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The macroscopic behavior of dense suspensions of neutrally buoyant spheres in turbulent plane channel
flow is examined. We show that particles larger than the smallest turbulence scales cause the suspension to
deviate from the continuum limit in which its dynamics is well described by an effective suspension
viscosity. This deviation is caused by the formation of a particle layer close to the wall with significant slip
velocity. By assuming two distinct transport mechanisms in the near-wall layer and the turbulence in the
bulk, we define an effective wall location such that the flow in the bulk can still be accurately described by
an effective suspension viscosity. We thus propose scaling laws for the mean velocity profile of the
suspension flow, together with a master equation able to predict the increase in drag as a function of the
particle size and volume fraction.
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Turbulent, wall-bounded suspensions appear widely in
environmental and industrial contexts. These suspensions
are often dense; i.e. the volume fraction is sufficiently high
that particle-particle and particle-fluid interactions strongly
influence the macroscopic flow dynamics. In many cases,
the suspended particles have a finite size—comparable to or
larger than the smallest scales in the flow, and particle
inertia plays an important role [1].
The flow of suspensions under laminar conditions has

been thoroughly studied since Einstein [2] analytically
derived an expression for the effective viscosity of a
suspension of rigid spheres in the dilute and viscous limit:
νe=ν ¼ 1þ ð5=2ÞΦ, where ν is the kinematic viscosity of
the suspending fluid, and Φ the bulk solid volume fraction.
In dense cases, the rheology of laminar suspensions is
usually characterized by semiempirical formulas for the
effective viscosity [3,4].
When the Reynolds number (which quantifies the

importance of fluid inertial to viscous effects) is sufficiently
high, the flow becomes turbulent, exhibiting chaotic and
multiscale dynamics. Wall-bounded turbulent flows are
characterized by at least one inhomogeneous direction and
by the constraint of vanishing velocity at the wall, which
makes their analysis even more complicated. For simplicity,
we consider the canonical case of a pressure-driven
turbulent plane-channel flow laden with neutrally buoyant
particles, defined by the bulk Reynolds number
Reb ¼ Ub2h=ν, where Ub is the bulk velocity (i.e. aver-
aged over the entire domain) and h the half channel height.
In the single-phase limit, the most well-known results from
classical turbulence theory are the scaling laws for the mean
velocity and the associated drag, or pressure loss. This is
obtained by dividing the flow into two regions: the inner
layer, close to the wall, y ≪ h, with relevant velocity and

length scales uτ and δv, and the outer layer, away from the
wall, y ≫ δv, governed by uτ and h; here uτ ¼

ffiffiffiffiffiffiffiffiffiffi
τw=ρ

p
is

the friction velocity, τw the wall shear stress, δv ¼ ν=uτ the
viscous wall unit, and ρ the fluid mass density.
At high-enough friction Reynolds number,

Reτ ¼ h=δv ¼ uτh=ν≳ 100, corresponding to Reb ≳
3000 [5], an overlap region exists, δv ≪ y ≪ h. Here a
logarithmic law can be derived for the inner-scaled
mean velocity profile, u=uτ ¼ ð1=κÞ lnðy=δvÞ þ B, and
for the outer-scaled defect law ðUc − uÞ=uτ ¼
−ð1=κÞ lnðy=hÞ þ Bd, with Uc the centerline velocity,
κ ≈ 0.41 the so-called von Kármán constant, B ≈ 5.2 and
Bd ≈ 0.2. These simple scaling laws, derived in 1930 [6],
have been confirmed by many numerical and experimental
studies (see e.g. [7] for a review). Their importance is
unquestionable to predict the overall drag [8] and to use as a
basis for many near-wall closure models currently used in
computational fluid dynamics [9].
At the very high Reynolds numbers typically encoun-

tered in practice, the suspended particles are larger than the
smallest turbulent scales (∼δv) and the single-phase
approach fails to reproduce the behavior of turbulent
channel flows of dense suspensions even when accounting
for an effective suspension viscosity [10–12].
In this Letter we propose scaling laws for turbulent wall-

bounded suspension flows. These are characterized by
three parameters: the bulk Reynolds number Reb, the bulk
solid volume fraction Φ, and the particle diameter Dp=h.
These laws are capable of predicting the mean velocity and
drag from dilute to dense cases, from large to relatively
small particles and for a wide range of Reynolds numbers.
We use data from interface-resolved direct numerical

