
Remote Sens. 2014, 6, 7762-7782; doi:10.3390/rs6087762 
 

remote sensing 
ISSN 2072-4292 

www.mdpi.com/journal/remotesensing 

Article 

Evaluating MERIS-Based Aquatic Vegetation Mapping 
in Lake Victoria 

Elijah K. Cheruiyot 1,2,*, Collins Mito 2, Massimo Menenti 1, Ben Gorte 1, Roderik Koenders 1 

and Nadia Akdim 1 

1 Department of Geoscience and Remote Sensing, Delft University of Technology,  

P.O. Box 5048, 2600 GA Delft, The Netherlands; E-Mails: M.Menenti@tudelft.nl (M.M.); 

B.G.H.Gorte@tudelft.nl (B.G.); roderikk@gmail.com (R.K.); nadia.akdim@yahoo.fr (N.A.) 
2 Department of Physics, University of Nairobi, P.O. Box 30197, 00100 Nairobi, Kenya;  

E-Mail: collins@uonbi.ac.ke 

* Author to whom correspondence should be addressed; E-Mail: ekcheru@gmail.com;  

Tel.: +254-20-4447552; Fax: +254-20-4449616. 

Received: 14 February 2014; in revised form: 4 August 2014 / Accepted: 5 August 2014 /  

Published: 20 August 2014 

 

Abstract: Delineation of aquatic plants and estimation of its surface extent are crucial to 

the efficient control of its proliferation, and this information can be derived accurately with 

fine resolution remote sensing products. However, small swath and low observation 

frequency associated with them may be prohibitive for application to large water bodies 

with rapid proliferation and dynamic floating aquatic plants. The information can be 

derived from products with large swath and high observation frequency, but with coarse 

resolution; and the quality of so derived information must be eventually assessed using 

finer resolution data. In this study, we evaluate two methods: Normalized Difference 

Vegetation Index (NDVI) slicing and maximum likelihood in terms of delineation; and two 

methods: Gutman and Ignatov’s NDVI-based fractional cover retrieval and linear spectral 

unmixing in terms of area estimation of aquatic plants from 300 m Medium Resolution 

Imaging Spectrometer (MERIS) data, using as reference results obtained with 30 m 

Landsat-7 ETM+. Our results show for delineation, that maximum likelihood with an 

average classification accuracy of 80% is better than NDVI slicing at 75%, both methods 

showing larger errors over sparse vegetation. In area estimation, we found that Gutman and 

Ignatov’s method and spectral unmixing produce almost the same root mean square (RMS) 

error of about 0.10, but the former shows larger errors of about 0.15 over sparse vegetation 

while the latter remains invariant. Where an endmember spectral library is available, we 
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recommend the spectral unmixing approach to estimate extent of vegetation with coarse 

resolution data, as its performance is relatively invariant to the fragmentation of aquatic 

vegetation cover. 

Keywords: accuracy assessment; mapping aquatic vegetation; coarse resolution; 

Lake Victoria 

 

1. Introduction 

Aquatic weed infestation is one of the major environmental challenges globally. The weeds, which 

mostly comprise water hyacinth and hippo-grass, are associated with many adverse effects. Continuous 

observation and monitoring of their proliferation is essential for proper lake management and weed 

control [1]. Remote sensing information has increasingly become essential for water resource management. 

It is a powerful tool for studying large scale phenomena in aquatic vegetation communities, and  

is capable of delivering timely information unmatched by any other surveying technique [2]. High 

resolution data such as those acquired by IKONOS and Korea Multi-Purpose Satellite (KOMPSAT) 

satellites provide detailed information but are associated with low observation frequency and small 

swath, and their cost may be prohibitively expensive for large area assessments [3]. A common remote 

sensing practice is to mosaic spatially adjacent images that are acquired within a short temporal range 

to produce extensive cover maps. Rapid proliferation and the dynamic nature of floating aquatic 

vegetation have the implication that mosaicking is not suitable for aquatic environments with freely 

floating vegetation. Coarse resolution products such as Medium Resolution Imaging Spectrometer 

(MERIS) and MODIS provide a wider view and higher data frequency at the expense of spatial details. 

Because of this inherent trade-off, it may be appropriate to use coarse resolution data for continuous 

frequent observation of aquatic vegetation, and occasionally use the high resolution data to assess the 

quality of derived information. 

Frequent and accurate monitoring of aquatic vegetation is not only essential in providing reliable 

and timely information to the lake management authorities for sustained water resource management [4], 

but also in improving the quality of related studies which rely on this information for their analyses. 

For example a study to evaluate the effect of nutrient influx on vegetation proliferation would require 

adequately accurate information on the extent and location of aquatic plants. Assessing the accuracy of 

remotely derived information allows users to ascertain their reliability, and it is a means through which 

the producers communicate product limitations to users, leading to appropriate use of the information [5]. 

