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Sequential reduction of slope stability uncertainty based on temporal1

hydraulic measurements via the ensemble Kalman filter2

Liu, K., Vardon, P. J., Hicks, M. A.3

Geo Engineering Section, Faculty of Civil Engineering and Geosciences, Delft4

University of Technology, The Netherlands5

Abstract: A data assimilation framework, utilising measurements of pore water6

pressure to sequentially improve the estimation of soil hydraulic parameters and, in7

turn, the prediction of slope stability, is proposed. Its effectiveness is demonstrated8

for an idealised numerical example involving the spatial variability of saturated9

hydraulic conductivity, . It is shown that the estimation of generally10

improves with more measurement points. The degree of spatial correlation of11

influences the improvement in the predicted performance, as does the selection of12

initial input statistics. However, the results are robust with respect to moderate13

uncertainty in the spatial and point statistics.14
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1. Introduction17

The slope stability of an embankment subjected to cyclic water level fluctuation is18

crucial in geotechnical engineering (Huang et al. 2014; Polemio and Lollino 2011;19

Serre et al. 2008), with the distribution of pore water pressure (PWP) under seepage20

being particularly relevant in any slope stability assessment (Cho 2012; Zhu et al.21

2013). To accurately estimate the PWP, a precise determination of the soil hydraulic22

parameters is required. However, because it is not realistic to conduct in situ testing23

everywhere, some uncertainty remains due to the spatial variability of material24

properties between measurement locations. This causes difficulty in accurately25

predicting the seepage behaviour and distribution of pore pressures, and, thereby,26

the embankment stability.27

Data assimilation, which can utilise field measurements, is one method of28

improving the prediction of slope behaviour, because it can improve the estimation29

of soil parameters. Data assimilation is defined here as any method to include30

measured data into numerical analyses. Often, a type of data assimilation known as31

back analysis is used, where parameters for the analysis are estimated using32

measured data available at a certain time (normally the end of the period under33

consideration). Most previous studies related to slope back analysis have focused on34

soil shear strength parameters (Gilbert et al. 1998; Ledesma et al. 1996; Zhang et al.35

2010), in which the utilised measurements were mainly displacement or stress/strain.36

PWP measurements are seldom used in geotechnical engineering, although, in37

hydrology, it has already been proven that such measurements improve the38
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estimation of hydraulic parameters (Zhou et al. 2014). In geotechnical engineering,39

the improved accuracy of hydraulic parameters not only benefits the estimation of40

PWP but also the prediction of slope stability (Vardon et al. 2016).41

A limited number of studies have investigated the influence of improved42

estimation of hydraulic parameters on slope stability, although they have usually43

ignored the spatial variability of parameter values. For example, Zhang et al. (2013)44

applied the Bayesian method to back calculate hydraulic parameters by utilising PWP45

measurements and investigated the effect of uncertainty in the parameters on the46

prediction of slope stability, but without incorporating spatial variability. In contrast,47

Vardon et al. (2016) linked the ensemble Kalman filter (EnKF) (Evensen 1994; 2003)48

with the random finite element method (RFEM) (Griffiths and Fenton 1993) in steady49

state seepage to back calculate the hydraulic conductivity based on PWP50

measurements. They cross correlated hydraulic conductivity with the strength51

parameters (cohesion and friction angle) and investigated the influence of the52

improved estimation of hydraulic conductivity on the distribution of the factor of53

safety (FOS). Meanwhile, Jafarpour and Tarrahi (2011) indicated that an imprecise54

knowledge of the spatial continuity could induce erroneous estimations of soil55

property values, whereas Pasetto et al. (2015) investigated the influence of sensor56

failure on the estimation of , focusing on two cases with different correlation57

lengths. The results demonstrated that the identification of was more accurate58

for the larger correlation length. Hommels et al. (2001) compared the EnKF with the59

