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Summary

In recent years large advances have been made in the field of machine learning, driven
by novel deep learning methods. Deep learning is a research field that focusses on
creating neural networks. This field has seen a rapid advance due to an increase in
computational power, availability of large amounts of data and a wide variety of novel
methods that allows for more efficient training of neural networks. Deep learning has
been applied in various fields to solve many different tasks. Effective training of these
neural networks requires selecting the right data, network architecture and learning
method. However, thorough understanding of the task for which the neural network
is trained is needed to adhere to these requirements. This thesis will illustrate that
deep learning methods can effectively be applied to perception tasks by thorough
understanding of the task.

Part I: Region Detection and Feature Extraction in Fetoscopy

The Twin-to-Twin Transfusion Syndrome (TTTS) is a condition of unborn twins that
requires a complex laproscopic surgical procedure on the placenta that is complicated
by the visual conditions inside the uterus. In Chapter 2 TTTS is described and the
surgical procedure is detailed. Only few highly trained surgeons can perform this
complex and mentally challenging procedure. Therefore, this procedure can only be
performed in a very select number of hospitals. Alternatively, abortion of one of the
twins is a method to treat this complication as the mortality rate is extremely high
if left untreated, resulting in many abortions or unsuccessful pregnancies on a yearly
basis. The preferred procedure is complicated requiring the surgeon to create a map
of the placenta before laser coagulation of the anastomoses. Creation of such a map
can be done by panorama reconstruction of the fetoscopic images. This method has
been successfully been applied to fetoscopic images obtained in an ex-vivo setting.
However, these methods fail in an in-vivo setting as described in Chapter 3. In
this chapter the challenges encountered and their underlying cause are detailed fur-
ther. Also, the state-of-the-art methods used in an ex-vivo setting are evaluated
for panorama reconstruction in the in-vivo setting. This chapter is concluded with
recommendations to solve the challenges encountered in an in-vivo setting, which
are adopted in the following chapters.

In Chapter 4 the challenge of extracting matchable features is tackled by coupling
similarity learning to the matching performance. In Chapter 5 the Single Shot De-
tection method is adapted to detect stable regions on the veins in order to tackle the
challenge of detecting stable keypoints. Also, the matchable features method of the
previous chapter is integrated. Furthermore, a qualitative measure of the visibility
condition is extracted that is indicative of the registration performance and allows to
create a more reliable panorama reconstruction process.
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Part 1l: Road User Perception in Automated Driving

The field of Automated Driving focuses on developing methods and applications
that can support the driver in driving a car and ultimately completely take over the
role of the driver. The research in this field is fuelled by the goal to reduce the
amount of lethal accidents of which most can be attributed to human error. In
Chapter 6 the challenges of this field are detailed and the road user perception
task is described. This task consist of three subtasks; road user detection, tracking
and prediction. Effective detection of road users has been developed over the years
with the use of deep learning algorithms and choice of the right sensors of which
an example is given in Chapter 7. Traditionally in road user prediction, motion
history is used to predict the future trajectory of the road user. However, the motion
of a road user are the results of decisions that are based on constraints such as
the road geometry and other road users. In Chapter 8 the motion information is
transformed to the road geometry, and combined with a Recurrent Neural Network
(RNN), the future trajectory can be predicted much more accurately. In Chapter 9
the motion information is encoded with an RNN, and the interaction between road
users is modelled through social pooling. The road geometry is incorporated through
an attention mechanism. This novel approach alleviates the two most important
constraints in the motion model to predict the future trajectory of road users.

The applications of deep learning as described in this thesis illustrate that thorough
understanding of the task improves the effectiveness of the applied deep learning
methods. In the field of TTTS the thorough analysis of the task showed that sta-
ble keypoint detection and matching is important in panorama reconstruction. This
analysis also showed what challenges are encountered in the in-vivo setting compared
to the ex-vivo setting. These challenges posed different requirements to the applied
methods and by including these in the design of deep learning based system of al-
gorithms it was possible to overcome these challenges. The deep learning methods
presented in this thesis for panorama reconstruction open the road to in-vivo appli-
cation.

Furthermore, for road user detection analysis of the task showed that combining the
strengths of the various sensors would improve the performance significantly. This
conclusion has been made independently in other research. Analysis of the road user
prediction task showed that there are indicators for the future trajectory, such as road
geometry and interaction between road users, that are not effectively incorporated.
The deep learning methods presented in this thesis for road user prediction improve
accuracy and applicability for automated vehicles.



Samenvatting

Recentelijk zijn grote stappen gemaakt in het veld van Machine Learning, gedreven
door ontwikkeling van nieuwe Deep Learning methodes. Deep learning is een onder-
zoeks veld dat zich richt op ontwikkeling van neurale netwerken. Dit veld heeft snelle
ontwikkelingen ervaren door meer rekenkracht van computers, beschikbaarheid van
grote hoeveelheden gegevens en een verscheidenheid aan nieuwe methodes waar-
door neurale netwerken efficiénter getraind kunnen worden. Deep learning wordt
toegepast in verscheidene toepassingen om veel verschillende taken op te lossen. Ef-
fective training van deze neurale netwerken vereist selectie van de juiste data, netwerk
architectuur en leermethode. Echter, diepgaand begrip van de taak waar voor het
neurale netwerk getraind wordt, is nodig om aan deze vereisten te voldoen. In deze
thesis zal beschreven worden dat deep learning methodes effectief toegepast kunnen
worden op perceptie taken door diepgaand begrip van de taak.

Deel I: Regio Detectie en Feature Extractie in Fetoscopy

Het Twin-To-Twin Transfusion Syndrome (TTTS) is een aandoening bij ongeboren
tweelingen welke een complexe laparoscopische chirurgische procedure benodigd op
de placenta. Deze procedure wordt bemoeilijkt door het zicht in de uterus. In
hoofdstuk 2 wordt TTTS en de chirurgische procedure in detail beschreven. Enkel
een paar goed opgeleide chirurgen kunnen deze complexe en mentaal uitdagende
procedure uitvoeren. Daarom wordt deze procedure maar in een paar ziekenhuizen
aangeboden. Als alternatief zou abortie van één van de tweeling zijn, aangezien de
overlevingskans erg laag is, indien deze aandoening niet behandeld wordt, waardoor
jaarlijks veel abortes en mislukte zwangschappen gebeuren.

De voorkeurs procedure is gecompliceerd en vereist dat de chirurg een kaart maakt
van de placenta voordat deze met een laser de anastomoses coaguleert. Het maken
van zo'n kaart kan ook gedaan worden door panorama reconstructie van de feto-
scopische beelden. Deze methode is succesvol toegepast met fetoscopische beelden
verkregen in een ex-vivo setting.

Echter, deze aanpak faalt in een in-vivo setting zoals beschreven wordt in hoofd-
stuk 3. In dit hoofdsuk worden de uitdagingen en hun onderliggende oorzaken
uitgebreid beschreven. Verder worden de nieuwste methodes in de ex-vivo setting
geévalueerd voor panorama reconstructie in de in-vivo setting. Dit hoofdstuk sluit
af met aanbevelingen hoe de beschreven uitdagingen in een in-vivo setting zouden
overwonnen kunnen worden.

In hoofdstuk 4 wordt de uitdaging, om de passende beschrijving van referentie punten
te verkrijgen, aangepakt door de overeenkomstigheid van de gekoppelde beschrijvin-
gen van referentie punten aan similarity learning te koppelen. In hoofdstuk 5 wordt

xi
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de Single Shot Detection (SSD) methode aangepast zodat deze stabiele gebieden op
de bloedvaten van de placenta kan detecteren. Dit wordt gebruikt om een oplossing
te vinden om stabiele referentie punten te vinden. Verder wordt de methode van het
vorige hoofdstuk geintegreerd. Tot slot wordt een maatstaf van de zicht kwaliteit
gebruikt om indicatie te verkrijgen van de registratie prestatie. Dit leidt tot een be-
trouwbaar panorama reconstructie proces die toegepast zou kunnen worden in een
in-vivo setting.

Deel II: Weggebruiker Perceptie in Geautomatiseerd Rijden

Onderzoek naar geautomatiseerde voertuigen richt zich op ontwikkeling van meth-
odes en toepassingen die de bestuurder van een auto ondersteunt en uiteindelijk
volledig de taak van bestuurde kan overnemen. Onderzoek hierin is gemotiveerd
door het doel om het aantal dodelijke ongelukken te verminderen. Hiervan kun-
nen de meeste verweten worden aan menselijke fouten. In hoofdstuk 6 worden de
uitdagingen in dit onderzoeksveld gedetailleerd. Daarnaast wordt de weggebruiker
perceptie (road user perception) taak gedetailleerd welke bestaat uit drie subtaken:
detectie, volgen en voorspelling (recognition, tracking, prediction).

Effective detectie van weggebruikers is ontwikkeld in de laatste jaren door gebruik te
maken van deep learning algoritmes en de juiste keuzes in sensoren. Hiervan is een
toepassing gegeven in hoofdstuk 7.

Oorspronkelijk werd in voorspelling van de acties van een weggebruiker de bewegings-
geschiedenis gebruikt. Echter, de acties van een weggebruiker zijn het resultaat van
genomen besluiten die gebaseerd zijn op andere informatie zoals de weggeometrie
en andere weggebruikers. Daarom wordt in hoodstuk 8 de bewegingsgeschiedenis
getranformeerd naar de weggeometrie en gecomobineerd met een Recurrent Neural
Network (RNN) om de toekomstige route beter te kunnen voorspellen.

In hoofdstuk 9 wordt de bewegingsgeschiedenis gecodeerd door een RNN en wordt
de interactie tussen weggebruikers gemodelleerd door social pooling. De weggeome-
trie wordt geintegreerd met een attention mechanism. Deze vernieuwende aanpak
maakt gebruik van de twee meest belangrijke onderdelen in de besluitvorming van
weggebruikers en zijn daarom ook de belangrijkste aspecten om de acties van wegge-
bruikers te voorspellen.

De toepassing van deep learning zoals beschreven in deze thesis toont aan dat diep-
gaand begrip van de taak de effectiviteit verbeterd waarmee de deep learning meth-
odes wordt toegepast.

Bij TTTS is door grondige analyse van de taak aangetoond dat het vinden van sta-
biele herkenningspunten en het koppelen van deze van belang zijn voor panorama
reconstructie. Deze analyse bracht tevens aan het licht welke uitdagingen men tegen
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komt in de in-vivo setting ten opzichte van de ex-vivo setting. Deze vereisen een an-
dere manier van toepassing van de methodes. Door deze te integreren in het ontwerp
van het op deep learning gebaseerde systeem, was het mogelijk om deze uitdagingen
te overwinnen. De deep learning toepassingen zoals gepresenteerd in deze thesis
openen de deur naar toepassing in een chirurgische toepassing.

In de analyse van de weggebruiker detectie taak werd gevonden dat het bundelen van
de krachten van verschillende type sensoren de prestatie significant zou verbeteren.
Analyse van de taak waarin de acties van weggebruikers voorspeld wordt, toont aan
dat er indicatoren zijn, zoals de weggeometrie en interactie tussen de weggebruikers,
die het voorspellend vermogen kunnen verbeteren. De deep learning methodes die
gepresenteerd worden in deze thesis, verbeteren de toepassingsmogelijkheden voor
geautomatiseerde voertuigen.

xiii
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Between March 9 and 15, 2016 the world champion in Go, Lee Sedol, was beaten
in a five-game match by the computer program AlphaGo, made by DeepMind [115].
This is considered one of the groundbraking developments of 2016. But why is this
so impressive? In the years before many games have been conquered by computers.
For example, Deep Blue beating the chess world champion in 1997 is one of the well
known examples [20]. So why is AlphaGo then so different?

First, look at how these other games are solved. Computer programs rapidly explore
(part of) the tree of possible moves and then selecting the best move. Chess offers
20 possible moves in the first turn and after 6 moves there are about 9 million possible
positions and flattens out to 10 million possible positions after that. In total chess
has a maximum of 10* possible positions [114], though these are never completely
explored. Deep Blue could win from the world champion by exploring up to 20 moves
ahead with evaluating about 200 million positions per second by shear brute-force
computation power.

In contrast Go is played on a field of 19 x 19 resulting in 361 possible moves in the
first turn. Therefore, it has after two moves 130.000 and after four moves 17 billion
possible positions. In total Go has about 2.082 - 10170 legal positions [134] which is
more than the number of atoms in this universe and would take many times longer
to compute than this universe has existed. Go is so complex because the search tree
expands so fast that exploring it in a brute-force way is out of the question. So how
is it done?

AlphaGo has two neural networks. The first finds possible moves that look promising,
thus reducing the number of branches that have to be evaluated. The second network
evaluates the selected moves by not calculating the complete branch expansion, but
by learning the value of a certain position through experience. This is similar to how
humans play; we only consider good moves and plan ahead by knowing what positions
can give an advantage. Thus AlphaGo could win by learning the game similar to how
humans play; by learning to recognize good positions and strategies to win.

To make life more comfortable humans try to make machines taking over tasks. One
approach would be to make machines learn these tasks by themselves. Because if
a human can learn it, shouldn't a machine be able to learn this too with the right
methods? However, to successfully achieve this, it is required to understand three
things first; What are the tasks at hand and how to structure these tasks. How
do humans learn these tasks, and how can machines learn these tasks. Appendix A
describes these three aspects in detail, in this introduction a short summary is given.
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Many tasks can be described according to the Sense-Think-Act paradigm (Ap-
pendix A.1.1) [16, 87]. In Sensing the environment is observed and the relevant
information is extracted. The Thinking step uses the relevant information to make
an abstraction into a meaning and a decision is made. Finally, the Acting transforms
the decision into one or more actions. Often tasks can be described as the hierarchi-
cal combination of multiple tasks, forming complex tasks. Furthermore, the division
of these (complex) tasks into smaller tasks, allows reuse of other tasks and makes
it easier to learn a complex task in steps.

Humans have various methods to learn tasks and the methods relevant to machine
learning are detailed (Appendix A.1.2). Deductive learning is where a rule is explained
and its application is learned by the student [77]. For machines this can be trans-
lated as programming a rule. Programming a machine is how commonly a machine
is made to perform its task, though generally this does not involve learning.
Learning by Example, one of the forms of inductive learning, provides the student
with many examples of a task and the desired outcome of the task [12]. The stu-
dent can then learn to extract the important information (Sensing), reason about it
(Thinking) and take actions to achieve the desired outcome of the task (Acting).
This is one of the most common methods in machine learning also referred to as
supervised learning.

Learning by Doing is a set of learning methods where the student learns the task by
performing it [102]. Trial and Error is a method where through failed and successful
attempts to achieve the task, the task can be learned [132]. The Contrastive Loss
method has similarities with this approach [45]. Furthermore, Exploration is where
the student knows (in approximation) how to perform the task, but by exploring
variations of the task he/she learns a more optimal method to perform the task. In
machine learning reinforcement learning is a method that explores the action or pa-
rameter space and optimizes the cost or reward function to improve the performance
of the task [18, 105, 123]. Transfer Learning is a method where the knowledge
of a task is used in learning another task [89, 90]. This approach has found wide
application in machine learning as it is fairly easy to reuse knowledge on a machine.

Deep Learning is a field of machine learning that focusses on creating neural net-
works similar to neurons in the human brain (Appendix A.2.1). Recent advances in
deep learning have been fuelled by many factors such as increase in computational
power, availability of data and a wide variety of novel methods (Appendix A.2.2).
The application of deep learning was not limited to a single field, but has found
application in many different tasks, such as image understanding, object recognition,
text understanding and translation, speech recognition and many more.
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Combining the understanding of how to structure a task, how humans learn these and
how to train deep learning neural networks, three requirements can be described to
effectively learn perception tasks (Appendix A.2.4). First, the input data of a neural
network is the source of everything, as it contains the relevant data from which the
meaning for the decision making has to be extracted. Second, the architecture of
a network is of great importance, since it needs to support the abstraction, decision
making and output structure that is needed for the task. Third, the learning method
is of great importance, as it updates the parameters of the network, such that it can
abstract the data into the desired output.

1.1 Problem Definition

Effective application of deep learning methods to all type of tasks that adhere to
the Sense-Think-Act paradigm is challenging. Therefore, in this thesis a focus is
made on perception tasks, which encompass tasks that involve at least the Sense
step of the Sense-Think-Act paradigm. Furthermore, in this thesis the statement
is made that through correct application of deep learning methods it is possible to
learn these type of tasks. In order to achieve this it is hypothesised that at least a
thorough understanding of the task is needed in order to adhere to the requirements
to effectively apply deep learning methods. However, also certain advances are still
needed in deep learning to actually achieve this;

First, the human brain consists of about 86 billion neurons which cannot be modelled
at the speed the human brain is functioning. Therefore, more advances in computa-
tional power and in modelling efficiency is needed.

Second, currently it is not possible to accurately determine how these billions of neu-
rons are connected. Therefore, a better understanding is needed of how to structure
neural networks and what architectures are effective.

Third, humans learn non-stop and any number of tasks, whereas currently deep learn-
ing is applied to a selective subset of tasks. Therefore, transfer learning is not as
well applied as in humans. However, with better understanding of how to transfer
knowledge from one task to another this can be improved.

1.1.1 Goal

Through understanding on how to effectively apply deep learning to tasks, advances
can be made in the latter two challenges. Therefore, the main goal of this thesis is:

lllustrate that deep learning can effectively be applied to perception tasks through
thorough understanding of the task.
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In order to achieve this, two projects in different domains have been chosen; Feto-
scopic surgery in Twin-to-Twin Transfusion Syndrom (TTTS), and road user percep-
tion in autonomous vehicles. In both fields specific complex tasks have been identified
and through analysis of these tasks, deep learning methods have been successfully
applied to effectively solve these tasks.

1.1.2 Panorama Reconstruction for Twin-to-Twin Transfusion Syndrome

According to the World Health Organization about 211 million pregnancies occur per
year [139]. Of these pregnancies about 1% are twin gestations resulting in half a
million twins that are in risk of Twin-to-Twin Transfusion Syndrome world wide every
year. This complication can be treated with fetocsopic laser coagulation [27, 78,
101, 111]. However, this procedure requires highly trained and skilled surgeons and
is thus only available in a very select number of hospitals [83]. Alternatively, abortion
of one of the twins is a method to treat this complication as the mortality rate is
80 — 100% if left untreated [49, 94, 111]. Therefore, on a yearly basis close to a
million babies die due to abortion or unsuccessful pregnancy [68]. In order to reduce
this number of unnecessary deaths the procedure to treat this complication should
be made more widely available. In Chapter 2 the challenges of TTTS are described
in more detail and it is shown how panorama reconstruction can support the surgeon
in the treatment of TTTS. Panorama reconstruction is a perception task that can
benefit from effective application of deep learning methods. Therefore, part of this
thesis focusses on creating an overview of the placenta by applying of deep learning,
which significantly reduces the complexity of the surgery.

1.1.3 Road User Perception in Automated Driving

In a recent report of the World Health Organization on road safety about 1.35 million
people die every year in traffic accidents [140]. This motived the United Nations to
adopt a goal to reduce this number by 50% by 2030. To achieve this goal vehicles
must become more safe by introducing driver assistance systems, as 65% and possibly
up to 92.5% of these accidents can be attributed to human error [133]. Advanced
driver assistance systems (ADAS) consist of various tasks, of which many involve
other road users. In Chapter 6 the road user perception task is detailed further.
Therefore, part of this thesis focusses on improving road user perception through
effective application of deep learning methods as this is one of the most challenging
tasks in automated driving.

5
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1.2 Contributions and Thesis Outline

Based on the two chosen application fields, this thesis is divided into the two afore-
mentioned parts, followed by a discussion and conclusion on how the used deep
learning methods were applied across the two domains. The contributions and out-
line of the thesis can be described as follows:

Part | - Region Detection and Feature Extraction in Fetoscopy

Chapter 2 Panorama Reconstruction for TTTS

This chapter gives an introduction to the medical aspects of fetoscopy for TTTS
and the challenges encountered in its treatment. It is reasoned that a panorama
reconstruction of the placenta will support the surgeon. It is shown how the panorama
reconstruction task can be spit into smaller tasks and how deep learning can be
applied to obtain a complete overview of the placenta.

Chapter 3 Requirements for In-Vivo Panorama Reconstruction

Current state-of-the-art work on panorama reconstruction of the placenta all focus
on ex-vivo obtained data. However, to support the surgeon during the procedure, in-
vivo data has to be processed in real-time. Therefore, in this chapter the challenges
that are posed by in-vivo data are detailed. Furthermore, it is shown that the current
methods applied to ex-vivo data fail on in-vivo data. Lastly, recommendations are
provided to successfully process in-vivo data.

Chapter 4 Matchable Feature Extraction for Image Registration

One of the challenges posed by image registration is the matching of keypoints.
Since, most feature extraction methods are designed to be generic to all sources
of data, they are less suited for fetoscopic data. In this chapter it is shown that
a Convolutional Neural Network can be trained to extract features that are better
suited for image registration.

Chapter 5 Stable Region Detection for Image Registration

One challenge of fetoscopic image registration is obtaining stable keypoints for
matching. By redefining the problem and using the object detection network, SSD,
a keypoint detection network is trained to find stable keypoints on the placenta. Us-
ing the previously introduced feature extraction learning method, the whole image
registration up to the transform estimation is defined in a neural network.
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Part Il - Road User Perception

Chapter 6 Road User Perception in Automated Driving

This chapter gives an introduction to the field of automated vehicles and specifically
the aspect of Road User Perception. The aspect of road user perception covers
three different tasks; Recognition of road users, Tracking of the state over time of
these road users, and Predicting the state into the future such that actions of the
ego-vehicle can be planned. Deep learning has already found application in these
tasks, though can still benefit greatly from more effective application of advances in
deep learning.

Chapter 7 Radar Detection and Camera Classification

One of the challenges of road user perception is to reliably recognize road users.
By leveraging the advantages of different type of sensors, this chapter shows that
the detection performance can be improved over vision-only methods and allows for
real-time on-vehicle deployment by using deep learning methods.

Chapter 8 Trajectory Prediction within Infrastructure

Generally, vehicles will drive only on the road, especially in an urban setting. There-
fore, this chapter introduces a change in the input data format inspired by analysis
of the task as performed by humans. Furthermore, a neural network architecture
originating from natural language processing is used to predict the future trajectory
of these vehicles.

Chapter 9 Trajectory Prediction with Interaction and Road Attention

Generally, vehicles are not the only vehicle driving on a road. Therefore, this chapter
introduces a new architecture to model the interaction between vehicles to improve
the predicted trajectory. Furthermore, this new architecture allows to combine both
road geometry and interaction, such that most of the features used in trajectory
prediction are considered.

7
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Region Detection and Feature
Extraction in Fetoscopy

The Twin-to-Twin Transfusion Syndrome (TTTS) is a condition of un-
born twins that requires a complex laproscopic surgical procedure on the
placenta that is complicated by the visual conditions inside the uterus.
Therefore, this part of the thesis details deep learning algorithms that
can support the surgeon in performing this procedure. In Chapter 2 first
TTTS and how panorama reconstruction can support the surgeon are de-
scribed. Next, the challenges posed by this procedure on the panorama
reconstruction algorithms are detailed. Finally, is concluded how deep
learning methods can improve the panorama reconstruction performance.
In Chapter 3 the challenges for in-vivo panorama reconstruction are fur-
ther detailed, and compared to the existing methods found in literature
for ex-vivo panorama reconstruction. In the following chapters possi-
ble algorithms to tackle these challenges are detailed. In Chapter 4 a
novel approach is proposed using similarity learning that combines learn-
ing by doing and trial and error to increase the performance in extracting
matchable features by a factor 3. In Chapter 5 the challenge of finding
stable keypoints is redefined by using the Single Shot Detection method
to detect stable regions. Furthermore, by extracting a qualitative mea-
sure and combining this with the stable region detection and matchable
feature extraction, the panorama reconstruction process can be opti-
mized. These novel methods improve the panorama reconstruction of
the placenta such that it can support the surgical team in performing the
procedure.






Panorama Reconstruction for
Twin-to-Twin Transfusion
Syndrome

Abstract

The Twin-to-Twin Transfusion Syndrome (TTTS) is a condition of un-
born twins that requires a complex laproscopic surgical procedure on the
placenta that is complicated by the visual conditions inside the uterus.
In this chapter TTTS is described in more detail and explained how the
laproscopic procedure can be described following the Sense-Think-Act
paradigm. Furthermore, it is shown how panorama reconstruction can
support the surgeon in performing the procedure. Finally, is described
how deep learning methods can improve the panorama reconstruction
performance.
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2.1 Introduction

About 1% of all pregnancies are twin gestations, of which 30% are identical (monozy-
gotic) twins. These type of twins occur when a single fertilized egg (zygote) splits
into two separate embryos. When this happens after the second day (75%), these
twins will share a single placenta (monochorionic) and in most cases will have sep-
arate amniotic sacs (diamniotic). The differences and timing of twins is shown in
Figure 2.1. Whether twins share a placenta (chorionicity), rather than zygosity de-
termines the outcome of the pregnancy. Monochorionic (MC) twins have a twice
higher risk of adverse perinatal outcome compared two other diachorionic twins, due
to complications of sharing a single placenta [44, 67].

Figure 2.1: Differences in twin pregnancies. (adopted from [83])
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2.2 Twin-to-Twin Transfusion Syndrome

One of the complications that only occurs in MC pregnancies is the Twin-To-Twin
Transfusion Syndrom (TTTS), occurring in about 10% of pregnancies [67, 68]. This
syndrome complicates the pregnancy by an imbalance of blood between the twins.
Blood flows from the foetus to the placenta and back to exchange nutrients and by-
products with the mother. However, an exchange of blood occurs through connecting
vessels between the twins on the placenta (vascular anastomoses). This syndrome
occurs when an imbalance is created when an artery is donating blood to a vein of
the other twin and is not compensated by other vascular anastomoses. This is also
illustrated in Figure 2.2

This syndrome is the direct result of transfusion from the donor to the recipient
twin. This causes in the donor twin a decreased blood volume and decreased urinary
output. Which leads to a low level of amniotic fluid and kidney problems. While for
the recipient twin the increased blood volume results in a higher urinary output and
can lead to heart failure. If this syndrome is left untreated it will result in a high
risk of intrauterine death, premature birth and miscarriage, with a mortality rate of
80-100% [49, 94, 111].

polyhydramnios

hypervolemia

polyuria

oligohydramnios

oliguria

hyp

Figure 2.2: Twin-to-Twin Transfusion Syndrome (TTTS). D is donor and R is recipient twin.
(adopted from [83])
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This syndrome can be treated by abortion of a twin, which increases the survival
rate of the remaining twin, but has always an adverse perinatal outcome compared
to other therapies. Another method for treatment is to (repeatedly) drain excess
amniotic fluid through a needle that is passed into the sac of the recipient (am-
niodrainage). However, causal treatment with fetoscopic laser coagulation of the
vascular anastomoses is the preferred procedure, as it has the highest success rate
[27, 78, 101, 111].

2.3 Fetoscopic Laser Coagulation

Fetoscopic laser coagulation is a procedure where the vascular anastomoses are co-
agulated with a laser in order to separate the blood flow of the twins as shown in
Figure 2.3. After this treatment the survival rate of both twins increases to 35-67%
[25, 111, 135] although some of the surviving babies show other complications. The
success of this therapy depends on coagulation of all vascular anastomoses and this
so called Solomon technique has shown significant reduction in remaining vascular
connections and resulting complications [118, 119]. Figure 2.4 shows laser coagula-
tion with the Solomon technique.

=

NG

Figure 2.3: Fetoscopic laser coagulation. (adopted from [83])
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Figure 2.4: Laser coagulation with the Solomon technique. (adopted from [83])

Even though fetoscopic laser coagulation therapy has been around for 25 years,
it is still offered in a limited number of highly specialized hospitals. Furthermore,
even the most experienced surgeons show a high percentage of adverse perinatal
outcome. This can be partly attributed to the complexity and the learning curve of
the procedure [83]. To better understand this procedure it can be described as a
task in the Sense-Think-Act paradigm as shown in Figure 2.5. On the most abstract
level, the surgeon has to find the anastomoses and determine if these are vein-to-
vein, vein-to-artery, artery-to-vein or artery-to-artery connections. For the thinking
step, the surgeon or its team should determine the right order of coagulating the
anastomoses and where to perform the Solomon line. Finally, the surgeon has to
guide the fetoscope to these anastomoses and perform the laser coagulation.

Sense Think Act
Move endoscope
Find Anastomoses Create map ‘ 1 Anasiomosas
Determine type of )
Anastomose Create plan ‘ Laser Coagulation

Figure 2.5: Sense-Think-Act description of surgery task.
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Sense Think Act

|

* Guide endoscope
—p o Anastomoses

4 v

Determine type of
Anastomose

Find Anastomoses Create plan

Laser Coagulation

Create Overview

Figure 2.6: Sense-Think-Act description of surgery task with an overview available.

2.3.1 Panorama Reconstruction Supporting Surgeon

Finding these anastomoses initially, as well as finding them again for coagulation is a
complex subtask. The surgeon generally starts at the umbilical cord and follows the
branching veins and arteries. While doing this, a map has to be created of the veins
and the found anastomoses. Sometimes somebody in the surgical team makes notes,
though many surgeons memorize this map. This is a highly skilled and taxing task
caused by the limited overview of the placenta. It has been suggested that obtaining
a complete overview of the placenta will reduce the complexity of the procedure.
Obtaining such an overview is limited by the viewing angle of the fetoscope, the in-
uterine visibility condition and occlusion of the placenta by the fetus. This overview
will simplify finding all vascular anastomoses and the surgery can be described as
a hierarchical Sense-Think-Act model involving cooperation of man and machine
creating as described in Figure 2.6. The reduced complexity of the surgery will
shorten the learning curve, which will allow this procedure to be performed in a larger
variety of hospitals and more readily available as less specialized and trained surgeons
are required.

Sense Think Act
‘ Find Keypoints Match keypoints Create Panorama
‘ Extract Features Find Transform

Figure 2.7: Sense-Think-Act description of creating an overview subtask.
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2.4 Panorama Reconstruction of Fetoscopic images

Such an complete overview of the placenta can be obtained by panorama reconstruc-
tion of the fetoscopic images. This task can be detailed in the following steps:

1. Obtaining keypoints in images

2. Extract a feature describing each of these keypoints

3. Match the keypoints between two successive image

4. Find the transform based on the found keypoint matches

5. Combine all images into one large panorama based on the found transforms

The subtask of sensing consists of step one and two, thinking is step three and four
and, step 5 is the acting subtask as shown in Figure 2.7. These steps are generally
the same though can use different methods to achieve this task. An example of a
reconstructed panorama viewing part of the placenta is shown in Figure 2.8.

Reconstructing large view panoramas of the internal anatomical structures has been
a large field of research and found many applications, such as for retina [113], blad-
der [120], oesophagus [21] as well as ex-vivo fetoscopic [72, 99, 131]. Even though
these approaches seem promising, they are not directly applicable to in-vivo feto-
scopic panorama reconstruction.

Figure 2.8: Reconstructed panorama viewing part of the placenta, as obtained in this thesis.
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First, Reeff et. al. show the reconstruction of a small part of an ex-vivo placenta
[99]. The results show that the image registration has a low accuracy and that recon-
struction without post-processing contains many artefacts. Furthermore, the images
are captured by moving the camera sideways in a structured circular pattern. This
cannot be reproduced in an in-vivo setting, as the possible motion is only rotation
around the entry point. Also, the used motion results in translational transformations
between images which can be robustly estimated with existing methods.

Second, Liao et. al. project endoscope images of a color injected placenta on a 3D
ultrasound model, which show accurate results in image registration [72]. However,
such a setting with an ex-vivo color injected placenta is not compatible with our goal
of in-vivo surgery.