simulations (DNS). The DNS solve the Navier-Stokes
equations for an incompressible Newtonian fluid in a plane
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channel with periodic boundary conditions in the stream-
wise (x) and spanwise (z) directions over lengths of 6h and
3h, respectively, and no-slip and no-penetration at the
bottom (y ¼ 0) and top (y ¼ 2h) walls. The flow solver is
extended with an immersed boundary method to force the
fluid velocity to the local particle velocity at the particle
surface [13]. Lubrication closures are used for short-range
particle-particle and particle-wall interactions when inter-
surface distances are smaller than a grid cell and a soft-
sphere collision model for solid-solid contacts [14,15]. The
method has been tested and validated against several
benchmark cases [15–17]. The flow is resolved on a
uniform Cartesian grid with size Δ ¼ Dp=16. The compu-
tational parameters are presented in Table I where we also
report the cases from [11,18] used here for comparison. The
data are complemented with an unladen single-phase
reference (SPR) case at the same Reb ¼ 12 000 and a
continuum limit reference (CLR), i.e. the single-phase flow
of a fluid with the effective viscosity νe of a suspension
with volume fraction Φ ¼ 0.2, corresponding to Reeb ¼
Rebν=νe ≈ 6400 in our case.
Figure 1 shows the mean velocity profile forDp=δv ≈ 10

(D10) and 20 (D20), compared to the continuum limit
reference. The comparison between the single-phase and
the two-phase flows requires a proper definition of the
viscous wall unit in terms of νe, here δev ¼ νe=uτ. Despite
the improvement with respect to the use of the classical
definition of δv ¼ ν=uτ (see the inset of Fig. 1), the figure
reveals that the particle-laden flows show a clear deviation
from the classical logarithmic law. The differences with the
continuum limit are for larger particles, and so is the
measured increase in drag. The abrupt change of the slope
of the profile at a wall-normal distance of y ∼Dp suggests
that the deviation from the continuum limit is caused by a
change in the near-wall dynamics. Studies of laminar wall-
bounded flows laden with neutrally buoyant spheres report
a structured arrangement of particles near the wall
[16,19,20]. This layering is attributed to the planar sym-
metry imposed by the wall and to stabilizing particle-
particle and particle-wall interactions. Though more pro-
nounced under laminar conditions, this phenomenon is also
present in turbulent suspensions [11,18]. Figure 2(a)
presents the mean local number density n, normalized with

the corresponding bulk value N, for cases D10 and D20
(see Table I). The particle layer is evident from the local
minimum at a distance of one particle diameter from the
wall, as shown in the inset where the horizontal axis is
scaled with Dp.
The apparent mean particle-to-fluid slip velocity is

highest close to the wall and becomes negligible at wall-
normal distances y≳Dp; see Fig. 2(b) where we report the
wall-normal profiles of the mean particle and fluid velocity
for two of the cases considered. Away from the wall, the
complex interaction between the turbulent fluid motion and
the particles still result in approximately the same average
value of streamwise velocity, as if the two phases behave as
a continuum. The layer of particles near the wall shows an
almost constant slip with respect to the fluid. This large slip
indicates that continuum models based on an effective
viscosity are bound to fail.
The inset of Fig. 2(b) reports the fluid velocity divided

by the particle-to-fluid slip velocity at the wall, upw, versus
the wall-normal distance in units of particle radius Rp. For
the same volume fraction of 20%, results from different
numerical simulations with different Reynolds numbers
and particle sizes collapse for wall-normal distances
smaller than a particle radius. It appears that, in dense
suspensions, a particle-wall layer exists that prevents a
direct interaction between the turbulent suspension flow in
the core and the solid wall underneath the particle-wall
layer. This serves as a starting point for the scaling
arguments presented hereafter.
The former considerations motivate a modeling approach

based on the separation between the dynamics of the
particle-wall layer and of the turbulent flow region. We
will denote the latter as the homogeneous suspension
region (HSR), meaning a well-mixed suspension. Let us
therefore define the thickness of the particle-wall layer by

TABLE I. Physical and computational parameters of the DNS
database (consisting of 20 simulations). Np denotes the number
of particles and δsphv (≳δv) the viscous wall unit for the
corresponding single-phase flow at the same Reb.