According to [6], accuracy assessment of remote sensing map products has evolved in four developmental 

stages. It started with visual assessment of images to determine whether the classification results were 

good or not. It improved to the stage where an overall non-site-specific percentage accuracy was 

provided, and further to a site-specific accuracy assessment. Finally, a more detailed analysis of the 

site-specific accuracy assessments emerged, for example the use of error/confusion matrix and kappa 

coefficients. Error matrix has become one of the most commonly used method of classification accuracy 

assessment, with several applications in land use/land cover mapping, for example [7] and [8]. This 

method requires manual identification of reference sites/pixels from homogeneous surfaces, which  
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are assumed to represent pure feature classes (endmembers) [9]. Error matrix also allows the use of 

“Pareto Boundary” analysis of the trade-off between commission and omission error, in order to determine 

the optimal classification performance that can be obtained for a specific low resolution data. 

Several algorithms have been developed for the remote retrieval of biophysical characteristics of 

vegetation. The authors of [1] used an unsupervised clustering technique with thresholds based on a 

“wetness index”, to identify water hyacinth and water hyacinth-free areas in Lake Victoria. The 

authors of [10] applied Minimum Distance—a simple parametric classification algorithm to identify 

floating vegetation areas, before applying a spectral linear mixture model—a sub-pixel analysis to 

discriminate different vegetation species according to the weed spectral behaviour. The most widely 

used method, however, is the mathematical combination of visible and near-infrared reflectance bands in 

the form of spectral vegetation indices [11]. Vegetation indices are widely used because of their 

computational simplicity. Many studies on Lake Victoria have used vegetation indices, for example, [12] 

used NDVI to investigate the dependency of hyacinth biomass production on nutrients levels. In [13], 

the authors used a time-series of NDVI to evaluate the link between the occurrence of El Nino events in 

East Africa and water hyacinth blooms in Winam Gulf section of Lake Victoria. The authors of [14] 

used NDVI and several of its derivatives to monitor Lake Victoria’s water level and drought 

conditions. More recently [15] used NDVI to map vegetation distribution in the lake, and to develop a 

floating vegetation index for quantifying its surface extent. 

Vegetation cover estimates obtained with remote sensing methods can provide useful decision 

support information required for the control of aquatic plants proliferation. This information can only 

be useful if the practitioners have a way of ascertaining its accuracy. Little information is available  

on the accuracy of aquatic vegetation cover estimates derived at coarse resolution. The accuracy of a 

method in detection of terrestrial vegetation and aquatic vegetation may be different because of the 

difference in backgrounds. Water, which forms the background to aquatic vegetation, has a stronger 

absorption of electromagnetic radiation than soil. Further, the dynamic nature of the floating aquatic 

vegetation introduces a unique case to the evaluation of detection accuracy of aquatic vegetation. 

Floating vegetation is carried away by tides and wind, making it difficult to identify sampling sites 

where manual vegetation cover estimates can be made. Unlike in the case of terrestrial vegetation 

where the target is stationary, it is technically challenging to collect reference in situ measurements.  

A viable alternative is to use as reference results obtained with finer resolution remote sensing 

products. In addition, the reference image must have its acquisition time as close as possible, ideally in 

the order of minutes, to that of the classified image. Obtaining such pair of data is perhaps the biggest 

challenge in the assessment of floating aquatic vegetation classifications. 

Our objective is to evaluate the performance of algorithms commonly used to monitor aquatic 

plants in extensive water bodies, in terms of their accuracy in detecting aquatic plants from coarse 

resolution remote sensing data—in this case the 300 m resolution MERIS data. MERIS sensor ended 

data acquisition in March 2013, but its products are good test data for the anticipated Sentinel 2/3 products. 

In terms of delineation, we evaluate two methods: NDVI slicing—with special focus on the empirical 

slicing proposed by [15], and maximum likelihood classifier. In terms of area estimation, we evaluate 

two methods: NDVI-based fractional cover retrieval model proposed by [16], and linear spectral 

unmixing (LSU)—which is a form of spectral mixture analysis. We also aim at assessing the suitability 
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of using higher resolution data as reference in assessing the quality of aquatic vegetation cover 

information obtained with coarse resolution products. 

2. Study Area 

Our study area is the Winam Gulf section of Lake Victoria. Lake Victoria is a large fresh water 

body in East Africa. It stretches 412 km from north to south between 0°30ʹN and 3°12ʹS and 355 km 

from west to east between 31°37ʹE and 34°53ʹE. The lake, which is the largest of all African lakes, is 

also the second largest freshwater body in the world by area, with an extensive surface area of 68,800 km2. 

Figure 1 shows the geographic location of Lake Victoria. 

Figure 1. Geographic location of Lake Victoria in East Africa (a) and Africa (b),  

(c) Zoomed-in Winam Gulf section of the lake. Source: Google Maps. 