Third, there are promising results in other applications areas such as bladder re-
construction [120], in which an ex-vivo dye injected bladder is reconstructed from
a flexible endoscope with image registration, bundle adjustment and spherical pro-
jection. However, also here this method is not suited for our setting, as no prior
structure is available. Furthermore, the encountered transformations between suc-
cessive images here and in Seshamani et. al. [113] are also mostly translations.
Last, by Carroll et. al. an accurate reconstruction in oesophagus reconstruction is
presented [21]. Pipe projection is used here, which is also not applicable to our set-
ting. Furthermore, spatial consistency is not required for this type of reconstruction.

The ultimate goal is applying fetoscopic panorama reconstruction to TTTS surgery,
thus a shift from ex-vivo to in-vivo research is necessarily. However, there are signif-
icant differences between the ex-vivo and in-vivo settings which pose challenges that
have not yet been resolved:

1. Obtaining in-vivo fetoscopic videos is challenging, since data can only be ob-
tained from living subjects and extending the length of the procedure increases
the risks significantly.

Figure 2.9: Example of a) dye injected placenta, b) ex-vivo, and c) in-vivo fetoscopic view
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2. The motion of the fetoscope is limited around the entry point of the body re-
sulting in perspective transformations between images. These are much harder
to estimate compared to translation transformations between images which are
allowed by free motion.

3. For panorama reconstruction a projection surface is required. However, the
placenta is deformable and inside of the body it has no general shape. In
contrast to outside the body, the placenta can be placed on a flat surface and
a plane projection can be used.

4. The contrast between the veins and the placenta is small. In the ex-vivo setting
this has been resolved by dye injection of the placenta.

5. The visibility conditions caused by the in-vivo setting is not considered in the
ex-vivo setting and simplifies the challenge of panorama reconstruction signif-
icantly.

2.4.1 Requirements for Panorama Reconstruction

To resolve these challenges, the following observations can be made:

e Currently, surgeons are trained using simulators removing the risk to human
life [83]. Such a simulator, if visually realistic, can also be used to obtain
fetoscopic videos close to in-vivo surgery settings. Furthermore, parameters
influencing visibility, illumination and movement can be controlled, resolving
the first challenge.

e The challenges of restricted motion (2) and irregular surface projection (3)
have been resolved in other fields of research but require more keypoint pairs
between two images.

e The last two challenges have not been resolved and also complicate obtaining
keypoint pairs between two images. Furthermore, state-of-the-art methods are
insufficient to be applicable to the in-vivo setting as will be shown in Chapter 3.

In order to resolve these last two challenges some requirements are posed and detailed
in Chapter 3, but summarized here as five points of improvement:

1. Keypoint detection method should be improved such that stable and repro-
ducible keypoints are detected in the unfavourable viewing conditions as en-
countered in in-vivo fetoscopic images.
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2. The feature extraction method of these keypoints have to be improved, so that

these can be matched even though there is only very little visual difference
between them.

. The panorama reconstruction process could be optimized. Generally a chain

of images is used to reconstruct a panorama. When an image registration in
the chain is inaccurate or unavailable, this has a large influence on all following
image pairs. However, if this image registration can be detected or even taken
out, the quality of the panorama would improve greatly.

. The motion of the fetoscope can be improved by providing extra information to

the surgeon. The distance to the placenta is changed by moving the fetoscope
around. By calculating the fetoscopes position relative to the placenta, the
change in distance can be predicted. Unfavourable viewing conditions can be
predicted and by giving feedback to the surgeon to move the fetoscope fore- or
backward, more favourable conditions can be maintained. Moreover, when the
image registration performance is low, the system can ask the surgeon to move
back to a previous position and obtain new and better images. Overall, the
surgeons should be considered an integral part of the panorama reconstruction
process.

. The equipment also plays a role in the image registration performance. The

field of view is depended on the viewing angle of the fetoscope, thus choosing a
good fetoscope is crucial. The changing illumination condition can be managed
using a high dynamic range camera and higher quality images in a larger range
of illumination conditions can be obtained. Improving the viewing conditions
will result in better keypoint matches and more accurate image registration.

A system applicable to TTTS surgery can be created following the previous recom-

mendations. Most important is to obtain good keypoints and matches, despite the
much more difficult viewing conditions. Furthermore, limiting bad viewing conditions

will improve the panorama reconstruction performance. The goal of this thesis is
to illustrate that deep learning methods can effectively be applied through thorough

understanding of the task. This chapter has provided with a detailed overview of the

task. The next section describes how deep learning is applied to this task in the next
chapters.
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2.5 Application of Deep Learning

With the advancements in deep learning methods, the challenges of finding and
matching enough keypoint pairs between two images as described in Chapter 3 might
be resolvable. Therefore, Chapter 4 redefines the subtask of extracting features as
features that are matchable as well as distinctive enough from features describ-
ing different points on the placenta. This is achieved through the application of
Siamese convolution neural networks combined with the contrastive loss method.
This approach shows how a learning method previously applied to object classifi-
cation and feature-space transformations, can also be used to learn the difference
between matchable features and those features that cannot provide robust matches.
In a sense a combination between learning by doing and trial and error to achieve
both matchability and distinctiveness.

Chapter 3 shows that traditional methods are not effective in the in-vivo setting.
Therefore, by analysing the structure represented in the image data, Chapter 5 rede-
fines the subtask of finding keypoints by finding the points on veins instead of corners
and edges. This is achieved by applying the Single Shot Detection object detection
method which in a sense is posing the task differently and using transfer learning to
learn and successfully perform this challenging task through deep learning. Further-
more, in Chapter 5 a performance metric is obtained aiding in finding the transform
between two successive images, which greatly improves the applicability of in-vivo
panorama reconstruction in the fetoscopic laser coagulation therapy.
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Requirements for In-Vivo
Panorama Reconstruction

Floris Gaisser, Suzanne H.P. Peeters, Boris Lenseigne, Pieter P. Jonker and Dick
Oepkes,

Adopted from:

Moving from ex-vivo to in-vivo, Medical Image Understanding and Analysis: 21st
Annual Conference, MIUA 2017, pp. 581-593.

Abstract

Current state-of-the-art methods focus on panorama reconstruction in
an ex-vivo setting. However, these methods fail in the in-vivo surgi-
cal setting. This chapter describes the panorama reconstruction ap-
proach, the challenges posed by the in-vivo setting and the influence of
these challenges on the panorama reconstruction. With experiments it
is shown that the viewing quality in-vivo is greatly reduced compared to
ex-vivo research settings. Furthermore, the limited motion of the feto-
scope complicates the image registration as this motion requires more
correct matches which are lacking. This chapter concludes by identi-
fying the aspects necessary to shift from ex-vivo to in-vivo panorama
reconstruction. Following these recommendations it should be possible
to develop an approach that can be applied to TTTS surgery as will be
shown in the following chapters.
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3.1 Introduction

In the previous chapter Twin-to-Twin Transfusion Syndrome (TTTS) and the pro-
cedure to treat this have been introduced. It has been explained that creating a
panorama of the placenta would be beneficial in successfully performing the proce-
dure. Related research on panorama reconstruction of other anatomical structures
and ex-vivo fetoscopy showed that creating a panorama can be achieved with state
of the art keypoint methods [72, 99, 131]. However, the ultimate goal is applying
fetocsopic panorama reconstruction to in-vivo TTTS surgery.

Unfortunately this goal has not been achieved yet. An important challenge is that
generally limited data is available of the in-vivo setting. Especially, because in TTTS
surgery extending the length of the procedure increases the risks significantly [83].
In many other applications the in-vivo setting is artificially recreated, assuming that
this is representative of the setting used during surgery. For retina, bladder and
oesophagus endoscopy this assumption is often valid.

However, in TTTS surgery this is not the case. There are certain differences between
the ex- and in-vivo setting, preventing the use of state-of-the-art keypoint methods
for image registration in the in-vivo setting Therefore, in this chapter these differences
and the impact on the panorama reconstruction performance are described in detail
as well as possible steps to tackle these challenges are provided.

This chapter is structured as following; First, the general approach to panorama
reconstruction is introduced in Section 3.2. Next, Section 3.3 describes the surgical
settings and its effects compared to the state-of-the-art in endoscopic panorama
reconstruction. Following, the resulting differences for image processing and the
challenges posed are discussed in Section 3.4. Furthermore, Section 3.5 evaluates
the applicability of several image processing methods on in-vivo Fetoscopic video.
Finally, Section 3.6.1 will conclude by providing the steps (research topics) towards
successful in-vivo fetoscopic panorama reconstruction. The challenge of matching
keypoints will be covered in the following Chapter 4. Furthermore, the challenge of
detecting stable points or areas of interest will be covered in Chapter 5.

3.2 Panorama Reconstruction

Panorama Reconstruction combines multiple images into one larger image [144].
These images individually contain only a part of the panorama. But every image
has at least one other partly overlapping image. A chain of images can be created,
so that each successive image is a pair with overlapping areas. From this chain the
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whole panorama can be created. In creating a panorama, it is generally assumed that
the visual information of the images is on the same surface. Thus, the panorama is
a reconstruction of a plane (placenta) [33][99], cylinder (oesophagus) [21] or sphere
(bladder) [9][120]. Furthermore, this means that all points in the overlapping area
can be transformed with a rigid transformation to the other image. Key to panorama
reconstruction is finding this rigid transformation. This process is generally referred
to as image registration. There are two general approaches to this: dense [69] and
interest-point based [144][17]. Dense methods use the whole image. The difference
between the pixels of both images is minimized. This approach is accurate but also
computational intensive. Furthermore, as there are many local minima in the opti-
mization space, finding the correct transform cannot be guaranteed. Therefore, this
method is generally used for stereo vision [69] or fine-tuning the panorama. Point-
based methods find points in both images that describe the same location or area
in both images. These pairs of points are then used to estimate the transforma-
tion [17]. This approach has many applications and is generally used in endoscopic
panorama reconstruction [9][120][99]. These different steps are described in more
detail in the next sections.

For point-based panorama reconstruction methods, only a select set of points are
used. These are generally described as keypoints, because they describe key locations
of the viewed scene [75]. As these keypoints have to be found reliably in multiple
images of different conditions, they should be unique, easy to find repeatedly and ac-
curately describe their location. The Harris corner detection method is an example of
such a method [46]. Corners are considered to accurately describe their location and
easy to find, however not unique. This method uses difference between neighboring
pixels to detect a change along the x or y axis. If in both directions the change is
large, a corner is found. Similarily edges are found with a change in only one direc-
tion. However, this method is not robust to scale and rotation changes. Therefore,
methods such as the Difference of Gaussian add scale and rotation invariance to the
detection of keypoints [75].

For every two overlapping images, pairs of keypoints have to be obtained from the
set of keypoints created for each image. This process is called matching. Since there
is no prior information on what keypoints are matching, each keypoint is described
by its visual information. These descriptions are compared between images and the
best matching pairs are chosen. A keypoint description should accurately describe
the visual appearance as well as handle changes in orientation, scale, etc. Therefore
local methods such as the Histogram of Gradients are generally used as in the SIFT
method [75]. Other methods include SURF [8], BRIEF [19] and ORB [103]. Even
though, assuming keypoints can be described perfectly, the existence of multiple
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visually similar keypoints is not taken into account. Therefore, not all matches can be
considered correct matches (mismatches). To improve the ratio of correct matches,
a common practice is to also review the second best match. If the difference between
the best and second best match is small, then it is probable that there are multiple
visually similar keypoints. Furthermore, the matches can be validated after transform
estimation based on the rigid transform assumption.

The final step in image registration is estimating the transformation between the two
images. In panorama reconstruction, this transformation is assumed to be a rigid
transformation. This means that all points in the image keep their spatial relation
and the surface is not deforming due to the transformation. Therefore, a point in
the first image [x1,y1] can be transformed by matrix multiplication to a point in
the second image [xo, y»]. There exist two types of rigid transformations: affine
and perspective. In affine transformations the camera has no out-of-plane rotations
and the viewing direction is generally considered to be perpendicular to the surface.
The camera can move in the image plane and viewing direction. Therefore, there
is rotation (0), translation (t., t,) and scale (s) as described in (3.1). As a side
note; Skew is considered to be part of affine transformation as well. However, skew
changes the spatial relation and therefore not part of rigid transformations.

Xo s+cosf@ —sin@  ty X1
Y| = sin6 s+cosf t,|-|n (3.1)
1 0 0 1 1

For perspective transformations also the out-of-plane rotations are considered. This
introduces four extra parameters in the transformation matrix ((3.2)), describing the
rotation around the x and y axis, (px, py,Sx. S,) and makes use of homogeneous
coordinates.

X5 s+cosf s, —sinf t X1
Vhi| = |sc+sin s+cosb t,| - |»n (3.2)
Wy Px py 1 1

Xo = Xb/Wh

Yo = Yo/ W5

The parameters of the rigid transform can be estimated from the matches. A com-
mon approach is least-squares, which minimizes the squared error. However, this
method cannot handle large number of mismatches, as they have a large influence
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on the error. Therefore, another common method is RANSAC [31]. This method
randomly takes samples and solves for the parameters. Then a confidence is created
based on the projection error of the remaining probable pairs. After a given amount
of iterations, the transformation with the highest confidence is used. However, small
inaccuracies in the keypoint locations have a large influence on the accuracy of the
transform. Therefore this method can handle mismatches, but has a sub-optimal
accuracy. To both account for mismatches and inaccurate keypoint locations, the
method LmedS can be used [85]. It uses the median of the error to reject mis-
matches. Moreover, it can find an optimal solution by minimizing the error. However,
with more than 50% of mismatches, an optimal solution can not be guaranteed, due
to local minima in the optimization space.

A panorama is reconstructed from a chain of image pairs, based on the assumption
that all images view the same surface. However, with perspective transformations it
does not mean that the image planes are parallel with the viewed surface. Therefore,
a suitable common projection surface has to be chosen, similarly to the physical
surface. However, these image registrations describe the relation between images
and not to the projection surface. Therefore, a reference image is generally chosen
and its image plane as the base for the projection surface. Every following image is
transformed to the reference image using the image registrations. However, image
registrations generally have small inaccuracies due to mismatches and localization
errors of the keypoints. As images are transformed down the chain to the reference
image, an error is built up in the overall projection. This error can become large,
which results in visual inconsistencies in the panorama.

3.3 Differences in Setting

The differences between an ex-vivo research setting and our in-vivo simulator (Fig-
ure 3.1a) will be described in this section. Each paragraph describes one specific
aspect and examples of the visibility conditions are shown in Figure 3.3.

Figure 3.1: a) Our simulator, b) placenta, and ¢) dye-injected placenta
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Ex-vivo research uses a placenta after birth, which is larger compared to an earlier
stage of the pregnancy. Furthermore, the blood vessels of the placenta are dye
injected for extra contrast with the underlying tissue. Figure 3.1 compares the ex-
vivo dye-injected with our simulator placenta. To record data, the placenta is placed
on a flat working space, making the placenta also flat. Therefore, in contrast to
in-vivo settings the observed surface is a plane. Furthermore, compared to in-vivo
settings, the placenta does not move and gaining a good view is possible from every
angle.

With ex-vivo research, the impact of the amniotic fluid is overlooked. This fluid is
generally far from clear, as the fetus normally pees in the amniotic fluid, giving it a
yellow-brownish color. However, if the fetus is in distress, which is often the case
with TTTS, the fetus might release some bowel movement, giving the amniotic fluid
a green turbid color, reducing the range of visibility.

In the ex-vivo setting, the illumination condition can be completely controlled. There
can be ambient lights as well as high intensities of light. With this controllable setting,
near optimal illumination conditions can be created at all times. However, with in-
vivo settings, there is no ambient light. The only light source is from the endoscope
itself creating an uneven distribution of light. There is too much light in the center
of the image and it gets too dark towards the edges. Moreover, too strong light
might blind the fetus, so that only less ideal illumination conditions can be created.

The motion of the fetoscope is the last difference between an ex- and in-vivo setting,
and often not considered. In the work of Reeff et al. [99] and Tella et. al. [131] the
motion of the endoscope is described as an outwards spiralling motion. This mostly
in-plane translation motion is shown in Figure 3.2a. However, surgeons cannot make
an outwards spiralling motion. Instead, they start at the umbilical cord of the recipient
and follow veins one by one to the end and back. Furthermore, the motion of the
fetoscope is restricted at the point of entry in the in-vivo setting. This restriction
only allows a combination of in-plane translation and out-of-plane rotations or forward
motion as shown in Figure 3.2c.

The combination of bad visibility and illumination conditions force the surgeon to
move the endoscope closer to the placenta. However, this reduces the imaged sur-
face significantly. The sample views of related work contain multiple blood vessels
[99][72]. Whereas for in-vivo images, one or two blood vessels, sometimes a crossing
or split can be seen.
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Figure 3.2: Fetoscope movements a) ex-vivo: spiral motion b) in-vivo: followed path c) in-vivo:
rotational motion around entry point resulting in perspective transformations

3.4 Influence on Panorama Reconstruction

The image registration performance is influenced by the previously described dif-
ferences in the setting. This section describes this effect for each of the steps of
panorama reconstruction as described in Section 3.2.

Keypoint methods internally create an intensity map of the difference between pixels
in x and y direction. Dye injected placentas have better constrast, while illumination
and the visibility condition reduce the amount of observable contrast. Reducing the
field of view limits the amount of visible structure even more. Therefore the more
complicated viewing conditions reduce the number of detected keypoints.

Generally it is assumed that the strongest points in the intensity map represent
corners. However, this assumption is not valid when the image contains only a few
or no corners. Because of image noise a point along an edge is seen as stronger than
other points along the edge and thus selected as a keypoint. Since noise is random,
this keypoint is not reproducible and as shown in Figure 3.3 occurs quite strongly
when there is not enough light. Moreover, keypoints have similar appearance along
an edge, thus the location is not unique. These aspects make the selected keypoints
unreliable, as they are not unique and not reproducible.

Matches are obtained from the visual appearance around each keypoint. However,
the underlying tissue of the placenta does not contain a lot of structure, creating
weak descriptions. Moreover, most keypoints are on an edge of a blood vessel. Since
blood vessels have very similar appearance, their description is also very similar. The
weak and similar description of keypoints complicate the matching process, resulting
in less reliable matches.
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Figure 3.3: Variations in viewing conditions. Top row left to right: ex-vivo - far, ex-vivo with water
- far, ex-vivo - nominal, ex-vivo - close, ex-vivo with water - close

Middle row: yellow liquid; bottom row: green turbid liquid; left to right: far - dark, far - nominal,
nominal for both, close - nominal, close - bright

The motion of the fetoscope has a direct relation to the transformation between two
successive images. The motion of the fetoscope is not restricted in ex-vivo exper-
iments. Therefore, the fetoscope is generally moved sideways, creating translation
transformations. However, because of rotation around the entry point, perspective
transformations as shown in Figure 3.2c are created. In previous work we showed that
estimating translational motion results in a two times lower pixel error compared to
other types of motion [33]. Furthermore, rotation around the entry point changes the
distance to the placenta. Resulting in a change of light and unfavourable illumination
conditions is the result as shown in the two most outer columns of Figure 3.3.

With an outward spiralling motion of the fetoscope, a continuous set of loops can
be created between two images between the inner and outer spiral allowing for bun-
dle adjustment or loop-closure. The difference between an incorrect and a feasible
panorama reconstruction lies with the refinement step as can be seen in figure 2
of the work of Reeff et. al. [99]. However, this spiralling motion is not possible
with in-vivo fetoscopy and combined with all previous mentioned aspects, panorama
reconstruction is much more complicated compared to ex-vivo settings.



Requirements for In-Vivo Panorama Reconstruction |

3.5 Experiments & Results

To investigate the influence of the previously described viewing conditions on image
registration experiments are devised. Images are captured for every condition using
our placenta (Figure 3.1b) and for in-vivo settings with our simulator (Figure 3.1a). A
5mm solid core endoscope with a medical xeon light source and a GigVision BlackFly
camera have been used. The effective area of the endoscope is 1030 x 1030 pixels
and after undistortion the inner square has an area of 850 x 850 pixels.

The visibility condition caused by the color and turbidity of the amniotic fluid is varied
in three settings; One simulating the ex-vivo setting and 2 in-vivo settings simulating
the two different types of amniotic fluid that can be encountered; normal yellow fluid
and the distressed case of green turbid fluid. These settings are created by adding
dye to the water and shown in Figure 3.3 middle and bottom row.

The illumination condition is varied in ex-vivo and in-vivo settings. The ex-vivo
setting is created by placing the placenta on a table with enough ambient light. For
the in-vivo settings, the placenta is placed inside the simulator and the illumination
is manually adjusted to create a dark, nominal and bright setting.

The field of view is varied by changing the distance to the placenta. Three settings
are created: close, nominal and far, respectively at £+1, 2 and 3 cm from the placenta.
The far setting is chosen such that the camera is at it limitations for the green turbid
fluid and the close setting always gives a clear view.

The different visibility and illumination conditions combined with different viewing
distances can be seen in Figure 3.3. A set of sequential images is recorded for
all possible variation combinations along the path described in Figure 3.2b. Every
following image is taken such that the movement is about % of the visible range,
resulting in more images for decreasing quality and viewing area.

Experiment 1: Number of Keypoints

With decreasing quality of the viewing condition also the number of keypoints is
expected to decrease. In this experiment three different keypoint methods are eval-
uated; SIFT, SURF and ORB. Figure 3.4 (at end of chapter) shows the number
of obtained keypoints for changing illumination, visibility condition and field of view.
As expected the results show that with decreasing distance the number of keypoints
decrease. For the illumination condition more light gives better contrast and thus
more keypoints. However, for the far distance, increase in contrast is lost due to
the increased distance. Furthermore, for the green turbid liquid, there is not enough
light, resulting in much noise and many keypoints are obtained on the noise itself.
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Experiment 2: Reproducibility of Keypoints

Lack of structure in the form of corners reduces the number of reproducible keypoints.
By manually establishing the transformation between two successive images, the ratio
of reproducible keypoints can be obtained. Figure 3.5 (at end of chapter) shows for
the different keypoint methods the number of retained keypoints for varying viewing
conditions. The number of reproducible keypoints is about 15 — 25% of the number
of detected keypoints. However, looking at the results of individual images pairs the
variation is large, sometimes many and sometimes no reproducible keypoints at all
are detected.

Experiment 3: Matchability of Keypoints

The matching performance is limited due to similar appearance of the blood vessel and
weak description of the keypoints. The previously obtained keypoints and manualy
established transformations are used to evaluate the matching performance. For the
ex-vivo situation the ratio of correctly matched keypoints is about 10%. However,
for the in-vivo situation three groups can be created; First, good visibility condition,
with close to ex-vivo matching. Second, low illumination condition, resulting in too
much noise and many unreliable keypoints. Third, low structure situation, with too
few keypoints to do image registration. The latter two groups have close to zero
correctly matchable keypoints and no image registration can be obtained.

3.6 Discussion

With the previous experiments we have shown, that the visibility conditions encoun-
tered in in-vivo TTTS fetoscopic surgery complicate the image registration process.
The number and the reproducibility of keypoints is reduced to the point that no valid
matches can be found. This reduction in performance can be explained by three
key aspects; detecting reliable keypoints, matching of keypoints and motion of the
fetoscope.

Corners are the source of reliable keypoints, even though they can be found on a
placenta, the number of corners in images from ex-vivo settings is limited. Changing
to an in-vivo setting reduces the contrast and the field of view. Less corners and with
less contrast appear in the image. Furthermore, with reduced illumination the image
contains more noise. Since keypoint detection methods adjust themselves to the
structure present in the image. Points along the edge of blood vessel are obtained
as keypoints, though they cannot be considered reliable keypoints.
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Keypoints are matched based on their visual appearance. For corners, where two
blood vessels cross or split, there is clear and unique visual information. However, for
a keypoint on the edge of a blood vessel, the visual appearance is very similar to any
point along the edge of a blood vessel. This is even true for a curved vein, but the
feature is rotated. This results in many mismatches and only a few correct matches.

The fetoscope can only change the view in lateral position by rotating around the
point of entry. This motion also changes the distance to the placenta, thus cre-
ating unfavourable viewing conditions. Both the distance, but also the illumination
condition that has to be manually adjusted, create visibility conditions that are un-
favourable for image registration. Moreover, this type of motion also complicates
the image registration as more parameters have to be estimated, thus requiring more
and better matches.

3.6.1 Conclusion

The goal of this chapter is to identify and rise awareness to the challenges encoun-
tered with in-vivo fetoscopic panorama reconstruction. In the previous section we
have discussed three key aspects that complicate image registration. In Chapter 4
better keypoint matching is achieved with deep-learning by using contrastive loss.
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Note: This publication was published before the publication of the previous chapter.

Abstract

As described in the last two chapters, image registration for in-vivo pla-
centa reconstruction requires extraction of matchable features between
image pairs. This chapter introduces a feature extraction method that
can extract more robustly matchable features. This feature extraction
method consists of a Convolution Neural Network (CNN) that describes
key areas in the image such that it can be matched to similar areas in
the image pair. In order to extract robust matchable features a novel
approached is proposed using similarity learning in training the CNN.
Compared to feature extraction methods used in literature for ex-vivo
panorama reconstruction, up to three times more keypoints could be
matched in the various image transformations between the image pair.
This novel method allows to solve one of the main challenges posed for
in-vivo placenta reconstruction.
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4.1 Introduction

In the previous chapter it was pointed out that one of the areas to improve the
panorama reconstruction process would be to improve the keypoint matching perfor-
mance such that the image registration is more accurate and robust to mismatches.
Standard keypoint methods are designed to be generic enough to describe all type of
structures. However, in fetoscopic image registration this is not required. Therefore,
extracting features that can better describe the visual appearance of the placenta
would be beneficial. Furthermore, since the visual appearance of the veins on the
placenta is overall very similar, it is difficult to extract features that accurately de-
scribe the small differences between them, which makes it difficult to find correct
matches.

Therefore, this chapter will focus on extracting features that allow better matching
and is specific to the fetoscopic images. Deep learning allows to learn feature ex-
traction that is specific to the provided data. Furthermore, with the introduction
of Contrastive Loss the feature extraction can be trained to find better matchable
features.

This chapter first describes the image registration process, its challenges and how
convolutional neural networks could extract learned features in Section 4.2. Next,
the approach to extract matchable features with contrastive loss is described in
Section 4.3. Through experiments in Section 4.4, it will be shown that with the
proposed method much more correct matches can be obtained. Furthermore, the
consistency of matching is greatly improved such that a transform can be obtained.
This results in a robust and more accurate image registration.

4.2 Image Registration

Reconstructing large view panoramas of the internal anatomical structures has been a
large field of research and found many applications, such as retina [113], bladder [120]
and oesophagus [21] reconstructions, as well as in ex-uterin endoscopic mosaicking
[72, 99].

First, [99] shows the reconstruction of a small part of an ex-vivo placenta, though
the results show that the image registration has a low accuracy and the reconstruc-
tion without post-processing contains many artefacts. Furthermore, the images are
captured by moving the camera sideways in a structured circular pattern. First of
all this cannot be reproduced in an in-vivo setting, but also the transforms between
images now only consists of translations.
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Second, in [72] they project endoscope images of a color injected placenta on a 3D
ultrasound model, which shows accurate results in image registration. However, such
a setting with an ex-vivo color injected placenta is not compatible with our goal of
in-vivo surgery.

Third, there have been promising results in other applications such as bladder recon-
struction [120]. There an ex-vivo dye injected bladder is reconstructed from a flex-
ible endoscope with image registration, bundle adjustment and spherical projection.
However, also here this method is not suited for our setting, as no prior structure is
available. Furthermore, the encountered transformations here and in [113] are also
mostly translations which can be robustly estimated with existing methods.

Last, in oesophagus reconstruction [21] an accurate reconstruction is presented,
however here pipe projection is used, which is also not applicable to our setting.
Furthermore, spatial consistency is not required for this type of reconstruction.

Although all above methods are not directly applicable in our aimed setting, some
successes have been shown.

4.2.1 Image Registration

The previously discussed applications all use image registration methods which try
to find the transformation between two images [47]. They try to find corresponding
pairs of interesting points in both images by feature matching, whereafter a transform
is estimated based on the found matches [144].

To find matching pairs, first interesting keypoints are chosen using methods such
as the maximum Difference of Gaussians [75] as used in SIFT. Next, to find the
corresponding point in the other image, the selected keypoints are described using
a feature extraction method, such that the features are similar regardless of the
appearance changes due to the transforms between the images. Obtaining such
features has been the source of many invariant methods such as the Scale-Invariant
Feature Transform (SIFT) [75] or Binary Robust Independent Elementary Feature
(BRIEF) [19].

Though feature extraction methods are designed to be invariant to transformations,
there are still challenges in obtaining appropriate matches. To handle incorrect
matches, transform estimation methods try to find a best fitting estimation by it-
eratively fitting on random subsets of the matches and selecting the best fitting
subset. RANSAC [31] is robust to mismatches but finds a sub-optimal estimation,
where LMedS [85] finds a more accurate estimation but requires at least 50% correct
matches.
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4.2.2 Problem statement

Our initial as well as other research [99, 120] showed that the state-of-the-art meth-
ods have promising results but lack application in a realistic setting, i.e. it cannot
be applied in real surgery. Hence, our research focusses on using fetoscopic videos
from a more realistic setting which introduces challenges not encountered before.

First of all, there is the loss of contrast of the blood vessels due to the inability to
use dye injected placentas. Then, most of the time complex perspective transforms
are encountered as the endoscope has a fixed point entering the uterus and the view
is mostly changed by rotating about this entry point. Finally, since reconstruction of
the placenta has to be done near real-time, long post-processing is not possible and
therefore the transform estimation has to be fairly accurate and also consistent.

Our initial research showed that on our fetoscopic images, state-of-the-art keypoint
methods fail to extract robust keypoints and features, partly because these methods
are designed for natural images and require unique and distinctive structures. But
in our case blood vessels on the placenta are very similar and have a very limited
structure.

4.2.3 Convolutional Neural Networks

In the fields of Machine Learning and Computer Vision, deep-learning neural networks
have found a wide range of applications due to their ability to learn specific concise
representations from the raw image data [62, 125]. They outperform many state-
of-the-art methods as well as the previously described keypoint description methods.
Furthermore, inspired by the neural sciences on how humans learn, a Convolutional
Neural Network (CNN) can be trained to extract invariant features by using similarity
learning [45, 141]. Consequently, these characteristics motivate us to use CNNs to
cope with the challenges encountered in fetoscopic image registration.

4.3 Matchable Feature Extraction

In contrast to keypoint feature extraction methods, convolutional neural networks
have to be trained to learn a mapping between the input image data and a feature
vector. Our proposed method uses a two staged approach; first a network is trained
to extract features that are robust to small perspective transforms. Second, training
an extension of this first network is performed to fine-tune the feature extraction, in
order to obtain features that can be matched robustly.

To train any neural network, a loss function is used to acquire the feedback for
updating the internal state of the network. Our method is described in detail in Sec-
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a)

Figure 4.1: a) Label based learning b) contrastive loss ¢) matching learning; (e) elephant features,
(m) mouse features

tion 4.3.1. The network for image registration is described in Section 4.3.2 detailing
the feature extraction and the matching and registration parts of the network. As the
network is trained using a training set, the creation of the training set is described in
Section 4.3.3. Finally, the remaining sections describe the experimental setup (Sec-
tion 4.3.4), the results (Section 4.4) and a discussion of the results (Section 4.5).

4.3.1 Learning Method

CNNs learn a mapping between the input and required output by updating internal
weights based on feedback given to the network. This feedback, also defined as the
error or the loss, is obtained by defining a function which generally takes the current
and the desired output of the network as inputs. This function tries to minimize the
error between output of the network and desired output, thus using only feedback
on similarity.