Case h=Dp Dp=δ
sph
v Φð%Þ Reb Np

D10 36 9.7 20 12 000 640 000
D20 18 19.4 20 12 000 80 000
D10_2 36 9.7 5 12 000 160 000
FP [11] 9 19.9 0–20 5 600 0–10 000
IL [18] 5 20.7, 32.4 0–30 3 000, 5 000 0–2 580

FIG. 1. Mean streamwise flow velocity, u=uτ, versus the wall-
normal distance in inner scaling y=δev. Vertical dashed lines depict
a wall-normal distance of 1 particle diameter (y ¼ Dp) for cases
D10 (closest to y ¼ 0) and D20; see Table I. Maximum statistical
error within 95% confidence interval is �0.9%. The inset shows
the same velocity profile but with the wall-normal distance scaled
with δv.
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the length scale δpw. The previous discussion showed that
δpw scales with Dp at fixed volume fraction. In addition,
δpw should vanish in the single-phase limit, i.e. when
Φ → 0. We therefore assume δpw (i) to be proportional to
the solidity of the bulk suspension, measured as the ratio
between particle size and mean particle separation distance,
and (ii) to scale with the particle size. These hypotheses
give the result above δpw ¼ CðΦ=ΦmaxÞ1=3Dp, where the
constant is set to C ¼ 1.5 [21] for all the cases addressed
here and Φmax ¼ 0.6. Note that displacing the origin of the
turbulent region has been successfully adopted in turbulent
flows over rough walls [22] but was not applied before to
the case of turbulent suspensions.
In the same spirit, we further assume that the total stress

τ ¼ ρu2τð1 − y=hÞ acting across the channel is due to two
distinct mechanisms. In the HSR, the increment in stress
due to the particles is assumed to be well modeled by an
effective suspension viscosity; in the particle-wall layer,
instead, the stress increases due to the large apparent slip
velocity near the wall. This is the main finite-size effect
present in the flow. The stress in the HSR (y > δpw)

corresponds therefore to that of a single-phase turbulent
flow of a Newtonian fluid with viscosity νe, in a channel
with a wall origin at y ¼ δpw and half-height h − δpw. The
flow in this region experiences an apparent stress
ρu�2τ ≤ ρu2τ . In the particle-wall layer (y < δpw) the stress
increases linearly when approaching the wall from ρu�2τ to
ρu2τ ¼ ρu�2τ þ Δτpw. Hence, the total stress, linearly vary-
ing across the channel [11], is split into two contributions:

τ ¼ ðρu�2τ þ Δτpwð1 − y=δpwÞÞHðδpw − yÞ
þ ðρu�2τ ðh − yÞ=ðh − δpwÞÞHðy − δpwÞ; ð1Þ

where H is the Heaviside step function with the half-
maximum convention. Evaluating Eq. (1) at y ¼ δpw yields
the friction velocity in this region u�τ ¼ uτð1 − δpw=hÞ1=2.
Given u�τ , νe, and δpw we obtain the following laws for the
inner (u=u�τ ¼ F½ðy − δpwÞu�τ=νe�) and outer scaling
(ðUc − uÞ=u�τ ¼ G½ðy − δpwÞ=ðh − δpwÞ�) of the mean
velocity in the overlap region of the HSR:

u
u�τ

¼ 1

κ
ln
�
y − δpw
δe�v

�
þ B; ð2Þ

Uc − u
u�τ

¼ −
1

κ
ln

�
y − δpw
h − δpw

�
þ Bd; ð3Þ

with u�τ ¼ uτð1 − δpw=hÞ1=2, δe�v ¼ νe=u�τ ; κ, B, and Bd
retain the values of single-phase flow; here νe=ν ¼ ½1þ
ð5=4ÞΦ=ð1 − Φ=ΦmaxÞ�2 [3]. Figure 3 reports the mean
velocity profiles from the present simulations and the cases
from [11]. The figure shows a collapse of the profiles in the
logarithmic region, except for the case FP [11] with
Φ ¼ 20% (see Table I). This is expected from our model,
because it is the only case for which the friction Reynolds
number based on the scaling parameters of the HSR
Rehsrτ ¼ ðh − δpwÞ=δe�v < 100. This implies that there is

