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Abstract—We investigated word recognition in a Visually
Grounded Speech model. The model has been trained on pairs
of images and spoken captions to create visually grounded em-
beddings which can be used for speech to image retrieval and
vice versa. We investigate whether such a model can be used to
recognise words by embedding isolated words and using them to
retrieve images of their visual referents. We investigate the time-
course of word recognition using a gating paradigm and perform
a statistical analysis to see whether well known word competition
effects in human speech processing influence word recognition.
Our experiments show that the model is able to recognise words,
and the gating paradigm reveals that words can be recognised from
partial input as well and that recognition is negatively influenced
by word competition from the word initial cohort.

Index Terms—Visually Grounded Speech, Recurrent Neural
Network, Flickr8k, Analysis

I. INTRODUCTION

Babies initially have little understanding of what is being
said around them. It is theorized that repeatedly hearing certain
words while observing certain objects around them enables
babies to learn a mapping between speech and objects [1].
Repeatedly hearing utterances in the context of some functional
consistency, like picking up an object, displays the meaning of
a smaller constituent of such an utterance, e.g., a word, and
potentially about the class of objects it belongs to [2].

Visually Grounded Speech (VGS) models are inspired by
such learning processes. While most speech recognition re-
search focuses on speech signals only, Visually Grounded
Speech models include visual information rather than textual
transcriptions to guide the training of the acoustic models [3]–
[9] . Following the approach of multimodal neural models
which produce visual-semantic alignments for images and text
[10], a VGS model employs two parallel Deep Neural Networks
(DNNs) which are trained to map a speech signal and a
corresponding image into a common embedding space.

Recent research on VGS models focused on architectural and
training scheme improvements [5], [6], [11]and applications
such as semantic keyword spotting [7], [12] and speech-based
image retrieval [3], [5], [6], [8]. Recent research has shown that
VGS models implicitly learn to recognise meaningful sentence
constituents such as phonemes and words and the presence of
these constituents can be decoded from the speech embeddings
[5], [6], [13]–[15]. Havard and colleagues presented isolated
words to a VGS model and investigated whether the model was
able to retrieve images of the words’ correct visual referents

[13]. This showed that the model does not just encode these
constituents into the speech embeddings, but the model actually
‘recognises’ individual words and learned to map them onto
their correct visual referents.

Building on the synthetic speech experiments by Havard and
colleagues, we investigate how natural speech is recognised
by a VGS model using real human speech. In this paper, we
will 1) investigate isolated word recognition using real speech,
2) investigate how words are recognised by a VGS model
over time, 3) and look more in depth into the linguistic and
acoustic properties that aid or hinder word recognition. As in
[13], we use the retrieval of images containing a word’s correct
visual referent as a measure of the model’s word recognition
performance. Real speech recognition is expected to be more
challenging due to more variation in quality, noise and speaking
rate than in synthetic speech as can be seen for instance in [5].

We carry out two experiments, inspired by those of [13]. In
our first experiment, the VGS model is fed individual words,
which will allow us to investigate whether the model is actually
learning to recognise individual words, which would be shown
by the model being able to retrieve a relevant image on the
basis of a single word rather than the full caption. In the second
experiment, we use a gating paradigm, borrowed from human
speech processing research. In the gating experiment, a word is
presented to the VGS model in speech segments of increasing
duration, i.e., with increasing number of phones, and ‘asked’ to
retrieve an image of the correct visual referent on the basis of
the available phone string. This allows us to investigate 1) the
time-course of word recognition, 2) the amount of information
needed for word recognition, and 3) whether the model is able
to encode phones in the combined embedding space.

To answer our third question, we carry out a statistical anal-
ysis in which word recognition performance is predicted using
several linguistic and acoustic features. These linguistic and
acoustic features are factors known to influence human speech
processing. In human speech processing (see for an overview
of models of human speech processing Weber & Scharenborg
[16]), the incoming speech signal is mapped against phone
representations in the listener’s brain, and the sounds that best
resemble the incoming speech signal are ‘activated’. These
activated phone representations, activate every possible word
in which they appear, irrespective of the position of the phone
in the word. As more speech information becomes available,
words that no longer match the input will drop out of the list
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of activated words. The word that best matches the speech input
is recognised. Words that are activated are called competitors
or competitor words. The number of competitor words plays a
role in human speech processing: the more competitors there
are, the longer it takes for a word to be recognised [17]. We
want to see whether our VGS model activates competitor words
in a similar manner, which would be shown by a significant
effect of the number of competitor words on word recognition
performance. We focus on the number of words that share
the start of the word, the so-called word-initial cohort, as we
are testing isolated words in our experiment [18], and the
neighbourhood density, i.e., the number of words that differs
exactly one phoneme from the target word.