Bayesian method and concluded that the EnKF, essentially a step wise Bayesian60
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method, was easier to implement, as it does not require the assimilation of all61

available data and could sequentially improve the estimation of parameters once62

further data become available.63

In this paper, the authors account for the spatial variability of , which plays64

a dominant role in rainfall infiltration as pointed out by Rahardjo et al. (2007). In65

addition, the EnKF is applied to improve the estimation of the field by using (in66

this instance, numerically generated) 'measurements' of PWP. Due to the existence67

of spatial variability, the spatial correlation length and arrangement and number of68

measurement points can have an influence on the data assimilation. Therefore, these69

aspects are also investigated.70

The paper is organised as follows. Firstly, the formulations of stochastic71

transient seepage, the EnKF and slope stability are introduced. Then, a synthetic72

example is analysed, to demonstrate the sequential reduction of the uncertainty in73

and the influence on the subsequent prediction of slope stability. Finally, an74

investigation into the influence of the pointwise statistics and spatial continuity of75

on the data assimilation process via the EnKF, utilising synthetic data, has been76

undertaken.77

2. Formulation78

2.1. Framework of the overall analysis79

Vardon et al. (2016) utilised hydraulic measurements in steady state seepage to80

reduce slope stability uncertainty via the EnKF. The formulation of the numerical81

approach was also given. This paper extends the research to transient seepage, as82
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illustrated by the framework shown in Figure 1.83

With reference to Figure 1 (a), the analysis starts by generating an initial84

ensemble of realisations of the spatial variation of , based on the probability85

distribution and scales of fluctuation of (i.e. multiple random field realisations86

of are generated). The initial ensemble of is imported into a stochastic87

transient seepage process. When the time reaches , the measurements that88

have been acquired from the field can be used in the data assimilation process; that89

is, the EnKF is applied to improve the estimation of for all realisations in the90

ensemble, based on the measured data. The slope reliability can also be calculated,91

although, as it is the first time the EnKF is used in the transient seepage process,92

there is no immediate improvement in the estimated pore pressure. The two options93

are represented by calculation boxes A and B in Figures 1 (b) and 1 (c), respectively.94

The analysis then continues until the time reaches , whereupon the computation95

of pore water pressure resulting from the improved estimation of (calculated96

at ) can be used to compute the slope reliability. At the same time the EnKF can97

again be applied to get an updated estimation of , since new PWP measurement98

data have been acquired. As the analysis proceeds still further, the data assimilation99

continues to , and so on, with calculation box A or B being followed at each100

stage.101

2.2 Slope stability assessment under transient seepage102

The governing equation of 2D transient unsaturated–saturated flow is based on mass103

conservation, as described in Liu et al. (2015; 2017). To solve it, both the soil water104
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retention curve (SWRC), which describes the relationship between the suction head,105

, and the volumetric water content, , and the saturated–unsaturated hydraulic106

conductivity relationship are necessary. In Liu et al. (2015; 2017), the Van107

Genuchten–Mualem model (Mualem 1976; Van Genuchten 1980) was used to108

describe the relationship between and , and the impact of hysteresis was109

examined. Herein, the effect of hysteresis is not taken into account, in order to110

simplify the computation. The hydraulic conductivity of an unsaturated soil can also111

be derived using the Van Genuchten (1980) model. Figures 2 (a) and 2 (b) show the112

volumetric water content and hydraulic conductivity of the unsaturated soil,113

respectively, as functions of the suction head.114

As in Liu et al. (2015; 2017), Bishop’s effective stress, incorporating the influence115

of both suction and water content, has been combined with the extended116

Mohr Coulomb failure criterion to calculate the shear strength.117

2.3 Soil parameter random fields118

The spatial variability of soil parameters is simulated by the generation of random119

fields, which are based mainly on the statistical distributions and spatial correlations120

of the parameters. The distribution of a soil parameter is often assumed to be121

normal or log normal, and characterised by the mean and standard deviation. In this122

paper, the distribution of is considered to be log normal (Griffiths and Fenton123

1993; Zhu et al. 2013), so that the natural log of , , follows a normal124

distribution. The spatial correlation of soil parameters is here characterised by the125

scale of fluctuation (SOF), , which is the distance over which parameters are126
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significantly correlated and the exponential correlation function. A more detailed127

description of the SOF and exponential correlation function are given in Fenton and128