A different approach is to also define feedback on dissimilar inputs. This is achieved
with the contrastive loss function [45]. Which defines feedback to decrease the
difference between similar pairs and to increase the difference between dissimilar
pairs, which results in a more easily separable and more evenly distributed feature
space.

To describe the difference in feedback, consider a network trained to classify images
containing either a mouse or an elephant. Suppose during training a sample of
an elephant is incorrectly described as a mouse. Normally feedback is provided to
decrease the difference between the class label from the network and the label from
the training sample. This results in making the output more similar to the elephant
label, as shown in Figure 4.1a where the feature after learning is still closer to the
incorrect mouse label.
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For contrastive loss training, a siamese network [15] using two images is used to
train the network. Generally, this method is utilized to train a network for feature
extraction making the output a feature vector. In the case where a sample of an
elephant and a mouse is used, the difference between their outputs is increased up
to a defined margin, as shown in Figure 4.1b with the red dashed ellipse. However,
in the case two samples of the same label are used, the difference between the two
outputs is minimized as shown with the green solid ellipse. Hence improving the
feature extraction towards their correct label, as well as making the two features
more dissimilar and more easily separable.

Our goal is to train a CNN to extract invariant and robust features to describe key
areas. To realise invariance to perspective transforms, the error between different
transformations of the same patch has to be minimized, while to extract features
that are separable, the error between different patches has to be maximized. This
can be achieved with the contrastive loss function as is defined in ((4.1)). Where X;
is the output of the network as feature vectors, m the margin, generally defined as
1, s the similarity of the pair with 1 as similar and 0 as dissimilar. For more details
we refer to the original work on contrastive loss [45].

L= S2(DW)? + (1 - )3 (max(0,m ~ D,,)) @)
Dy = | X1 — X2l|2

In the process of image registration, extracted features are matched on their Eu-
clidean norm similarity. To train a network to extract features that can be matched
robustly, the contrastive loss function is extended. The ground truth from the train-
ing samples is used to select true matches. Next, feedback is defined such that
the error between incorrectly matched features is increased and between correctly
or supposedly matched features is decreased. This is described by ((4.2)), where
f = 1 when the feature matching obtained a false match and f = 0 when the fea-
ture matching was correct. D¢ and D; are respectively the differences between X;
and the feature vector obtained by feature matching Xy or X; obtained by the true
transform.

L= %((1 — £)Dr + FD:)? + f%(max(o, m — D)) (4.2)

Dr = || X1 — X¢ll2
D: = || X1 = X¢ll2
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Function 4.2 is inspired by the contrastive loss function, in minimizing the difference
between correct matches and increasing the difference between incorrect matches.
But it differs by introducing two reference features to match with; the true match X;
and the feature based match Xr. In the case where the feature matching was correct
(f = 0), these two references are the same, and (Equation 4.2) can be considered
similar to the case where s = 1 in (Equation 4.1) as the second term is cancelled
out. However, in the case where the feature matching obtained an incorrect match
(f = 1), additional feedback is given based on the incorrect match. This has as
effect that not only the correct features are made more similar and the incorrectly
matched features more dissimilar, but also that the specific aspects that form the
difference between the correct feature and the incorrect feature are improved.

To describe this effect, consider the previous example of training a network describing
images of a mouse and an elephant. Imagine the feature vector describing some
aspects of the animals including colour and size. Suppose during training an image
of an elephant was mistakenly matched with a feature of a mouse. The feedback
will increase the difference between these two features, in both colour and size.
Furthermore, feedback is given to reduce the difference between the correct feature
and the extracted feature. As the size of an elephant is large, the aspect of size is
increased even more. But as both animals are grey, the aspect of colour is reduced.
Even so, the importance of the colour aspect is reduced over time up to the point
that the network will not use colour any more to describe the animals. This is shown
in Figure 4.1c with the combination of the difference between the incorrect feature
and extracted feature Dy as well as the difference between the correct feature and the
correct feature D;. Resulting in a much better separable feature space as indicated
with the black dotted line.

It can be argued that the triplet learning from [141] is very similar to our proposed
method. However, there is one key difference in the way how a dissimilar pair is
chosen. In [141] this is a fixed pair chosen at the moment the training set is created,
whereas our method dynamically obtains a dissimilar pair based on the output of the
network. Therefore it is adaptive to what is learned in the network, creating a much
better separable feature space. Furthermore no dissimilar pairs have to be selected
when creating a training set, reducing the training set size as well as training time
significantly.
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Figure 4.2: CNN architecture.

4.3.2 Network Architecture

As stated before, the network is trained in two stages; feature extraction training and
robust matching training. Both stages use a siamese network architecture, where two
parallel networks with the same architecture share their internal weights to process
two simultaneous inputs [15].

For feature extraction, a network is designed such, that an input image patch of
50 x 50 pixels is reduced to a feature vector of size 32, by choosing the right number
and filter sizes for the convolution layers as shown in Figure 4.2.

For training robust matchable features, the same network is used, but instead of a
single image patch, 961 patches of 50 x 50 pixels are extracted in a 31 x 31 grid
from a 500 x 500 image. Furthermore the contrastive loss layer is replaced with the
matching loss layer as described in the previous section.

For evaluation with image registration, the matching loss layer is replaced with a
matching and rigid transform estimation layer. This layer outputs the estimated
rigid transform found by RANSAC or LMEDS [31, 85] and the mean projection pixel
error between the true transform and the estimated transform.

Algorithm 1 Training data

Step 1: Create image patches.

Step 2: Discard similar patches

Step 3: Select only interesting patches
Step 4: Create transformed patches
Step 5: Similarity pairing
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4.3.3 Training data

To train any CNN, a dataset has to be created that is as small as possible to reduce
the training time. As well as a complete and an evenly distributed representation
of the variations to be encountered, in order to achieve robustness and avoid over-
fitting. In Algorithm 1 the steps for creating these training sets are shown and
detailed below.

First, a subset of images from the fetoscopic videos are selected to decrease the
amount of training data. As the motion within one second is expected to be small,
only 5 images each second are selected. Next, for the first training stage, patches
of 50 x 50 pixels (Figure 4.3 right bottom) are extracted and for the second stage
patches of 500 x 500 pixels (right top) are extracted at an interval of 50 pixels from
the valid area of 550 x 550 pixels of the source images.

Steps 2 and 3 are to improve the quality of the extracted patches used in the dataset.
First, the absolute pixel difference between all patches is obtained. Patches that are
too similar are discarded, such that reoccurring variations are not presented multiple
times. As a result, the dataset contains an evenly distributed representation of the
variations. To further improve the information density of the dataset, all patches
with below average gradient energy are discarded. This results in a set of patches
that are above average descriptive and makes sure that non-descriptive patches are
excluded.

In order to have invariance to the expected transformations, every patch is rigidly
transformed. For the training sets, fixed step sizes are chosen for every component of
the perspective transform, related to the observed transforms occurring between two
successive frames. Similarly, for the evaluation sets, random transforms are chosen.

Figure 4.3: Image from fetoscope and crops for learning
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Figure 4.4: Left: Simulator, Right: inside of simulator with placenta

For similarity training, pairs are created in the final step where every patch is paired
with their variations. Furthermore for the first training stage also dissimilar pairs
have to be selected. Therefore every patch is paired with 25 of their most similar
patches based on the absolute pixel difference obtained in step 2.

4.3.4 Experimental Setup

To evaluate the introduced image registration method, fetoscopic videos were utilized
from a TTTS surgery simulator used to train surgeons as shown in Figure 4.4 [84].

It has to be noted that the artificial model of the placenta as shown in Figure 4.5, is
a close as possible representation of a real placenta. This is unlike the much easier
dye injected placentas that are used in the current state-of-the-art. Furthermore,
the positioning of the placenta and use of the fetoscope is similar to that of in-vivo
surgery (Figure 4.4).

The image registration method has been implemented on a Dell precision M4700

Figure 4.5: Artificial placenta
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with the Caffe [54] and OpenCV libraries. The videos have been acquired with a
medical camera capturing a circular image of 880 x 880 pixels representing an area
of about 8 x 8 mm as shown in Figure 4.3.

4.4 Experiments & Results

For performance evaluation of image registration in a realistic setting, a video taken
from the simulator operated by an expert is processed. Three sections of the video
have been chosen with similar length of about 75 seconds, representing different
areas of the placenta. Training is performed on one of the videos and compared with
the other two. Patches are extracted for both the first and second stage of training
and evaluation as described in Section 4.3.3. By changing the training set, three
combinations of training and evaluation could be obtained.

4.4.1 Experiment 1

First the invariance of the novel feature extraction method is evaluated in respect to
the different transformations and compared to the state-of-the-art keypoint descrip-
tors. In Table 4.1, the average performance is shown together with the standard
deviation of the correctly matched points out of the total keypoints. CNNI1 repre-
sents the performance trained only with the first stage, while CNN2 was trained with
the novel matching learning method.

Table 4.1: Correctly matched points

Method SIFT BRIEF CNN1 CNN2
Translation 28.2% 29.5% 67.5% 81.4%
+24.0% | £10.1% | £15.6% | £13.6%

Rotation 22.1% 31.5% 53.4% 74.5%
+19.0% | £7.8% | £13.1% | £12.6%
Scale 21.1% 36.1% 57.8% 72.9%

+16.9% | +7.9% | £11.6% | £12.2%
Perspective 13.7% 27.4% 51.4% 68.4%
+9.8% | £7.2% | £7.1% | £12.2%
All 13.8% 26.2% 50.9% 62.8%
+4.7% +6.7% +3.9% +6.1%
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All methods use a fixed grid of 31 x 31 points with a spacing of 10 pixels, therefore
always having 961 keypoints for feature extraction. This was also chosen for SIFT
and BRIEF to guarantee that keypoints were available that represented the same
area in both images. For both SIFT and BRIEF, a match was only accepted if
the distance ration to the second best match was below a threshold as shown in
[17]. This threshold was adjusted such that only the best matches, but also enough
matches could be retained for the next experiment.

4.4.2 Experiment 2

For performance evaluation of image registration in a realistic setting, comparable to
in-vivo surgery, Table 4.2 shows the image registration error as the mean pixel error
of the estimated transform together with the standard deviation.

For state-of-the-art keypoint description methods, RANSAC is used for transform
estimation, whereas for the proposed methods also LMedS is used, as more than
50% of the matches are correct matches.

It should be noted that even by adjusting the threshold, for both SIFT and BRIEF,
in 10-25% of the images the matching ratio was so low that less than the required
4 matches were found. Furthermore, for about 15-25%, no reasonable transform
estimation could be found. These have all been excluded from this comparison, as
they influenced the average pixel error drastically.

Table 4.2: Mean pixel error of estimated transform. ) RANSAC 2) LMeDS

Method SIFT | BRIEF | CNN1 Y | CNN12 | CNN2 Y | CNN2 2
Translation 4.0 px 3.5 px 3.2 px 2.6 px 2.6 px 2.4 px
Translation | £1.7 px | £1.7 px | *£3.4px | 1.8 px | £1.5px | +1.4 px

Rotation 7.1 px 8.0 px 6.6 px 4.0 px 4.3 px 2.4 px
Rotation +19px | 22.0px | £5.0px | £2.6 px | +2.8 px | £1.7 px
Scale 7.1 px 8.6 px 5.3 px 3.6 px 4.6 px 2.6 px
Scale +1.8px | 1.4 px | £3.7px | £2.0px | +3.1 px | £1.6 px

Perspective 9.9 px 9.8 px 6.6 px 4.2 px 5.7 px 2.9 px
Perspective | 3.1 px | £2.8 px | £3.9px | £2.6 px | £3.2 px | £1.6 px
All 8.3 px 8.5 px 7.5 px 5.2 px 6.6 px 3.0 px
All +3.0px | £2.7px | £4.0px | £29 px | 3.1 px | £1.6 px
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Figure 4.6: Reconstruction of placenta

4.4.3 Experiment 3

Using 26 sequential registered images from the previous experiment, a partial recon-
struction of the placenta, as shown in Figure 4.6, has been made of the same area
shown in Figure 4.5. In this reconstruction, no post-processing or blending methods
were used, but still giving promising results.

4.5 Discussion

In this chapter an image registration method is introduced to handle the challenges
posed by fetoscopic videos. The main challenge in image registration is to obtain
invariant features that can be matched robustly. With the experiments it was shown
that feature extraction with a CNN trained in a novel way, allows for more robust
features and improves image registration of fetoscopic images.

The first experiment shows that depending on the applied rigid transformation, for
the novel approach of using learned feature extraction, up to 67.5% of the features
can be matched. The key behind this, is that the network learns to extract the
essential components to describe an area, such that it is still invariant to the applied
transforms.

The remarkable low matching performance of state-of-the-art methods can be ex-
plained by the ratio between the robustness to variations and the difference between
different keypoints. For both SIFT and BRIEF, as they are designed to be invariant
to these type of rigid transformations, the difference between extracted features of
similar keypoints is small. Thus, for robust keypoint matching, it requires a very
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different type of keypoint, which is also the reason why it is advised to only accept
matches by a distance-to-second-best ratio. However, as having different type of
keypoints is not feasible with fetoscopic images, since blood vessels look very similar,
the result is a low matching performance.

This also explains the two causes why many of the matching samples for SIFT and
BRIEF had to be excluded from the results. This had two causes. First, the distance-
to-the-second-best-ratio threshold rejects the majority of matches, resulting in less
than 4 matches. Second, the features are too similar and are matched incorrectly.

In contrast to state-of-the-art keypoint descriptors, our novel matching learning
method increases the difference between different areas on top of the invariant fea-
ture extraction. This is shown in the improvement in matching performance between
CNN1 50.9% and CNN2 62.8% for all transforms.

In [99] they showed a matching performance of 68% for SIFT matching. This is
quite different from the results presented in this chapter. But, this difference can
be explained by three aspects. First, the field of view of their endoscope is larger,
showing much more structure. Second, they use a dye injected placenta, which results
in much more contrast allowing for better features to be extracted. Third, the motion
they used during recording consists mostly of translation. SIFT obtains a 2 times
better matching performance in experiment 1 for translation (28.2%) compared to
the realistic transforms encountered during surgery which it only matches 13.8%.

The results of experiment 2 show that having more correct matches makes for more
robust and precise transform estimation. This is reasonable because of the well
known correlation between the amount of matches and the transformation error. It
should also be noted that LMedS will give an optimal estimation, where RANSAC
will give the best estimation of its iterations. This can be seen from the results of
CNN1 with LMedS and CNN2 with RANSAC for all transforms. The latter has more
correct matches, 62.8% compared to 50.9%, but also a higher estimation error of
6.6 compared to 5.2 pixels. Furthermore, looking at the individual matching results,
it can be seen that RANSAC will sometimes give an estimation that is quite far off.

Another aspect that is often not considered is the consistency of the image regis-
tration process. With conventional keypoint matching methods some of the images
could not be registered. The same problem has been reported in [99]. With our
proposed method, 100% of the test images could be matched, as the features and
matches obtained were very robust to the variations in the image data and the
perspective transform between two successive images. Therefore, continuous and
complete panorama reconstruction should be obtainable with this novel method.
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In experiment 3 an attempt is made towards reconstructing large view panoramas,
using images from a fourth sequence. Unfortunately, motion blur and lack of struc-
ture in small areas, limited the length of the sequence and therefore the area that
could be reconstructed. However, the consistency of the obtained transform esti-
mation shows that large view panoramas can be reconstructed. Furthermore shows
that the quality of the videos is important as well.

One aspect of keypoint based image registration that is not covered in this chapter
is the detection of these keypoints. In this work, a grid of 31 x 31 is used as
keypoints, where generally these are detected, such as in the detection part of SIFT.
In future work, this aspect will also be included, but the exclusion of this aspect can
be explained.

First, as stated before, it cannot be guaranteed that the detection will obtain key-
points that are matchable between the two images. In a grid of keypoints, this can
be guaranteed with an increased distance, where the maximum possible distance
between matchable keypoints, excluding the transformation, is half of the interval
between the points on the grid.

Second, a placenta, consisting of a network of blood vessels, has very limited unique
features. Moreover, the edge between a blood vessel and the underlying tissue of
the placenta is very similar along the whole edge. As a result, a keypoint is generally
arbitrarily detected along this edge and consistent keypoint detection cannot be
guaranteed. For future work, a keypoint or an interesting area should be selected on
the structure of this edge and not the gradient around a point on this edge.

4.5.1 Conclusion

In this chapter, a novel method is described for the second and one of the most cru-
cial steps in panorama reconstruction. This method can extract robust matchable
features using a Convolution Neural Network, which is trained with a novel matching
similarity learning method. Eventhough, keypoints are selected in a grid, the trans-
formation estimation accuracy is improved. In Chapter 5 a method is introduced
that can detect stable keypoints.
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Abstract

In Chapter 2 and 3 challenges in panorama reconstruction in an in-
vivo setting have been detailed. One of these challenges is to obtain
keypoints in image pairs that describe the same areas such that these
can be matched. This is challenging as state-of-the-art methods have
very low performance in these settings. The cause to this challenge
is explained in this chapter and is tackled by proposing an innovative
approach of applying object detection for stable region detection.
Another challenge is that in the in-vivo setting the visibility condition
can vary a lot and that the image registration process can give adverse
results from time to time. These unfavourable visibility conditions could
be detected and acted upon. Therefore, in this chapter a qualitative
measure is obtained to make the panorama reconstruction process more
robust to these adverse visibility conditions and the resulting inaccurate
image registration.
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5.1 Introduction

The previous two chapters showed that the in-vivo setting complicates the image
registration process considerably. Chapter 3 investigated the underlying causes and
identified some domain specific challenges; First, the visibility condition is compli-
cated by the color and turbidity of the amniotic fluid. Second, the motion of the
fetoscope or the body changes the distance to the placenta. Last, the illumination
is limited by intensity as it cannot blind the foetus. These aspects result in a very
limited range of visibility conditions in which the image quality is such that current
keypoint methods can be used.

To handle the challenges of an in-vivo fetoscopic setting, Chapter 3 suggested four
points of improvement; Improving the keypoint detection and matching method,
such that it can handle some of these complex settings. Next, the panorama recon-
struction process could be improved, by discarding inaccurate or unavailable image
registrations and not to create image registration chains. Furthermore, the visibility
condition can be improved by obtaining an image quality measure and giving some
form of feedback to the surgeon. Last, also the equipment plays a role in the per-
formance of the panorama reconstruction. A larger viewing angle improves the field
of view and a high dynamic range or low light camera will obtain a larger range of
feasible visibility conditions.

This chapter revisits the differences and the resulting challenges of in-vivo fetoscopic
panorama reconstruction in Section 5.2. Section 5.3 introduces recent developments
in deep-learning and details how a neural network can be used to handle the challenges
posed by in-vivo fetoscopic panorama reconstruction. The proposed approach will be
evaluated in Section 5.4 according to the given requirements. Finally, a discussion
and conclusion will be given.

5.2 Challenges of In-Vivo Setting

In [34] we described key aspects in which an in-vivo setting differs from an ex-vivo
setting and we concluded that in contrast with an ex-vivo setting, state-of-the-art
keypoint methods have a very limited performance in an in-vivo setting. Therefore
other approaches e.g. based on deep learning must be found. In this section we recap
the differences in setting and how they influence the image registration between two
adjacent fetoscopic images, and we conclude with presenting a set of requirements
for a proper image registration in in-vivo settings. The next section then describes
the methods we propose to adhere to these requirements.
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5.2.1 Differences in Setting

The visibility in fetoscopic images is a key problem that complicates the image reg-
istration between two or more images in an in-vivo setting. The first aspect of good
visibility is the amount of light as well as an even distribution. In an ex-vivo set-
ting, the amount of light can be completely controlled and positioned. Therefore,
an optimal position and an even distribution of light can be obtained. However, in
an in-vivo setting this is not the case:

e The amount of light is limited by the light source and cannot be chosen too
bright as it might blind the fetus to the point of annoyance such that the fetus
becomes restless.

e The amniotic fluid is far from clear as the fetus micurates in it. Moreover, as
commonly the case in TTTS, the fetus might release bowel movements due to
distress, giving the amniotic fluid a green turbid color. This color and turbidity
of the amniotic fluid absorbs light, reducing the distance the light can reach.

e Also, the fetus and particles that float in the amniotic can limit the field of
view of the view of the placenta. In Figure 5.1c and Figure 5.2c air bubbles
can be observed. However, these are the result of using water in mimicking
the in-vivo setting and are not part of the surgical setting.

e The source of light is the fetoscope itself. This results in an uneven distribution
of light, which reduces the amount of illumination towards the edge of the
view. Furthermore, saturation of the imaging sensor in the center of the image
inhibits proper observation of the structure of the placenta

Examples are shown in Figure 5.1. Especially for the green turbid liquid it is difficult
for the camera to acquire a proper image, resulting in a large amount of sensor noise.

Figure 5.1: (a) Ex-vivo view, (b) uneven distribution of light, (c) too much light saturating the
sensor, (d) not enough light creating sensor noise
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The second aspect of good visibility is the distance to the placenta. With enough
distance to the placenta it is possible to observe many different structures on the
placenta. In an ex-vivo setting the placenta is generally placed on a flat surface and
the fetoscope can be positioned at any distance to the placenta. Furthermore, the
fetoscope can be moved laterally with equal distance to the placenta. However, this
is not the case in an in-vivo setting:

e The distance to the placenta is limited due to the reduced amount of light.

e The fetoscope is limited in motion at the point of entry. It can only rotate
around the point of entry and move forward and backward.

e A lateral movement of the field of view can only be obtained by rotation.
Therefore, the lateral change of view also changes the distance to the placenta.
This results not only in a change of visible structure, but also a change in
illumination.

e The scanning procedure in the in-vivo setting is to follow veins from the um-
billical cord and back. Which creates large loops, whereas the ex-vivo setting
uses a spiraling motion, which has many small loops.

Figure 5.2a shows an example of an ex-vivo setting with a satisfactory amount of
structure. The same area is also show for in-vivo visibility settings. In contrast,
showing a nominal example in the in-vivo setting with green turbid liquid, results
in Figure 5.2b in a smaller field of view and more pixel noise in the image. To
obtain the same field of view the fetoscope can be moved back for a more distant
view (Figure 5.2d), but results in an image with too little illumination. To obtain
more light and less noise the fetoscope can be moved forward for a closer view
(Figure 5.2¢), though this results in saturation due to light reflections.

Figure 5.2: ex-vivo: (a) sufficient structure; in-vivo: (b) nominal, (¢) close and bright , (d) far and
dark
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5.2.2 Influence on Image Registration

For panorama reconstruction, it is necessary to correctly find all transformations be-
tween adjacent images constituting the panorama. A transformation between two
adjacent images can be estimated with a minimum of 4 matches, assuming they are
correctly matched and accurately describe the same locations on the placenta. The
keypoint matching process assumes that two well matching keypoints describe the
same physical point. To find matching keypoints in two images, the area around a
keypoint is described with a histogram of gradients. Around corners this generally
provides an unique enough description of the keypoint such that it can be matched
with a similar keypoint in an adjacent image. Such a corner is dominated by equally
strong gradients in two dimensions. In contrast, along edges, such as along a vein,
there is a strong gradient perpendicular to the edge and practically no gradient along
the edge. Consequently, keypoints selected on an edge are very alike as they have a
very similar structure around the point. Moreover, taking sensor noise into account,
the histogram of gradients has an additional random component that is often larger
than the fine difference between two edges in adjacent images. With a growing
variation in the exact location and an increasing number of incorrect matches, the
required number of correct matches increases as well. The LMeDS transform esti-
mation method is robust to inaccurate locations, but requires at least 50% correct
matches to obtain a transformation [85]. Whereas, the RANSAC method is sensi-
tive to inaccurate locations, though robust to incorrect matches [31]. Unfortunately
there is no method that is robust to both inaccurate locations and incorrect matches.

In an in-vivo setting the limited distance to the placenta reduces the observable
structure and the limited amount of light creates sensor noise. Hence, unstable
keypoints are detected that are described by similar features and matching keypoints
result in many seemingly good, but incorrect matches, describing different points
on the placenta, usually along veins. Concluding, in three key aspects traditional
keypoint matching methods fail in an in-vivo setting; detecting stable keypoints,
reliable matching of keypoints, and obtaining enough matches for a proper estimation
of the transform.

5.2.3 Image Registration Requirements

To research other approaches, such as based on deep learning, it is important to
specify the requirements for an image registration process that consistently performs
its task in an in-vivo setting:

e Keypoints in one image should be reproducible in another image and both
should accurately describe the same physical location on the placenta
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e The features describing a keypoint in one image should be so unique that the
matching keypoint in another image has almost the same unique features

e Keypoints in one image for which no matching keypoint is found in the other
image should have such unique features that it is not incorrectly matched to
keypoints in that other image at different locations

e The image registration process should be able to detect whether an obtained
transformation is incorrect in order to exclude it from the panorama recon-
struction.

The section below describes the method we propose to adhere to these requirements.

5.3 Method

In recent years, deep-learning neural networks have been applied in many different
fields, tackling various complex problems [64]. This approach is successful because
it has the ability to learn any complex task without having knowledge on how to
solve the task, as long as the desired output is known and enough training data is
available. A deep learned network consists of a pipeline of trainable layers, which
makes it possible to train the network to handle compound structures.

Convolutional layers are very suitable to extract relevant data from structured data
such as images. It is comparable to convolutional filtering the image, but then with
filter coefficients that are trained instead of coefficients determined by a user. A
convolutional layer has a set of filters that is moved over the input image extracting
relevant structures everywhere in the image. This can be applied in many different
applications, notably in image classification [117].

In this work we propose a deep convolution neural network to tackle the challenges
stated in the previous section. With it we will:

e Detect stable regions on the veins of the placenta
e Extract matchable features from these regions

e Learn a visibility and matchability measure of an image

These steps are detailed in the next sub-sections.
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5.3.1 Stable Region Detector

Soon after the introduction of deep learning, this approach was also applied to the
detection of keypoints [116, 136, 143]. These methods are similar to hand-crafted
methods such as SIFT and ORB, but have the advantage that the networks can be
trained to select keypoints that are more apt for matching and image registration.
Although these networks are often trained with keypoints detected by a handcrafted
method, this is not very suitable for our case and another way of obtaining a keypoint
training set needs to be found.

Image registration requires the detection of stable keypoints, but it is yet unclear
what defines a stable keypoint not being a corner. A straight edge (Figure 5.3a)
constraints the keypoint in one direction. This is also the case for a circular edge,
when rotation is also taken into account, as shown in Figure 5.3b. However, keypoints
with the same curvature can be matched. On curved edges, having an additional
change in scale, the matching becomes more unique, but not unique enough to do
the job (Figure 5.3c). Therefore, any edge alone, albeit curved, cannot be considered
a source of stable keypoints. We need additional information to make the keypoint
unique.

Consequently, we propose to define stable keypoints being center points on the medial
axis of the veins. As both sides of the vein are curves of different curvature they
provide independent constraint dimensions making the point more unique. When
also the width of the vein is taken into account this constraints the detection also in
the dimension of scale, as shown in Figure 5.3d. This makes our proposed method
less a keypoint detector but rather a region detector; we use three instead of two
independent dimensions.

Since our approach resembles region / object detection rather than keypoint de-
tection, we investigated also Region Convolutional Neural Networks such as RCNN
[41], Fast-RCNN [40], Faster-RCNN [100] and SSD [74], which have been devel-
oped to detect and classify objects in images. Earlier methods such as RCNN and
Fast-RCNN used external region proposal methods, but Faster-CNN and SSD use

Figure 5.3: Constraints on (a) edge, (b) circular, (c) curve, (d) veins
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Figure 5.4: (a) Definition of Bounding Box (BBox) (b) Definition of Rotated Box (RBox)

the same convolutional network for classification as for region proposals, where SSD
detects objects at multiple scales. Therefore, this last method was chosen as basis
for our stable region detection method.

The SSD method detects regions by defining bounding boxes with their min and max
corners as shown in Figure 5.4a. These are learned by training the neural network to
output the location of the two corners for each feature cell according to their default
boxes. An additional classification layer learns the detection probability of each class
in every default box. If the classification layer outputs a positive classification, the
matching output of the detection layer is used for localization of the classified object.
We refer to the Faster-RCNN [100] and SSD [74] papers for more details on the
specifics on how to train these detectors.

In order to detect stable regions on the placenta, we propose to detect square areas
on the veins. However, the bounding boxes as defined by SSD are not suitable
to describe the orientation of the vein. Therefore, we extent SSD and redefine
the default boxes by the center, the size, and the angle of the box, as shown in
Figure 5.4b.

The ground truth of these detections is obtained by manually annotating the center
and the radius of the veins in the images. Taking the gradient of these annotations,
also the direction of the vein is defined. An example of such annotation of the veins
is shown in Figure 5.5.

It is interesting to note that the definition of our points of stable-regions are similar
to that of keypoints. Similar to a keypoint we also extract features around a location
of a rotated box. But whereas keypoints are solely defined by a point, a scale and
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Figure 5.5: (a) sample image (b) annotated center line (c) selection of annotated RBoxes

an orientation of the keypoint, we restrict the possible locations to be at the center
of a vein. This makes them stable and within some margin also reproducible.

5.3.2 Stable Matching

The second challenge in the image registration process is to extract features that are
descriptive enough for the proper matching of keypoints. In [116], this was achieved
by training with positive and negative samples, using Euclidean distance to measure
similarity in a Siamese CNN. This is similar to [33] where patches were selected in a
grid to extract features that were trained in a Siamese CNN with contrastive loss.

In this paper we extended the SSD architecture similarly to [33]. An additional con-
volution layer extracts a feature for the detection of Contrastive Loss. Furthermore,
every detection is fine-tuned with its matching performance such that detections
that are difficult to match are assigned a lower probability to be detected. In this
way we remain with matchable features.

5.3.3 Qualitative measures

Our last challenge is to obtain a measure of success for the image registration. This
can be used to guide the surgeon or/and his assistant. For this, a qualitative measure
is trained by using the matching performance which was used to train matchable
features. Since the images registration is highly influenced by the visibility, we define
two more outputs to describe this visibility. One describes the amount of illumination
and the other describes the distance to the placenta. The visibility is defined as
optimal in nominal illumination and distance conditions.

These outputs provide an indication about the performance of the image registration.
In case of bad registration the images can be discarded in the process. However,
to obtain a sequence of images that is continuous, the surgical team should be
included in the process, i.e. the surgeon should be made aware that the panorama
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reconstruction process has lost position. Furthermore, an assistant controlling the
light intensity should be made aware of the illumination condition to actively adjust
this.

5.3.4 Network architecture

The above described contributions are implemented based on the VGG-16 network
with SSD as a starting point. In order to detect stable regions, we first associate
detection scales with the annotated veins of various sizes and select only the first
four levels as a scale space pyramid to detect rotated boxes. Each detection scale by
default consists of three layers; first the classification layer for determining if there
is a positive detection. Second, the location layer describing the location of the
detection and third the prior boxes, describing the template detections. Every scale
also passes on the features to the next scale.

Next, for stable matching we change two aspects; First, the SSD network was made
into two parallel pipelines as shown in Figure 5.6a. These two networks share their
weights as a Siamese Neural Network. Second, each detection scale is extended with
an additional convolutional layer to extract a feature describing every detection as
shown in Figure 5.6b. These, combined with the region detections can be used to
find the matches for image registration.

Finally, to extract a measure for visibility and image registration performance, the
bottom most detection scale is extended with a convolution layer, a max pooling
layer and a convolution layer for classification.

5.4 Experiments

We performed various experiments to show how our method can handle the image
registration challenges encountered in an in-vivo setting. For this we used data from
our previous work with various visibility conditions. [34]. For training, we selected
two sets of data, an ex-vivo setting and an in-vivo setting, including both nominal
conditions for yellow and green amniotic fluid. For each setting a minimum of 25 and
a maximum of 42 images were obtained for the same trajectory on the placenta. The
number of images vary because of the differences in visibility. In total 745 images
were used for various settings.