 

We focus on the Winam Gulf because this almost enclosed shallow section of the lake is more 

vulnerable to vegetation invasion perhaps due to high levels of eutrophication. Earlier work of [15] 

show that vegetation proliferation is preceded by about two months by high levels of water quality 

indicators such as total suspended matter (TSM) and phytoplankton measured as a Chlorophyll-a  

(Chl-a) index. The most prevalent of these invasive weeds include the non-native water hyacinth  

and hippo-grass. The weeds are associated with many adverse effects which include obstruction  

to fishing, navigation and irrigation, interference with the aquatic biodiversity [17,18], water quality 

deterioration and a general risk to public health [19]. The lake is an important economic resource to the 

three riparian countries, Kenya, Tanzania and Uganda, through fishing and transport, as well as providing a 

livelihood for the local communities. 

3. Materials and Method 

3.1. Data 

We use two pairs of coarse and fine resolution images, acquired almost simultaneously, to evaluate 

the performance of four algorithms in retrieval of aquatic vegetation cover information. MERIS 

(Medium Resolution Imaging Spectrometer) image in its full resolution mode (MERIS FR) has a spatial 
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resolution of 300 m. We use as reference the results obtained with Landsat-7 ETM+ imagery at 30 m 

spatial resolution. Due to the dynamic nature of floating aquatic vegetation, the key consideration in 

selecting data for use in assessing the classification accuracy of aquatic vegetation is the temporal 

proximity of the image pair. During a field survey, it was estimated to take about an hour for a floating 

vegetation mat to move across a length approximately equal to the size of a MERIS pixel (300 m). 

Allowing vegetation displacement to a maximum of 0.25 of the pixel, then the interval between the 

acquisitions of the image pair should not be longer than 15 min. For the period 2003–2012, the entire 

lifetime of MERIS sensor, there are just seven scenes of Winam Gulf whose acquisition time coincides 

with those of ETM+, with acquisition intervals of the image pairs ranging from two to fifteen minutes. 

We selected two of these image pairs for our analysis, and their specifications are summarised in Table 1. 

The choice of these image pairs is based primarily on the short acquisition interval, and secondarily on 

the amount and distribution of aquatic vegetation in the images. Central acquisition time for each 

image is indicated. Since the image pairs were acquired almost simultaneously, we assume similar 

conditions of cloud, haze and water surface roughness (due to wind conditions). One of the greatest 

confounding factors limiting the quantity and accuracy of remotely sensed data from water bodies is 

sun glint, the specular reflection of directly transmitted sunlight from the upper side of the air-water 

interface [20]. Sun glint is a function of the state of the water surface (surface roughness), sun position 

and satellite viewing angle. Sun zeniths of 30°–60° degrees are optimal for minimizing sunglint [21]. 

Sun zenith angles are respectively 34.6° and 35.4° for MERIS and ETM+. The range of sensor viewing 

angles across the study area is indicated for each image. Since the radiance received by sensor is inversely 

proportional to the cosine of the sensor view angle, then sunglint effect on the images is negligible. 

Table 1. A summary of satellite data used in the study. 

Image 
Pair 

Sensor Acquisition Time 
Spatial 

Resolution 
Spectral Resolution 
(Visible and NIR) 

Sensor Viewing 
Angles 

Pair 1 
MERIS 15 December 2010 07:49 300 m 15 bands 7°–11° 
ETM+ 15 December 2010 07:48 30 m 5 bands 0°–5° 

Pair 2 
MERIS 27 July 2011 07:41 300 m 15 bands 6°–10° 
ETM+ 27 July 2011 07:48 30 m 5 bands 0°–5° 

3.2. Pre-Processing 

Before using the satellite data, we convert the sensor radiance values into reflectance values and 

perform atmospheric corrections as here described. Atmospheric corrections of MERIS data were 

performed using SMAC Processor 1.5.203 (a Simplified Method for Atmospheric Corrections of satellite 

measurements) [22], incorporated in the software package BEAM (Basic ERS and Envisat (A) ATSR 

and MERIS Toolbox). It is a semi-empirical approximation of the radiative transfer in the atmosphere 

which takes into account the attenuation due to atmospheric absorption and radiance of the scattered 

skylight. We used FLAASH (Fast Line-of-sight Atmospheric Analysis of Spectral Hypercubes), 

an atmospheric correction code based on the MODTRAN 4 (MODerate resolution atmospheric 

TRANsmission) radiative transfer model, to convert Landsat-7 ETM+ sensor radiance to surface 

reflectance. A certain degree of geolocation errors is inevitable when dealing with multiple data sets. 

We co-registered the image pairs using an image to image first order polynomial transformation and 
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nearest neighbour resampling, with RMSE = 0.0745 and RMSE = 0.1218 for image pair 1 and 2 

respectively. This represents a geolocation error of about 22.35 m for image pair 1, and 36.54 m for 

image pair 2, which is about the pixel size of the reference image. This may have an impact on the 

margins of the sample areas, but minimal. 