Griffiths (2008).129

In this paper, the random fields have been generated using local average130

subdivision (LAS) (Fenton and Vanmarcke 1990), using the computer module131

implemented by Hicks and Samy (2002; 2004). After the random fields of soil132

parameters (in this case ) have been generated, the values are imported into the133

finite element program at the Gauss point level and then used in computing the134

seepage and/or slope stability behaviour. The combined use of random fields and the135

finite element method (FEM) is often referred to as the random finite element136

method (RFEM).137

2.4. Ensemble Kalman filter (EnKF)138

The ensemble Kalman filter, developed by Evensen (1994; 2003), has been linked139

with RFEM using the implementation described in Vardon et al. (2016). To avoid140

repetition an extensive description is not included in this paper, although the141

following brief summary of the method is included.142

During the EnKF step, the possible solution space is explored, guided by the143

difference between the measurements and simulated values (in this case pore144

pressure) at the same location (including a random value added to each point to145

allow for measurement errors), and the Kalman gain is calculated in order to146

minimise the posterior error. This can be considered a Bayesian step. The Kalman147

gain incorporates the covariance between the measurements (pore pressure) and148
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parameter values (hydraulic conductivity). The comparison between the149

measurements and simulated values of pore pressure is only made at the current150

step, whereas a full Bayesian approach would seek to include all data.151

The difference between this paper and Vardon et al. (2016) is that, here, the152

measurement of PWP is from a transient seepage process, so that the analysis is able153

to capture additional information as time progresses. Theoretically, the EnKF can be154

applied at any time that measurements are acquired. However, because it requires a155

lot of computational effort, the authors have applied the EnKF at selected practical156

time steps during the transient seepage process.157

158

3. Illustrative analysis159

An idealised embankment subjected to cyclic water level fluctuation has been taken160

as an example to demonstrate the behaviour of the proposed approach; that is, in161

sequentially improving the estimation of by using PWP measurements and162

thereby the influence of the updated hydraulic parameters on the prediction of slope163

stability.164

The geometry of the embankment is shown in Figure 3. Its height is 12 m, and165

the width of the crest and base are 4 m and 52 m, respectively. The embankment166

experiences a water level fluctuation on the upstream side, with and167

being the highest and lowest water levels. The downstream water level remains at168

foundation level ( = 0 m). The bottom boundary is impermeable and fixed.169

The water level fluctuation has been simulated by the summation of two170
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sinusoidal curves (Figure 4). = 1000 days is the time period of sinusoidal 1171

(component 1 in Figure 4) and is the time period of sinusoidal 2 (component 2 in172

Figure 4), in which . The small arrows in the figure indicate the times at173

which the pore water measurement data were acquired and the EnKF applied, while174

the numbers along the top of the figure indicate which application of the EnKF the175

arrows refer to. The slope stability analyses have been done directly before the 2nd,176

4th, 6th, 8th, 10th and 12th data assimilation steps. The random error used in the177

EnKF, representing the measurement uncertainty (see Vardon et al. (2016) for178

details), was taken from a normal distribution with a mean of zero and a standard179

deviation of 0.001 m.180

In the embankment, the heterogeneity of has been characterised by its181

probability distribution, i.e. as characterised by the mean, , and standard deviation,182

, of , and by the SOF, . The mean and coefficient of variation of are183

assumed to be 1.0 × 10 8 m/s and 1.0, respectively, whereas the vertical and184

horizontal SOFs of are assumed to be 1.0 m and 8.0 m, respectively.185

The mechanical parameters and other hydraulic parameters are assumed to be186

deterministic and are listed in Table 1. These values are typical for organic soils.187

LAS has been used to generate 1000 random fields as initial ensemble members.188

It has also been used to generate a single reference realisation, based on the same189

statistics as used for the ensemble. This is to represent 'real' values of hydraulic190

conductivity (as might be obtained from the field) and has been used in the seepage191

analysis to produce 'real' data of PWP to be assimilated.192
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Two indicators are used to evaluate the performance of the EnKF:193

(1)194

(2)195

where RMSE is the root mean square error and SPREAD is a measure of the196

uncertainty of the ensemble members, and in which is the Gauss point number, Nk197

is the number of unknown values in the embankment, superscripts and198

indicate the 'real' and ensemble mean values, respectively, and is the199

ensemble variance for each unknown , computed over all ensemble members.200

4. Results201

4.1. Example analysis202

This section demonstrates the capability of the EnKF in sequentially improving the203

estimation of the spatially varying , as well as the subsequent prediction of204

slope stability.205

4.1.1. Estimation of via the EnKF206

The number of measurement points used in the EnKF is 63, and the locations are207

shown in Figure 5 and Table 2. Figure 6 shows the comparison between the reference208

field, and the initial and improved estimations of the same field. It is seen209

that, after data assimilation, the estimated local variability of is significantly210

improved.211

Figure 7 shows the reduction of the RMSE and ensemble spread of .212

Whereas the RMSE decreases quickly in the first few assimilation steps and becomes213
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stable thereafter, the SPREAD decreases continuously. Based on Equation (1), the214