The training data was augmented by rotating the image in steps of 45 degrees and
flipping it, such that 16 variations are obtained. For testing, all variations in visibility
are used. Therefore, in nominal conditions 20% of the total set is used for testing
and the rest is used for training. For all other visibility conditions all data is used for
evaluation.
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5.4.1 Experiment 1 - Stable Region Detector

The stable region detector as proposed in Section 5.3.1 should detect the center of
the vein. Therefore, we manually annotated the center and the radius of the veins
and extracted the direction of the veins. According to the chosen scales and number
of cells in the convolutional layers, the closest annotated point is selected as the
ground truth and used to train the stable region detection network.

We evaluated the detection performance of these regions as well as their reproducibil-
ity for both the bounding boxes (BBox) and rotated boxes (RBox). We applied a
confidence threshold of 0.95 and obtained on average 21.0, with a minimum of 11,
regions per image in the in-vivo setting. With this high threshold the performance
is also very high with 94.4% correctly detected regions. Lowering the threshold pro-
vides more regions albeit that the precision goes down very quickly. Below 0.7 only
incorrect regions are detected. Therefore, we used this threshold of 0.95 in the rest
of our experiments. The results of the BBox detections with more thresholds are
shown in Table 5.1.
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Table 5.1: Number of detections and precision.

Threshold €x-Vvivo in-vivo
BBox RBox BBox RBox
0.95 23.7 25.8 18.1 21.0
96.6% 97.1% 92.9% 94.4%
0.90 26.9 29.2 21.1 24.8
89.2% 91.0% 85.5% 86.6%
0.80 34.8 35.9 27.4 30.8
73.5% 80.1% 71.2% 73.5%
0.70 41.0 43.9 39.0 40.5
63.4% 66.7% 52.4% 59.1%
0.60 52.8 58.8 50.7 51.8
492% 55.3% 41.7% 50.5%

To determine the reproducibility of the detected regions, the transform between two
successive images have been manually established. The ratio of the detections in
two adjacent images that describe the same area are obtained by transforming the
detections from one image to the other. The reproducible number of detections is
on average 81.8% of the detected regions for the ex-vivo, and for the in-vivo settings
76.5% and 73.6%. For all visibility conditions an overview is presented in Table 5.3.
It also provides a comparison with the results of the keypoint methods from our
previous work.

5.4.2 Experiment 2 - Stable Region Matching

To obtain matchable features we trained the neural network with Contrastive Loss
on the matches. To evaluate the matching performance of our approach, the true
matches from the previous experiment are used and compared to the number of
matched regions. For the nominal ex-vivo setting 73.4% and for the nominal in-vivo
settings 69.3% and 58.4% were correctly matched. For these settings all images
had enough stable matches to obtain image registration. Furthermore, the mean
pixel error was less than 2 pixels using LMeDS as the transform estimation method.
Table 5.4 shows the matching performance for the other more challenging settings
than nominal. For some visibility conditions an insufficient ratio of correct matches
were found to use LMeDS, thus RANSAC was used instead.
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5.4.3 Experiment 3 - Qualitative Measure

To obtain a qualitative measure for the matching process as a whole for two adjacent
images, the performance of the previous experiment is defined as bad if no trans-
formation could be found either by having not enough detected regions or having
not enough correctly matched pairs. A good performance is defined by more than
50% correct matches and a minimum of 6 correct matches. Which is based upon the
requirement of LMeDs of having at least 50% correct matches and having more than
4 matches to handle location inaccuracy. By training an output with these labeled
outcomes a measure of matchability could be obtained.

To obtain a qualitative measure of the visibility, a dataset was created containing also
the dark, light, close and far visibility conditions. For the illumination and distance
variation the nominal situation was defined as 0 and the two extremes of the variation
as either —1 or 1 and trained with Euclidean loss. Table 5.2 shows the results for the
qualitative measures as a ratio of giving a correct indication and an overall correct
indication of successful image registration, where these measures are combined for
the nominal setting.

Table 5.2: Qualitative Measure Precision

Measure Variation ‘ Ex-vivo Yellow Green

Distance close 65% 60% 42%
nominal 70% 68% 58%
far 76% 72% 61%

lllumination dark 88% 76% 40%
nominal 90% 82% 60%
light | 93%  87%  83%

Matching | 98%  95%  88%
100%  98%  91%

Registration

5.5 Discussion

In this chapter an extension of an SSD network is introduced to detect regions in fe-
toscopic images with stable matchable features. With the same network architecture
also a measure of matchability is obtained for the purpose of obtaining a sufficient
set of matchable regions of consistent quality for proper image registration.
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In experiment 1 it is shown that it is possible to detect stable regions on the placenta
based on the medial axis of veins, under visibility conditions encountered in an in-vivo
setting. Compared to keypoint methods this approach only detects a limited number
of regions, albeit that the number of reproducible regions is much higher and more
consistent over all adjacent images in a trajectory.

The method to learn matchable feature was evaluated in Experiment 2. It showed
that in better visibility conditions, a high percentage of correct matches could be
obtained and that the number of correct matches is especially in darker settings
reduced. Therefore, in the more complicated settings sometimes not enough matches
could be found to obtain a transformation. However, in the nominal settings for 100%
of the images sufficient matches could be found to obtain a transform.

These results show again that the visibility greatly complicates the in-vivo setting.
First, for both the yellow and green-turbid liquid, the darker conditions have not
enough contrast to provide the required detail to detect enough regions and extract
matchable features. Next, the distance to the placenta also reduces the amount of
regions that can be detected, resulting in not enough matches to either use LMeDS
or obtain a transform estimation. Last, for the green-turbid settings, many images
contain a large amount of sensor noise. These images provide a large number of
keypoints, however with our region detection method, almost no stable region could
be detected.

The transform estimation precision is not as accurate as expected. It seems that also
our region detection method does not describe the same physical location uniquely
enough. A more accurate transform estimation should be obtainable with dense
optimization. This is anyway required for panorama reconstruction of large sequences
without loops, though not implemented in this work.

As stated it will still be very difficult to estimate a correct transform for all different
visibility conditions. Therefore, in these cases it is important to be able to detect that
the visibility condition is not suited for image registration. Experiment 3 evaluates the
three qualitative measures defined and their combination for image registration. In
most cases it is possible to detect whether the image is suitable for image registration.
Furthermore, as the visibility condition is of great influence on the construction of
the panorama image, this visibility should be communicated to the surgical team
such that they can adjust the visibility at certain points on the panorama.

5.5.1 Conclusion

The aim of this chapter is to improve the panorama reconstruction process for in-
vivo fetoscopic imaging based on the four recommended points of improvement as
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described in Chapter 3. First, the keypoint detection method is replaced by an exten-
sion of the SSD method to detect stable regions defined on the veins on the placenta.
Second, SSD is extended with the method of Chapter 4 to extract matchable fea-
tures. Next, the panorama reconstruction process was improved, by detecting the
complicating visibility conditions for the image registration and discarding improp-
erly matched image pairs. Furthermore, a measure of the visibility condition was
extracted such that it can be fed back to the surgical team. In this way, fetoscopic
images of higher matchability might be obtained by a retry of the surgical team.

The above improvements now achieve a more reliable and accurate sensing and
enables panorama reconstruction for in-vivo fetoscopic images. Furthermore, for the
task of TTTS laser coagulation, the surgeon is provided with information about the
quality of the image data and the reconstruction performance. In this way the surgeon
can obtain an overview of the placenta which provides more relevant information and
enables him to perform the surgery better.

5.6 Detailed Results

The next two pages show detailed results for the experiments and are compared with
results from chapter 4.
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Table 5.3: Experiment 1: keypoints / regions detected
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Table 5.4: Experiment 2: Matches found for transform with LMeDS or * RANSAC
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Part Il

Road User Perception In
Automated Driving

The field of Automated Driving focuses on developing methods and ap-
plications that can support the driver in driving a car and ultimately
completely taking over the role of the driver. This goal requires many
solutions to challenges in various aspects of the driving task as is de-
tailed in Chapter 6. The goal of this thesis is to illustrate that through
correct understanding of the task deep learning algorithms can be ap-
plied more effectively and used to resolve most tasks. To illustrate this,
Chapter 6 analyses the driving task and shows that road user percep-
tion can benefit from effective application of deep learning methods to
obtain an understanding of the current and future state of the dynamic
environment in which automated driving systems drive. In Chapter 7 the
advantages of radars, which can detect and localize objects efficiently
are combined with the advantages of camera’s, which contain the data
to effectively classify these objects. A neural network combines the data
from these sensors and uses similarity learning to combine learning by
doing and trial and error learning approaches to effectively detect road
users in real-time on a real automated vehicle. In Chapter 8 a linguis-
tic sequence-to-sequence Recurrent Neural Network (RNN) is used to
model the motion of road users in relation to the road and predict their
future trajectories. This work shows that by formatting the data differ-
ently, the task can be learned much more effectively. In Chapter 9 the
previous work is extended by making the RNN encode the data such that
no reformatting of the data is needed to relate the state of the road user
to the road structure. Furthermore, this RNN is combined with social
pooling to model the interaction between road users to more accurately
and reliably predict the future trajectories of road users.

71






Road User Perception in
Automated Driving

Abstract

Advanced Drive Assistance Systems (ADAS) aim to support the driver
in the driving task, and ultimately achieve Automated Driving where the
system completely takes over the driving task. Road user perception is
one of the major components to achieve this goal. This task consists
of recognizing, tracking and predicting the future motion of the other
participants in traffic. In this chapter road user perception is described
in more detail and explained how deep learning methods can improve the
performance in this task.
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6.1 Introduction

According to the World Health Organization a saturated number of approximately
1.35 million people die each year in traffic accidents and many more are injured. Traf-
fic accidents claim more lives than most diseases, and is the lead cause of deaths
among young people aged 15-29 [140]. This is the main cause for the UN to adopt
the goal to reduce the amount of lethal accidents with 50% by 2030 in their "2030
Agenda for Sustainable Development" [3]. This goal is adopted by many other or-
ganizations and fuels the development of many safety-enhancing technologies. Ac-
cording to a recent report [133] 65%, and even possibly up to 92.6%, of these fatal
traffic accidents can be attributed to human error.

Therefore, research is focused on supporting the driver in the driving task in the
form of Advanced Driver Assistance Systems (ADAS). Systems such as Night Vision
System, Adaptive Front Lights and Surround View Cameras enhance the perception
of the human driver, such that accidents caused by oversight are reduced. More
advanced systems perceive and take (partial) control of the vehicle; Adaptive Cruise
Control (ACC) adapts the speed of the vehicle to the preceding vehicle, Lane-keeping
Assist steers the vehicle to stay within the current driving lane and Automated Emer-
gency Braking (AEB) brakes automatically if there is a high possibility of collision.
These ADAS systems, control only a small part of the driving task and the driver
still has to do most of the driving. Parking Assist is the only system widely spread
system that completely takes over a driving task, though only a very simple task.
The challenge of these ADAS systems is that the driver can depend too much on
these systems or lose focus on the driving task due to over simplification of the task.
Therefore, much research is aimed at removing the driver completely from controlling
the vehicle, creating automated or fully autonomous vehicles.

Safety is not the only motivation to develop autonomous vehicles. Everyday millions
of people commute to work by car and spend a lot of time in the car. This commute
is often increased by traffic jams, resulting in the metropolitan areas of the United
States a delay about 54 hours per year [51]. Using the commute time more effectively
would give up to one day of free time per week. Furthermore, autonomous vehicles
could mobilize individuals that are unable to drive by themselves such as youngsters
and elderly. But also make public transport more readily available and affordable.
The latter could also have a beneficial effect on the traffic congestion by sharing
rides.
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6.1.1 Automated Vehicles

Development of autonomous vehicles is motivated by the increased safety they can
provide, more efficient use of personal time and improved mobility. However, the
form of autonomy and its area of application can vary. Therefore, the Society of
Automotive Engineers (SAE) has developed a taxonomy for levels of automation [4]
as detailed in Figure 6.1.

E SAE J3016™LEVELS OF DRIVING AUTOMATION

SE SE SE
LEVEL3 J LEVEL4 J LEVELS

SE SE SE
LEVELO § LEVEL1 J LEVEL 2

You are driving whenever these driver support features You are not driving when these automated driving
are engaged - even if your feet are off the pedals and features are engaged - even if you are seated in
Whh;rtn:r“’?: E:: you are not steering “the driver’s seat"
driver’s seat . o
have to do? You must constantly supervise these support features; When the feature These_ automateq driving features
you must steer, brake or accelerate as needed to requests, will not require you to take
maintain safety you must drive over driving
These are driver support features These are automated driving features
These features These features These features These features can drive the vehicle This feature
are limited provide provide under limited conditions and will can drive the
to providing steering steering not operate unless all required vehicle under
wrf‘:;ti?etshszs warnings and OR brake/ AND brake/ conditions are met all conditions
' momentary acceleration acceleration
assistance support to support to
the driver the driver
+automatic «lane centering +lane centering » traffic jam »local driverless W +same as
emergency OR AND chauffeur taxi level 4,
braking but feature
Example - « adaptive cruise W +adaptive cruise -peda!s/ can drive
[yl ° blind spot control control at the steering everywhere

wheel may or
may not be
installed

warning

inall
conditions

same time

+lane departure
warning

Figure 6.1: The J3016 SAE levels of automation [4]

The previously described ADAS systems can be categorized as SAE levels 1 and
2. In these cases the driver still has some part in the driving task. For levels 3
and above another categorization can be made. One part of automated vehicles
focus on automating highway driving, mainly car manufactures focus on this type of
automation, since automating the commute to work is a strong motivation for their
customer base. The second group of automated vehicles focus on urban automated
driving. This can come in the form of self-driving taxis as developed by companies
such as Waymo, Cruise, Uber etc. that will be able to drive anywhere in a large area
such as a city. Another form of urban automation comes from (small) self-driving
shuttles, that aims to automate public transport on limited routes. In this work, the
focus will be on the latter form of urban automation.
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These automated vehicles will be able to drive pre-defined routes and perform all
aspects of the driving task. This requires a complete set of functionality containing
localization, path planning, motion control, object perception and many more. A
few of these will be highlighted in order to provide a basic understanding of what is
required for an autonomous vehicle.

Localization is the process of finding the position of the ego-vehicle in the environ-
ment. This can be done absolute, with for example a gps sensor, describing the
position in a global coordinate system. Relative localization describes the position
relative the road or lane the vehicle is driving on, by for example lidar map or in-lane
localization. And differential localization is describing the current position relative
to the previous time step, with for example an imu, odometry or visual odometry.
All have the goal to describe the state of the ego-vehicle such that the automated
driving systems can make decisions on its next actions.

Road user perception is the process of observing the ego-vehicles environment such
that other traffic participants are taken into account. Many different type of sensors
are used in literature. A camera is generally used to classify the type of object that
is perceived. A lidar and radar are used to localize and detect objects. Or a fused
approach of these sensors can be used. More details on road user perception is given
in the next section.

Path planning and motion control are the steps of planning and executing a driving
motion in its environment. This first requires localization to know where the ego-
vehicle is and an understanding of the road infrastructure such that the ego-vehicle
is driving in the right position. Also the path planning needs to know what other
traffic participants are doing such that in accordance with the traffic rules driving
actions can be made.

6.1.2 Challenges of Automated Vehicles

The development of autonomous vehicles is facing many complex challenges of which
a few are highlighted;

e All aspects of the driving task have to be precise and reliable. For example
localization has to be accurate to a certain degree, for example less than 10
cm otherwise there is a high chance of colliding with something while driving.

e Understanding the infrastructure that is driven in, meaning knowing where the
road is and what the static traffic rules are, such as priority lanes and traffic
lights.
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e Understanding the intention of other traffic participants. Knowing where other
road users are is not sufficient, the vehicle needs to know what the future
actions of these road users will be.

e The vehicle needs to drive safely and avoid collisions at all time. Making the
right decisions in the driving task is quite complex and even humans make
mistakes. Furthermore, sometimes these goals can be in conflict with each
other.

Part of this thesis focusses on the last challenges by analysing the road user percep-
tion task and how to effectively apply deep learning methods to solve these challenges.

6.2 Road User Perception in Automated Driving

The complete task of driving a vehicle is complex and consists of many different tasks
that are only used in specific situations, such as parking a car, changing a lane etc.
In this thesis only the tasks involving road user perception are considered. Generally
these tasks can be described in the Sense-Think-Act paradigm as shown in Figure 6.2.
Here road user perception is considered the main sensing step providing the path
planning thinking step with sufficient information about the (future) states of the
dynamic environment such that a safe path can be obtained, which is subsequently
executed.

Road user perception has as its goal to perceive and understand the intention of other
traffic participants. Some distinctions can be made with the term object detection
as is often used in literature. Object recognition has as the goal of classifying the
type of object (object classification) and obtaining its location (object detection).
In autonomous driving one is mostly only interested in the traffic participants. This
includes pedestrians, cyclists and all type of vehicles moving on or close to the road,
but also unclassified objects present on the road driven on. This means that im-
movable objects that are next to the road and thus not participating in traffic are
considered irrelevant. Therefore, the term road user recognition is the detection and
classification of the relevant objects defined as the objects that are participating in

Sense Think Act
Road User }—) Path Planning ——®{ Vehicle control
Perception

Figure 6.2: Description of driving tasks involving road user perception

7



78

| Chapter 6

traffic, road users. Subsequently, road user perception consists of road user recogni-
tion followed by tracking of the state of this road user over time and prediction of its
intentions. These three components of road user perception are illustrated according
the Sense-Think-Act paradigm in Figure 6.3.

The application of deep learning has already found its way into road user perception
in recent years [22, 23, 24, 63]. Therefore, the following sections will detail the
challenges of the steps of road user perception and the application of deep learning
to solve them.

6.2.1 Road User Recognition

Road user recognition is the first subtask of the road user perception task as shown
in Figure 6.3. The road user recognition and other subtasks have been detailed
according to the Sense-Think-Act paradigm in Figure 6.4 where the top row describes
road user recognition. The object detection step perceives the environment and
extracts the location, a description of the object and optionally additional information
such as size or motion information. The thinking step is object classification that
uses the object description to determine the object class and finally only the relevant
objects, defined as road users, are kept in the act step. In the next paragraphs more
is detailed about the object detection and classification steps and the application of
deep learning to solve them.

Road user recognition is the process to find all (relevant) road users in the ego-
vehicles environment and obtain the position, orientation, size and type of object.
Traditionally object recognition is done with computer vision algorithms on images
obtained by cameras as they are readily available and easy to use. Furthermore, image
based object recognition is a large field of research and is not limited to road user
recognition. Advances in deep learning aimed at object recognition, such as RCNN
based neural network architectures like FasterRCNN [100], SSD [74] and YOLO [98]
pushed the performance much further. However, the performance increase in road
user recognition lagged behind [22, 23, 30].

To obtain sufficient performance for the driving task, the road user recognition task
was analysed. A few observations could be made; First, the distance to the objects
Sense Think Act
Road User Road L_.Iser » Hoad_ U_ser
Recognition Tracking Prediction

Figure 6.3: Description of the road user perception tasks
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varied between a few meters to more than 50 meters. Which results in a large
variation in visual size, which is not encountered in other fields of object recognition.
Second, the visual difference between relevant objects and the background is limited,
for example a car can pass in front of another car resulting in similar visual appearance
of a relevant object and background. Also, the visual appearance of the relevant
objects varies largely and is generally not sufficiently described in datasets. Lastly,
for the driving task the 3D position of a road user is desired, though images cannot
accurately describe the distance to an object. Therefore, in road user recognition
other type of sensors are considered. Below a short overview of the main type of
sensors used in automated vehicles is given:

e Cameras are very cheap and easy to use. They contain data similar to the hu-
man vision system. This allows an algorithm to extract information on the type
of object and with some accuracy the position and orientation [22, 23]. The
downside of camera’s is that they are similar to human eyes, and thus greatly
impacted by adverse weather conditions such as low standing sun, darkness,
rain, snow etc. Furthermore, camera’s are not the best sensor for detecting
the position and orientation.

e Lidars are often used on automated vehicles, initially for localization. As these
sensors provide ranging data, mostly all around the vehicle, it can effectively
be used to detect objects. Since, most lidars have a much lower resolution
compared to camera’s, they lack the details to reliably classify the type of
object especially at a larger distances.

e Radars are often used on production vehicles in Adaptive Cruise Control and
Automated Emergency Braking systems, because they are much cheaper than
lidars and have a very high precision in detecting objects and their relative posi-
tion. In more modern radars, currently entering the market it is also possible to
classify the type of object, although this is challenging as radars work with the
approach to classify objects based on their relative motion profiles. Therefore,
bikes or pedestrians standing still, cannot be classified as such.

These different type of sensors each have their advantages and disadvantages, thus
combining these in an efficient way would beneficial. In more recent years with the rise
of lidar and radar technologies, detection technologies started to include these as well
[24, 63, 70, 71, 93]. This and the application of deep learning resulted in near human
like performance on some datasets. However, various challenges remain such as the
applicability in automated vehicles, that requires a short processing time with limited
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Sense Think Act
Object Detection Object Classification ——»  oad User
Filtering
Road User . Road User
3 — —
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L3 Road User Road User 3 Trajectory
Motion Encoding Interaction Prediction
Road Geometry
Encoding

Figure 6.4: Description of the road user perception subtasks

processing power as well as the other steps in the object perception process. To
improve the applicability of these methods in automated vehicles Chapter 7 uses radar
information to reliably detect objects and uses a deep learned network to efficiently
classify these objects as relevant road users.

6.2.2 Road User Tracking

The road user recognition step as described in the previous section, uses data from
a single time instance. The goal of road user tracking is to combine the information
from multiple time instances to obtain information such as speed and acceleration.
On the second row of Figure 6.4 this is described in the Sense-Think-Act paradigm.
First, the information describing the state of the road user is extracted. This can be
done from different sources, For example, camera object detections combined with
lidar object detections each providing part of the state. Next, the motion of these
objects is modelled and finally the motion state is obtained. The specific methods to
do road user tracking are not detailed as deep learning has found sufficient application
and are not relevant for the discussed topics of this thesis.

6.2.3 Road User Prediction

Road user prediction is the last step of the road user perception process with the
goal to obtain the intentions of the road users such that the automated vehicle can
take these intentions into account when planning its own actions. The field of road
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user prediction for a long time was directly related to that of road user tracking, as
in both steps, a motion model was created of past motion states of the road user as
shown in Figure 6.4 with the motion modelling and motion encoding steps. In these
methods the motion model was used to create a trajectory by predicting future states
[109]. However, as the previous motion is only partly indicative of the intention and
the resulting future actions, other indications should be included.

To improve the road user prediction task an analysis was made to the factors that
influence the decisions made by a human driver in planning their driving actions.
These actions are influenced by various indicators such as the (motion) state of the
ego-vehicle, road geometry, road infrastructure (traffic lights, signs etc.) and other
road users [66, 95]. These indicators can be categorized into manoeuvre-aware
and interaction-aware methods according to [66]. Manoeuvre-aware methods are
dependent on the intended manoeuvre of the road user, often based on prototypical
manoeuvres combined with a motion model [7, 80]. Interaction-aware methods are
generally based on dynamic Bayesian networks that model the interaction between
road users and can initiate interactive manoeuvres such as a lane change, overtaking
[130] and car following [73].

The introduction of deep learning methods opens certain possibilities to more ef-
fectively incorporate the various indicators of the road users intentions in order to
obtain more accurate future trajectories. Chapter 8 focusses on incorporating the
road geometry information more effectively as prototypical manoeuvres have limited
flexibility and through deep learning this can be made more widely applicable. Fol-
lowing the reasoning from [66] in Chapter 9 a deep learning architecture is used to
incorporate both indicator categories such that road and interaction aware trajectory
prediction can be achieved.
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Adopted from:

Road User Detection on the Autonomous Shuttle WEpod, Machine Vision Applica-
tions (MVA), 2017 Fifteenth IAPR International Conference on, pp. 101-104.

Abstract

Over a million fatal accidents occur every year with road vehicles. Road
user detection for Advanced Driver Assistance Systems and Autonomous
Vehicles could significantly reduce the number of accidents. Despite the
research focus on road user detection and such systems, there is a sur-
prising lack of research in real-world applications. In this work, radar and
camera data are combined on an autonomous shuttle called ‘WEpod',
driving on the public road in Wageningen, The Netherlands. With exper-
iments we show that our method reduces the candidate region margin to
0.2m and reduces the miss rate significantly. Furthermore, our specifi-
cally trained Convolutional Neural Network improves the performance by
1.4% over vision-based road user detection, and combined with radars
we improve by 7.6%. Finally, with our approach we show a performance
of 95.1% on the WEpod while driving on the public road.
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7.1 Introduction

In the previous chapter reliable recognition of road users was pointed out as one of
the main challenges for autonomous vehicles. The challenging aspect of road user
recognition is that no object can be missed, because this can have fatal consequences.
However only objects that are relevant; road users, should be detected as well as the
number of false detections should be limited, as the vehicle should not react to
non-existent objects, resulting in unexpected and dangerous behaviour.

In existing methods that only use visual input often false detections are caused by
visual appearances in the background or objects at different scales. Therefore, this
chapter combines the strong points of a radar sensor, detecting objects and a cam-
era, providing the visual information to classify said object.

To achieve this, first a region proposal method is proposed, that projects the radar
detection to an area in the image that is to real world scale of the object. Further-
more, by also incorporating the roll and pitch motion of the vehicle this method is
much more accurate compared to other region proposal methods [41].

Next, these proposed regions are then classified using a convolution neural network.
Furthermore, Contrastive Loss is used to improve the classification performance of
the neural network, such that detections that are irrelevant can be classified as such.
Lastly, a convolutional layer is used instead of a fully connected layer to classify spe-
cific areas within the region of interest such that a more accurate position of the
object can be determined.

This chapter is organized as follows. First, Section 7.1.1 gives a short descrip-
tion on related work of fusion-based detection and classification using Convolutional
Neural Networks. Section 7.2 gives background on our approach, followed by the
experiments in Section 7.3. The results are discussed and a conclusion is given in
Section 7.4.1.

7.1.1 Related work

Detection can generally be split in two parts; first, detecting candidate regions of in-
terest and second, classifying these as relevant or irrelevant. In general, two different
sensors are used in fusion-based detection. Laser scanners / Lidars are often used
for road user detection, however, they depend on light and are obstructed by fog and
rain, making them unreliable in many real-world situations. [81, 91, 92, 107].

Radars detect objects with lower frequency electromagnetic wave reflections and
are not much influenced by weather conditions. Literature has shown that smaller
objects, such as pedestrians and bicyclists, can also be detected [10, 142] and hence



Radar Detection and Camera Classification |

using radars is a common choice in real-world applications, although they are seldom
combined with visual data [56, 79].

Since all road users are visually distinguishable, a camera is generally well suited for
classification. However, an abstraction from raw pixel data into classes is needed,
which is generally described as a vector of probabilities for each of the classes.

ConvNets are the state-of-the-art method to classify multi-class visual problems [42].
Multiple convolutional, pooling and rectification layers are combined, so that the vi-
sual input is abstracted into lower dimensional data. This data describes the differ-
ences and unique visual components of each class. Multiple fully connected layers
classify this data into probabilities for each of the classes [42].

These ConvNets have to be trained; thus many images with known classifications
are fed into the network and a loss layer provides feedback of the performance to the
network [42]. This approach puts an emphasis on learning a general visual description
of the class. However, in road-user detection, the difference between a relevant and
non-relevant detection also needs to be learned. A Siamese network with contrastive
loss is an approach to learn this difference [45] and has shown better results than
the traditional class-based training [128]. Therefore, we apply this approach in our
system.

7.2 Road User Detection Method

For our fusion-based road user detection method we combine radar detections with
classification of visual data. Other work [56, 79] reported similar approaches, how-
ever, we improved two aspects of their approach. Firstly, the dynamic candidate
regions method fuses radar and image data more accurately. Secondly, the con-
trastive loss function used in training our ConvNet improves the precision and recall
of the classification. In the next two sections we give a detailed description of these
two aspects.

7.2.1 Dynamic Candidate Region

In our approach the radar detections are transformed into the camera image as
regions of interests, which are then fed into a classifier. A dynamic projection of
the detection location to the image plane combined with the detection distance and
camera calibration allow us to generate candidate regions of interest at real-world
scale in real-time. The method is detailed in the next paragraphs.

Detections in the radar plane are provided by the radar in the form of distance and
angle (d,, 6,). Assuming that all objects are standing on the ground, they can be
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transformed into the vehicle coordinate system. This is detailed in Equation 7.1,
with the sensor location (x,,y,) and orientation (a,) with respect to the vehicle
(XW1 YWI ZW)

Xw cosoa, —sSino, Xy d, x cos 9,
Yy | = |sina, cosa, V|- |d xsin0, (7.1)
Zy 0 0 0 1

In contrast to the work of Milch and Behrens [79] and Premebida and Nunes [92],
we do not consider the road to be flat. Therefore, we incorporate the roll (3) and
pitch () of the vehicle, measured by the vehicle's inertia measurement unit. These
values are obtained from the gravitational direction and the angles are defined to the
horizontal coordinate system and hence they are not Euler angles, which can be seen
from the rotation matrix in Equation 7.2.

Xep cos 7y 0 —sinvy X
Yool =] O cos 3 sin3 | Y (7.2)
Zep siny —sin3 cosf % cos y Zy

As the detections are rotated with the vehicle's motion, they can be transformed to
the camera coordinate system (X, Yz, Zc). This is described in Equation 7.3, with
the camera position (xc, yc, zc) and orientation (a.). These coordinates can be fur-
ther projected to image coordinates (u, v), e.g. with the OpenCV [53] projectPoints
function, also taking lens distortion into account.

. X
Z. cosae —sinoe 0 —xc er
—Xc| = |sinae  cosac. 0 —y, er (7.3)
~Y. 0 0 1 —z 1”’

As the distance to the detection is available and ConvNets need a fixed sized input,
every candidate region can be created in acordance with its real-world size. To allow
pedestrians, cyclists and cars with a maximum height of 2 m to fit, crops of 2.4 x 2.4
m are created with a 0.2 m margin to compensate for variations. This margin is
chosen based on the results of experiment 1 (Section 7.3.1). However, this is not
wide enough for vehicles seen from the side. Fortunately, the radar also provides a
width measure of the detection so additional crops to both sides can be created.

7.2.2 Classification

Convolutional Neural Networks (ConvNet) have been highly effective in image de-
tection and classification and found their way to fusion-based pedestrian detection
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Figure 7.1: Our neural network architecture

[107]. ConvNets learn a representation of the input images with different levels of
abstraction. In contrast to the general approach to increase the network’s size and
complexity to improve the classification performance, we are bound by the available
processing capacity. All candidate regions have to be classified within a 66 ms cycle
time. In the following paragraphs, we describe our approach.

Neural Networks learn a lower dimensional representation of the input data through
various convolutional and rectification layers. These are followed by fully connected
layers that can learn the relation between the more abstract representation and the
desired label output. Our approach is similar to this and is shown in Figure 7.1,
where 64f stands for 64 filters, 6 x 6 px for the filter size and 2s for a step of 2 px.

The real-world size of the different road-users differ, a pedestrian is about 1 x 2 m,
while a car is about 2 x 1.5 m seen from behind up to 6 x 1.5 m seen from the
side. However, all these types have to be recognized from a 2.4 x 2.4m crop, thus
unrelated information is also present in each input. Therefore, the output is not a
single prediction for each class, but rather a grid of 8 x 8 predictions. Each grid cell
represents an area of 1 x 1 m and can be used to extract the smallest area in which
a road-user might be present or not. Since fully connected layers cannot give such
an output, this layer is replaced by a convolutional layer, which has a filter size of
1 x 1, creating a convolutional fully connected layer.