3.3. Sampling 

Evaluation of methods was carried out with two hundred (300 m × 300 m) samples. Each MERIS 

sample pixel corresponds to a square area covered by 10 × 10 ETM+ (30 m × 30 m) pixels. Sample 

MERIS pixels were selected such that their corresponding location in the ETM+ image would fall  

right in the middle of the stripes occasioned by the scan line corrector (SLC) failure in Landsat-7, so as 

to avoid the no-data pixels. Under these restrictive circumstances, a limited number of samples were 

selected. The samples were selected in Winam Gulf to include both the high and low vegetation density 

areas, as well as areas along the vegetation-water edges. Figure 2a shows the selected sample pixels  

for image pair 1; Figure 2b is a close-up (300 m × 300 m) MERIS pixel, while Figure 2c shows the 

corresponding one hundred (30 m × 30 m) ETM+ pixels. Although we use a shoreline derived from 

high resolution data to isolate our study area, we avoided samples too close to the shore, to avoid a 

possible confusion with terrestrial vegetation due to an imperfect shoreline. 

Figure 2. (a) Location of the 200 selected sample pixels for the image pair acquired on  

15 December 2010, (b) A close-up MERIS (300 m) pixel, (c) Corresponding 100 Landsat-7 

ETM+ (30 m) pixels. 

 

3.4. Experimental Design 

Our objective is to determine and monitor the lake area covered by aquatic vegetation: because  

of the size of Lake Victoria and the temporal variability of the extent of aquatic vegetation, satellite 

data should provide observations at daily intervals or shorter, with spatial resolution limited to 1 km or 

worse. We aim at determining the total lake area covered by aquatic vegetation and at delineating it. 
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In this study we regard MERIS as our primary source of observations and we want to assess  

the accuracy of both estimated total area and of the delineation of it. We used Landsat ETM+ data as  

a reference. 

In summary we have evaluated different ways to determine the two variables of interest using the 

methods listed below and described in the following sections: 

Delineation: slicing of NDVI, maximum likelihood classifier; 

Total area: retrieval of fractional abundance from NDVI and by linear spectral un-mixing; 

All four methods have been applied to MERIS data and evaluated against results obtained with 

ETM+. The list of image data has been given in Table 1, while the design of the evaluation experiment 

is given in Table 2. 

Table 2. Design of the evaluation experiment: classification of MERIS and ETM+ data 

provides delineation of the area covered by aquatic vegetation; area integral of fractional 

abundance (fv) provides estimates of the total area covered by aquatic vegetation. The right 

column shows the comparison method applied in each case. 

MERIS ETM+ 
Comparison method 

Method Retrievals Method Retrievals 
-- -- Delineation -- -- 

Sliced NDVI 3 classes Sliced NDVI 3 classes Error matrix 
Maximum Likelihood 2 classes Maximum Likelihood 2 classes Error matrix 

-- -- Total area -- -- 
NDVI vf  NDVI vf  RMSE, Linear regression 

Spectral unmixing vf  Spectral unmixing vf  RMSE, Linear regression 

3.5. Empirical Slicing of Vegetation Indices 

Though many vegetation indices have been developed [23], in this study we focus on Normalized 

Difference Vegetation Index (NDVI) [24]. It is a dimensionless quantity which is an indicator of the 

greenness of vegetation, and is based on the contrast between the maximum reflection in the near 
infrared (ρnir ) caused by leaf cellular structure and the maximum absorption in the red (ρr ) due to 

chlorophyll pigments [25]. It is expressed as a ratio of the difference and the sum of ρnir  and ρr : 

nir r

nir r

ρ ρ
NDVI=

ρ +ρ

−
 (1)

NDVI is the most commonly used indicator of vegetation parameters in remotely sensed data  

for global vegetation mapping [25,26]. It has been applied to quantify the vegetation cover in various 

studies, both in terrestrial environment [27,28] as well as aquatic environment [29]. Empirical slicing 

of vegetation indices is commonly used to discriminate vegetation from other cover classes. The 

challenge, however, is the correct identification of suitable thresholds separating various feature 

classes in the scene. The authors of [13] applied NDVI = 0.1 as a threshold to detect presence of 

vegetation, while [15] estimated the aquatic vegetation cover in Lake Victoria using a three-level 

NDVI scale: 



Remote Sens. 2014, 6 7769 

 

 

NDVI = ቐ > 0.4 ݃݊݅ݐ݈ܽܨ ݊݅ݐܽݐ݁݃݁ݒ 0.2(ܸܨ) − 0.4 ݁ݏݎܽܵ ݊݅ݐܽݐ݁݃݁ݒ (ܸܵ)	< 0.2 ܱ݊݁ ݎ݁ݐܽݓ ݂݁ܿܽݎݑݏ (ܱܹ) (2)

We give a special reference to the NDVI slicing in Equation (2) to assess accuracy of aquatic 

vegetation classification with NDVI slicing. While this slicing clearly provides an excellent display of 

the spatial distribution of vegetation in the lake as seen in [15], in this study we evaluate the impact  

of limiting NDVI to a few classes. NDVI was computed from Landsat-7 ETM+ using red and near 

infrared bands 3 and 4 centred at 660 nm and 825 nm respectively; while MERIS NDVI was computed 

using bands 7 and 13 centred at 664 nm and 865 nm. 

