (LIDAR preview) No-forgetting 44.8 46.3
III (LIDAR preview) Exponential 35.2 5.53
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Chapter 4

Conclusion

4-1 General conclusion

Large-scale wind turbines encounter significant control challenges, caused by stronger nonlin-
ear dynamics and increased rotor inertia. To address these challenges, an adaptive feedforward
closed-loop Subspace Predictive Control (SPC) controller is proposed to achieve optimal rotor
speed regulation in the above-rated region. It is designed to manage the nonlinear dynam-
ics by continuously updating the model, while also utilizing wind preview measurements to
counteract the phase loss imposed by a large rotor inertia. In line with the aforementioned
challenges, the research question addressed in this thesis is:
How can closed-loop SPC incorporate both an adaptive filter and Light Detection
and Ranging (LIDAR)-based wind preview information to achieve optimal above-
rated rotor speed regulation of a wind turbine?
To clarify how each aspect of the research question can be answered, a set of subequestions
were formulated. To conclude the correspondng findings of this thesis, the subquestions will
be answered in this section:

• How can an adaptive closed-loop SPC framework incorporate previewed future wind speed
information from LIDAR measurements?
The closed-loop SPC framework builds upon the Linear Time-Invariant (LTI) state-
space formulation in [26], which does not include external disturbances. To incorporate
previewed wind speed information, this formulation is extended by treating the wind
field as a known disturbance input. Based on this augmented state-space model, an
output data equation is derived over a finite horizon, yielding a linear output predictor
that depends on input, disturbance, and output data. This output predictor is inte-
grated into a receding-horizon optimization function, where the disturbance is given
by the feedforward wind preview to improve rotor speed regulation and counteract the
phase loss imposed by the inertia, following [37].
This thesis builds on the work of [37] by incorporating a simulated Continuous-Wave
(CW) LIDAR, modeled based on the commercial ZephIR LIDAR system [33], which
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estimates wind via Doppler shifts over a focused range. This introduces spatial averaging
that filters high-frequency wind content. However, at the distances used in this thesis,
the averaging remains acceptable and provides a realistic wind preview for use in closed-
loop SPC.

• How can standard Recursive Least Squares (RLS), exponential forgetting, and direc-
tional forgetting be used for feedforward closed-loop SPC to adapt to nonlinear rotor
dynamics?
To make closed-loop SPC adaptive, it is reformulated in Chapter 2 using a RLS struc-
ture, in which the output predictor parameters are continuously updated based on new
data, using a covariance matrix to weigh recent observations and adjust parameter
estimates accordingly. In standard RLS without forgetting, adaptability is limited be-
cause all data is weighed equally, reducing the algorithm’s response to new data over
time. Exponential forgetting reduces the influence of old data by applying a forget-
ting factor uniformly to the covariance matrix. While this enhances adaptability to
time-varying dynamics, it may lead to an accumulation of uncertainty in persistently
unexcited directions due to the absence of informative data. When these directions
are eventually excited, the associated high covariance can result in large parameter
updates, potentially leading to inaccurate parameter estimates, as there is insufficient
recent informative data in those directions. Directional forgetting applies the forgetting
factor only along the direction of new data, preserving certainty in unexcited directions
and preventing covariance inflation when new data is insufficiently informative. How-
ever, because it preserves past information in unexcited directions, directional forgetting
may adapt more slowly to changes compared to exponential forgetting. Thus, while di-
rectional forgetting mitigates overconfidence issues, exponential forgetting is generally
more adaptive in its parameter estimation due to its uniform forgetting of all parameter
directions. The impact of each method on wind turbine simulations is further explored
in the next subquestion using QBlade simulations for rated rotor speed tracking.

• How do the developed adaptive closed-loop SPC with wind preview algorithms perform in
above rated rotor speed regulation when applied to a nonlinear wind turbine simulation?
In Chapter 3, the simulations are performed with the high fidelity QBlade simulator
on a 10 MW DTU wind turbine using the adaptive closed-loop SPC with wind preview
feedforward to counteract phase loss and forgetting methods for parameter adaptation.
The control performance is evaluated based on two accumulated costs, the rotor speed
tracking error and the change in pitch.