The general approach is to learn an abstraction toward the class label with softmax.
However, two visually similar classes, such as a pedestrian and bicyclist, will often be
classified wrongly. The underlying cause can be explained by visualizing the output
of the last convolutional layer with t-sne. The outputs of pedestrians and bicyclists
overlap as displayed in Figure 7.2. The contrastive loss method is used to increase
the separation between these classes and reduce the difference between two similar
inputs [45].

Our learning approach is to first train the network normally to obtain basic abstrac-
tion. Next, we obtain a set of pairs that have similar abstraction but belong to
different classes as well as pairs that belong to the same class but have different ab-
stractions. Except for the convolutional fully connected layer, the network is trained
with contrastive loss.
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Figure 7.2: Class separation with t-sne

7.3 Experiments

The goal of this chapter is to show road user detection in a real-world application.
For this we use the autonomous shuttle WEpod which is driving on the public road
of the Wageningen University’s campus in the Netherlands. In this paper we use the
three front camera-radar pairs of the nine pairs around the vehicle.

In the sections below we report experiments to evaluate our method. However, we
also use the KITTI dataset to have a comparable benchmark [36].

7.3.1 Experiment 1 - Dynamic Candidate Regions

The dynamic projection as described in Section 7.2.1, should make the candidate
regions more accurate, since we do not assume the road to be flat. To evaluate this,
three different types of road sections on the WEpods route are chosen: a straight
road, a curve and a speed bump. Three recordings of 20 seconds are taken for the
flat and curved road types, while for the speed bumps only 2-3 seconds could be
taken as bumps are short.

The horizon is manually annotated in each frame. For the static projection method,
the roll and pitch values are set to zero. The pitch accuracy is calculated from the
vertical pixel distance in the center, and the roll accuracy from the angle difference
between the annotated and projected horizon. Table 7.1 details the accuracy and
variation for both projection methods of the roll and pitch in each type of road
section.

Furthermore, a margin is calculated from the roll and pitch variations, so that a
detection of 2 x 2 m would fit in the candidate region. The first value represents
a 20 variation on a detection (d,,8,) at 10 m distance and 28deg angle, and the
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Table 7.1: Comparison of traditional static and our proposed dynamic candidate regions method

Road Straight Curve Bumps
Static

Roll [deg] 1.64 +£0.34 | 1.00 +0.43 | 1.68 +0.67
Pitch [px] 4.2 +1.3 2.0+1.3 | 9.6 £10.6
Margin [m] 0.30-0.75 0.23-0.57 | 0.65-1.62
Dynamic

Roll [deg] 0.27 +0.18 | 0.17 +0.18 0.12+0.12
Pitch [px] 1.1 40.7 0.9 £0.7 1.3+1.4
Margin [m] | 0.09-0.22 | 0.07-0.17 | 0.08-0.21

second at 25 m and 28 deg. From these results, a margin of 0.2 m is chosen for the

candidate regions, resulting in a crop size of 2.4 x 2.4 m.

7.3.2 Experiment 2 - Learning

To compare the classification performance of our contrastive loss training with con-
ventional learning, a training set of images of fully visible pedestrians, bicyclists and

cars at a maximum distance of 25 m was created from the KITTI| database.

For

Exp 2: Comparison of vison-based detection

0.98

0.96

0.94}F

precision
[=]
o

SoftMax: 87.4%
CL: 88.6%

0.2

0.4

0.6
recall

0.8 1

Figure 7.3: Results: Vision-based performance
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Exp 3: Comparison of fusion-based detection
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Figure 7.4: Results: Fusion-based performance

evaluation, a sliding projected window approach creates image crops at different dis-
tances from the test images. Figure 7.3 details the recall and precision of the the
different methods. Figure 7.2 shows the separation of the different classes from the
fourth convolutional layer outputs.

7.3.3 Experiment 3 - Radar Fusion

Fusing image classification with radar candidate regions should improve the recall
performance. The positive evaluation set is created as 2.4 x 2.4 m candidate regions
from the 3D position of the ground truth and the camera calibration from the KITT]
database. A total of 9 crops is created for each true detection, by adding random
variation of max 0.3m in x and y direction to simulate the radar detection inaccuracy
and the proposal accuracy. The negative evaluation set is created from random
projected candidate regions. Detections are considered correct if the Intersection
over Union (loU) > 0.5. The same networks as were used in experiment 2 are
evaluated, and also per type of road user. The results in Figure 7.4 show that
fusion-based detection improves vision-based detection.

7.3.4 Experiment 4 - Real-world Application

While driving on the campus, recordings from the front three sensor pairs were
obtained. In total, 423 pedestrians, 864 bicyclists and 1329 cars were manually
annotated. The radar detections were used to generate dynamic candidate regions
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Exp 4: Road user detection on WEpod
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Figure 7.5: Results: Real-world performance

which were classified with our ConvNet. We distinguished between relevant and
non-relevant classification (CL-R/NR) and classification as the correct type of road
user (CL-RU). Furthermore, we combined the detection over three successive images
and accepted the classification if two are the same (CL-3). The results are shown
in Figure 7.5.

7.4 Discussion

With experiment 1 we showed that the road cannot assumed to be flat. On a flat
road, the candidate region would have an offset up to 0.75 m, missing half of most
road users. Moreover, in the case of speed bumps, the candidate region would miss
a whole car or most of pedestrians and bicyclists, thus increasing the miss rate. With
our dynamic candidate regions method, the offset is reduced to 0.2 m and added as
a margin to the candidate region. We reduced processing time by having smaller and
more effective candidate regions.

Our ConvNet with contrastive loss improved the performance with 1.4% over the
conventional approach, as shown in experiment 2. Experiment 3 combined the dy-
namic candidate regions with our ConvNet which increased the performance with
7.6%.
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The road user detection was benchmarked on an existing dataset, but in future we will
present our own dataset based on the WEpod recordings also containing more road
user types. Moreover, it will contain more data and different variations compared to
other datasets. With more data we expect the performance gap to be closed even
further.

Experiment 4 showed that we obtained a performance of 91.9% on road user de-
tection for our WEpod vehicle driving on the public road. This performance is still
below the human benchmark of 99% precision and 99.5% recall for a single image.
However, by combining the classification of three successive images the performance
is increased to 95.1%. Furthermore, we are much closer to the human benchmark
and hence the WEpod can drive safely on the public road.

7.4.1 Conclusion

This chapter has shown successful application of road user detection with radar and
camera sensors on an autonomous shuttle driving on the public road. This has shown
that through fusing sensors the advantages of each type of sensor can efficiently used
to create road user detection methods. With significant advances in the state-of-the-
art research, such as FasterRCNN and Single Shot Detection in road user detection,
the focus of this part of the thesis shifted to road user prediction research in the
next chapters.
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Abstract

As described in Chapter 6, safe and comfortable path planning in a
dynamic urban environment is essential for autonomous driving. This
requires the future trajectories of all other road users in the environ-
ment of the vehicle. These trajectories are predicted through modelling
the motion and behaviour of these road users. For efficient trajectory
prediction only motion indicators are not sufficient. Therefore, in this
chapter a novel motion modelling and trajectory prediction is introduced.
This model uses a sequence-to-sequence RNN in a curvilinear coordinate
system with curvature. With experiments it is shown that performance
of road user trajectory prediction benefits from this approach of trans-
forming the motion data into a different coordinate system.
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8.1 Introduction

A key aspect in autonomous driving is path planning through a dynamic environment.
This environment, such as urban roads, also contain other human driven vehicles.
For safe and comfortable driving, it is essential for an autonomous vehicle to ensure
timely detection of possible collisions, while avoiding false collision warnings.

Such path planning can be done by considering the future trajectories of the vehicles
driving in the vicinity of an autonomous vehicle. The trajectories of these vehicles are
unknown and need to be estimated. Human drivers do this intuitively by considering
various indicators such as past motion, road structure, turn or braking lights etc.
These indicators can also be obtained by the autonomous vehicle and should be
considered in the prediction of the future trajectory. However, in the state-of-the-
art methods for trajectory prediction, mostly only the past motion is considered in
prediction. In a few methods these indicators are used to estimate the intention of
the road user and adjust the model for trajectory prediction accordingly.

Therefore, our aim in this chapter is to integrate such indicators in the process of tra-
jectory prediction itself. First, Section 8.2 discusses the state of the art methods on
indicators and modelling required for trajectory prediction. Next, a novel method on
the infrastructure indicators is introduced in Section 8.3. Furthermore, the adapta-
tion of the sequence-to-sequence RNN for trajectory prediction is detailed. Through
experiments in Section 8.4 the applicability of these methods are evaluated for an
autonomous vehicle. Finally, the results are discussed and a conclusion is given in
Section 8.5.

8.2 Related Work

To predict the future trajectory of other road users, generally a model is created
from the available relevant past information. Therefore, this section first discusses
various methods to model the state of the object. Second, the relevant data required
for the model is discussed.

8.2.1 Modelling

Modelling the state of a road user from continuous information is generally referred
to as tracking. An extensive amount of research exists on this topic. Motion models
are essential to the task of tracking [13] and trajectory prediction [108]. This section
first discusses work on tracking methods and next how these can be used to predict
the trajectory of objects.
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Modelling the motion of other road users often uses multiple noisy and partial obser-
vations of the latent state. By expressing the motion as a linear transformation with
added Gaussian noise, this can be modelled as a linear dynamic system. A Kalman
Filter (KF) [13] or extensions such as an extended KF (EKF) [108] or Unscented KF
(UKF) [129] can be used to model these linear dynamic systems.

Generally, the motion observed from road users can be modelled with a linear dynamic
system, though not with only a single model. A pedestrian walking along the road
has a constant speed and therefore the model assumes the acceleration to have no
effect (Constant Speed model). However a pedestrian standing still has no speed,
thus the model would require a different linear representation where the speed also
has no effect (Constant Position model). Therefore, a tracking method that can
model different behaviour of road users should contain different types of models and
switch between them [13, 108].

Such a change in motion is often instantiated by the intention of the road user or
other environmental causes. However, these are difficult to directly observe. One
approach is to switch between models by fitting all models and determining the best
fit or mixture of models such as in IMMs [13]. Another approach is by estimating the
intention or modelling the switching directly by Bayesian filters [108]. This allows
tracking and motion modelling of objects with changing behaviours.

Three types of methods for trajectory prediction are described in [66]; A Physics
method is solely based on motion properties such as one of the motion models
described above. The Manoeuvre method predicts a trajectory using a motion model
selected by the intention of the object. The Interaction method also includes the
influence of other road users.

For manoeuvre methods the intention and the resulting behaviour are estimated,
such as following road or changing lane [38, 55, 66]. Each of these manoeuvres
have a corresponding motion model that can be used to predict the trajectory of
the object. However, an alternative model can only be selected with additional
information indicating a different intention.

Many manoeuvres include another road user such as following vehicle or overtaking
vehicle. Therefore, [66] described the interaction method as one of the trajectory
prediction methods. This interaction allows to select different motion models based
on the interaction. For example the speed of the preceding vehicle limits the speed
of the tracked vehicle. However, the speed of this vehicle is unknown for future
moments in time. Thus the current speed of the vehicle is generally used for trajectory
prediction and any change in speed of the preceding vehicle is not incorporated.
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Therefore, solely switching of a motion model is not sufficient to incorporate inten-
tion and interaction of vehicles. We state that inputs which influence the motion
model should be directly incorporated into the model. In the example of following a
preceding vehicle, the speed of the preceding vehicle should be incorporated into the
linear dynamics of the motion model. However, modelling external influence as part
of the linear dynamic systems is in many cases very difficult or impractical.

Furthermore, consider a vehicle simply following the road. With a constant velocity
motion model the predicted trajectory is a straight line. While for a constant turning
rate or acceleration model the trajectory is making a curve (Figure 8.1). However,
the vehicle is not only driving in a straight line or only making a (single) turn. The
road consists of various straight and curved parts, and thus influencing the vehicles
direction and limiting the position. Therefore, we argue that all variations in a
vehicles motion are caused by interaction with various aspects of the environment.
Fortunately, the environment contains indicators that shows how the environment is
influencing the motion. These indicators will be discussed in the next section.

8.2.2 Indicators

In this section we discuss different types of information that can indicate how the
future trajectory of an object is influenced. Therefore, we categorize this data into
different type of indicators:

e motion indicators describe the kinematics of the vehicle, directly used in motion
models

e object indicators is information displayed by the object.
e infrastructure indicators is how the road, traffic signs etc. influence the object.

e interaction indicators is how objects influence each other.

The most used and important indicator is that of motion information. This informa-
tion is described by position, velocity etc. at multiple instances and form the past
trajectory of the vehicle. This trajectory is the direct result of the intention of the
object. Therefore, it is used by many motion model methods to extract the intention
of the object. In turn the intention can be used to select a corresponding motion
model that can be used to predict the future trajectory [35, 121].

However, a change in motion is generally the result of a change in manoeuvre. In
most cases, knowledge about an intended change of manoeuvre is preferred before it
is being executed. Humans can predict a change in manoeuvre quite easily, because
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Figure 8.1: Trajectory Prediction using motion model

they also use many other indicators. Therefore, current research is focussed at
including other information in the intention extraction [29, 60, 61, 88] .

As described before objects influence each other. For example when entering the
highway [29] or following another vehicle [66]. A vehicle changes its trajectory based
on the interaction with the other object. A vehicle on the highway may slow down or
accelerate to create space to allow another vehicle to enter the highway. The vehicle
that wants to enter the highway will adjust its trajectory accordingly.

To support this interaction between objects, many road users indicate their intention
before hand to others. For example a vehicle intending to change the lane is by law
required to use the turn indicator light before hand. Also pedestrians often indicate
their intention, though more indirectly. In [32, 61] the body pose and head orientation
is used to estimate the persons orientation and intention whether the person is going
to cross the road.

Also the structure of the road and other infrastructure components such as traffic
lights and signs influence the trajectory of road users. In [88] the structure of in-
tersections is used to extract the intention of a cyclist and select a corresponding
motion model for trajectory prediction.

Selecting a specific motion model for every intention will require many different
motion models, while they only differ in minor aspects. Therefore, we propose that
the motion model should be extended to integrate the specific differences into the
model, such as the velocity of the preceding vehicle or the curvature of the road.
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Figure 8.2: The Curvilinear Coordinate system, image adopted from [55]

To achieve this we limit current work to predicting the trajectory of cars following
the road. These roads can have various shapes, though have no intersections. Fur-
thermore, we propose a method to effectively include the structure of the road as
an integral part of the modelling and prediction. Also, this approach should be easily
extendable with other type of indicators.

8.3 Method

The contributions of this work consist of three parts; First, describing the motion
information as a function of the road shape in order to integrate the road structure.
Second, extract the curvature of the road for better trajectory prediction in curved
sections. Last, we propose a sequence-to-sequence RNN to model vehicles and
predict their trajectory with multiple indicators.

8.3.1 Curvilinear Coordinate System

In [55] the longitudinal and lateral position as well as velocity of the vehicle with
respect to the road is extracted for intention prediction. To achieve this, a non-
linear coordinate system is defined as a function of the shape of the road. This
section will describe how to obtain this coordinate system and model the motion of
a vehicle as a function of the road shape.

Figure 8.2 shows a curved road section, with [X®, Y] in the Global Cartesian Coor-
dinate System (GCCS) and [X©, Y] in the Curvilinear Coordinate System (CCS).
The road geometry is defined as a piecewise cubic spline as defined in Equation 8.1.
Where X© and Y€ is the position in GCCS, s the parametric variable in the range
of [0...k] and ay, by, ¢, dx, ay, by, ¢,, d, constants of the spline.
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XC =a, %534+ by *5°+ ¢ xS+ dy (8.1)
YO =a,xs3+ b, xs>+ ¢, xs+d,

The position [X€,Y¢] of the vehicle in CCS is defined by the projection of the
position to point ¢, on the s-axis and the lateral distance n, as shown in Figure 8.2.
To find ¢, the function f in Equation 8.2 is minimized with a non-linear optimization.
Where s is the unknown parameter and ay, by, ¢, dx, ay, by, ¢,, d, are the constants
of the spline.

f=(ax*s>+bxs®+c*s+d— X))+
(ay x>+ by x5+, xs+d, —Y°)? (8.2)

Note that s is the parametric variable of the spline and is not the distance along the
spline to point ¢,. To obtain this distance /, Equation 8.3 can be used.

/—/S:Spd/ ds_/s:sp AN CIAT (8.3)
—Jo —Jo ds ds '
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Figure 8.3: Trajectory in GCCS on map and lane
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Figure 8.4: Trajectory in Curvilinear Coordinate System

In contrast to [55] a CCS is defined for each direction of the road, such that the
driving direction is always positive and the curvature of the inner and outer curves
match the road structure. For more details on how the Curvilinear Coordinate System
is used we refer to the work [96].

Generally, it can be assumed that vehicles follow the road and don't go off-road
intentionally. Therefore, we propose to use the CCS to model the motion of the
vehicle as a function of the road structure. To illustrate the benefit of this, Figure 8.1
shows a vehicle driving on a road section. This section of road first makes a slight
left turn and then a sharper right turn. Both constant velocity and acceleration
models show that the vehicle will go off road, but also intersect with the path of the
ego-vehicle. However, the actual trajectory of the vehicle will follow is that of the
road and can be modelled with the CCS.

The effect of modelling the motion in CCS is illustrated with a real world example of
a vehicle taking a left curve (Figure 8.3). The motion in CCS as shown in Figure 8.4
is similar to how humans think, more left or right of the center of the lane and further
down the road. From the described position within the lane in CCS it is also clear
that the driver cut the corner. This is can also be noticed in Figure 8.3 when the
lane is drawn.

Also for the velocity there is a large difference: Before and after the turn the x and
y-velocity change significantly in GCCS as shown in Figure 8.5. However, in CCS the
velocity is related to the motion along the road. The s-velocity is the speed along
the road and the n-velocity is lateral to the road. When making a perfect turn the
s-velocity is the true speed shown on the speedometer. Also, the n-velocity describes
the change of position within the lane. Again, the cutting of the corner is observable
from the lateral n-velocity in Figure 8.5.



Trajectory Prediction within Infrastructure

X Velocity
Y Velocity

Velocity in m/s

-10 1 1 1 1 1 1 1 1 1 1
0 50 100 150 200 250 300 350 400 450 500 550

Time Step

S Velocity
N Velocity =

Velocity in m/s
o
1

5 1 1 I I 1 I 1 1 1 1
0 50 100 150 200 250 300 350 400 450 500 550

Time Step

Figure 8.5: Velocity in GCCS (top) and CCS (bottom)

8.3.2 Curvature

The motion in CCS is described as longitudinal and lateral movement along the road.
Unfortunately, this also removes information of a change in direction of the road, thus
information about turns. Since, drivers generally reduce the velocity because there is
a curve, an additional feature is required that reintroduces this relevant information
of the road.

Therefore, we define a feature describing the curvature of the road obtained by
taking the change in the direction with respect to the curve length as defined in
Equation 8.4 [138].

Xy — yX
k= G (8.4)
()
Wlthx:%,y:%,X:%,y:%

Generally, a vehicle slows down before the curve, due to safety and control of the
vehicle, which can be observed from Figure 8.6. However, information about the
curvature at the position of the vehicle is not informative, because a driver slows
down before the curve and speeds up in towards the end of the curve. Furthermore,
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Figure 8.6: Change in Velocity due to Curvature

a fast driving vehicle has to look further ahead as it has to slow down more than a
slow driving vehicle. Therefore, the curvature indicator is defined as the curvature
2 seconds ahead of the vehicle. By modelling the slowing-down behaviour as a
dynamic system, this look-ahead-time can be estimated more accurately, though
more information about the driving style of the vehicle is also required. Therefore,
the value of 2 seconds was approximated by observing the behaviour of the recorded
vehicles.

8.3.3 Sequence-to-Sequence model

In [122] a sequence-to-sequence RNN model is used to encode a sentence in one
language and decode it in a different language. We propose to use the encoder part
of this type of network to model the state of the vehicle and use the decoder part
for prediction of the vehicles future trajectory. In this section we describe how this
network is adapted for vehicle trajectory modelling and prediction with motion and
infrastructure indicators.

Figure 8.7 shows our network design, with Long Short Term Memory (LSTM) units
[50] as RNN units. The encoder part is fed with the past information, in the form
of position and velocity in CCS x;_, as well as the curvature k;_,. The LSTM units
don't output any information, and only pass forward the hidden state to the next
time step.
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Figure 8.7: Sequence to Sequence RNN model

The decoder part is used for trajectory prediction. Every LSTM unit is fed with
the vehicle’s position and velocity of the current time step y;,, combined with the
additional indicators such as the curvature k:iy,. For training i, is known as
Xt4+n, though for deployment this is not known. As the output of an unit is the
predicted state at the next time step, which can be used as the input of the next
unit. Therefore, we pass the predicted state y;,,_1 to the next unit in the sequence-
to-sequence RNN.

However, this causes a discrepancy in training and inference, which leads to poor
performance [11]. A scheduled sampling during training can be used, where x;, is
selected with a probability 77 or alternatively y;.,_1. At the start of training n =1,
selecting the training data. As training progresses 7 is reduced such that the network
is trained with the same settings as during inference.

In contrast to translation, for trajectory prediction, the inputs and outputs are a
continuous sequence of trajectory data. As a result we do not reverse the order of
the input sentence. Also, we do not use the special end-of-sentence symbol in our
model, as there is no specific end of the sequence.

8.4 Experiments

The contributions of this work consists of two parts; First, the use of road struc-
ture and curvature as infrastructure indicators in trajectory prediction. Second, a
novel modelling approach for trajectory prediction using these infrastructure indi-
cators along with motion indicators. With these contributions we aim to improve
trajectory prediction on curved road sections. We perform experiments to evaluate
our proposed approach against a conventional motion based prediction method on
real data.
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For our experiments trajectories of human driven vehicles under natural driving condi-
tion were recorded along with road infrastructure information. The data was collected
with a test vehicle, the WEpod, in the region of Wageningen, The Netherlands. The
test vehicle is equipped with 6 IBEO LUX LIDAR sensors running at 25Hz. Each
LIDAR has a 110 degree (horizontal) FOV and 4 vertical planes. Data from these
LIDAR sensors is used to detect and record vehicles moving around the test vehicle.

The IBEO system provides vehicle position [X, Y], velocity [X, Y] and heading angle
0 in the WEpods (ego-vehicle) reference frame. The vehicle states were converted to
the global, Universal Transverse Mercator (UTM) coordinate system (GCCS), using
GPS localization.

Figure 8.8 shows the road sections on which the vehicle trajectories were recorded.
These were selected to record vehicle trajectories on roads of different curvature,
while avoiding the influence of features like pedestrian crossings, complex road design
like roundabouts and intersections with traffic lights.

We obtained 285 unique vehicle trajectories, with a minimum length of 7 seconds
containing 175 time steps. The trajectory data was segregated with a 4:1 ratio into
a training and test set. For trajectories longer than 10 seconds, the trajectory was
split into multiple parts at an interval of 3 seconds. This resulted in 496 training
trajectories and 143 trajectories used for testing.

Additionally, an artificial dataset was created to pre-train the RNN model. This
dataset consists of simulated vehicle trajectories with different driving behaviours in
CCS along the longitudinal direction. We simulated vehicle trajectories on straight
roads including constant velocity and de/acceleration followed by constant velocity.
Vehicle motion on curved roads was simulated considering different radii. Based on
the curve radius the maximum safe speed was calculated, and vehicles were simulated
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Figure 8.8: Recorded road sections (in red)
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to decelerate to a speed below this value. Gaussian noise was added to all states,
with mean and variance obtained from LIDAR measurements. The dataset consists
of 1/5th simulated trajectories on road with no curvature, and the rest randomly gen-
erated for curves of different road curvatures. Training the network with the transfer
learning regime gave an 8% improvement in performance and was subsequently used
in all experiments.

To compare the trajectory prediction in CCS with GCCS a baseline Interactive Mul-
tiple Model filter [13] with constant velocity and acceleration models was used. To
compare the performance of the RNN and the curvature indicator, we trained two
RNN models one with only motion features as input, and another with both motion
features as well as road curvature.

We determined experimentally the best LSTM network architecture, by varying the
number of hidden layers between and the number of cells in each layer. This resulted
in an architecture of two hidden layers of 275 and 160 cells. The output layer
uses basic RNN cells with Rectified Linear Unit (ReLu) non-linearity. Furthermore,
we used the Adam [58] optimization algorithm to train the network. The loss is
calculated using as Mean Squared Error over the four output states (X,Y, X, Y).
The network is trained with a constant learning rate of 1073,

8.4.1 Experiment 1: Sequence-To-Sequence model

This experiment is designed to establish that the RNN model can perform regression
in a non-linear space and model an internal state over multiple samples. Sine-wave
prediction is chosen as the regression task. The space is single dimensional, and is
described by the function x = a* sin(2mwft + ¢). Where a is the amplitude, f the
frequency, ¢ the phase and t the independent variable.

The training dataset consists of randomly generated sine-waves with random ampli-
tude, frequency and phase. The first 25 samples of the wave are provided as input
to the model, which then predicts the next 25 samples. To make this prediction, the
three variables a, f, ¢ need to be modelled internally by the encoder and the value x
predicted.

For sin-wave prediction, the RNN model is found to perform best with one hidden
layer of 40 LSTM cells. The neural network is trained using Adams optimization
[58], with Mean Squared Error loss. Figure 8.9 shows some predicted sin wave from
test set samples.
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Figure 8.9: Sine-wave prediction with Sequence-to-Sequence RNN

8.4.2 Experiment 2: Curvilinear Coordinate System

To compare trajectories predicted in CCS with those predicted in GCCS, we plot
them both in GPS coordinates along with the ground truth trajectory. The IMM
prediction model is provided with 2 seconds (50 time steps) of vehicle states as input

- .
Roadway Path

Trajectory Predicted in GCCS
Trajectory Predicted in CCS

Ground Thruth Trajectory

Trajectory Start Location

Trajectory End Location

Last measurement before prediction

latitude
latitude

longitude longitude

Figure 8.10: Vehicle trajectories predicted in GCCS and CCS
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IMM Motion RNN | Curvature RNN
axis: X Y X Y X Y
1sec | 0.95 | 0.70 | 0.82 0.73 | 0.87 0.80
2sec | 1.90 | 1.39 | 1.78 0.86 | 1.55 0.90
4sec | 487 | 291 | 3.98 1.24 | 3.19 1.30
6sec | 947 | 448 | 7.61 1.33 | 6.20 1.38

Table 8.1: Mean error [m] for all test trajectories

data and predicts the trajectory for next 8 seconds (200 time steps). Figure 8.10
shows the position plots of two (real) examples of vehicle trajectories predicted in
GCCS and CCS. In the left figure makes the road a sharp 90 degree turn, and in the
right figure makes the roadway two consecutive turns of about 30 and 45 degrees.

8.4.3 Experiment 3: Curvature Indicator

To make the performance comparison between the three models, IMM, Motion RNN,
and Curvature RNN, the models are provided with input data for 25 time steps (1
second), and the error is reported for the predicted vehicle position at 25, 50, 100
and 150 time steps in meters. Error in velocity would be reflected in position, as
a result the velocity predictions are not used as a separate metrics to compare the
three models.

We segregate the test trajectories into three groups based on the curvature. Fig-
ure 8.11 shows the performance of the three models for each type of test trajectory.
Table 8.1 gives the mean error over all trajectories for the three models.

8.5 Discussion

In this chapter the Curvilinear Coordinate System was used to incorporate the struc-
ture of the road into modelling vehicle motion. Experiment 2 aimed to show that
CCS improves the trajectory prediction over GCCS. Since in CCS the motion is a
function of the road structure, modelling this information is directly integrated. This
was then also clearly showed with two examples of the results in Figure 8.10, where
trajectory prediction in GCCS has no knowledge about the curve and predicted a
straight line. Note here that no single motion model would be successful as has been
shown in Figure 8.1.

Since information about any change in direction of the road is eliminated by CCS, the
velocity prediction does not correspond to that of normal driving behaviour. Generally
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Figure 8.11: Prediction Error (in m) on the X (top) and Y (bottom) axis for test trajectories over
prediction time. Left: trajectories with almost no curvature; Center: slight curvature; Right: large
curvature.

a vehicle slows down before a curve. Therefore, an indicator was introduced in the
form of curvature. Experiment 3 shows with Figure 8.11c that for sharp curves the
longitudinal prediction error is much reduced. For 4 seconds prediction the mean
error is 3 meters, which is less than the length of a car and can be used for path
planning. For longer periods the error is increasing as for 6 seconds prediction the
mean error is 6 meters. This can be explained by the fact that for longer periods of
time more unmodelled factors influence the vehicle and its trajectory.

It is interesting to note that for the lateral position the curvature provides no im-
provement in prediction, though this was to be expected. The lateral position within
the lane is generally not a result of a curve, but of other factors. However, it is
interesting to point out that the RNN seems to learn that vehicles stay within their
lane. Which was one of the goals of this work, but was not explicitly defined in
training the RNN.
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In order to model the motion and predict the trajectory of the vehicle, while directly
integrating additional indicators such a curvature, we introduced the sequence-to-
sequence RNN. This RNN was used for language translation, but hasn’'t been used
in trajectory prediction (at the moment of writing). Therefore, we devised a toy-
example in Experiment 1 to predict sine-wave patterns. A simple LSMT with only a
few cell could already model and predict these non-linear patterns. In Experiment 3
the RNN model has shown to clearly outperform IMM in trajectory prediction as it
was able to model some level of driver behaviour such as keeping its lane.

By further studying the results of the sequence-to-sequence RNN model, we noticed
something peculiar. The predicted position and velocities did not correspond. Dif-
ferentiating the positions gave different velocities and integrating the velocities gave
different positions. This means that the RNN has no understanding of the laws of
physics and does not adhere to the kinematic rules of motion. Therefore, in future
work this constraint will be added to the loss such that v; = (x; — x;—1)/dt .

One of the aims of this work was to find a modelling method that could be used to
incorporated additional indicators in the motion modelling and trajectory prediction.
We proposed the sequence-to-sequence RNN and showed with the curvature indicator
this was attainable. When studying the results some unmodelled factors became
apparent, which we intent to include as indicators in future work.

Some recorded trajectories had to be excluded as a vehicle or bicycle was preced-
ing the vehicle and limiting the velocity of the tracked vehicle. By modelling this
interaction with an indicator describing the speed of a preceding road user, this can
included in the motion model.

When observing the predicted velocities of vehicles we noticed that most vehicles
would drive about 40 km/h, though some roads had a maximum speed of 30 km/h
and others had 50 km/h. Therefore, we also intend to include an maximum speed
indicator, such that the trajectory prediction will reflect normal driving behaviour on
various type of roads.

8.5.1 Conclusion

One of the limitations in this chapter was that only road sections without inter-
sections were used. This was done to avoid the possibility of multiple paths and
that of interaction between road users. In order to include these added challenges
a few observations can be made; First, multiple paths can be modelled by adding a
node in the piece-wise spline where multiple splines branch off. Second, intersections
have road users interacting with each other governed by traffic rules. Chapter 9 will
include interaction between road users.

109



110
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Interaction and Road Attention
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Road attention: map-based vehicle trajectory prediction for interaction models.