3.6. Maximum Likelihood Classification 

Maximum likelihood is a conventional classifier, which assigns a pixel to the class to which  

it most probably belongs according to a Bayesian probability function. Based on statistics (mean; 

variance/covariance), the probability function is calculated from the inputs for classes established from 

training sites. In this study, binary images consisting of water and vegetation classes were achieved  

by applying maximum likelihood classifier to MERIS and ETM+. The training sites for water and 

vegetation were obtained from the same images. This was implemented in the software package ENVI. 

3.7. Estimating Vegetation Fractional Cover ( vf ) from NDVI 

Vegetation amount is usually parameterized through the fractional area (fv) of the vegetation 

occupying each grid cell, which gives its horizontal density [30]. fv is sometimes estimated from 

vegetation indices. NDVI does not directly give fv, and some methods have been developed to derive it 

from vegetation indices. A commonly-used linear model for deriving fv from vegetation indices [31] is 

described by [16] as: 

v

NDVI NDVI
f

NDVI NDVI
ο

ο∞

−=
−

 (3)

where NDVI∞ and NDVIο respectively correspond to NDVI of reference vegetation ( 1vf = ) and 

reference soil ( 0vf = ). We apply a modified version of this model to estimate aquatic vegetation fv 

with NDVI∞ being the highest NDVI value (NDVI of a pure vegetation pixel) and NDVIο being the 

lowest NDVI value (NDVI of an open water pixel). Selecting the highest and lowest NDVI  
values ensures that the derived vf  are non-negative and not greater than one. The constants used for  

MERIS data are: 0.96NDVI∞ =  and 0.58NDVIο = −  while for ETM+ data: 0.85NDVI∞ =  and 

0.23NDVIο = − . 

3.8. Linear Spectral Unmixing (LSU) 

Linear spectral unmixing is one of the spectral mixture analysis (SMA) techniques which decompose 

a mixed pixel into various distinct components. It is most suitable where the spatial resolution of  

the satellite data is relatively coarse. It has been applied in various studies including analysis of rock 

and soil types [32], desert vegetation [33], land-cover changes [34], estimation of urban vegetation 

abundance [35], and delineating potential erosion areas in tropical watersheds [9]. Non-linear mixture 
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models also exist [36], but linear spectral unmixing is by far the most common type of SMA, and is 

widely used because of its simplicity and interpretability [9]. It is a supervised classification technique 
which is based on the assumption that the observed reflectance of a pixel (ρk ) at wavelength (k) is a 

linear combination of the reflectance ( ,ρi k ) of individual class features represented in that pixel, and 

the contribution of each depends on its respective abundance ( if ). The basic physical assumption is 

that there is not a significant amount of photon multiple scattering between the macroscopic materials. 

For a specified number of endmembers (n), linear spectral unmixing can be expressed as: 

,
1

ρ ρ ε
n

k i i k k
i

f
=

= ⋅ +  (4)

εk  is the residual error. The unknown value in the expression is the fractional abundance if  and which 

the model estimates. We used a fully constrained model which requires that for all i, if  must sum to 

unity and is non-negative. The number of spectral bands in an image introduces a limitation to the 

number of endmembers that can be used for unmixing [37], so that it must always be less than the 

number of available bands in the multispectral image. The model retrieves the spectral characteristics 
ρ i  of endmembers from an input endmember spectral library. 

In order to build an endmember library for our study region, we first need to identify the appropriate 

number of endmembers. Spectral characteristics of water in the lake vary spatially according to the 

concentrations of dissolved or suspended sediments in it, indicating the extent of nutrient enrichment. 

Clearer and deeper water in the centre of the lake displays low reflectance values, while that near the 

shores displays generally higher reflectance values. In order to understand the spectral variability of 

the study area, we performed K-Means clustering [38,39], an unsupervised classification of clouds-free 

MERIS image whose acquisition date (15 December 2010) coincides with a field survey. K-Means is a 

statistical clustering method which follows the following procedure for a specified cluster number (k):  

(1) randomly choose k pixels whose samples define the initial cluster centres; (2) assign each pixel to 

the nearest cluster centre as defined by the Euclidean distance; (3) recalculate the cluster centres as  

the arithmetic means of all samples from all pixels in a cluster; and (4) repeat steps 2 and 3 until  

the convergence criterion is met. The convergence criterion is met when the maximum number of 

iterations specified by the user is exceeded or when the cluster centres did not change between  

two iterations. We begin by setting k first to 14 and specifying 30 iterations. A spectral plot of the  

14 resultant classes revealed about five significantly unique classes. K-Means was repeated with k = 5, 

resulting in five classes; one confirmed by a field survey as vegetation and four different ‘water 

species’ confirmed by their relatively low reflectance values. A scatter plot of red and near infrared 

spectral bands for selected regions of the resulting five classes (Figure 3) showed that spectral 

variability among the four water classes was small with respect to the vegetation. Since vegetation was 

our target class, we reduced the number of endmembers to two by obtaining an average spectrum  

for the four water classes. Figure 3 shows good separability between vegetation and water classes, with 

vegetated pixels clustered at the top-left corner of the two dimensional space, due to vegetation’s 

strong absorption of the red and high reflection of the near infrared radiation. Water pixels are clustered 

at the bottom right corner, due to water’s strong absorption of the near infrared radiation. 
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Figure 3. Scatter plots of the reflectance values at red and near infrared spectral bands to 

showing separability of vegetation and water classes from MERIS (left) and ETM+ (right). 