To start, the developed methods were tested by conducting a sensitivity analysis on
the intended wind cases to make a selection of the control parameters. Based on this
analysis, the past and future window lengths were selected, which are used to construct
the output predictor and regressor required for closed-loop SPC. The selected past
window likely led to improved performance by having a large enough window to reach
a unique output predictor and reduce the impact of the unknown initial state. The
selected future window appears to offer a good compromise between anticipating the
turbine’s slow dynamic response and avoiding excessive sensitivity to model mismatches
in the output predictor. Additionally, this sensitivity analysis determined the tuning of
the controller weightsQ and R, which define the trade-off between rotor speed regulation
and pitch actuator effort. It also set the forgetting factors used in the adaptive RLS
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algorithm.

Controller performance and adaptivity to the Markov parameters was then evaluated
using the selected control parameters. This was done by comparing the results from
steering the wind turbine to a new operating point under a wind ramp and turbulent
wind field, using no-forgetting, exponential forgetting, and directional forgetting with
closed-loop SPC. During the tuning of the forgetting factors, it was observed that di-
rectional forgetting offered no performance improvement over no-forgetting when wind
preview was available, across all evaluated wind scenarios. Consequently, it was ex-
cluded from the experimental results involving wind preview. Directional forgetting
possibly misallocates added uncertainty on the covariance matrix in directions already
well-explained by the measured disturbance, thereby offering no significant advantage.

In the following experimental results, the forgetting strategies were evaluated on the
wind ramp case without wind preview. No-forgetting resulted in noticeable oscillations,
which can be attributed to the increased confidence reflected in the covariance matrix,
limiting the controller’s ability to quickly adapt to changing conditions. In the same
case, exponential forgetting tracked the reference more effectively, but also with sig-
nificant pitch activity and rotor speed oscillations. During the wind ramp, new data
excites directions that previously lacked excitation and, therefore, have inflated covari-
ance. As a result, the incoming data causes large and potentially inaccurate parameter
updates in those directions. At one point, these parameter estimations seem to be-
come more accurate, looking at the performance, as the controller input reintroduces
excitation with the oscillations. Directional forgetting was able to track the reference
with less aggressive parameter updates and smoother rotor speed and pitch transitions.
This is likely due to its selectively added uncertainty in excited directions, allowing for
moderate adaptation without excessive parameter updates observed with exponential
forgetting.

With wind preview enabled, exponential forgetting was able to track the rotor speed
almost perfectly under the same wind ramp, with its ability of prioritizing recent wind
measurements in its parameter estimation. This performance can be attributed to the
parameter updates being more responsive to the current wind conditions, with forgetting
applied uniformly across all directions. For the same wind case with wind preview, the
no-forgetting scheme resulted in a temporary dip in rotor speed during the ramp, likely
due to the limited adaptability of the estimator, which had become overconfident in
its prior parameter estimates. Despite this dip, the no-forgetting scenario still showed
significantly better performance than without the wind preview.

In the wind ramp scenario where the wind preview was suddenly removed, the com-
bined use of directional and exponential forgetting demonstrated smooth transitions.
In contrast, exponential forgetting alone exhibited large oscillations at the point of los-
ing preview. This is consistent with earlier observations that exponential forgetting
can overreact in its parameter updates with the absence of wind preview. In contrast,
directional forgetting provides more moderate adaptation and smoother controller per-
formance under unmodeled disturbances, which seems to hold even when combined with
exponential forgetting.

Lastly, for turbulent wind with the ZephIR LIDAR simulated wind preview, exponential
forgetting again surpassed no-forgetting in performance. By continuously adapting to
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short-term wind fluctuations, exponential forgetting maintained better performance,
whereas no-forgetting remained more rigid in its parameter updates, resulting in reduced
tracking performance.
As can be seen in the performance overview in Table 3-4, exponential forgetting com-
bined with wind preview delivered the best performance across the tested wind scenarios
by enabling rapid adaptation to changing wind conditions and effectively counteracting
the phase loss imposed by a large rotor inertia, outperforming all other strategies.