The rest of this paper is organised as follows. Firstly, we
discuss the model architecture and the methodology behind the
experiments. Secondly, the results for the different experiments
will be discussed. Lastly, this work will be concluded with
a discussion with a summary of the contributions, as well as
recommendations for future research.

II. METHODOLOGY

A. Visually Grounded Speech Model

In this paper we use the VGS model implemented in [6],
with the exception of using a four instead of a three layer GRU.
The model consists of two DNNs: a pretrained image encoder
(ResNet-152 [19]) and a Recurrent Neural Network (RNN)-
based speech caption encoder. The encoders embed the speech
and images, and the model is trained to minimise the cosine
distance between image-caption pairs in the shared embedding
space. A visual representation of the model is given in Figure 1.
We refer to [6] and the freely available PyTorch implementation
for more details on the model and feature preprocessing https:
//github.com/DannyMerkx/speech2image/tree/Interspeech19.

The model was trained in order for matching image-caption
pairs to have a similarity larger by a margin α than for
mismatched pairs using a hinge loss function to minimise cosine
distance for ground-truth pairs. The model was trained for 32
epochs with a batch size of 32.

We train the model on Flickr8k [20], a database with 8k
images and 5 written captions per image for a total of 40k
captions. Spoken versions of the captions are collected and
provided by Harwath et al. [3]. We use the data split provided
by [10]. Caption-to-image retrieval, a standard evaluation metric
for our training task, is measured as Recall@N; the percentage
of captions for which the correct image was in the top N
retrieved images. Images are retrieved based on the cosine
distance to the caption embedding.

B. Experiments

In our first experiment, we test the model on isolated words
to investigate how well the model learned to map these words
onto their visual referents. The second experiment uses a gating
paradigm where we test the model on phoneme sequences
of increasing length to investigate the time-course of word
recognition in the model. We present our model with multiple
instances of each word, spoken by different speakers to gain
a more realistic impression of how a word performs across
different speakers and contexts. This also allows us to test which

Fig. 1. A visual representation of the image encoder parallel to the caption
encoder. Based on [6].

acoustic factors in the speech signal are influencing the model’s
word recognition performance.

1) Experimental data: A visually grounded model relies on
there being a consistency between the image and speech signal
in order to create a common embedding space. Therefore, we
chose 49 words with clear visual referents, such as ‘bike’ and
‘man’, as opposed to articles and adverbs. We extracted 50
occurrences of each word from the speech captions in the test
set, to have an equal sample size for each word to allow a fair
comparison between their word recognition performance.

The words were extracted from the speech signal using
a forced alignment of the phonetic transcriptions with the
speech captions in Flick8k. For the second experiment, these
words were segmented into sequences of phonemes where
each sequence was one phoneme longer than the previous. For
example, for the word ‘bike’, the speech signal was segmented
into ‘B’, ‘B-AY’, and ‘B-AY-K’.

2) Evaluating word recognition performance: Following
[13], we use the retrieval of images containing a word’s correct
visual referent as a measure of the model’s word recognition
performance. In order to quantify this we use the Precision@10
score which is calculated as follows. We use the trained VGS
model to create embeddings for all of the word instances. From
the Flickr8k test set, we take all images which had one of our
49 words in its captions and use the VGS model to create image
embeddings. For each embedded word instance we then retrieve
the ten most similar image embeddings as defined by cosine
similarity between the embeddings. The Precision@10 (P@10)
is then calculated for each word instance as the percentage of
its top ten images which contain the correct visual referent of
the word.

3) Evaluating linguistic and acoustic factors: To answer our
third research question, we examine linguistic and acoustic
factors which might influence the model’s word recognition
performance using a Linear Mixed Effects Regression (LMER).
For the LMER analysis we used the lme4 package in R [21].
All fixed effects are z-score normalised. The dependent variable
is the P@10 score.