To ensure consistency, endmember spectral libraries for MERIS and ETM+ shown in Figure 4 were 

compiled from the same area sampling. 

Figure 4. The MERIS endmember spectral library (left) and ETM+ endmember spectral 

library (right) used in classification. 

We apply a fully constrained linear spectral unmixing model (Equation (4)), using as input 

parameters the two endmembers spectral libraries shown in Figure 4, to estimate aquatic (fv) from 

MERIS and ETM+ images respectively. This was implemented in the software package BEAM. The 

model outputs for each endmember a grey scale image, with pixel values indicating the class densities 

(fi) in the range of 0–1. We pick the vegetation density (fv) image for our analysis. We then assess the 

performance of spectral unmixing in vegetation detection using exactly the same 200 sample pixels 

that were used for the NDVI accuracy assessment. 
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4. Results and Discussion 

4.1. Area-Averaging of NDVI 

Due to non-linearity nature of NDVI, area-averaged NDVI obtained by averaging NDVIs of high 

resolution pixels is usually different from that obtained with averaged radiances of the high resolution 

pixels. Figure 5 shows a comparison of the two sets of area-averaged NDVI for 200 samples, each 

averaged from a hundred high resolution pixels. Even though the two sets of average NDVIs seem  

to compare well with R2 = 0.98 and RMSE = 0.04, variations of mean NDVI computed from the  

two methods can be as high as 0.17 (see the green dots in Figure 5). This difference is quite significant 

especially for a study where averaged NDVI is an important variable used to derive another parameter. 

In this study, the NDVI of a square area represented by 100 ETM+ pixels corresponding to one MERIS 

pixel was obtained by first averaging the reflectance of 100 ETM+ pixels in the red and near infrared, 

before using them to compute NDVI. 

Figure 5. A comparison between two ways of averaging NDVI. Blue dots show a scatter 

plot of NDVI computed from average high resolution radiances versus NDVI computed  

as an average of high resolution NDVIs. The green dots show the difference between the 

two sets of NDVI. 

 

4.2. Sliced Normalized Difference Vegetation Index (NDVI) 

Figure 6 shows NDVI images of the Winam Gulf section of Lake Victoria as derived from MERIS 

and ETM+ data. Figure 6a is MERIS NDVI while Figure 6c is ETM+ NDVI. The large green area  

in the centre of the lake is a floating mat of aquatic vegetation. The image shows the three classes 

described in Equation (2); open water (OW), sparse vegetation (SV) and floating vegetation (FV). The 

stripes in ETM+ image are a consequence of the SLC failure in the Landsat-7 satellite, resulting in no-data 

pixels. As expected, it is clear from these images that the higher resolution ETM+ (30 m) displays 

more vegetation cover details than MERIS (300 m), as seen from the close-up portions of the images. 
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Figure 6. NDVI sliced to 3 levels: open water (OW), sparse vegetation (SV) and floating 

vegetation (FV), showing the distribution of vegetation as derived from (a,b) MERIS and  

(c,d) ETM+. 

(a) (b) 

 
(c) (d) 

Error matrices in Table 3 show the quantitative assessment of the classification accuracy of NDVI 

slicing. The rows show classification of the 200 MERIS sample pixels to the three classes of Equation (2); 

FV, SV and OW. The columns show classification of the reference pixels (ETM+) to the same classes 

according to Equation (2). 

Table 3. Error matrices for image pair 1 (left) and pair 2 (right) showing classification 

performance of NDVI sliced into floating vegetation (FV), sparse vegetation (SV) and open 

water (OW). 
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The diagonal matrix of the error matrix of the first image pair, Table 3(left), shows that 153 of the 

200 sample pixels are correctly classified, which gives an overall classification accuracy of 76.5%. The 
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error matrix of the second image pair, Table 3(right), shows an overall classification accuracy of 73%. 

In both cases, the commission and omission errors in the classification of SV are higher than those of 

FV and OW, indicating that major misclassifications occurred along the water-vegetation boundaries. 

These results seem to confirm the findings of [31], where the reported classification accuracies for 

NDVI of pixels along the edges of distinct endmembers were generally lower than those of non-edges. 

This is a common weakness to all “hard” classifiers which output discrete feature classes, and only 

gets worse with lower resolutions. Since NDVI slicing is heavily biased along the water-vegetation 

boundaries, it may have a significant impact on detection of aquatic vegetation from low resolution 

data. Slicing NDVI to a few levels also limits its sensitivity to vegetation density variations. 