These findings directly address the research question of how previewed future wind speed
information from LIDAR measurements can be incorporated into the adaptive closed-loop
SPC framework. The results demonstrate that such preview information can be effectively
utilized by integrating it with RLS forgetting methods. In particular, exponential forgetting
in combination with wind preview was found to deliver the best overall performance across
the applied wind scenarios investigated during this research. The wind preview enables the
controller to anticipate incoming wind disturbances, while the exponential forgetting manages
rapid adaptation to changing wind conditions, resulting in effective disturbance rejection.

4-2 Future work and recommendations

This thesis presented an implementation of an adaptive feedforward closed-loop SPC concept
within a QBlade simulation environment. The approach demonstrated encouraging above-
rated rotor speed tracking results under varying wind conditions. Nonetheless, additional
exploration and validation are necessary to further evaluate and extend these findings. Below
are the main suggestions for future research:

• Investigate RLS forgetting strategies under linearized condition.
In this thesis, the estimated parameters from the investigated RLS forgetting strategies
showed some notable results such as directional forgetting not adding any performance
advantaged over no-forgetting with wind preview. To better understand how accurately
these forgetting strategies capture the true wind turbine dynamics, future research could
isolate the system’s complexity by testing on a simplified, linear wind turbine model.
Such a setting enables more direct, theoretically based comparisons of the estimated
parameters against ground truth dynamics.

• Explore multi-objective formulations.
While rotor speed regulation was the primary focus, large-scale turbines also require fa-
tigue load reduction, blade load balancing, and tower damping. These objectives can be
integrated into the closed-loop SPC formulation via additional cost terms or constraints.
Individual Pitch Control (IPC), which modulates each blade’s pitch independently, of-
fers an effective means of reducing asymmetric blade loads and can be incorporated as
additional inputs in the predictive model. Weighted multi-objective tuning can further
balance rotor speed regulation with structural load mitigation, enhancing the life span
of the wind turbine.

• Extend adaptive filtering strategies to floating wind turbines.
The onshore turbine experiments conducted in this research provide a valuable foun-
dation for evaluating adaptive closed-loop SPC performance. Building on this, floating
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wind turbines present an exciting opportunity for further exploration due to their more
complex dynamic behavior. With additional degrees of freedom and more pronounced
nonlinearities, they represent an attractive case for evaluating the effectiveness of the
adaptive filters in closed-loop SPC in handling these complex dynamics.

• Examine alternate adaptive filters and forgetting mechanisms.
While exponential and directional forgetting RLS showed good performance in capturing
local nonlinear behavior, each approach presents trade-offs and is limited by the use of a
constant forgetting factor. Future work could investigate different forgetting methods,
such as this adaptive forgetting scheme [63], where the forgetting factor dynamically
adjusts based on the prediction error.
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Glossary

List of Acronyms

DTU Technical University of Denmark
GWEC Global Wind Energy Council
LCOE Levelized Cost of Energy
IPC Individual Pitch Control
CPC Collective Pitch Control
LIDAR Light Detection and Ranging
CW Continuous-Wave
PW Pulsed-Wave
MPC Model Predictive Control
DDC Data-Driven Control
DDPC Data-Driven Predictive Control
MIMO Multiple Input Multiple Output
DeePC Data-enabled Predictive Control
SPC Subspace Predictive Control
LTI Linear Time-Invariant
RKHS Reproducing Kernel Hilbert Space
LPV Linear Parameter-Varying
RLS Recursive Least Squares
LS Least Squares
BEM Blade Element Momentum
UBEM Unsteady Blade Element Momentum
DLL Dynamic Link Library
SIL Software in Loop
RMSE Root Mean Squared Error
MBC Multi-Blade Coordinate
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