Abstract

In the previous chapter a RNN model was introduced to predict future
trajectories of road users more efficiently by taking the road geometry
into account. Next to road geometry also the interaction between road
users influences the future trajectories of these road users. To model
this interaction Social Pooling is a suitable method. However, this re-
quires that the spatial relationship between the interacting road users is
retained. Therefore, transformation of the road users states to a Curvi-
linear Coordinate System, as introduced in the previous chapter, is not
applicable. This chapter introduces a novel approach to encode the road
geometry and select the relevant part of the road through an attention
mechanism. This road attention method can be combined with social
pooling in order to create a interaction and road geometry aware RNN
model.
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9.1 Introduction

Automated Vehicles in our society drives a large field of research. One key task of
automated vehicles is to plan a safe and comfortable path in a dynamic environment
with other road users. This requires information about the road as well as the other
road users with high reliability, as false information can lead to collisions. One major
challenge in this task is that of object trajectory prediction. This field focuses on
predicting the intentions and the resulting future trajectory of a road user such that
the ego-vehicle can plan its actions accordingly. To accurately plan a path at multiple
time instances, the states of the surrounding vehicles should be known over time.
Therefore, it is desired to obtain sequences of states such as the position, velocity
and heading over time, rather than just a classified intention or predicted end state.

This trajectory of future states is obtained by a trajectory prediction method. This
task is challenging as it combines different types of information; Previous motion is
the most commonly used information source. Through motion modelling a future
path can be predicted. However, the past driven path of a vehicle is insufficient
information to predict its future behaviour. The future states are constrained by
the the geometry of the driven road. Therefore, the road structure needs to be
incorporated in trajectory prediction. Furthermore, interacting road users influence
each other's future path, thus for a vehicles trajectory prediction its surrounding
vehicles have to be taken into account. Even for humans this task is challenging and
is one of major causes of dangerous situations when unexpected situations occur.

Therefore, the goal of this chapter is to describe the information structure of these
data sources and propose a novel method on how to combine these data sources
to predict the future trajectory of a road user. First, the relevant work to motion
prediction is detailed in Section 9.2. Next, in Section 9.3 we introduce a novel RNN
structure that can efficiently extract motion information of other road users, incor-
porate interaction between them through social pooling and then predict a trajectory
with an attention mechanism related to the road geometry. Through experiments,
in Section 9.4, the applicability of our proposed RNN network is evaluated for an
autonomous vehicle. Finally, the results are discussed and a conclusion is given in
Section 9.5.

9.2 Related work

Classically, vehicle motion prediction is achieved either by modelling and simulating
the vehicle as a dynamic system (motion models), or by classifying driving behaviour in
a set of manoeuvres and obtaining some prototypical trajectory for each class [7, 66,
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80]. In the latter case, a classifier is used on constructed features that describe the
observed trajectory. The prototypical trajectory is generated by a manoeuvre-specific
motion model or (stochastic) representations of past classified trajectories. Both of
these approaches have limitations; Motion models have poorer long-term prediction
accuracy, because some states that relate to the driver input (e.g. acceleration and
steering rate) cannot be modelled. Manoeuvre classification approaches attempt
to capture all driving behaviour in a fixed set of manoeuvre classes, resulting in
generalized predictions for each manoeuvre class, omitting case-specific details.

Recently, machine learning approaches are proposed in an attempt to overcome these
limitations. Generally, deep learning models for sequential data, called Recurrent
Neural Networks (RNNs) are used. An RNN is a parametrized regression model that
learns relations between sequential vehicles states. These models can find latent
factors, such as driving style, which are difficult to define manually. Modern RNNs
such as the Long-Short Term Memory (LSTM) [50] or the Gated Recurrent Unit
(GRU) [26] are enhanced RNNs with internal memory for improved accuracy over
longer sequences. These models overcome the limitation of motion models by mod-
elling the latent factors in driving behaviour, as well as the limitations of prototypical
trajectories by not classifying all driving behaviour as a fixed set of manoeuvres. For
sequence prediction tasks with RNNs, the encoder-decoder architecture [122] has
shown to be a suitable choice. This architecture originates from the field of Natural
Language Processing, but has shown to be valuable for vehicle motion prediction as
well [28, 57, 65, 82, 97]. However, these approaches remain limited as they only
use motion information. Therefore, models that incorporate either road geometry or
interaction between vehicles are discussed in the next sections.

Road geometry

One crucial aspect that influences human driving behaviour is the geometry of the
road. Incorporating the geometry of the road in prediction has long been a subject of
research. In [86], a semantic map is used to classify lane changes with the distance
to the centrelines of all present lanes. In [59], this map-based prediction is taken
a step further by extracting features related to the position and orientation with
respect to entrances and exits of intersections. By describing the road layout ahead
of the vehicle, more accurate velocity profiles can be obtained that are typical to
such layouts. In [88], the road topology is used to transform cyclist trajectories
to a more general coordinate system where all trajectories are initially aligned and
motion models according to the turn direction and sharpness can be deployed. A
similar philosophy is used in [55], where such models are used on trajectories that are
defined in a Curvilinear Coordinate System (CCS) on the road centrelines, making
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all lane-following motions approximately linear. To incorporate the road geometry
[97] defines trajectories in CCS with the road curvature as feature and uses an
encoder-decoder model to obtain more appropriate velocity profiles in turns. All
these methods define the trajectories in some local coordinate system, where the
global configuration among different dynamic agents is lost.

Various methods avoid defining a local coordinate system by using visual information
from the scene to include road geometry. In [65], road geometry is included with
a Convolutional Neural Network (CNN) feature extractor on front view images. In
[106], top view images of the road topology are used with a CNN and attention
mechanisms to extract relevant features of the road. The drawback of such ap-
proaches lies in the information source, rather than the modelling method. The road
information from the front-view images in [65] is prone to occlusion, whereas the
top-view images of the road topology in [106] are an information resource that is
mostly unavailable in practical applications.

Interaction

Modelling interaction among dynamic agents has been an active challenge for motion
prediction. Interaction couples the behaviour of several dynamic agents, making
predictions of these agents’ behaviour mutually dependent. Classically, interaction-
aware prediction is attempted by coupling graph-based models [14, 66]. Such models
are computationally expensive and suffer from a growth in uncertainty due to the
coupling of uncertain future states of multiple agents, also known as the freezing
robot problem [110]. The complexity of the modelling problem can be relaxed by
assuming that all interaction is unilateral, or by limiting the number of interacting
vehicles [39].

Recently, interaction methods were designed based on RNN encoder-decoder models,
focused on the field of pedestrian motion prediction. Social LSTMs are first proposed
in [2], modelling dynamic pedestrian behaviour in dense crowds. This method, also
known as social pooling, uses individual encoded trajectories in a grid-based pooling
layer to obtain interaction-aware predictions from the decoder. Variants on social
pooling have been proposed since, improving the effectiveness of the pooling layer.
In [28], a CNN is included in the pooling module to better account for the spatial
configuration of the scene. In [43] the grid-based method is replaced with a relative
position embedding method to reduce computational cost without a decrease in
model accuracy. Currently, convolutional social pooling is the only interaction-aware
RNN method that has been applied on vehicles.



Trajectory Prediction with Interaction and Road Attention | 115

iy iz i3 Rir1
R = |
N2 s hy Preq Pte2 hi
RNN RNN RNN RNN —>» RNN 4—> RNN RNN » RNN
%2 X1 %t Xt Xtr Xt+2 Xi Xi

Figure 9.1: a) Expanded Encoder-Decoder model. b) Actual Encoder-Decoder model

9.3 Model

This work focuses on creating a deep-learning based model that can incorporate
both the road geometry and interaction between vehicles in trajectory prediction. To
incorporate the interaction between vehicles, social pooling has show great promise
and is detailed more in Section 9.3.2. However, social pooling requires that the spatial
relationship between vehicles is retained. Therefore, a novel method is proposed in
Section 9.3.3 that can encode the road geometry and supply this to the decoder
component of this model. First, the architecture of such a model is detailed in
Section 9.3.1.

9.3.1 Encoder-Decoder Model

The encoder-decoder model originates from the field of Natural Language Processing
and is also referred to as the sequence-to-sequence model, as a sequence of words
is processed into another sequence of words. In trajectory prediction, a sequence
of vehicle states is encoded by a set of (stacked) RNN units. Each unit encodes
the input states x; of the vehicle over time into a hidden state h;. This hidden
state serves as a memory block where relevant sequence information is contained.
Figure 9.1a shows an unenrolled RNN model, where at different time steps an RNN
unit is used. Whereas, in the actual model a single RNN unit is iteratively used to
encode the sequence as shown in Figure 9.1b.

At the end of a sequence, h; represents an encoding of the vehicle trajectory in the
form of a fixed length feature vector. A decoder, constructed with a similar RNN,
can use this feature vector h; as its own memory block and decode it into future
vehicle states, generating a trajectory prediction. The input of the decoder x; are
its own predictions from the previous time step X;_1, allowing it to keep track of
its previous predictions. This encoder-decoder architecture is detailed in Figure 9.1b
and adopted in Figure 9.2a with our proposed modules.
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Figure 9.2: a) Encoder-Decoder model with Social Pooling and Road Attention modules b) Social
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9.3.2 Social Pooling

The goal of social pooling is to pool the embeddings of multiple surrounding vehicles
into a single feature vector. In [2] these embeddings were combined in a spatial
grid, which are converted into a single vector again by a fully connected layer. Also,
with a grid based approach multiple objects in a grid cell as well as empty cells pose
challenges.

In [43] the spatial grid is replaced by a relative position embedding added to the hidden
states, which is then pooled with the symmetric max-function. In this work the latter
approach is adopted, where we select up to 5 vehicles around the ego-vehicle. After
creating the pooled states of the surrounding vehicles, this is concatenated with the
ego-vehicles embedding and supplied to the decoder part as shown in Figure 9.2b.

9.3.3 Road Attention

The RNN decoder needs to know about the road geometry. In [97] this was done
by transforming the ego-vehicle to a curvilinear coordinate system that describes the
road geometry. However, in order to use social pooling, the global spatial relationship
between vehicles needs to be retained. Therefore, in this work an attention mecha-
nism is used to select the relevant information for the embedded road geometry as
shown in Figure 9.2c.

The road geometry can be described by j way-points on the centerline of the lane.
Since these way-points are also a sequence, they can be encoded similarly to the
encoder used to encode the vehicle states. However, the output states x.; of all
RNN units in the encoder RNN are used to create a sequence of the encoded road
geometry ahead of the vehicle. Next, the Bahdanau attention method [6] is used to
obtain attention weights o to select the right part of the encoded road geometry
based on the hidden state h; and the encoded road geometry x. ;. With these weights
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the context state ¢; can be calculated:

arj = Wptanh(W,[hj; x,j]) (9.1)
et
Qg j = 72 o (9.2)
7
G = Z Qt jXrj (9.3)
J

Here W, and W, are learned weights of the attention mechanism. The context
vector is concatenated with the hidden state at the previous time step and then
passed through a fully connected (FC) layer to obtain a context aware GRU hidden
state h.

9.3.4 Training and Implementation Details

The input to the model is a past observed trajectory consisting of a sequence of
30 normalized Cartesian coordinates over time, sampled at 10 Hz. This input is
first embedded through a 1D temporal convolution layer, which allows the model to
extract state information over time related to velocity and acceleration, as stated
in [65]. The convolution layer consists of a kernel size of 3, and 16 convolution
filters, and zero padding is used to generate an embedded input of equal length to
the original input. The RNN encoder-decoder architecture that generates predicted
trajectories based on the embedded input consists of Gated Recurrent Units. The
encoder consists of a single GRU unit of 48 units, whereas the decoder consists of
2 stacked GRU units each with 48 parameters. The decoder generates an output
of 48 parameters at every time step, which are mapped to 2 Cartesian coordinates
with a linear projection layer. The road encoder consists of a smaller GRU unit of 36
parameters. For the social pooling, the relative position between the subject vehicle
and surrounding vehicle is embedded in the surrounding vehicle hidden state with
a fully connected layer. The reduced hidden state from the social pooling and the
subject vehicle hidden state are concatenated and compressed to 48 parameters, the
size of the decoder hidden state.

For training, all 5583 vehicles are used to randomly extract a sequence from their
entire recorded trajectory. The trajectory is split up in 30 states (3s) as the past
observed trajectory, and 60 states (6s) as the ground truth trajectory that is to be
predicted. 75% of the sequences is used for training, and the rest for validation.
The training data is fed to the model in batches of 16 trajectories, and trained for
200 epochs. For social pooling, up to 5 vehicles in the surrounding are taken into
account, consisting of the preceding vehicle and up to 2 vehicles in the adjacent lanes
if they are in the proximity of the subject vehicle.
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Figure 9.3: a) trajectories before and after curvilinear transformation b) 8 additionally introduced
road geometries.

9.4 Experiments

In this section, the experiments are highlighted. The performance of the proposed
Road Attention is examined on the public Next Generation Simulation Dataset
(NGSIM). This is achieved by comparing multiple models that are enhanced with
Road Attention and/or Social Pooling, to clearly distinguish the impact of the dif-
ferent model components.

9.4.1 Data

The Next Generation Simulation (NGSIM) Interstate 80 (i80) provides recordings of
approximately 6000 vehicles in the San Francisco Bay Area. These are a mixture of
low density traffic and peak hour congestion, with varying intensity of vehicle interac-
tion. Furthermore, accurate map information is available, providing road geometry.
One downside of the i80 dataset is that the variation in road geometry is limited
and only reflects a small part of the (urban) driving environments. To this end, we
propose an augmented version of the i80 dataset, which we will call the i80 curved
(i80c) dataset. The augmentation is inspired by the Curvilinear Coordinate System
(CCS) approach used in [97].

In this augmentation, we convert the positions of the vehicle x; from Cartesian (X,
Y) coordinates to curvilinear (L, N) coordinates. A cubic spline is fitted on the
centreline of the original road shape. For all vehicles positions the longitudinal (L)
distance and lateral (N) distance is obtained. By generating a different cubic spline,
and converting the curvilinear coordinates back to Cartesian coordinates, the vehicle
positions are converted to a different type of road shape. These transformations are
detailed in [96]. In total, 8 different road shapes have been created and added to the
original road geometry data as shown in Figure 9.3b. The main goal of these road
geometries is to introduce strongly varied road curvature. By introducing varied and
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sudden curves, extrapolation from previous time instances by motion modelling will
not be effective.

9.4.2 Evaluation metrics

In the experiments, the model performances are assessed on the i80 and i80c data.
The models will obtain an input trajectory recording of 3 seconds (30 states), and
predict over a prediction horizon of 6 seconds (60 states). The 6 second prediction
horizon is needed for the autonomous vehicle to anticipate the driving behaviour of
other vehicles sufficiently well.

The Mean Absolute Error (MAE) of the longitudinal and lateral predictions and
ground truths will be used for evaluation. These MAE,,, and MAE,,; are obtained
by converting the predictions to the curvilinear coordinates: (x, y) — (s, n), and
computing the mean absolute error between these prediction coordinates and the
ground truth with:

N
1 -
Enton = > Isi — & (9.4)
P
N
1 .
Eh—tat = > Ini — Ail. (9.5)
P

This metric dissects the error into a longitudinal and lateral component, which gives
much more valuable information compared to an Euclidean error measure. The lateral
error describes how well the trajectory can predict the vehicle's position within its
lane. Whereas the longitudinal error describes how well the driving actions and the
congruent speed of a vehicle are predicted.

Table 9.1: Prediction performance for all models on i80 dataset.

MAE [m] RNN SP RA SPRA
time[s] | lon  lat lon lat lon lat lon lat

11071 0.13]0.88 0.17 | 0.69 0.14 | 0.72 0.18
150 023|147 024|133 0.20 | 1.41 0.25
244 032 | 217 030|231 0.27 | 220 0.30
3.63 042 | 3.09 035|340 0.34 | 3.06 0.35
504 049|413 041|465 040 | 410 041
6.51 0.56 | 5.32 0.48 | 6.11 0.47 | 534 0.48

S OB W N
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Table 9.2: Prediction performance for all models on i80c dataset.

MAE [m] RNN SP RA SPRA
time[s] | lon lat lon lat lon lat lon lat
11084 056|100 057|083 05109 0.80

21174 096 | 173 080 | 1.54 058 | 1.55 0.81

31282 137|268 1.16 | 251 0.69 | 2.27 0.83

41411 198 | 377 167 | 355 0.76 | 3.10 0.89

51567 277|506 244|488 0.87 | 421 0.99

6 |760 369|664 306|632 1.04|5.43 123
9.4.3 Results

The proposed method is evaluated both on the i80 and i80c dataset extended with
Road Attention and/or Social Pooling. The first model is the basic encoder-decoder
model (RNN), to obtain a baseline performance. Then, the Road Attention (RA)
and Social Pooling (SP) modules are added to the basic model to obtain two more
models. Finally, both the Road Attention as well as the Social Pooling are added to
the basic model to obtain the full model (SPRA). In Table 9.1 the results on the i80
and in Table 9.2 the results on the i80c dataset are shown.

Table 9.3 compares the convolution social pooling results of [28] as they also use data
of the i80 dataset combined with the us-101 dataset, which consists of a straight
highway section.

Table 9.3: Euclidean Mean Distance performance comparison with state-of-the-art.

time [s] | CS-LSTM [28] | SP
11 0.61 0.81
2| 1.27 1.33
3| 2.09 2.01
4 | 3.10 2.82
5| 4.37 3.81
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9.5 Discussion

Table 9.3 show that the results of our proposed social pooling method has similar
performance compared to that of convolution based social pooling. Our method
embeds the position of the other vehicles in the hidden state instead of creating a
spatial grid. This approach is much more computational efficient as in the spatial
grid many cells will be empty, but still are used in the calculation of its convolution.

The long term prediction in Table 9.1 on the i80 dataset show the importance of
Social Pooling. Both models that include the social pooling module greatly increase
the prediction accuracy. The road attention module improves performance over the
baseline RNN in the section where road information is valuable, namely the on-
ramp of the i80 highway. Furthermore, it can be seen that short term prediction
performance is very similar. The road curvature is very limited in the i80 dataset
where the road attention module provides redundant information to the prediction
performance, explaining similar performances between the SP and SPRA models.

On the i80c datasset long term prediction performance shows a major increase in
prediction performance with the road attention module, especially in lateral perfor-
mance. The social pooling module shows similar poor performance as the baseline
model on the curved roads. Though, social pooling still improves the longitudinal
prediction performance, similar to the i80 dataset. The combined SPRA model com-
bines the advantages of both the social pooling and road attention modules showing
improved longitudinal and lateral prediction performance.

For short term prediction, generally the interaction is limited or already indicated
through an already initiated manoeuvre, thus a normal RNN can predict this be-
haviour quite well. Therefore, the SP model diminishes the prediction performance
on the short term compared to the baseline RNN, but improves on the long term as
can be seen on both the i80 and i80c results.

9.5.1 Conclusion

The aim of this chapter is to improve object trajectory prediction by combining road
infrastructure information with the interaction of the surrounding road users. Social
pooling has shown in state-of-the-art research that if can efficiently combine the
information of multiple road users. However, this method also imposes a constraint
of the inability to use a local coordinate system for each road user. Fortunately, the
road attention method is able to encode the road infrastructure method efficiently
without defining a local coordinate system. Therefore, the combination of these
methods achieves a large step in the direction of correct object trajectory prediction.
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Applications of deep learning have expanded drastically over the last decade. This
phenomenon has been driven by the increase in computational power as well as
availability of large amounts of data. However, not in all type of applications deep
learning has been successfully adopted. This can mostly be attributed to limited
understanding of how to apply deep learning effectively, as well as the complexity of
deep learning network architectures. To provide insight in how to apply deep learning
methods efficiently in many types of applications, in this thesis it is stated that
it is important to have a thorough understanding of the tasks it needs to perform.
Furthermore, to successfully execute these tasks using deep learning methods various
aspect should be taken into account. These are summed up, with examples, in the
next paragraphs.

Many tasks can be described using the Sense-Think-Act paradigm. In this paradigm
the Sense step is to perceive the environment and filter data on relevance for the
systems task at hand. The Think step uses the perceived information as well as it
own built up / stored knowledge and based on the goal, it selects useful actions from
a (possibly built up) repertoire that when executed alter the state of the environment,
making the system progress towards the required goal. This action influences the
systems environment and hence new Sense-Think-Act cycles should be performed
until the goal of the task is achieved. This definition adequately describes for example
tasks performed by a mobile robot finding its way towards a goal or manipulating
objects in its environment. However, the paradigm can also be extended to tasks
performed by humans.

For a human example, in Chapter 2 a surgeons task of endoscopic laser coagulation
therapy for TTTS has been described as shown in Figure 2.5. In this procedure the
surgeon has to find and map anastomoses and determine its type (Sense). When
all are found a plan is made to coagulated these in the right order (Think), which
is then subsequently executed (Act). Note that when we zoom in on this Act step,
it again can be decomposed into a Sense-Think-Act loop, where the Sense step is
finding the next anastomosis as depicted in the map, Think is how to manipulate
the tool and Act is performing the coagulation.

For a technical system example, in Chapter 6 the object prediction task has been
described in the Sense-Think-Act paradigm as shown in the bottom rows of Fig-
ure 6.4. In the sensing step the motion information of the road users is obtained
and encoded. In the thinking step reasoning takes place on the interaction between
these road users and their actions. Also road information is encoded and the rele-
vant information is extracted. The reasoned actions and road information are then
combined in an Act step describing the future states of the road user. As reasoned
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above a way to describes systems is to describe them as nested Sense-Think-Act
cycles. In the example above, the object prediction task can be seen as a subtask
of an object perception task which in its turn is part of a highly complex Automated
Driving task.

Correctly understanding a task and decomposing it into less complex, more achievable
subtasks is necessary to solve these tasks using deep learning algorithms. Deep
learning is widely applied in perception tasks, this is the Sense step in the Sense-
Think-Act paradigm, though other steps as well.

In order to solve such tasks with deep learning methods it is important to consider
the following three specific aspects for such a perception task; data quality, network
architecture and learning method.

First of all, the statistical features, variation and quality of the perceived data highly
determine the performance of the successive steps. It is not only important to
understand what information needs to be gathered in the Sense step, but also in
what format the subsequent thinking step needs this information. Therefore, the
sensing step is often also divided into a subtask to perceive information and a subtask
to filter, abstract and fuse the data into the format needed.

Second, a neural network architecture is used in deep learning to process informa-
tion to a desired output. This network architecture is set-up by choosing the right
type of layers and then how the data will be processed. For instance, if we con-
sider the difference between the FasterRCNN and SSD network architectures, both
object recognition algorithms on these networks use convolutional layers although
each with a different approach to achieve these convolutions. This can be seen in
Chapter 8 where the object motion information was transformed to match the road
infrastructure. Whereas in Chapter 9 the network was designed to extract the road
infrastructure information to match the object motion information.

Third, the learning method used can influence the performance of the deep learning
method. Chapter 4 showed that learning to extract features based on the fea-
ture matching performance, improves the performance of the matching process but
changes nothing in the performance of feature extraction itself.

The goal of this thesis was to gain insight in how to effectively apply deep learning
methods in a variety of perception tasks. Understanding the task at hand is crucial.
This was demonstrated in this thesis based on two applications, which conclusions
can be found in the next sections.
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10.1 Part 1 - Fetoscopy

In Twin-To-Twin Transfusion Syndrome an imbalance in blood flow exists between
the twins. In order to resolve the imbalance, a surgeon tries to find connecting blood
vessels (shunts) on the placenta and uses laser coagulation to prevent further blood
flow. To make sure that the imbalance is equalized, the order of coagulation of the
shunts is important. Furthermore, since the procedure entails a certain amount of
risk, it is also important that all shunt are found. To achieve this, an overview of the
placenta would be beneficial to the successful outcome of the procedure as described
in Chapter 2.

Therefore, the goal of the research in Part 1 of this thesis was to reconstruct the pla-
centa from fetoscopic images obtained during the exploratory phase of the procedure
and mark locations of the shunts as found by the surgeon. By thoroughly analysing
the process of panorama reconstruction important subtasks have been found and
detailed in Chapter 2. They are shown in Figure 2.7. In Chapter 3 the challenges to
reconstruct a panorama of the placenta encountered by mutual registration of im-
ages have been described in detail. These subtasks and challenges have been solved
by successful application of deep learning methods and are discussed in the next
sections.

10.1.1 Stable Keypoint Detection

Finding stable keypoints in images is the first subtask and traditionally this is done by
methods such as SIFT, SURF and ORB. These methods detect corners and edges
as keypoints, based on gradient changes in the image. However, Chapter 3 showed
that for in-vivo visibility conditions these methods have a limited performance. This
lack of performance was explained by limited contrast and an increased noise level
due to ill illumination conditions. Furthermore, the structure of the placenta shows
a very limited number of corners and mostly consists of edges, which are only stable
in one dimension. The experiments in Chapter 3 showed that these methods are not
sufficient to effectively find keypoints to do image registration for his task.

In Chapter 5 the Single Shot Detection (SSD) algorithm was introduced to detect
stable regions on veins on the placenta. This method finds regions spanning the
two edges of veins on the placenta and defines as keypoint the middle of the vein
as shown in Figure 5.3d. This method also includes the orientation of the vein, thus
defines a keypoint that is constraint in all dimensions. Furthermore, they can be
reliably detected in multiple images and can thus be considered as stable keypoints.

Through correct understanding of the stable keypoint detection task, insight had
been gained in what was needed to perform that task effectively. The subsequent
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adoption of the SSD algorithm, designed for object recognition, is a perfect example
of the importance of understanding a task correctly in order to successfully apply
deep learning methods to solve that task. The SSD algorithm was only altered in
changing the definition of the bounding box to that of a rotated box as shown in
Figure 5.4. The rest of the algorithm remained the same to achieve stable keypoint
detection. This shows that through correct selection of the network architecture and
learning method it is possible to apply deep learning methods to solve many tasks
successfully.

10.1.2 Matchable Feature Extraction

The next subtask was to extract matchable features to obtain robust matches. In
state-of-the-art methods such as SIFT this is done by defining a grid based his-
togram of gradients to obtain a descriptive feature. However, in Chapter 3 it has
been shown that the visual structure on the placenta is everywhere very similar,
resulting in insufficiently distinctive features. Combined with the reduced keypoint
detection performance, this results in too few correctly matched keypoints for image
registration in the in-vivo setting.

In Chapter 4 contrastive loss has been introduced from the field of object recogni-
tion to resolve the challenge of very similar appearance of places on the placenta.
The selection of this learning method is inspired by the needs of the matching task,
hence the name: Matchable Feature Extraction. The keypoint matching task needs
to find keypoints that describe the same location on the placenta in two overlapping
images. Therefore, the contrastive loss method has been used to increase the simi-
larity between features describing the same locations, while increasing the difference
with all other features. In most deep learning methods the learning method is a form
of supervised learning, which is a form of learning by example. Whereas the use
of contrastive loss is a form of learning by doing. Learning the difference between
correct and incorrect matches can be considered learning by trial and error, with
simultaneously learning the incorrect and successful execution of the task.

In Chapter 5 contrastive loss learning has been combined with the SSD algorithm to
detect stable keypoints and extract matchable features at the same time. This results
in a significant increase in correctly matched keypoints between two overlapping
images of the placenta. This solved the image registration subtask of the panorama
reconstruction task of placentas for in-vivo laser coagulation therapy, by effectively
solving its two major sensing subtasks using deep learning.
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10.1.3 Keypoint matching and Transform Estimation

Chapter 5 showed that next to the subtask of detecting stable regions, also the quality
of the image and the detected regions can be learned. These qualitative measures
are not directly part of the overall task, but do provide an important indication on
how well the task can be performed with the current information. Furthermore, it
provides valuable information to obtain correct transformations between images, in
the form of illumination and view-point information. If this information is provided
to the surgeon, such that the illumination as well as the distance to the placenta
can be adjusted, then the visibility condition can be improved and a correct image
registration can be obtained. The inclusion of the surgeon in the machine's task of
panorama reconstruction is generally not considered, as tasks performed by machines
and humans are often strictly separated. But our approach will ensure that a more
optimal and constant image registration performance can be maintained resulting in
an overview of the placenta supporting the surgeon.

10.2 Part 2 - Road User Perception

One of the major tasks in automated driving vehicles on the public road is the
perception of other road users as described in Chapter 6. The goal of this task is
to recognize other road users and estimate what their (possible) future actions will
be. This information is then used in planning the actions of the ego-vehicle. The
description of this road user perception task is applicable to how humans do it, as well
as how automated vehicles do it and has been described using the Sense-Think-Act
paradigm in Figure 6.3. Each of the steps are detailed in the next sections.

10.2.1 Road User Recognition

The road user recognition step consists of two tasks; First, perceiving the environ-
ment and detecting the location of objects surrounding the ego-vehicle. Second,
classifying these objects as relevant road users, defined as those objects that partic-
ipate in traffic. That are objects that are either part of, moving on, or are close to
the road where the ego-vehicle is driving on.

To achieve this task, various types of sensors and methods can be used as described
in Chapter 6.2.1. Through analysis of the object recognition task and the available
sensors, an effective combination of sensors and algorithms had been selected in
Chapter 7. The road user recognition task first of all consists of the object detection
subtask, for which radars are very effective and have shown high performance and
reliability. Then, for object classification, the use of visual information has shown
great benefits. Therefore, camera information had been selected in combination
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with a convolutional neural network. This network is trained with contrastive loss to
emphasis the differences between relevant road users and irrelevant objects.

Although state-of-the-art deep learning based methods have shown better perfor-
mance in the years following the research in Chapter 6.2.1, some of the methods in
this chapter follow similar patterns of thought. The RCNN method also separates
the task of object detection and classification, but these methods still used only
camera information for the subtasks. Moreover, methods such as MV3D, that make
efficiently use of other types of sensors, also follow the separation of the detection
and recognition task. For example, MV3D uses a top-view approach on laser data
to extract 3D locations of objects which are then fused with camera information to
obtain road user recognition.

The rapid advances in the state-of-the-art methods for road user recognition fuelled
the decision to focus on the much less resolved road user prediction subtask of road
user perception.

10.2.2 Road User Prediction

In order to plan safe actions humans as well as automated vehicles need to determine
the intentions of the other road users. Since the intention is generally not directly
observable but determine the actions of those road users, many state-of-the-art
methods use the motion information of those road users to infere their intentions.
However, the actions of road users are the result of their intentions and constrained
by the actions the road user can safely take. Therefore, to effectively predict the
future states of other road users it is important to acquire - by perception - the
information that drives their considerations and predict their decisions.

As normally a road user is driving on the road, the road geometry is one of the
constraints that is considered in determining the possible actions of a road user.
Human drivers often take the road geometry into account in deciding their driving
actions. For example, a driver decides to follow a road, resulting in steering actions
that will keep the vehicle within the boundaries of that road and make a turn when
the road makes a curve. Therefore, in Chapter 8 the motion information of a road
user has been transformed to the road geometry, such that longitudinal motion is
following the road and lateral motion is changing the distance to the boundaries of the
road. This transformation encodes the road geometry in the motion of the vehicle
and allows the application of state-of-the-art motion prediction methods without
alteration. This approach shows that with thorough analysis of a task, as performed
by humans, the used information is often more descriptive.

129



130

Chapter 10

Driving actions are often influenced by other road users, as one wants to avoid colli-
sions. These interactions are governed by traffic rules and drivers will determine their
actions in accordance. Through analysis of the road user prediction task, it became
apparent that in order to model interaction between road users, their geometric rela-
tion had to be maintained. Transforming this motion information to road geometry
greatly complicates this. Therefore, in Chapter 9 first the motion information has
been encoded and social pooling was used to model the interaction. This showed
that information, as required to solve a task, need the right format before it can
effectively be used.

In order to incorporate road geometry, first this information has been encoded by an
RNN similar to the encoding of the motion information. Next, an attention mecha-
nism was used to select the right section of the encoded road geometry information
and subsequently combined with the encoded interaction and motion information.
This approach showed that a method, originally designed for natural language pro-
cessing, can be applied to modelling motion information as well as road geometry.
Furthermore, it showed that the use of an attention method, which also found its
origin in natural language processing, can be used to obtain relevant information.
These two applications illustrated how transfer learning can improve the applicability
of deep learning to various types of sequential tasks.