It is however known that some errors are due to the low resolution of the data rather than the 

weakness of the classification algorithm, a concept known as “low resolution bias” explained by [40] 

using Pareto Boundary. Using the Pareto Boundary, it is possible to determine the optimal classification 

accuracies that can be obtained by an algorithm, beyond which it is impossible to reduce the commission 

errors without increasing the omission errors, and vice versa. If all the pure pixels are correctly classified, 

then the irreducible errors are assumed to be due to the low resolution of the data. We refer readers to 

article [40] for a detailed description of the low resolution bias. 

Figure 7 shows Pareto Boundaries for the optimal classification of floating vegetation, sparse vegetation 

and open water. This was obtained by setting a series of thresholds for the number of high resolution 

pixels of a specific class that are required to assign a low resolution pixel to that class, and computing 

the commission and omission errors incurred at each threshold level. Though Pareto Boundary applies 

only to dichotomic classifications, these results were obtained by first considering FV and collapsing 

SV and OW into the background, and repeating the procedure for SV and OW; resulting in three Pareto 

Boundaries, one for each class. Positions of the commission and omission errors obtained from  

the error matrix are shown in the commission error—omission error space; indicating how close the 

classification results are to the optimal levels. 

In both image pairs, the positions of the commission and omission errors of SV are clearly farther 

away from their Pareto Boundaries, further confirming observations made from Table 3, that slicing of 

NDVI results in major misclassifications especially along the water-vegetation boundary. The radiance 

from this multi-class boundary received by a low resolution sensor is a combination of the spectral 

responses of the representative classes, and a “hard” classification of such a pixel results in high 

commission and omission errors. 

4.3. Maximum Likelihood Classification 

Error matrices in Table 4 show accuracy assessment of vegetation delineation obtained with binary 

Maximum Likelihood classifier for image pair 1 (left) and image pair 2 (right). 

The rows show classification of MERIS sample pixels to two classes; FV and OW. The columns 

show classification of regions corresponding to MERIS sample pixels to two classes; FV class for 

regions half or more of ETM+ pixels are classified as vegetation, and OW class where less than half  

of ETM+ pixels are classified as vegetation. These results show an overall classification accuracy of 

81.5% and 78.5% for pair 1 and pair 2 respectively. Pareto boundary analyses of the trade-off between 

commission and omission errors in these classifications are presented in Figure 8. In both cases, the 
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positions of the omission and commission errors in the classification of vegetation and water are close 

to their respective Pareto boundaries, indicating a good performance of the classifier. 

Figure 7. An analysis of the trade-off between commission and omission errors in the 

classification of floating vegetation (FV), sparse vegetation (SV) and open water (OW) by 

NDVI slicing for image pair 1 (left) and image pair 2 (right). Pareto Boundaries show the 

optimal classifications that can be achieved with low resolution MERIS data using reference 

obtained with higher resolution ETM+. Positions of the omission and commission errors in 

the classification of FV, SV and OW are shown in the error space. 

 

Table 4. Error matrices for image pair 1 (left) and pair 2 (right) showing performances of 

Maximum Likelihood in the classification of floating vegetation (FV) and open water (OW). 
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4.4. Estimating Vegetation Fractional Cover (fv) from NDVI 

Figure 9 shows a comparison between  derived from MERIS NDVI using the NDVI-based fv 

retrieval model (Equation (3)) with reference fv derived from ETM+ NDVI with the same method. 

The results show an RMSE of 0.11 and 0.09 for image pair 1 and 2 respectively, indicating the 

level of errors incurred in estimating fv from low resolution MERIS data using NDVI-based 

fv retrieval model. 
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Figure 8. An analysis of the trade-off between commission and omission errors in the 

classification of floating vegetation (FV) and water (OW) by maximum likelihood. Pareto 

Boundary shows the optimal classification that can be achieved with coarse resolution 

MERIS data with reference obtained from ETM+. Positions of the omission and commission 

errors in the classification of FV and OW is shown in the error space for image pair 1 (left) 

and image pair 2 (right). 

 

Figure 9. Correlation between fv derived from MERIS NDVI with reference fv derived 

from ETM+ NDVI, for image pair 1 (left), and image pair 2 (right). 

4.5. Spectral Unmixing 

Figure 10 shows vf  results of spectral unmixing of MERIS and ETM+ images. The scale indicates 

vf  increasing from blue (open water surface) to green (fully dense vegetation cover). 
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Figure 10. The spectral unmixing classification results of (a,b) MERIS and (c,d) ETM+. 

The images show increasing fv from blue (open water surface) to green (fully vegetated). 

(a) (b) 

 
(c) (d) 

As seen in the close-up of the two images, both the low and high resolution data display fv even in 

the sparsely populated areas. This is the advantage of spectral unmixing and similar methods which 

output fv, so that no vegetation information is lost however small the proportion of the pixel it covers. 

Of course the accuracy of the model in estimating these densities decreases with reduced resolution, 

but this problem is not unique to spectral unmixing. 

A comparison of fv derived with spectral unmixing from MERIS imagery with those derived from 

the reference ETM+ data (Figure 11), shows an RMSE of 0.10 for both image pair 1 and 2, indicating 

the level of accuracy conceded for deriving fv at lower resolution. 