decrease in RMSE indicates that the estimation of , i.e. the ensemble mean of215

, becomes closer to the 'real' value. Based on Equation (2), the decrease in216

SPREAD indicates that the variability of at each Gauss point becomes smaller.217

This implies that the system is more certain that this is the best result it can calculate218

with the measurements and solution space available. The value to which the RMSE219

converges depends on the parameter values in the system which affect the result at220

the measurement locations. If there are parameter values which do not affect the221

measurements, the covariance of the measurements and parameters used in the222

Kalman gain is negligible, and therefore they are not adjusted. Moreover, a random223

error representing the measurement error is added to each measurement in each224

assimilation step, and the level of this noise also affects the RMSE value.225

Figure 8 compares, for each Gauss point in the finite element mesh, the226

ensemble mean of with the reference . The straight diagonal line in227

the figure indicates a perfect match between the two quantities. Therefore, the228

closer to the line a circle (representing a Gauss point value) is, the closer the229

ensemble mean of this point is to the reference . The colour of the circle230

represents the numbering of the Gauss points, i.e. from 1 to 2784. In addition, the231

size of the circle indicates the ratio of the horizontal to vertical coordinates of the232

points, i.e. . Figure 8 shows the ensemble means of getting closer to the233

reference as the number of assimilation steps increases.234

235
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4.1.2. Prediction of slope stability236

The improved estimation of results in an improvement in the estimation of237

PWP. This influences the effective stress, which, in turn, influences the prediction of238

slope stability. Figure 9 shows the distributions of FOS with and without data239

assimilation, i.e. the probability density function (PDF) and cumulative distribution240

function (CDF) at different times, as well as the corresponding improved241

random fields. The solid vertical line represents the 'real' FOS calculated using the242

PWP derived from the reference field. It is seen that the prediction of slope243

stability can be improved via data assimilation using PWP measurements, due to the244

standard deviation of the FOS decreasing compared to the original distribution. This245

is mainly due to the decreased ensemble spread of (Figure 7), which reduces246

the uncertainty in the estimation of PWP and, in turn, the uncertainty in the slope247

stability. It is seen that the updated results yield a mean which consistently248

overpredicts the FOS, although the FOS is part of the PDF predicted at all times. This249

is thought to be due, at least in part, to the selected measurement data and the250

log normal distribution of the hydraulic conductivity.251

Note that Figure 9 (e) shows the mean of the predicted FOS just before the 10th252

assimilation step to be less accurate than just before the 8th assimilation step (Figure253

9 (d)). This is because the error between the 'real' PWP and computed PWP increases.254

The error is defined as:255

(3)256

where is the number of element nodes, is the number of ensemble257
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members, and and are the computed PWP and 'real' PWP based on258

the reference hydraulic conductivity field, respectively. Figure 10 shows the variation259

of Error (in terms of PWP head) with time. It is seen that the Error increases at260

, causing the mean of the FOS in Figure 9 (e) to move to the right relative to261

the 'real' solution and the standard deviation of the FOS to increase. The Error262

increase is due to the increased uncertainty in the PWP, which is due to the transient263

drying–wetting seepage process. The uncertainty in the PWP changes with time,264

partly due to the non linearity of the SWRC and partly because some soils are still265

drying while others may be wetting. Figures 9 (f), 9 (l) and 9 (r) are the results at266

, revealing that the mean of the predicted FOS starts getting closer to the267

reference FOS again.268

To further illustrate this, the computation of the seepage process and slope269

stability have been extended to . Figure 11 (a) shows the variation of the270

computed mean FOS and reference FOS with time, and Figure 11 (b) shows the271

variation of the standard deviation of FOS with time, with and without data272

assimilation. As expected, the standard deviation is significantly smaller when273

incorporating data assimilation, although it fluctuates with time as the process274

continues (due to the fluctuating external loading).275

4.2 Sensitivity to the number of measurement points276

4.2.1. Estimation of277

The estimation of the spatial variability of requires PWP sensors to be installed278

to capture the local variability. In this section, the influence of different numbers of279
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measurement points on the estimation of is investigated. These points are280

assumed to be located at selected finite element nodes, as shown in Figure 5 (b), in281

which the numbers indicated below the embankment are the allocated serial282

numbers of the columns of measurement points. In order to investigate the influence283

of the number of measurement points, different numbers of measurement points284

were used by selecting different combinations of columns. The details are given in285