10.3 Conclusion

The goal of this thesis was to illustrate that deep learning methods can be applied
effectively in solving various tasks in realistic applications (only) by thorough under-
standing and analysis of the task at hand.

In part 1 of this thesis, the task of a surgeon to perform laser coagulation surgery
on a placenta using fetoscopic images of twins, showed that the thorough analysis of
that task considerably reduced the complexity of the technical task of panorama re-
construction of the placenta. The application of traditional state-of-the-art methods
has shown limited success for an in-vivo setting. Therefore the panorama reconstruc-
tion task was analysed in the aspects where the in-vivo setting forms a challenge for
state-of-the-art methods. The analysis was then translated into requirements for
each of the subtasks needed to create the panorama. Following these requirements
the thesis showed that the success of coping with the challenges was due to thorough
understanding of which information was actually required, followed by the effective
application of deep learning networks and selected learning methods.
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The second part of this thesis focused on improving road user perception for auto-
mated driving vehicles. By thorough analysis of available sensors and their data and
application of promising learning methods, an effective application of a deep learned
neural network was obtained that improved road user recognition performance for
automated driving. For road user prediction, classical methods mostly used motion
information to predict future trajectories. By analysing how humans perform the
driving task, it became apparent that other factors such as road geometry and road
user interaction considerably influence their actions. Therefore, these factors have
been incorporated in the prediction process using various deep learning methods.

In this thesis in two domains of perception tasks | showed that deep learning can
be fruitfully used. However, this can only be achieved by a deep understanding
of the task itself and its decomposition into subtasks, the data that is needed in
every subtask, the selection and modelling of adequate network architectures and
the selection and modelling of the proper learning algorithms. This is not trivial.
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A.1 How do humans learn tasks

To understand how humans can learn a given task, two aspects of this process are
described; First, what are tasks and how to structure them and second, what methods
are used by humans to learn these tasks.

A.1.1 Tasks

If there is a desired change that requires an action of the human, they can chose to
do many different things, which can be described as tasks. For example, in driving
a car, a driver wants to go somewhere and to achieve this he has to operate the
car. Currently this is done by controlling the car with the steering wheel to change
direction and the accelerator and braking pedals to control the speed. Also, the
driver observes the environment around the vehicle. With this information the driver
continuously makes decisions on what to do. For example, the driver observes a
traffic light and notices that it is red. This means that the driver is not allowed to
continue. Therefore the driver decides to stop and controls the car to stop in front
of the traffic light.

Taking the example above, performing a task can be split into three distinct steps
according to the sense-thing-act paradigm [16, 87] as detailed below:

Sensing is where the environment is observed and the relevant information is ex-
tracted. In the example, a traffic light is observed and the driver extracts the relevant
information by noticing it is red.

The Thinking step uses the relevant information to make an abstraction into a mean-
ing and a decision is made. For a red traffic light, the driver knows that he cannot
continue to drive and should decide to stop.

Acting transforms the decision into one or more actions that effectuates this decision.
For example the decision of stopping is done by pressing the brake pedal.

The above described task is to stop in front of the red traffic light. However,
this stopping action can also be split into a smaller task; First, the driver observes
the vehicle’s speed and the traffic light or the stopping line. Second, the speed is
abstracted into a distance to stop and compared with the distance to where the
driver has to stop. This is translated into a decision of waiting and/or slowing down.
Last, the decision is transformed into an action of doing nothing, moving the foot
to the brake pedal and/or pressing it.

Just as the above example of the stopping task is part of the task reacting on a
traffic light, many tasks can be described as the hierarchical combination of multiple
tasks, forming complex tasks. Furthermore, the division of these (complex) tasks



into smaller tasks, allows these tasks to be reused as parts of other complex tasks.
For example, the subtask of determining if no traffic is approaching when crossing the
street while walking, can also be used to determine if it is safe to cross an intersection
when driving a car. Therefore, it is important to understand how to structure tasks.

A.1.2 How humans learn

Even though the human brain is a complex machine and is capable of learning many
things, humans split complex tasks into manageable parts. These parts are tasks
that can again consist of multiple smaller tasks. Learning these tasks is challenging
and humans have various ways of learning tasks of different levels of complexity.
However, in the context of machine learning the three most relevant learning methods
are described here:

Learning by Example is where an example of the task is presented. An example is
how a parent teaches a child the word 'apple’. The parent shows an apple to the
child and speaks the word ’apple’. The child will look at the apple and will learn
the appearance of the object shown (Sensing). At the same time the child will hear
the word (Sensing) and learns that the shown object is an "apple’ (Thinking). By
repeating the word 'apple’ the parent is trying to make the child also say the word
"apple’. After a while, the child will be able to pronounce the word correctly (Acting)
and has learned what an apple is and is able to communicate with other humans
about this object.

Learning by Doing is a learning approach with a set of approaches to learn a task
by performing the task. In the first approach, called Trial and Error, part of the
Sense-Think-Act steps is known, but not all. For example a child is trying to put
a block into the box with different shaped holes (Figure A.1). The child knows it
has to get the block into the box and has learned how to handle blocks and how
to put a block through a hole (Acting). However, it doesn't understand yet that
a specific shaped block only fits through the inverse shaped hole. By trying many
different possibilities, it explores the possibilities up to the point it has found the
right hole. After being successful putting blocks in the box, the child will try to find
the relevant differences between the failing trials and the successful ones. After a
while it has learned that the shape is important (Sensing). Next, the child will start
to understand the meaning of the shape and its inverse hole, such that it will allow
the block to pass (Thinking).

Another approach is Exploration which is a learning method that fine-tunes what has
already been learned. This can be for all three steps of a task. For example adults
that passed their driving exam, have learned the basics of driving. While driving,

135



136

|  Chapter A

Figure A.1: Example of shape sorting toy.

more and more experience is build up, obtaining a better understanding of all the
variations of the situations that can be encountered. The driver often will use a
form of self-supervised learning, on their own driving performance, trying to improve
their driving skills. Such as reacting more efficiently to an unexpected situation to
drive more safely (Thinking) or taking a curve more smoothly in order to drive more
comfortably (Acting).

Transfer Learning is a learning method where knowledge of one task is used in learning
of performing another task. For example recognizing a red light can be used in many
different tasks, such as understanding the state of a traffic light, a electronic door
lock or if a device is on or off. Another example is when a child learns to recognize
a toy car, the same knowledge can be used to learn to recognize real cars and with
the help of Exploration a person can learn to recognize all kind of cars, and is able
to use this when learning on how to drive a car.

With the understanding of tasks and of human learning, only one required aspect
is missing in order to transfer learning of complex tasks. The information that
is required to learn a task is not easily described, as humans have many different
senses, of which the data is unconsciously abstracted. Therefore, it is very difficult
to describe exactly what information is used. Furthermore, as humans are very
complex systems that have learned many different tasks, it is difficult to segregate
what type of experience is used in order to learn a new task.



A.2 Machine Learning

To make life better, humans try to make machines take over tasks, such as driving
a car. To make a machine perform a task, they generally need to be programmed
to do so. These tasks can be programmed by logic or mathematical constructs, like
functions to convert the sensor input to a more meaningful format (Sensing), rules
what to do when encountered a certain input (Thinking) and how to control a certain
output (Acting).

Also machines are often programmed in the same Sense-Think-Act steps to perform
tasks. In the example of stopping for a red traffic light, one could define a method
that detects traffic lights by defining their shape and trying to match different areas
of a camera image to this shape (Sensing). Furthermore, it is a convention that
the top light is red and has meaning to stop. Thus, a rule can be defined to check
for the color in three areas of the traffic light to extract the state. In the case the
traffic light is red, the vehicle has to stop (Thinking). In that case, also the distance
to the traffic light is obtained and a deceleration profile is calculated such that it is
efficient and comfortable (Thinking). Then this deceleration profile is used by the
vehicle controller to slow down the vehicle and stop at the right position (Acting).

Simple tasks are easily programmed, however complex tasks often consist of many
different smaller tasks, which require a lot more work. Also, a programmed task is
often created for that specific task and thus less easily reused in another complex
task. For example, a piece of code recognizing a traffic light, will focus on the fact
that the top light is red, middle one yellow and the bottom light green. This piece
of code is not easily transferred to a task of recognizing the state of an electronic
door lock with only a red and green light, that has no specific position relationship.

In contrast, machine learning focusses on making a machine learn a task, instead of
programming it. This is achieved by creating a (code) construct that can transform
an input to an desired output by learning how to do this. The code of recognizing
the state of a traffic light can also be used to learn to recognize the state of an
electronic door lock. The only difference is what is contained in the input, namely a
picture of a traffic light or that of an electronic door lock. Therefore, the ability to
learn a task, allows to generalize a task and to transfer this knowledge to another
complex task (Transfer Learning).
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A.2.1 Neural Networks

Since the 1980’s many researchers have tried to apply machine learning similar to
how humans learn tasks by (partially) artificially recreating the human brain. The
human brain consists of neurons of which one is shown in Figure A.2. Each neuron
receives signals from other neurons through its dendrites. Accordingly to the received
inputs the neuron activates and subsequently sends a signal to other neurons through
it axon. The human brain is formed by interconnecting about 86 billion of these
neurons into a network, allowing it to learn complex tasks.
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Figure A.2: Description of human neuron (adopted from [137])

These neurons have been artificially recreated by researchers on computers as shown
in Figure A.3. Inputs of other neurons x; are weighted and summed. The neuron
activates according to an activation function such as a sigmoid or tanh function.
This output is then shared to other neurons. Connecting multiple of these neurons
creates an artificial neural network.
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Figure A.3: Artificial model of a neuron (adopted from [137])



A simple example of such a neural network is depicted in Figure A.4. These neurons
are often arranged in the form of layers describing the steps from in- to output.
The input layer provides inputs to the dendrites of the first layer of neurons. These
neurons are then all connected to a second layer of neurons. Finally the output layer
is a (single) neuron describing the output of the network. Since the two middle layers
are not accessible, they are called hidden layers of the network.
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Figure A.4: Artificial Neural Network (adopted from [137])

These networks could learn complex abstractions between input and output and
therefore easily learn simple tasks. Though this approach seemed promising, it lacked
the ability to be extended to complex tasks. To understand why these type of neural
networks lack the ability to learn complex tasks, a better understanding is needed on
how those networks work and are trained.

The network described in Figure A.4 has three inputs, two hidden layers of each four
nodes and one output layer. This network thus has 32 weights and 9 biases, making
the number of parameters to be learned 41. This could be solved with linear algebra
or methods such as least squares fitting, though it would require 41 input-output
pairs that precisely describe all variations of the input.

Unfortunately, obtaining such an input set is near impossible. Therefore, to find
the values of these parameters, it is learned through feedback of an error function.
The network is initialized with random parameters. The network is fed an input and
calculates an output. The difference between this output and the desired output
is calculated as the error of the network. This error is then in the form of a gra-
dient propagated backward through the network, updating the parameters of each
neuron. By repeating this process, preferable with multiple iterations of all possible
combinations of the input-output pairs, the parameters are learned.
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However, such neural networks failed learning complex tasks due to three reasons:
First, for complex tasks, the required abstraction requires multiple hidden layers with
many neurons, increasing the number of simulated neurons drastically to the point
they could not be simulated any more. Thus, the abstraction capabilities of a neural
network are limited.

Second, for complex tasks, the input is larger and contains more data. For example,
consider a very small image of 16 x 16 = 256 pixels, each with only 10 different
possible values. Then there are 10%%° possible variations of this image, making it
infeasible to try to learn all possible variations. Thus, in learning a task, a general-
ization of the information has to be learned as well.

Last, complex tasks generally consist of multiple smaller tasks. Humans instinctively
know how to split this up and what part of the task to change. In a sense humans
can correctly update the right parameters in one go, while with neural networks all
parameters are updated in small steps. Thus, the learning process is inaccurate and
slow.

Therefore, interest in neural networks was limited to learning more simple tasks, for
which the amount and variation of required information was limited.

A.2.2 Deep Learning

However, recently the scientific community has revisited the concept of neural net-
works with deep-learning that allows to create more complex (deeper) neural net-
works. This was instantiated by a few advances, of which four stand out;

First, the internet and the availability of data rose to the concept of big data, giving
access to much more data to learn from. An example is the large number of images
that is available in the ImageNet Challenge (ILSVRC) [104]

Second, with advances in GPU'’s the available computing power increased drastically
and allowed to create much more complex network designs.

Third, the introduction of more complex learning methods such as batch learning
and optimized descent methods, increased the learning performance and speed.
Last, the ease of creating and using neural networks. This was fuelled by a few good
deep learning frameworks such as Caffe [54] and Tensorflow [1].

A good example of where the introduction of deep-learning found success is the
ImageNet Challenge where images have to be classified and objects localized. This
challenge contains a previously unseen large amount of data with 10 million images
labelled into 1000 different object classes. Deep learned Convolutional Neural Net-
works such as AlexNet [62], OverFeat [112], VGG [117], Inception [52, 124, 126, 127]
and ResNet [48] showed great successes. These networks all have shown a drastic
increase in the number of hidden layers. This increase can be explained due to three



advances; First, the use convolutional layers, that contain many times less neurons
compared to fully connected layers. Furthermore, through the advances in learning
methods the weights remain stable even while increasing the number of hidden layers.
Lastly, also the huge increased in computational power made this possible.

This increase in layers allowed to learn previously unseen visual complexity, resulting
in networks learning visual patterns such as edges, corners, but also shapes, that are
spatial independent, which was not previously possible in traditional neural networks.
Which brings the last major advancement, that of Transfer Learning, where the
weights and neural network structure trained on e.g. ImageNet data is used to train
on a different set of data and even on data from a complete different domain, such
as detection of cancer in medical images. This allows a huge increase in development
speed of neural networks.

A.2.3 Human Learning in Deep Learning

Human learning methods are used in deep learning as well. With the example of how
AlphaGo learned to play, it can be shown how the human learning methods are used
to train neural networks similar to how humans learn.

Learning by Example is one of the most used learning methods in machine learning,
referred to as supervised learning, where the input and desired output are provided.
In AlphaGo this approach is used to initialize the policy network by learning from
moves by expert human players. The input of the network is defined as the current
state of the board and the output is a softmax probability distribution over all legal
moves in each state. In a sense the system learns which moves are allowed and which
moves are good according to games previously played by experts .

The supervised learned policy network is fine-tuned through games of self-play, thus
Learning by Doing. This achieves that the policy network learns policies; combination
of positions and moves, that win the game rather then mimicking human moves
through Exploration. Similarly to how humans improve their playing and find new
tactics by gaining experience through playing games against themselves.

Finally a value network is created, providing a success value for a given state. This
network is trained by exploring the input space, all the possible positions on the board,
and feeding back the outcome of this game. Through training enough state-outcome
pairs, the value of a state is learned, resulting in learning the meaning with respect
to the possible action, such as in learning through Trial and Error.

As described in the previous section, the ability to reuse previously learned neural
networks in learning different unrelated tasks covers the last component of Transfer
Learning in the human learning methods. With these learning method humans can
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learn any task, which can be reproduced in deep learning. Therefore, the next section
describes what is needed to for deep learning to achieve the same.

A.2.4 Requirements for Deep Learning

With the understanding of how humans structure tasks and learn these, combined
with an understanding of how to train neural networks through deep learning, it
should be possible to better describe the requirements to transfer human learning to
machine learning of tasks.

The input data of a neural network is the source of everything, as it contains the
relevant data from which the meaning for the decision making has to be extracted.
In selecting the data, some things have to be considered;

First, the format of the data should represent the relevant information clear enough
that it can be extracted. For example, learning to recognize different fruits requires
color information above every other feature, as the difference between round fruits
like apples, oranges, peaches etc. is mostly determined by the color information.
Second, The variations of the relevant information should be represented well. For
example, apples have different shapes as well different colors. These should be
contained within the input data.

Third, for the amount of data a balance has to be found. An increase in data
requires longer training. But also the balance within the variations of the data
should be found, a neural network will not be able to learn the difference between
apples and oranges if it is fed 1000 images of apples and only 10 images of oranges.
Furthermore, these 1000 images of apples, probably contain redundant images of
the variations that can be encountered.

Fourth, defining what is irrelevant information is just as important as defining what is
relevant, as not all possible combinations of the input data can be used for training.
For example, learning the color variations of red, yellow and green apples, compared
to oranges, will probably result in the network learning that all non-orange colored
objects are apples. But this invertedly also includes blue apples, so training the
network with a blue object as 'not-apples’ would prevent this.

Last, also the desired output (labels) of the input data, should be considered. In the
example of different coloured apples, it could be beneficial to define different labels
for red, yellow and green apples, allowing to learn what type of apples are there and
exclude the case of 'blue apples’. Therefore, the data used has to be carefully chosen
and can be transformed to generate more samples and small variations.

The architecture of a network is of great importance as well. On one hand the
network needs a certain level of complexity to enable the network to abstract the
relevant information and transform this to the desired output. While, on the other



hand, the network should not be too complex, such that the parameters in the
network cannot be learned from the available data. Also, too many parameters will
make the network overfit on the data, by learning the fine difference of each training
sample and loose the ability to generalize over the variations within the data.

With the rise of deep learning, the convolutional layer was (re)introduced. This layer
moves a kernel with only a few parameters over the image. By combining multiple
kernels, the convolutional layer learns to recognize patterns in the input data. This
not only reduces the number of parameters but also can recognize these patterns
independent on their location in the data, allowing for a strong generalization over
the data. Then in turn allows to create structures with convolutional layers such
as Inception [126] and ResNet [48] architectures, introducing the ability to abstract
even more complex tasks and find correlations in these abstractions.

Furthermore, the introduction of Recurrent Neural Networks (RNN) [76] enables
a neural network of reusing abstractions from previous iterations to influence the
current abstractions. The outcome of a previous abstraction is combined with the
current abstraction. This is then further abstracted and shared to the next iteration.
This allows the network to remember the state. As such memory can be formed,
like Long Short Term Memory (LSTM) [37] which can remember recent information
through passing and has learned how to extract the relevance (long term memory).
Therefore, it is key to choose the right architecture and complexity to be able to
learn the given task.

Also, the learning method is of great importance, as it updates the parameters of
the network, such that it can abstract the data into the desired output.

For example, batch learning uses multiple inputs simultaneously and calculates a more
generalized and stable gradient. This makes the gradient update of the network less
susceptible to small (unwanted) variations in the input data. And reduces the chance
of over-fitting and getting stuck in local minima of the parametrization space.
Furthermore, the learning method in the form of the loss or error function should be
considered carefully. Generally the error is calculated between the networks and the
desired output and an update is obtained based on this difference. Which reflects
the human learning method of Learning by Example which is often revered to as
supervised learning in machine learning.

There are also different approaches on how to obtain the updates of the network.
For example, in contrastive loss [45] the error is defined between two outputs of the
network. For example, two inputs of apples are fed to the network, the output of the
network should be the same, namely "apples’. Thus, the gradient is defined such that
the difference is minimized. But for an input of an apple and an orange, the output
should be different, making the gradient maximizing this difference. Redefining the
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learned task in the form of (dis)similarity, can improve the abstraction that is learned.
Which is very similar to humans learning from mistakes, whom will define a strong
learning update to not repeat the same mistake like in Trial and Error.

In the previous approaches the desired output is defined as a discrete label. Although
this is one of the easiest types of describing desired outputs, it is certainly not the only
form. Other approaches define other forms of outputs such as image segmentation
in SegNet [5] where every value in the input is classified. Or, the translation of a
sentence from one to another language as done by sequence-to-sequence networks
in Google translate [122]. Also, obtaining the presence and location of an object
as used in the Single Shot Detector (SSD) [74]. Therefore, defining different type
of outputs, will allow for different type of tasks to be learned as these are directly
related.

Lastly, other human learning methods are represented in machine learning as well. In
semi-supervised learning, the task is described and defined such that no desired output
has to be defined with the input data. Often, another method will approximate the
desired output. Another approach in machine learning is reinforcement learning where
a scoring or cost function is defined to describe the success of a task [18, 105, 123].
These approaches reflect the human learning methods of trial-and-error and learning-
by-doing

The three key aspects that have to be considered in deep learning a complex tasks;
the task, the data and the learning construct have been described together with
methods that can be used. However, there is no clear guideline what methods can
be used to learn a specific complex task. As well as when a chosen setup for deep
learning a complex task will be successful. Effectively, the task of learning a machine
a specific task is still not understood in detail by humans. Therefore, for researchers
deep learning is often a process of trial-and-error of different methods and varying
setups and finally choosing the best performing one.



145

References

[1] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado,
G.S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A.,
Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg,
J., Mané, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M.,
Shlens, J., Steiner, B., Sutskever, |., Talwar, K., Tucker, P., Vanhoucke, V.,
Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke,
M., Yu, Y., and Zheng, X. (2015). “Tensorflow: Large-scale machine learning
on heterogeneous systems”. URL http://tensorflow.org/. Software available
from tensorflow.org.

[2] Alahi, A., Goel, K., Ramanathan, V., Robicquet, A., Fei-Fei, L., and Savarese,
S. (2016). “Social LSTM: Human Trajectory Prediction in Crowded Spaces”.
2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
pp. 961-971.

[3] Assembly, U.G. (2015). “Transforming our world: the 2030 agenda for sustain-
able development”. URL https://www.refworld.org/docid/57b6e3e44.html.

[4] Automotive Engineers SAE, S. of (2018). “Levels of automation j3016”. URL
https://www.sae.org/standards/content/j3016 201806/.

[5] Badrinarayanan, V., Kendall, A., and Cipolla, R. (2017). “Segnet: A deep
convolutional encoder-decoder architecture for image segmentation”. |EEE
transactions on pattern analysis and machine intelligence, 39(12), pp. 2481—
2495.

[6] Bahdanau, D., Cho, K., and Bengio, Y. (2014). “Neural machine translation
by jointly learning to align and translate”. arXiv preprint arXiv:1409.0473.

[7] Barber, D. (2004). “A stable switching kalman smoother”.

[8] Bay, H., Ess, A., Tuytelaars, T., and Van Gool, L. (2008). “Speeded-up robust
features (surf)”. Computer vision and image understanding, 110(3), pp. 346—
359.

[9] Behrens, A., Stehle, T., Gross, S., and Aach, T. (2009). “Local and global
panoramic imaging for fluorescence bladder endoscopy”. 2009 Annual Inter-
national Conference of the IEEE Engineering in Medicine and Biology Society,
pp. 6990-6993.

[10] Belgiovane, D. and Chen, C.C. (2016). “Bicycles and human riders backscat-


http://tensorflow.org/
https://www.refworld.org/docid/57b6e3e44.html
https://www.sae.org/standards/content/j3016_201806/

146

References

[11]

[12
[13]

—_—

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

tering at 77 ghz for automotive radar”. 2016 10th European Conference on
Antennas and Propagation (EuCAP), pp. 1-5.

Bengio, S., Vinyals, O., Jaitly, N., and Shazeer, N. (2015). “Scheduled sam-
pling for sequence prediction with recurrent neural networks”. Advances in
Neural Information Processing Systems, pp. 1171-1179.

Bishop, C.M. (2006). “Pattern recognition and machine learning”. springer.

Blackman, S. and Popoli, R. (1999). “Design and analysis of modern tracking
systems(book)”. Norwood, MA: Artech House, 1999.

Brand, M., Oliver, N., and Pentland, A. (1997). “Coupled hidden Markov
models for complex action recognition”. Proceedings of IEEE Computer So-
ciety Conference on Computer Vision and Pattern Recognition (1997), pp.
994-999.

Bromley, J., Bentz, J.W., Bottou, L., Guyon, I., LeCun, Y., Moore, C.,
Sackinger, E., and Shah, R. (1993). “Signature verification using a 4AlJsiame-
sedAl time delay neural network”. International Journal of Pattern Recognition
and Artificial Intelligence, 7(04), pp. 669—688.

Brooks, R.A. et al. (1991). “Intelligence without reason”. Artificial intelligence:
critical concepts, 3, pp. 107-63.

Brown, M. and Lowe, D.G. (2007). “Automatic panoramic image stitching
using invariant features”. International journal of computer vision, 74(1), pp.
59-73.

Busoniu, L., Babuska, R., De Schutter, B., and Ernst, D. (2010). “Reinforce-
ment learning and dynamic programming using function approximators”. CRC
press.

Calonder, M., Lepetit, V., Strecha, C., and Fua, P. (2010). “Brief: Binary
robust independent elementary features”. Computer Vision—ECCV 2010, pp.
778-792.

Campbell, M., Hoane, Jr., A.J., and Hsu, F.h. (2002). “Deep blue”. Artif.
Intell., 134(1-2), pp. 57-83.

Carroll, R.E. and Seitz, S.M. (2009). “Rectified surface mosaics”. International
journal of computer vision, 85(3), pp. 307-315.

Chen, X., Kundu, K., Zhang, Z., Ma, H., Fidler, S., and Urtasun, R. (2016).
“Monocular 3d object detection for autonomous driving”. Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, pp. 2147—



[23]

[24]

[25]

[26]

[27]

28]

[29]

[30]

[31]

[32]

References |

2156.

Chen, X., Kundu, K., Zhu, Y., Berneshawi, A.G., Ma, H., Fidler, S., and
Urtasun, R. (2015). “3d object proposals for accurate object class detection”.
Advances in Neural Information Processing Systems, pp. 424—432.

Chen, X., Ma, H., Wan, J., Li, B., and Xia, T. (2017). “Multi-view 3d object
detection network for autonomous driving”. Proceedings of the IEEE Confer-
ence on Computer Vision and Pattern Recognition, pp. 1907-1915.

Chmait, R.H., Kontopoulos, E.V., Korst, L.M., Llanes, A., Petisco, I., and
Quintero, R.A. (2011). “Stage-based outcomes of 682 consecutive cases of
twin—twin transfusion syndrome treated with laser surgery: the usfetus expe-
rience”. American journal of obstetrics and gynecology, 204(5), pp. 393—el.

Cho, K., Van Merriénboer, B., Gulcehre, C., Bahdanau, D., Bougares, F.,
Schwenk, H., and Bengio, Y. (2014). “Learning phrase representations us-
ing rnn encoder-decoder for statistical machine translation”. arXiv preprint
arXiv:1406.1078.

Crombleholme, T.M., Shera, D., Lee, H., Johnson, M., DaAZAlton, M.,
Porter, F., Chyu, J., Silver, R., Abuhamad, A., Saade, G., et al. (2007).
“A prospective, randomized, multicenter trial of amnioreduction vs selective
fetoscopic laser photocoagulation for the treatment of severe twin-twin trans-
fusion syndrome”. American Journal of Obstetrics & Gynecology, 197(4), pp.
396—el.

Deo, N. and Trivedi, M.M. (2018). “Convolutional Social Pooling for Vehicle
Trajectory Prediction”.

Dong, C., Dolan, J.M., and Litkouhi, B. (2017). “Intention estimation for
ramp merging control in autonomous driving”. Intelligent Vehicles Symposium
(IV), 2017 IEEE, pp. 1584-1589.

Enzweiler, M. and Gavrila, D.M. (2009). “Monocular pedestrian detection:
Survey and experiments”. |EEE transactions on pattern analysis and machine
intelligence, 31(12), pp. 2179-2195.

Fischler, M.A. and Bolles, R.C. (1981). “Random sample consensus: a
paradigm for model fitting with applications to image analysis and automated
cartography”. Communications of the ACM, 24(6), pp. 381-395.

Flohr, F., Dumitru-Guzu, M., Kooij, J.F., and Gavrila, D.M. (2015). “A prob-
abilistic framework for joint pedestrian head and body orientation estimation”.

147



148

References

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

IEEE Transactions on Intelligent Transportation Systems, 16(4), pp. 1872—
1882.

Gaisser, F., Jonker, P.P., and Chiba, T. (2016). “Image registration for pla-
centa reconstruction”. Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition Workshops, pp. 33—40.

Gaisser, F., Peeters, S.H., Lenseigne, B., Jonker, P.P., and Oepkes, D. (2017).
“Fetoscopic panorama reconstruction: Moving from ex-vivo to in-vivo”. Annual
Conference on Medical Image Understanding and Analysis, pp. 581-593.

Galceran, E., Cunningham, A.G., Eustice, R.M., and Olson, E. (2017). “Multi-
policy decision-making for autonomous driving via changepoint-based behavior
prediction: Theory and experiment”. Autonomous Robots, pp. 1-16.

Geiger, A., Lenz, P., and Urtasun, R. (2012). “Are we ready for autonomous
driving? the kitti vision benchmark suite”. Computer Vision and Pattern
Recognition (CVPR), 2012 IEEE Conference on, pp. 3354-3361.

Gers, F.A., Schmidhuber, J., and Cummins, F. (1999). “Learning to forget:
Continual prediction with Istm”.

Gindele, T., Brechtel, S., and Dillmann, R. (2010). “A probabilistic model for
estimating driver behaviors and vehicle trajectories in traffic environments”. In-
telligent Transportation Systems (ITSC), 2010 13th International IEEE Con-
ference on, pp. 1625-1631.

Gindele, T., Brechtel, S., and Dillmann, R. (2013). “Learning context sensi-
tive behavior models from observations for predicting traffic situations”. |EEE
Conference on Intelligent Transportation Systems, Proceedings, ITSC, ltsc,
pp. 1764-1771.

Girshick, R. (2015). “Fast r-cnn”. Proceedings of the IEEE international
conference on computer vision, pp. 1440-1448.

Girshick, R., Donahue, J., Darrell, T., and Malik, J. (2014). “Rich feature
hierarchies for accurate object detection and semantic segmentation”. Pro-

ceedings of the IEEE conference on computer vision and pattern recognition,
pp. 580-587.

Goodfellow, ., Bengio, Y., and Courville, A. (2016). “Deep learning”. URL
http://www.deeplearningbook.org. Book in preparation for MIT Press.

Gupta, A., Johnson, J., Fei-Fei, L., Savarese, S., and Alahi, A. (2018). “Social
GAN: Socially Acceptable Trajectories with Generative Adversarial Networks”.


http://www.deeplearningbook.org

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

References |

Hack, K., Derks, J., Elias, S., Franx, A., Roos, E., Voerman, S., Bode, C.,
Koopman-Esseboom, C., and Visser, G. (2008). “Increased perinatal mortality
and morbidity in monochorionic versus dichorionic twin pregnancies: clinical
implications of a large dutch cohort study”. BJOG: An International Journal
of Obstetrics & Gynaecology, 115(1), pp. 58-67.

Hadsell, R., Chopra, S., and LeCun, Y. (2006). “Dimensionality reduction by
learning an invariant mapping”. Computer vision and pattern recognition, 2006
IEEE computer society conference on, volume 2, pp. 1735-1742.

Harris, C. and Stephens, M. (1988). “A combined corner and edge detector.”
Alvey vision conference, volume 15, p. 50.

Hartley, R. and Zisserman, A. (2003). “Multiple view geometry in computer
vision”. Cambridge university press.

He, K., Zhang, X., Ren, S., and Sun, J. (2016). “Deep residual learning for
image recognition”. Proceedings of the |IEEE conference on computer vision
and pattern recognition, pp. 770-778.

Hecher, K., Diehl, W., Zikulnig, L., Vetter, M., and Hackelter, B.J. (2000).
“Endoscopic laser coagulation of placental anastomoses in 200 pregnancies
with severe mid-trimester twin-to-twin transfusion syndrome”. European Jour-
nal of Obstetrics & Gynecology and Reproductive Biology, 92(1), pp. 135-1309.

Hochreiter, S. and Schmidhuber, J. (1997). “Long short-term memory”. Neural
computation, 9(8), pp. 1735-1780.