The methods showed varying results when tested with two sets of samples; dense vegetation  

(case 1), and sparse vegetation (case 2). Sliced NDVI showed classification accuracies of 96% and 

52% for case 1 and 2 respectively, indicating better performance at high vegetation densities. This 

heavy bias along the water-vegetation boundaries may have a significant impact on detection of sparse 

aquatic vegetation from coarse resolution data. Maximum likelihood classifier showed accuracies of 

98% and 72% for case 1 and 2 respectively, also indicating better performance at high vegetation 

densities. The method of deriving fv from NDVI also showed better performance at higher vegetation 

densities with RMSE of 0.04 and 0.15 for case 1 and 2 respectively, because this method was designed 

as a dense vegetation model. Spectral unmixing showed minimal variation in the two vegetation 

density scales, with RMSE of 0.10 and 0.09 for case 1 and 2 respectively. These results show that 

detection accuracy of vegetation may vary with the density scale of vegetation cover, but with moderate 

effect on the results of maximum likelihood and minimal effect on the results of spectral unmixing. 
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Spectral unmixing decomposes the pixel into various class features according to their relative abundances, 

and no vegetation cover information is discarded even if it constitutes a small proportion of the pixel. 

Spectral unmixing appears to be the most suitable method of estimating the extent of vegetation  

cover with coarse resolution products, but if an endmember spectral library is unavailable—due to 

technicalities involved in compiling it—the NDVI-based approach may be appropriate alternative, but 

only over dense vegetation. 

Figure 11. A scatter plot showing a correlation between fv obtained from MERIS  

pixels and the corresponding mean fv obtained from ETM+ pixels for image pair 1 (left) 

and image pair 2 (right). 

 

Remote sensing has a huge potential of providing crucial decision support information required for 

the control of aquatic plants proliferation. Changes in the status of aquatic plants in inland waters 

sometimes occur rapidly, and thus require regular and frequent monitoring. Due to the dynamic nature 

of floating aquatic plants, the technique of mosaicking small pieces of high resolution remote sensing 

products is not feasible. For large water bodies, vegetation cover information is best derived with 

remote sensing products with sufficiently large swath and high acquisition frequency. Most of these 

products are associated with coarse spatial resolution. For each of the methods evaluated in this study, 

the accuracy of obtaining vegetation cover information at coarse resolution has been analysed. It is 

worth noting that some of the vegetation detection errors discussed may be due to geolocation errors  

as a result of misregistration of the image pairs, and some due to displacement of floating plants. 

Considering the dynamic nature of floating plants, the acquisition interval between the image pairs is 

crucial in assessing the accuracy of aquatic vegetation information derived at coarse resolution. The 

appropriate interval can be determined by considering the spatial resolution of the image pairs as well 

as the rate of vegetation displacement; the latter can be estimated by considering wind speed. 

5. Conclusions 

Timely and frequent observations of large water bodies can provide the information needed to 

reposition the resources at hand for interventions (e.g., mechanical removal) to mitigate the impact of 

aquatic vegetation. While it is desirable to use finer resolution products to accurately detect small 
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changes in the proliferation of aquatic plants, coarse resolution products remain best suited for the 

management of the plants in extensive water bodies. Understanding which remote sensing techniques 

work best with these coarse resolution products is thus necessary. In this study we analyzed the accuracy 

of vegetation cover information derived from coarse resolution MERIS product in terms of delineating 

aquatic plants, as well as estimating its surface extent, in both cases using as reference the results 

obtained with Landsat-7 ETM+ acquired almost simultaneously with MERIS. 

In terms of delineation of aquatic plants, we evaluated two methods: NDVI slicing and Maximum 

Likelihood classifier. NDVI slicing produced an average classification accuracy of 75%, but showed a 

lower performance of 52% over sparse vegetation, with Pareto Boundary analysis showing largest 

commission and omission errors in these regions. Maximum likelihood classifier showed an average 

classification accuracy of 80% and a lower performance of 72% over sparse vegetation. In general, 

maximum likelihood classifier showed better performance than NDVI slicing, and the fragmentation of 

vegetation cover showed lesser effect on the performance of maximum likelihood than NDVI slicing. 

In terms of total area estimation, we evaluated two methods: NDVI-based vegetation fractional cover 

retrieval method suggested by Gutman and Ignatov [16], and linear spectral unmixing. NDVI-based 

approach showed an average root mean square (RMS) error of 0.097, but larger errors of 0.15 over 

sparse vegetation. Linear spectral unmixing showed an average RMS error of 0.096, with similar 

performance over dense and sparse vegetation. The two methods seem to have similar performance 

over dense vegetation, but while the performance of NDVI-based approach significantly drops at 

sparse vegetation that of spectral unmixing remains invariant with the scale of vegetation density. 

In summary, among the methods evaluated in this study, we recommend maximum likelihood  

for the delineation of aquatic plants and spectral unmixing for estimation of its surface extent, as the 

methods produce more accurate results and their performances are less sensitive to the fragmentation 

of aquatic vegetation cover. 
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