For the word recognition experiment, our LMER model



takes into consideration the signal duration (i.e., number of
speech frames), the speaking rate calculated as the number
of phonemes in the word divided by its signal duration, the
frequency of occurrence of the word in the training set and
the number of phonemes, vowels, and consonants in the word.
We also included the two-way interaction of the frequency of
occurrence of the word in the training set with the number
of phonemes, vowels, and consonants. We considered these
interaction effects because words with a certain number of
phonemes, vowels, and consonants might appear more often
in a dataset. Furthermore, we included by-speaker and by-word
random intercepts and by-speaker random slopes for the signal
length, to take into consideration speaker differences on the
duration of the signal.

For the second experiment, the LMER model takes into
account the earlier mentioned frequency of occurrence of the
word in the training set and the total number of phonemes in the
word. We also include the size of the word-initial cohort and
neighbourhood density. The word-initial cohort is calculated by
determining for each phoneme sequence the number of words
which start with the same phoneme sequence in the Flickr8k
training set, which considers a total of 6182 unique words. This
indicates the number of words that is considered simultaneously
for recognition by the model given the phoneme sequence seen
so far. The neighbourhood density is calculated as the number
of words from the words in the Flickr8k training set that can
be formed from the phoneme sequence by a one-phoneme
substitution [22]. This factor indicates the similarity among
spoken forms of words, and is therefore a second measure of
the number of words that are simultaneously considered for
recognition. The model also includes a by-speaker and a by-
word random intercept.

III. RESULTS

The scores in Table I show the result for the speech caption-
to-image retrieval task. This indicates how well the model
learned to embed the speech and images in the common
embedding space. R@N is the percentage of items for which
the correct image was in the top N retrievals. Median R is the
median rank of the correctly retrieved image. The addition of an
extra GRU layer has led to a substantial performance increase,
allowing dependencies in longer speech captions to be captured
better.

A. Word recognition

In this experiment, we present isolated words to the model.
The histogram in Figure 2 shows the distribution of the P@10

TABLE I
SPEECH CAPTION-TO-IMAGE RETRIEVAL SCORES INCLUDING 95%
CONFIDENCE INTERVALS FOR OUR MODEL. FOR COMPARISON, THE

MODELS OF MERKX ET AL. [6], CHRUPAŁA ET AL. [5] AND HARWATH ET
AL. [3] WHICH WERE ALSO TRAINED ON FLICKR8K SPEECH CAPTIONS ARE

PROVIDED.

Model R@1 R@5 R@10 Med. R
4-GRU 10.71±1.9 29.2±2.8 40.2±3.0 18
[6] 8.0±1.7 24.5±2.7 35.5±3.0 24
[5] 5.5±1.4 16.3±2.3 25.3±2.7 48
[3] 17.9±2.4

Fig. 2. Distribution of Average P@10 scores for the 49 tested words, assigned
to bin intervals of size 0.1.

scores over the 49 words. The average P@10 is 0.44, which
indicates that on average 4.4 out of the ten retrieved images
contain the correct visual referent. However, Figure 2 also
shows that four words have a P@10 near zero, meaning that no
correct images were retrieved and the word was not recognised.
Furthermore, Havard and colleagues [13] reported a median
P@10 of 0.8, while we on the other hand have a median P@10
of 0.4. While our model does learn to recognise most words
to some degree, this indicates a large difference in recognition
performance going from the synthetic speech dataset in [13] to
the real speech of Flickr8k.

Table II shows the results from the statistical test. Firstly,
signal duration was found to have a significant negative effect
on the P@10 scores. This shows that the model has more diffi-
culty encoding longer words. Secondly, speaking rate also had
a significant negative effect, showing that words that are spoken
more rapidly were encoded less well than words pronounced
more slowly. Lastly, the frequency of occurrence of the word in
the training set was shown to have a significant positive effect
on word recognition performance. This shows that words which
occur more often in training samples are encoded considerably
better for word recognition. No interaction effects were found.

For our random effects, we see that the standard deviation of
the scores between words is far larger than between speakers.
This shows that the effect of using different speakers causes
less variation in results in comparison to using different words.

B. Word activation

In order to investigate the time-course of word recognition
and how much information is needed for word recognition,
phoneme sequences of increasing length were given to the

TABLE II
SIGNIFICANT FIXED EFFECTS WITH STANDARD ERRORS FOR THE WORD

RECOGNITION LMER.