Table 2.286

The input mean and standard deviation of are the same as in the previous287

section, as are and . Figure 12 shows the influence of the number of288

measurement points on the estimation of . It is seen that the RMSE and SPREAD289

decrease with increasing number of measurement points, albeit with less of an290

impact on the RMSE above 63 points.291

4.2.2. Estimation of slope stability292

The influence of the number of measurement points on the prediction of slope293

stability is shown in Figure 13. It can be seen that, counter intuitively, the uncertainty294

in the FOS for 63 measurement points is slightly less than that for 103 measurement295

points. This is because the uncertainty in the FOS is also influenced by the296

measurement locations. To illustrate this, Figure 14 shows a comparison between297

two different configurations of 63 measurement points: the original configuration298

defined in Table 2, and a second in which the 63 points are located in Columns 0, ±3299

and ±12. The uncertainty in the FOS for the second configuration is greater due to300

the different spatial distribution of measurements throughout the embankment.301
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4.3 Influence of spatial continuity on the data assimilation302

The spatial continuity has been proven to be influential on the estimation of303

when the EnKF is applied in the data assimilation process (Chen and Zhang 2006;304

Jafarpour and Tarrahi 2011; Pasetto et al. 2015). When the SOF is large, the local305

is more likely to be correlated over a relatively long distance. Therefore, it is306

hypothesised that, for the same number of measurement points, when the SOF ( ) is307

larger, the assimilated results should give a better estimation of . This has been308

investigated for both isotropic and anisotropic random fields.309

4.3.1 Isotropic fields310

For isotropic random fields, is equal to . Three different values have been311

studied here, i.e. = = 2, 8, 64 m, as illustrated by typical random fields shown312

in Figures 15 (a), 16 (a) and 17 (a), respectively. It is seen that, with an increase in the313

SOF, the domain becomes nearer to a homogeneous field.314

Figure 18 shows that the RMSE and SPREAD for the three SOFs decrease with an315

increase in the number of assimilation steps. Moreover, when the SOF is larger, the316

RMSE is smaller which indicates that the updated estimation of is more317

accurate. The SPREAD is also less for a larger SOF. Figures 15–17 compare the318

reference and updated fields for different values of .319

Figure 19 shows that the original standard deviation of the FOS increases with320

an increase in SOF. When the EnKF is applied, by comparing the original and updated321

standard deviations, it is seen that the reduction of the standard deviation of the FOS322

is greatest for the largest SOF.323
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4.3.2 Anisotropic fields324

In practice, due to the depositional process of soil, the horizontal SOF tends to be325

larger than the vertical SOF. In this section, the vertical SOF is assumed to be326

constant, i.e. m, and the horizontal SOF is = 2, 8, 64 m. The larger327

leads to horizontal passages of lower resistance to water flow. Figures 6 (a), 20 (a)328

and 21 (a) show typical random fields for the three horizontal SOFs.329

In Figure 22, the number of measurement points is 63, except for = 2 m330

when two different numbers of measurement points are compared, i.e. 63 and 103.331

It was found that, when = 2 m, the RMSE does not decrease monotonically when332

63 measurement points are used. Since the horizontal SOF is small, indicating that333

the soil property values are correlated over a small distance, more measurement334

points have also been considered for this case. Figure 22 shows that the RMSE335

decreases when 103 measurement points are used. For = 8 m and 64 m, the336

RMSE decreases with increasing number of assimilation steps. The SPREAD decreases337

with the number of assimilation steps and the extent of the reduction increases with338

an increase in (and with an increase in the number of measurement points).339

Figures 20 and 21 compare the reference and updated fields for = 2340

m and 64 m, respectively. The case with = 8 m is shown in Figure 6.341

In Figure 23, when the EnKF is not applied, there is no significant difference in342

the standard deviations of the FOS. However, when the EnKF is applied, it is seen that343

the reduction in the standard deviation of the FOS is significant and is highest for344

= 8 m. This indicates that the reduction of the uncertainty does not simply increase345
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with an increase in the horizontal SOF.346

4.4 Influence of initial ensemble statistics347

So far, the generated ensembles have been based on the same spatial statistics as348

used to generate the 'real' field. This section investigates the impact (on the analysis)349

of generating ensembles from inaccurate input statistics.350

4.4.1 Influence of inaccurate SOF351

In the previous analyses, the SOF of was used to generate the initial ensemble352

members via LAS. Chen and Zhang (2006) briefly analysed the influence of an353

inaccurate integral scale (similar to the SOF) and found that a small deviation (i.e. of354