Institute, T.A.T. (2019). “Urban mobility report”. URL https://static.tti.
tamu.edu/tti.tamu.edu/documents/mobility-report-2019.pdf.

loffe, S. and Szegedy, C. (2015). “Batch normalization: Accelerating
deep network training by reducing internal covariate shift”. arXiv preprint
arXiv:1502.03167.

Itseez (2015). “Open source computer vision library”. URL https://github.
com/itseez/opencv.

Jia, Y., Shelhamer, E., Donahue, J., Karayev, S., Long, J., Girshick, R.,
Guadarrama, S., and Darrell, T. (2014). “Caffe: Convolutional architecture for
fast feature embedding”. Proceedings of the ACM International Conference
on Multimedia, MM '14, pp. 675-678. URL http://doi.acm.org/10.1145/
2647868.2654889.

Jo, K., Lee, M., Kim, J., and Sunwoo, M. (2017). “Tracking and behavior

149


https://static.tti.tamu.edu/tti.tamu.edu/documents/mobility-report-2019.pdf
https://static.tti.tamu.edu/tti.tamu.edu/documents/mobility-report-2019.pdf
https://github.com/itseez/opencv
https://github.com/itseez/opencv
http://doi.acm.org/10.1145/2647868.2654889
http://doi.acm.org/10.1145/2647868.2654889

150

References

[56]

[57]

[58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]

reasoning of moving vehicles based on roadway geometry constraints”. |EEE
Transactions on Intelligent Transportation Systems, 18(2), pp. 460-476.

Kato, T., Ninomiya, Y., and Masaki, |. (2002). “An obstacle detection method
by fusion of radar and motion stereo”. |EEE Transactions on Intelligent Trans-
portation Systems, 3(3), pp. 182-188.

Kim, B., Kang, C.M., Lee, S.H., Chae, H., Kim, J., Chung, C.C., and Choi,
JW. (2017). “Probabilistic vehicle trajectory prediction over occupancy grid
map via recurrent neural network”.

Kingma, D. and Ba, J. (2014). “Adam: A method for stochastic optimization”.
arXiv preprint arXiv:1412.6980.

Klingelschmitt, S. and Eggert, J. (2015). “Using Context Information and
Probabilistic Classification for Making Extended Long-Term Trajectory Pre-
dictions”.

Klingelschmitt, S., Platho, M., GroB, H.M., Willert, V., and Eggert, J. (2014).
“Combining behavior and situation information for reliably estimating multiple
intentions”. Intelligent Vehicles Symposium Proceedings, 2014 |IEEE, pp. 388—
393.

Kooij, J.F.P., Schneider, N., Flohr, F., and Gavrila, D.M. (2014). “Context-
based pedestrian path prediction”. European Conference on Computer Vision,
pp. 618-633.

Krizhevsky, A., Sutskever, |., and Hinton, G.E. (2012). “/magenet classification
with deep convolutional neural networks”. Advances in neural information
processing systems, pp. 1097—-1105.

Ku, J., Mozifian, M., Lee, J., Harakeh, A., and Waslander, S.L. (2018).
“Joint 3d proposal generation and object detection from view aggregation”.
2018 IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS), pp. 1-8.

LeCun, Y., Bengio, Y., and Hinton, G. (2015). “Deep learning”. Nature,
521(7553), pp. 436—444.

Lee, N., Choi, W., Vernaza, P., Choy, C.B., Torr, P.H.S., and Chandraker,
M. (2017). “DESIRE: Distant Future Prediction in Dynamic Scenes with
Interacting Agents”.

Leféevre, S., Vasquez, D., and Laugier, C. (2014). “A survey on motion pre-
diction and risk assessment for intelligent vehicles”. Robomech Journal, 1(1),



[67

[68

[69

[70

[71

[72

[73

[74

[75

[76

[77

]

]

]

]

]

]

]

]

]

]

—_—

References |

p. 1.

Lewi, L., Deprest, J., and Hecher, K. (2013). “The vascular anastomoses in
monochorionic twin pregnancies and their clinical consequences”. American
journal of obstetrics and gynecology, 208(1), pp. 19-30.

Lewi, L., Jani, J., Blickstein, |., Huber, A., Gucciardo, L., Van Mieghem, T.,
Doné, E., Boes, A.S., Hecher, K., Gratacés, E., et al. (2008). “The outcome
of monochorionic diamniotic twin gestations in the era of invasive fetal therapy:
a prospective cohort study”. American Journal of Obstetrics & Gynecology,
199(5), pp. 514—el.

Li, Y., Shum, H.Y., Tang, C.K., and Szeliski, R. (2004). “Stereo reconstruction
from multiperspective panoramas”. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 26(1), pp. 45-62.

Liang, M., Yang, B., Chen, Y., Hu, R., and Urtasun, R. (2019). “Multi-
task multi-sensor fusion for 3d object detection”. Proceedings of the |IEEE
Conference on Computer Vision and Pattern Recognition, pp. 7345—-7353.

Liang, M., Yang, B., Wang, S., and Urtasun, R. (2018). “Deep continuous
fusion for multi-sensor 3d object detection”. Proceedings of the European
Conference on Computer Vision (ECCV), pp. 641-656.

Liao, H., Tsuzuki, M., Kobayashi, E., Dohi, T., Chiba, T., Mochizuki, T., and
Sakuma, |. (2008). “Fast image mapping of endoscopic image mosaics with
three-dimensional ultrasound image for intrauterine treatment of twin-to-twin
transfusion syndrome”. Medical Imaging and Augmented Reality, pp. 329-338.

Liebner, M., Baumann, M., Klanner, F., and Stiller, C. (2012). “Driver intent

inference at urban intersections using the intelligent driver model”. 2012 |IEEE
Intelligent Vehicles Symposium, pp. 1162-1167.

Liu, W., Anguelov, D., Erhan, D., Szegedy, C., Reed, S., Fu, C.Y., and Berg,
A.C. (2016). “Ssd: Single shot multibox detector”. European conference on
computer vision, pp. 21-37.

Lowe, D.G. (2004). “Distinctive image features from scale-invariant key-
points”. International journal of computer vision, 60(2), pp. 91-110.

Medsker, L. and Jain, L. (2001). “Recurrent neural networks”. Design and
Applications, 5.

Michalski, R.S. (1986). “Understanding the nature of learning: Issues and
research directions”. Machine learning: An artificial intelligence approach,

151



152

References

[78]

[79]

[80]

[81]

[82]

[83]

[84]

[85]

[86]

[87]
[88]

[89]

2(1), pp. 3-25.

Middeldorp, J.M., Sueters, M., Lopriore, E., Klumper, F.J., Oepkes, D., De-
vlieger, R., Kanhai, H.H., and Vandenbussche, F.P. (2007). “Fetoscopic laser
surgery in 100 pregnancies with severe twin-to-twin transfusion syndrome in
the netherlands”. Fetal diagnosis and therapy, 22(3), pp. 190-194.

Milch, S. and Behrens, M. (2001). “Pedestrian detection with radar and com-
puter vision”.

Murphy, K.P. (1998). “Switching kalman filters 1 introduction”. Dynamical
Systems, 1(August), pp. 1-16.

Oliveira, L. and Nunes, U. (2013). “Pedestrian detection based on lidar-driven
sliding window and relational parts-based detection”. Intelligent Vehicles Sym-
posium (IV), 2013 IEEE, pp. 328-333.

Park, S., Kim, B., Kang, C.M., Chung, C.C., and Choi, J.W. (2018).
“Sequence-to-Sequence Prediction of Vehicle Trajectory via LSTM Encoder-
Decoder Architecture”.

Peeters, S. (2015). “Training and teaching fetoscopic laser therapy: assess-
ment of a high fidelity simulator based curriculum”. Ph.D. thesis, Leiden
University Medical Center.

Peeters, S. et al. (2015). “Simulator training in fetoscopic laser surgery for
twin—twin transfusion syndrome: a pilot randomized controlled trial”. Ultra-
sound in Obstetrics & Gynecology, 46(3), pp. 319-326.

Peter J. Rousseeuw (1984). “Least median of squares regression”. Journal of
the American Statistical Association, 79(388), pp. 871, , 880.

Petrich, D., Dang, T., Kasper, D., Breuel, G., and Stiller, C. (2013). “Map-
based long term motion prediction for vehicles in traffic environments”. |EEE
Conference on Intelligent Transportation Systems, Proceedings, ITSC, (ltsc),
pp. 2166-2172.

Pfeifer, R. and Scheier, C. (2001). “Understanding intelligence”. MIT press.

Pool, E.A., Kooij, J.F., and Gavrila, D.M. (2017). “Using road topology to
improve cyclist path prediction”. Intelligent Vehicles Symposium (1V), 2017
IEEE, pp. 289-296.

Pratt, L. and Jennings, B. (1996). “A survey of transfer between connectionist
networks”. Connection Science, 8(2), pp. 163—-184.



[90]

[91]

[92]

[93]

[94]

[95]

[96]

[97]

[98]

[99]

[100]

[101]

References |

Pratt, L.Y. (1993). “Discriminability-based transfer between neural networks”.
Advances in neural information processing systems, pp. 204—-211.

Premebida, C., Carreira, J., Batista, J., and Nunes, U. (2014). “Pedestrian
detection combining rgb and dense lidar data”. 2014 |EEE/RSJ International
Conference on Intelligent Robots and Systems, pp. 4112—4117.

Premebida, C. and Nunes, U.J.C. (2013). “Fusing lidar, camera and seman-
tic information: A context-based approach for pedestrian detection”. The
International Journal of Robotics Research, p. 0278364912470012.

Qi, C.R., Liu, W., Wu, C., Su, H., and Guibas, L.J. (2018). “Frustum pointnets
for 3d object detection from rgb-d data”. Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, pp. 918-927.

Quintero, R.A., Ishii, K., Chmait, R.H., Bornick, P.W., Allen, M.H., and
Kontopoulos, E.V. (2007). “Sequential selective laser photocoagulation of
communicating vessels in twin—twin transfusion syndrome”. The Journal of
Maternal-Fetal & Neonatal Medicine, 20(10), pp. 763-768.

Raipuria, G. (2017). “Situational awareness in intelligent vehicles”. Master's
thesis, Delft University of Technology - Mechanical Engineering.

Raipuria, G. (2017). “Vehicle trajectory prediction using road structure”. Mas-
ter's thesis, Delft University of Technology - Mechanical Engineering. URL
http://resolver.tudelft.nl/uuid:6caelb47-f44e-4b74-8bfd-9098ce843e68.

Raipuria, G., Gaisser, F., and Jonker, P.P. (2018). “Road infrastructure indi-
cators for trajectory prediction”. 2018 IEEE Intelligent Vehicles Symposium
(IV), pp. 537-543.

Redmon, J., Divvala, S., Girshick, R., and Farhadi, A. (2016). “You only look
once: Unified, real-time object detection”. Proceedings of the IEEE conference
on computer vision and pattern recognition, pp. 779-788.

Reeff, M., Gerhard, F., Cattin, P.C., and Székely, G. (2006). “Mosaicing of
endoscopic placenta images”. Informatik fAijr Menschen, volume 1.

Ren, S., He, K., Girshick, R., and Sun, J. (2015). “Faster r-cnn: Towards
real-time object detection with region proposal networks”. Advances in neural
information processing systems, pp. 91-99.

Roberts, D., Neilson, J.P., Kilby, M., and Gates, S. (2008). “Interventions for
the treatment of twin-twin transfusion syndrome”. Cochrane Database Syst
Rev, 1.

153


http://resolver.tudelft.nl/uuid:6cae1b47-f44e-4b74-8bfd-9098ce843e68

154

References

[102]

[103]

[104]

[105]

[106]

[107]

[108]

[109]

[110]

[111]

[112]

[113]

Roberts, J.W. (2002). “Beyond learning by doing: The brain compatible ap-
proach”. Journal of Experiential Education, 25(2), pp. 281-285.

Rublee, E., Rabaud, V., Konolige, K., and Bradski, G. (2011). “Orb: An
efficient alternative to sift or surf”. Computer Vision (ICCV), 2011 IEEE
International Conference on, pp. 2564—2571.

Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S., Ma, S., Huang,
Z., Karpathy, A., Khosla, A., Bernstein, M., Berg, A.C., and Fei-Fei, L.
(2015). “ImageNet Large Scale Visual Recognition Challenge”. International
Journal of Computer Vision (1JCV), 115(3), pp. 211-252.

Russell, S.J. and Norvig, P. (2016). “Artificial intelligence: a modern ap-
proach”. Malaysia; Pearson Education Limited,.

Sadeghian, A., Legros, F., Voisin, M., Vesel, R., Alahi, A., and Savarese, S.
(2017). “CAR-Net: Clairvoyant Attentive Recurrent Network".

Schlosser, J., Chow, C.K., and Kira, Z. (2016). “Fusing lidar and images for
pedestrian detection using convolutional neural networks”. 2016 |IEEE Inter-
national Conference on Robotics and Automation (ICRA), pp. 2198-2205.

Schneider, N. and Gavrila, D.M. (2013). “Pedestrian path prediction with re-
cursive bayesian filters: A comparative study”. German Conference on Pattern
Recognition, pp. 174-183.

Schubert, R., Richter, E., and Wanielik, G. (2008). “Comparison and evalua-
tion of advanced motion models for vehicle tracking”. 2008 11th international
conference on information fusion, pp. 1-6.

Schwarting, W., Alonso-mora, J., and Rus, D. (2018). “Survey on Planning
and Decision-Making for Autonomous Vehicles”. (January), pp. 1-26.

Senat, M.V., Deprest, J., Boulvain, M., Paupe, A., Winer, N., and Ville, Y.
(2004). “Endoscopic laser surgery versus serial amnioreduction for severe twin-
to-twin transfusion syndrome”. New England Journal of Medicine, 351(2), pp.
136-144.

Sermanet, P., Eigen, D., Zhang, X., Mathieu, M., Fergus, R., and LeCun,
Y. (2013). “Overfeat: Integrated recognition, localization and detection using
convolutional networks”. arXiv preprint arXiv:1312.6229.

Seshamani, S., Lau, W., and Hager, G. (2006). “Real-time endoscopic mo-
saicking”. Medical Image Computing and Computer-Assisted Intervention—
MICCAI 2006, pp. 355-363.



[114]

[115]

[116]

[117]

[118]

[119]

[120]

[121]

[122]

[123]

References |

Shannon, C.E. (1950). “Xxii. programming a computer for playing chess”.
The London, Edinburgh, and Dublin Philosophical Magazine and Journal of
Science, 41(314), pp. 256—275.

Silver, D., Huang, A., Maddison, C.J., Guez, A., Sifre, L., Van Den Driessche,
G., Schrittwieser, J., Antonoglou, I., Panneershelvam, V., Lanctot, M., et al.
(2016). “Mastering the game of go with deep neural networks and tree search”.
nature, 529(7587), pp. 484—489.

Simo-Serra, E., Trulls, E., Ferraz, L., Kokkinos, I., Fua, P., and Moreno-
Noguer, F. (2015). “Discriminative learning of deep convolutional feature point
descriptors”. Proceedings of the IEEE International Conference on Computer
Vision, pp. 118-126.

Simonyan, K. and Zisserman, A. (2014). “Very deep convolutional networks
for large-scale image recognition”. CoRR, abs/1409.1556.

Slaghekke, F., Lewi, L., Middeldorp, J.M., Weingertner, A.S., Klumper, F.J.,
Dekoninck, P., Devlieger, R., Lanna, M.M., Deprest, J., Favre, R., et al.
(2014). “Residual anastomoses in twin-twin transfusion syndrome after laser:
the solomon randomized trial”. American Journal of Obstetrics & Gynecology,
211(3), pp. 285—¢l.

Slaghekke, F., Lopriore, E., Lewi, L., Middeldorp, J.M., Zwet, E.W. van,
Weingertner, A.S., Klumper, F.J., DeKoninck, P., Devlieger, R., Kilby, M.D.,
et al. (2014). “Fetoscopic laser coagulation of the vascular equator versus se-
lective coagulation for twin-to-twin transfusion syndrome: an open-label ran-
domised controlled trial”. The Lancet, 383(9935), pp. 2144-2151.

Soper, T.D., Porter, M.P., and Seibel, E.J. (2012). “Surface mosaics of
the bladder reconstructed from endoscopic video for automated surveillance”.
Biomedical Engineering, IEEE Transactions on, 59(6), pp. 1670-1680.

Streubel, T. and Hoffmann, K.H. (2014). “Prediction of driver intended path
at intersections”. Intelligent Vehicles Symposium Proceedings, 2014 IEEE, pp.
134-139.

Sutskever, |., Vinyals, O., and Le, Q.V. (2014). “Sequence to sequence learning
with neural networks”. Advances in neural information processing systems, pp.
3104-3112.

Sutton, R.S., Barto, A.G., et al. (1998). “Reinforcement learning: An intro-
duction”. MIT press.

155



156 | References

[124]

[125]

[126]

[127]

[128]

[129]

[130]

[131]

[132]

[133]

[134]

Szegedy, C., loffe, S., Vanhoucke, V., and Alemi, A.A. (2017). “Inception-v4,
inception-resnet and the impact of residual connections on learning.” AAAI,
volume 4, p. 12.

Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., Erhan, D.,
Vanhoucke, V., and Rabinovich, A. (2014). “Going deeper with convolutions”.
arXiv preprint arXiv:1409.4842.

Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., Erhan,
D., Vanhoucke, V., and Rabinovich, A. (2015). “Going deeper with convolu-
tions”. Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, pp. 1-9.

Szegedy, C., Vanhoucke, V., loffe, S., Shlens, J., and Wojna, Z. (2016).
“Rethinking the inception architecture for computer vision”. Proceedings of
the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2818—
2826.

Taigman, Y., Yang, M., Ranzato, M., and Wolf, L. (2014). “Deepface: Closing
the gap to human-level performance in face verification”. Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, pp. 1701-
1708.

Tao, J. and Klette, R. (2012). “Tracking of 2d or 3d irregular movement by a
family of unscented kalman filters”. Journal of information and communication
convergence engineering, 10(3), pp. 307-314.

Tay, C. (2009). “Analysis of dynamic scenes: application to driving assistance”.
Theses, Institut National Polytechnique de Grenoble-INPG.

Tella-Amo, M., Daga, P., Chadebecq, F., Thompson, S., Shakir, D.I., Dwyer,
G., Wimalasundera, R., Deprest, J., Stoyanov, D., Vercauteren, T., et al.
(2016). “A combined em and visual tracking probabilistic model for robust
mosaicking: Application to fetoscopy”. Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition Workshops, pp. 84-92.

Thorpe, W.H. et al. (1979). “Origins and rise of ethology”. Heinemann Edu-
cational Books.

Treat, J.R., Tumbas, N., McDonald, S., Shinar, D., Hume, R.D., Mayer, R.,
Stansifer, R., and Castellan, N. (1979). “Tri-level study of the causes of traffic
accidents: final report. executive summary.”

Tromp, J. and Farneback, G. (2006). “Combinatorics of go”. International



[135]

[136]

[137]

[138]

[139]

[140]

[141]

[142]

[143]

[144]

References |

Conference on Computers and Games, pp. 84-99.

Valsky, D.V., Eixarch, E., Martinez-Crespo, J.M., Acosta, E.R., Lewi, L.,
Deprest, J., and Gratacds, E. (2012). “Fetoscopic laser surgery for twin-to-
twin transfusion syndrome after 26 weeks of gestation”. Fetal diagnosis and
therapy, 31(1), pp. 30-34.

Verdie, Y., Vi, K., Fua, P., and Lepetit, V. (2015). “Tilde: a temporally
invariant learned detector”. Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pp. 5279-5288.

Weisstein, E.W. (2017). “Cs231n: Convolutional neural networks for visual
recognition.” URL http://cs231n.github.io/.

Weisstein, E.W. (2017). “"Curvature" from mathworld—a wolfram web re-
source”. URL http://mathworld.wolfram.com/Curvature.html.

(WHO), W.H.O. (2005). “The world health report - make every mother
and child count”. URL https://www.who.int/whr/2005/chapter3/en/index3.
html.

(WHO), W.H.O. (2018). “Global status report on road safety
2018". URL https://www.who.int/violence injury prevention/road
safety status/2018/en/.

Wohlhart, P. and Lepetit, V. (2015). “Learning descriptors for object recogni-
tion and 3d pose estimation”. arXiv preprint arXiv:1502.05908.

Yamada, N., Tanaka, Y., and Nishikawa, K. (2005). “Radar cross section for
pedestrian in 76ghz band”. 2005 European Microwave Conference, volume 2,
PP. 4=pp.

Yi, K.M., Trulls, E., Lepetit, V., and Fua, P. (2016). “Lift: Learned invariant
feature transform”. European Conference on Computer Vision, pp. 467—483.

Zitova, B. and Flusser, J. (2003). “Image registration methods: a survey".
Image and vision computing, 21(11), pp. 977-1000.


http://cs231n.github.io/
http://mathworld.wolfram.com/Curvature.html
https://www.who.int/whr/2005/chapter3/en/index3.html
https://www.who.int/whr/2005/chapter3/en/index3.html
https://www.who.int/violence_injury_prevention/road_safety_status/2018/en/
https://www.who.int/violence_injury_prevention/road_safety_status/2018/en/

158



Acknowledgements

The road to obtain a PhD is not merely an academic process but one where one
grows in many facets. This road intertwines and touches the life of many other
people. Therefore, I'd like to express my gratitude to all those people:

Firstly, I'd like to thank my promotor prof. Pieter Jonker for his unrelenting support
in reviewing and refining my publications and thesis over the years. Thank you for
giving me the freedom and autonomy in finding my way and giving guidance when
needed most. You balanced out this autodidact with stacks of books, theses and
publications, while giving me the support to grow into an independent researcher and
insightful engineer. Your warm and friendly nature makes people listening to you,
open their minds and grow accordingly, come with ease. | hope to continue to learn
from you and follow in your foot steps in becoming a great man in so may ways.
Also, | would like to express my gratitude to prof. Jenny Dankelman for her time and
effort in reviewing and refining my thesis. Even though our interactions were limited
over the years, I've always respected and valued your opinion as you often offered a
different view on things and allowed me to widen my own view. | would like to thank
Dr. Riender Happee for your support in reviewing my thesis and for giving me the
opportunity to work on the WEpods project when | was in dire need of a different
subject. But also in the discussions about the academic life and process. You might
have not noticed, but this has helped me a lot.

| would like to thank all the members of the doctoral committee for their time and
effort reviewing my thesis.

| would have never finished this PhD without the support of my close colleagues and
friends. Aswin, you have been my compatriot in obtaining a PhD and an amazing
friend and colleague for nearly a decade. | value the many hours in scientific discussion
and your courage in your steadfast pointing out my errors despite my stubbornness.
Your motivation, commitment and the many times you gave me the well needed kick
in the proverbial behind, made it possible to finish this thesis.

Machiel, you have been a great friend and have shown how to endure the hardships
that are encountered in ones life. Together with Aswin you've made the many long
days and nights we worked on Robby and Lea for the Robocup enjoyable.

Maja, you are a wonderful friend with your caring and friendliness you have made me
grow to become more than a mere Sheldon. Thank you for opening your home when
| needed due to my insufficient planning skills. The many wonderful experiences and
memories we four made will always be cherished.

Many thanks go out to dr. Boris Lenseigne, your humour made it fun to work next

159



160

|  Acknowledgements

to you all those years. The mathematical discussions we had are valued very much.
Special gratitude go to Martijn Wisse for giving me the opportunity to become the
coordinator for the Minor Robotics. This has given me a lot of experience, self-
knowledge and joy over the years.

| would like to thank all the members of the Delft Biorobotics laboratory and the
Vision Based Robotics department. You have created a productive and wonderful
work atmosphere. I've enjoyed the many Friday afternoon drinks, coffee moments
and talks I've had.

Thanks go out to all the other colleagues at the university. Over the years |'ve
enjoyed the many events, courses and interactions |I've had.

Many thanks go out to the partners in the 3D Fetoscopy project, but foremost
Suzanne Peeters who showed me the intricacies of TTTS and introduced me to
Prof. Chiba who kindly allowed me to do an internship for which I'm very grateful.

Special words of gratitude go out to my students. | had a great time teaching and
working with you. Especially Geetank and Tim, without your hard work this thesis
would not have seen the day of light in this form.

Thanks go out to Wouter Caarls and Marcel de Vries for having the patience to
teach me C++ which I've been using non-stop for so many years now.

Many words of gratitude go also out to all the colleagues in RCS, RRC and JMR
over the years. It has always been a pleasure to work with you.

Bas, thank you for being the best friend one can wish for. | have so many good
memories of the good times we've had and | appreciate all the moments where we
could share our experiences.

All my other friends, you are just too many to name all, but you'll never be forgotten!

Last, | want to say many warm words to my family. Dad, your scientific mind has
endorsed me to pursue a PhD and grow into the scientific person I'm now. Mum,
your love and understanding of people want me not to be a mere engineer or scientist,
but become a valuable member of society and take an active role in that. Joachim,
I'm so lucky with you as my brother. Even though we differ so much, we understand
and support each other infinitely. Eriko, you are the love of my life, | can't image
it without you. I'm so grateful you gave me the opportunity to pursue my dreams.
| hope that | can show you for the rest of my life what you mean to me. Hiroko,
Chikara, Rebecca, Hayato, and Eri, thank you for accepting me in your family. I've
always felt welcome and appreciate all you've done for me.

Finally, some last words go out to Squad for developing Kerbal Space Program.
Without this game the hard moments of my PhD would have been twice as hard,
although you've also been the reason why some of my thesis has been delayed.



About the author

Floris Gaisser was born in The Hague, The Netherlands on February 18, 1984. In
2003 He obtained his Atheneum diploma at the Openbaar Lyceum de Amersfoortse
Berg in Amersfoort. In the same year, he began his study in Industrial Design at
the Delft University of Technology. After completing his bachelor degree in 2007, he
started in 2008 at Mechanical Engineering in the master track Intelligent Mechanical
Systems. After completing an internship of four months in 2012 at NEC in Japan,
he received his M.Sc degree in Mechanical Engineering in 2013. He conducted his
M.Sc. thesis on the topic of Face recognition for cognitive robots at the Vision Based
Robotics department, supervised by Prof. dr. ir. P. P. Jonker. Following his M.Sc.
graduation, he was a research assistant at the Vision Based Robotics department for
8 months where he worked on sub-millimeter localization of EEG sensors on a sensor
cap, as well as self localization for Augmented Reality.

Continuing in image processing, he started his doctoral studies in October 2013 at
the BioMechanical Engineering department on in-vivo placenta reconstruction with
fetoscopic video to support laser coagulation treatment of TTTS. Supervised by
dr. ing. Maja Rudinac, dr. ir. Boris Leseigne and Prof. dr. ir. Pieter Jonker.
This research topic involved the development of panorama reconstruction algorithms
suitable for in-vivo fetoscopic videos. Between May and August 2015, he was a
visiting researcher at the Nihon University, Tokyo Japan, at the National Center
for Child Health and Development where he worked with Prof. Dr. T. Chiba on 4K
fetoscopic panorama reconstruction. He also obtained interest in the WEpods project
and assisted in the development of Object Recognition, Tracking and Prediction
algorithms. During the course of his doctoral studies he has supervised multiple
M.Sc thesis projects, was coordinator of the minor Robotics, gave multiple B.Sc
courses as part of the minor Robotics and also assisted in teaching activities for the
M.Sc courses 3D Robot Vision and Robot Practicals.

In 2017 he started as a perception engineer in the Automated Driving group of
Robot Engineering Systems, Delft. Where he is currently working as Product Lead
Automated Driving and is developing various perception algorithms for Automated
Driving Systems, such as the WEpod and the Mission vehicle.

161



162



List of publications

Journal papers

Road attention: map-based vehicle trajectory prediction for interaction models
Tim Reesink, Floris Gaisser, Pieter P. Jonker
Submitted to: /EEE Intelligent Vehicles Transactions

Stable Image Registration for In-Vivo Fetoscopic Panorama Reconstruction
Floris Gaisser, Suzanne Petters, Boris Lenseigne, Pieter P. Jonker, Dick Oepkes
Appeared in: Journal of Imaging, Jan 2018

Conference papers

Road Infrastructure Indicators for Trajectory Prediction
Geetank Raipuria, Floris Gaisser, Pieter P. Jonker
IEEE Intelligent Vehicles Symposium (1V) 2018

Fetoscopic Panorama Reconstruction: Moving from Ex-vivo to In-vivo
Floris Gaisser, Suzanne Petters, Boris Lenseigne, Pieter P. Jonker, Dick Oepkes
Annual Conference on Medical Image Understanding and Analysis (MIUA) 2017

Road User Detection with Convolutional Neural Networks: An Application to the
Autonomous Shuttle WEpod

Floris Gaisser, Pieter P. Jonker

Annual Conference on Machine Vision Applications (MVA) 2017

Image Registration for Placenta Reconstruction

Floris Gaisser, Pieter P. Jonker, Toshio Chiba

IEEE Conference on Computer Vision and Pattern Recognition Workshop (CVPRW)
2016

Online face recognition and learning for cognitive robots
Floris Gaisser, Maja Rudinac, Pieter P. Jonker, David Tax
International Conference on Advanced Robotics (ICAR) 2013

163



164



Propositions

%section*Propositions

10.

Progress in the field of deep learning is hindered by our limited understanding
of how we learn ourselves. (This thesis)

Constraining the problem to get the research done, does not necessarily bring
us closer to resolving the problem. (Pt. 1 of this thesis)

Knowing why it does not work is just as valuable as knowing what works. (Ch. 3
of this thesis)

The ease in which humans can learn a task is not indicative of how well a
machine can learn that task. (This thesis)

. A Machine Learning researcher’'s dream is to experience growing up again.

Without reality, in the sense-think-act paradigm only the thinking (Al) remains,
i.e. building castles in the sky.

. There is no absolute understanding of the universe, only how we perceive and

interpret it.

When the answer is staring you in the face but cannot be seen, you should not
only open your eyes but your mind as well.

Understanding what and how to learn is the first step to (artificial) intelligence.

For humans the accumulation of experience is one's life, whereas for artificial
intelligence it is only to perform a task.

These propositions are regarded as opposable and defendable, and have been approved as

such by the promotors Prof. dr. ir P.P. Jonker, Prof. dr. J. Dankelman and Dr. ir. R. Happee.
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Stellingen

1. Vooruitgang in Deep Learning onderzoek wordt gehinderd door ons beperkte
inzicht in over hoe we zelf leren. (Dit proefschrift)

2. Inperken van het probleem om het onderzoek gedaan te krijgen, helpt ons niet
dichterbij een oplossing voor het probleem. (Deel 1 van dit proefschrift)

3. Weten waarom iets niet werkt is net zo waardevol als weten wat wel werkt.
(H. 3 van dit proefschrift)

4. Het gemak waarmee mensen een taak kunnen leren, is niet indicatief voor hoe
goed een machine die taak kan leren. (Dit proefschrift)

5. ledere Machine Learning onderzoeker’'s droom is om nogmaals opgroeien te
kunnen ervaren.

6. Zonder de werkelijkheid in het "sense-think-act" paradigm blijft alleen het
denken ("Al') over, oftewel het bouwen luchtkastelen.

7. Absoluut begrip van het universum bestaat niet, alleen hoe we iets waarnemen
en interpreteren.

8. Als het antwoord je toelacht, maar je ziet het nog steeds niet, moet je niet
alleen je ogen te openen, maar ook je geest.

9. Begrip van wat en hoe te leren is de eerste stap naar (kunstmatige) intelligentie.

10. Voor mensen is het vergaren van ervaringen ons leven, maar voor kunstmatige
intelligentie dient het slechts om een taak te kunnen uitvoeren.

Deze stellingen worden opponeerbaar en verdedigbaar geacht en zijn als zodanig goedgekeurd
door de promotoren Prof. dr. ir P.P. Jonker, Prof. dr. J. Dankelman en Dr. ir. R. Happee.
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