Fixed effects Estimate P-value
Intercept 0.432±0.033 <0.001
Signal duration -0.050±0.014 <0.001
Speaking rate -0.068±0.013 <0.001
Training set frequency 0.152±0.063 0.020



Fig. 3. Heatmap showing the P@10 scores of a given word (shown on the
y-axis) as a function of the phoneme sequence length. The x-axis indicates the
percentage of phonemes of the word that were available to the model.

model. Figure 3 shows the results in terms of the P@10 of
a given word (shown on the y-axis) as a function of the
phoneme sequence length in terms of percentage of phonemes
of the word. Note that the x-axis has ten values, if a word
has for instance only two phonemes, the P@10 for the first
and second phoneme span 10-50% and 60-100% respectively.
A more yellow colour corresponds to a higher P@10.

As can be seen in Figure 3, generally, the more phonemes of a
word the model is exposed to, the better it can retrieve the image
corresponding to the spoken word. Some words representations,
see the bottom of Figure 3 (bars are entirely blue), are not
recognised at all irrespective of the percentage of phonemes
shown to the model.

The results of the LMER model are summarised in Table
III. Unsurprisingly, the number of phonemes in a phoneme
sequence has a significant positive effect on the P@10 scores
indicating that words are recognised better when the model is
presented with longer phoneme sequences. The frequency of
occurrence of the word in the training set again has a significant
positive effect on the performance, showing that having more
training examples allows phoneme sequences to be mapped
more easily to the correct visual referent. The word-initial
cohort has a significant negative effect on the P@10 scores,
indicating that, similar to human listeners, word recognition is
more difficult when there are more words that have the same
phoneme sequence at the start of the word. The effect of the
neighbourhood density was not found to be significant.

TABLE III
SIGNIFICANT FIXED EFFECTS WITH STANDARD ERRORS FOR THE WORD

ACTIVATION LMER.

Fixed effects Estimate P-value
Intercept 0.295±0.020 <0.001
# of phonemes 0.134±0.003 <0.001
Training set frequency 0.087±0.018 <0.001
Word-initial cohort -0.037±0.003 <0.001

IV. DISCUSSION AND CONCLUSIONS

In this paper, we investigated how natural speech is recog-
nised by a Visually Grounded Speech model using real human
speech. In order to do this, in the first experiment, we inves-
tigated how isolated words are recognized in a VGS model.
Although our model is trained on full speech captions, the
word recognition experiment showed that the model learned
to recognise individual words and was able to map them onto
their correct visual referent in most cases.

Also, we investigated the time course of the word recog-
nition. The second experiment showed that it is possible to
recognise a word from only a partial phoneme sequence and
that word recognition performance (as measured in image
retrieval scores) generally improved as more phonemes were
seen, with the best retrieval scores when the model was shown
all phonemes of the word. The largest leap in word recognition
performance was observed after the model was provided with
a phoneme sequence consisting of 30%-40% of the target
word’s phonemes. For some words such as ‘person’ or ‘men’,
word recognition was highest right after the first phoneme and
decreased upon seeing more of the speech signal, although
in these cases the word generally was not recognised well.
Similar to human listeners [16], the model did not need to
have available all phonemes of the word in order to recognize
it, which indicates that the model encodes useful information
at the phoneme level.

Lastly, we looked in more depth at which linguistic and
acoustic features influence word recognition performance. In
general, words that are spoken more slowly have a higher word
recognition score. The effect of frequency of a word in the
training set on word recognition performance demonstrates how
reliant such a model is on its training data. Furthermore, the size
of the word-initial cohort was found to have a significant effect
on word recognition performance. This shows that, similar to
human speech processing, the number of words that match the
input speech influence recognition accuracy. It is well known
that in human speech recognition, words can be activated or
suppressed by priming effects, thus hindering or aiding in
recognition [23]. It would be an interesting direction for future
research to see if words preceded by a priming context show
the expected effects on word recognition performance.

For future research it would be interesting to look at what
word a sequence of phonemes is mapped to when it does not
retrieve the correct image. This could give more insight into
how phonemes are embedded within the model. Also, it would
be interesting to see if there are other linguistic or acoustic
factors in addition to those we investigated which affect word
recognition performance.
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