(a)

(b)

FIG. 2. (a) Mean particle number density n divided by its bulk
value N versus y=h in the main panel and y=Dp in the inset
(maximum statistical error within 95% confidence interval is
�0.8%). (b) Mean streamwise particle and fluid velocity. The
inset shows the fluid velocity, normalized with upw (definition in
the text) versus y=Rp. The data from [11] pertain to the case of
Φ ¼ 20%. Vertical dashed lines depict a wall-normal distance of
1 particle diameter (y ¼ Dp) for cases D10 (closest to y ¼ 0) and
D20; see Table I.

FIG. 3. Profiles of mean streamwise fluid velocity u=u�τ versus
the wall-normal coordinate ðy − δpwÞ=δe�v . The inset shows the
defect law, ðUc − uÞ=u�τ , versus the distance to the wall in outer
units ðy − δpwÞ=ðh − δpwÞ (definitions in the text). Maximum
statistical error is the same as in Fig. 1.
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not a sufficient separation of the inner and outer scales for
the overlap region to exist [5], which is a necessary
condition for the logarithmic scaling of the velocity profile.
The defect law is shown in outer scaling in the inset of
Fig. 3, where scaling in the logarithmic region can be
clearly depicted. Also for this quantity the improvement
with respect to the case where the particle-wall layer is not
considered (δpw ¼ 0) is significant (not shown). Finally, the
proposed scaling laws are used to derive the following drag
law (i.e. the mean wall shear stress τw ¼ ρu2τ ), expressed in
terms of the friction Reynolds number:

Reτ ¼
Reb
2ξ1=2pw

�
1

κ
½ln ðReτχeξ3=2pw Þ − 1� þ Bþ Bd

�
−1
; ð4Þ

where ξpw ¼ ð1 − δpw=hÞ and χe ¼ ν=νe. Equation (4) is
derived in the same way as well-known laws from single-
phase flow are derived [8]: by integrating the defect law
[Eq. (3)] over the entire HSR to relate the bulk and
centerline velocities, and combining Eqs. (2) and (3) to
relate the friction and bulk velocities; see the Supplemental
Material [23]. Note that Eq. (4) reduces to the well-known
relation for single-phase flow when Φ → 0. Figure 4
compares the relative difference between the predicted
values of Reτ and the values obtained from the DNS,
Rednsτ . The filled symbols correspond to predictions where
only the effective viscosity is taken into account, i.e.
δpw ¼ 0, and the open symbols to predictions where both
effects are accounted for. The estimates of the drag improve
for the three data sets and the difference with the DNS
values is less than 4%. This supports the necessity of
accounting for finite-size effects and further validates the
proposed scaling. We remark that the implicit formulation
of the drag law given by Eq. (4) can be replaced by a simple

explicit power law of Reτ as a function of Reb, less sensitive
to insufficient inner-to-outer scale separation, which yields
similar (and consistently, slightly more accurate at low
Reynolds numbers) predictions for the drag; see
Supplemental Material [23].
The solution of Eq. (4), normalized with the correspond-

ing friction Reynolds number for single-phase flow
Resphτ ¼ ReτjΦ¼0, can be examined to draw general con-
clusions on the suspension behavior. For constant volume
fraction and Reynolds number we conclude that a finite
particle size causes a significant increase in drag with
respect to the continuum limit due to the formation of a
particle-wall layer. As expected, the drag increases mono-
tonically with the particle size (corresponding to an
increase of δpw) and volume fraction (increasing δpw
and νe).
To conclude, we presented scaling laws for the mean

velocity and the velocity defect in turbulent channel flow of
neutrally buoyant finite-size spherical particles, which also
enables us to accurately predict the total suspension drag.
The model quantifies the main finite-size effect present in
the flow—a particle-wall layer which always causes an
increase in drag, by separating the dynamics of the flow in
this layer and the homogeneous suspension region in the
core. Exploiting conservation of momentum, this effect can
be reduced to an apparent wall location y ¼ δpw above
which the flow is reasonably well represented by a
Newtonian fluid with an effective suspension viscosity
νe. We validated our predictions for a reasonably wide
range of the governing parameters.
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