20%) in its value had no significant impact on the assimilation results. However, they355

also pointed out that wrong information on the statistical anisotropy could have a356

long lasting effect on the updated field and that the effect is difficult to357

eliminate. Therefore, this section analyses a few cases in which is assumed to358

deviate from the 'real' value, i.e. 50% smaller, 50% larger and 100% larger. In addition,359

a limiting case where the SOF is assumed to be infinity has been analysed, so that the360

generated initial ensemble members are based only on the probability distribution of361

, i.e. on the mean and standard deviation.362

Figure 24 shows the comparison of the RMSE and SPREAD between the cases,363

whereas Figure 25 shows the reference and updated fields corresponding to364

the 11th assimilation step, which can be compared with the updated field based on365

the correct SOF of = 8 m in Figure 6 (d). Figure 25 (b) shows that no spatial366
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variability is modelled in the updated field when the starting SOF is infinity.367

Moreover, Figure 24 shows that the SPREAD with no spatial variability decreases to368

zero, which implies that the updated estimation of does indeed converge to a369

single value. Therefore, it can be concluded that the EnKF cannot determine the local370

variability of without the input of spatial variability in the ensemble members.371

This can be explained by the calculation of the Kalman gain (Vardon et al., 2016). If372

no spatial correlation is initially considered, i.e. the field is homogeneous, in each373

state vector the corresponding values of hydraulic conductivity will be the same374

(because is the same throughout the mesh). Then the Kalman gain gives a375

uniform change in the update of , since there is only a single property value in376

each ensemble member. Therefore, the Kalman gain results in the same updates for377

all local for each ensemble member, so that the algorithm is not able to search378

for local variability of in the reference field.379

Significantly, Figures 25 (c), 25 (d) and 25 (e) indicate that, when the input380

horizontal SOF deviates by 50%, +50% and +100% from that of the reference field,381

the updated estimation of is still acceptable and is almost identical to that382

obtained when an accurate horizontal SOF is used (Figure 6 (d)).383

4.4.2 Influence of inaccurate mean and standard deviation384

The influence of the initial mean and standard deviation of has also been385

investigated, as the initial bias has an influence on the updated estimation of386

(Dee and Da Silva, 1998). First, only the value of the mean was changed. Then, the387

values of both the mean and standard deviation were changed. Table 3 lists the388
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inaccurate values used in the data assimilation process. In both cases, accurate SOFs389

were used.390

Figures 26 and 27 compare results between using accurate and inaccurate initial391

conditions. It is seen that, if only the mean value is inaccurate, there is a big error in392

the updated estimation of (see Figure 27 (b)). This may be explained by Figure393

28, which shows the three input distributions of with different means and394

standard deviations. It is seen that, when the mean is inaccurate and the standard395

deviation is relatively small, there is almost no overlap between the area under the396

solid line (representing the correct distribution) and the dash dotted line397

(representing the inaccurate distribution). The results indicate that, when the initial398

mean is uncertain, it is better to choose a larger standard deviation in order to get399

acceptable back calculated results. This is because, if the initial estimation of the400

mean and standard deviation is inaccurate, choosing a larger standard deviation for401

generating the initial ensemble enables the realisations to cover a larger range of402

values, which, in turn, helps in searching out the correct values of during the403

data assimilation process. Note that, in Figure 28, the distribution curve of404

based on accurate statistics almost overlaps with the distribution curves of405

taken from the reference field (Figure 27 (a)) and the estimated field (Figure 27 (c)).406

5. Comparison between static and temporal measurements407

This section considers the difference between using static measurements from408

steady state seepage and temporal measurements from a transient seepage process.409

For the static measurements, the water level is assumed to be constant at and410
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the PWP measurements are used to iteratively update the estimation of .411

Figure 29 shows the variation of RMSE and SPREAD for the cases using temporal412

and static PWP measurements, while Figure 30 shows the updated estimation of the413

field for the two cases. The two figures demonstrate the improvement is414

better when using temporal measurements, due to more information being available415

for tuning the results.416

6. Conclusions417

It has been shown that the measurement of PWP can contribute to an improved418

estimation of . In the transient seepage process, once the measurement of PWP419

is acquired, the EnKF can be used to improve the estimation of and, thereby,420

the estimation of seepage behaviour and slope stability. Significantly, the temporal421

analysis gives more information for tuning results than a steady state analysis as422

implemented in Vardon et al. (2016). It has been found that the precision of the423

estimation of increases with an increasing number of measurement points,424

although the uncertainty reduction in the FOS does not monotonically increase with425

the increasing number. However, it should be noted that, whatever the number of426

measurement points, the uncertainty in the slope stability can be reduced to a427

certain extent.428

It has also been found that the spatial continuity of , as reflected by the429

magnitude of the SOF used in random field simulations, has an influence on the430

estimation of and thereby on the estimation of slope stability. The RMSE of431

is smaller for a larger for the same number of measurement points. In432
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addition, the SPREAD of reduces as gets larger. These results indicate that,433

when the soil parameters are correlated over a longer distance, the improvement in434

the estimation of , when using the EnKF based on the same number of435

measurement points, is greater. For slope stability and isotropic spatial variability, the436

reduction of the uncertainty in the FOS increases with an increasing . However, for437

anisotropic spatial variability (for constant and relatively small compared to the438

height of the embankment), the reduction of the uncertainty in the FOS does not439

simply increase with an increasing degree of anisotropy, i.e. , for the analyses440

presented in this paper. In addition, although the original standard deviation of the441

FOS is almost the same for the three values of considered, the updated standard442

deviation of the FOS shows significant differences for the different .443

Last but not least, the initial ensemble statistics of have been investigated.444

It was found that the EnKF cannot work out the local variability of based only445

on the measurement data; that is, without considering the spatial variability in the446

input ensemble. However, even a relatively inaccurate estimation of the SOF, as input447

for the initial ensemble, can give an updated estimation of that is almost448

identical to that obtained using the correct SOF. In addition, when the pointwise449

variation of is not captured well, it is better to assume a larger standard450

deviation for . This is so that the initial ensemble covers a greater range of451

values, which helps when searching the parameter space during the assimilation452

process.453

The paper has only utilised synthetic data to validate the proposed framework,454
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so further work is needed to apply this method to a real project with real455

measurements.456
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Notation461

effective cohesion

ensemble mean of

stiffness

FOS factor of safety

specific gravity of the soil particles

suction head

air entry suction head

Gauss point number

saturated hydraulic conductivity

scale of fluctuation

scale of fluctuation in the horizontal direction

scale of fluctuation in the vertical direction

natural log of

fitting parameter of the soil water retention curve
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total number of ensemble members

number of the unknown

number of element nodes

PWP pore water pressure

'real' value of

RMSE root mean square error

SOF scale of fluctuation

SPREAD uncertainty of the ensemble members

SWRC soil water retention curve

time

period of the first sinusoid

period of the second sinusoid

ensemble variance for each

WL water level

coordinate in the horizontal direction

coordinate in the vertical direction

approximately the inverse of the air entry suction head for soil water

retention curve

volumetric water content

saturated volumetric water content

residual volumetric water content

mean
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standard deviation

Poisson's ratio

Dilation angle

effective friction angle
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Table 1 Parameter values for the illustrative example.

Parameter Symbol Unit Value

VGM parameter for the curve m 1 0.1

Fitting parameter for VGMmodel 1.226

Saturated volumetric water content 0.38

Residual volumetric water content 0.0038

Stiffness kPa 1.0 × 105

Poisson's ratio 0.3

Effective cohesion kPa 15

Effective friction angle o 20

Dilation angle o 0

Specific unit weight 2.02

Note: VGM denotes the Van Genuchten–Mualem model.



Table 2 Scenarios of different numbers of measurement points.

Scenario Columns selected Number of measurement points

1 ±12, ±10, ±8, ±6, ±4, ±2, 0 155

2 ±12, ±9, ±6, ±3, 0 103

3 ±10, ±5, 0 63

4 ±7, 0 45

5 ±12, 0 25

6 Points in ±10, ±5, 0 ('—') 8

7 Points in ±5, 0 ('/') 3

Note: ± indicates both positive and negative column numbers; the symbols '—' and '/' indicate

the positions of the points in scenarios 6 and 7, respectively.



Table 3 Inaccurate mean and standard deviation of used in the EnKF.

Case Mean (m/s) Standard deviation (m/s) (m) (m)

Accurate 1.0 × 10 8 1.0 × 10 8

1 8
Inaccurate

1 5.0 × 10 8 1.0 × 10 8

2 5.0 × 10 8 5.0 × 10 8


