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On the Derivation of Closed‐Form Expressions for
Displacements, Strains, and Stresses Inside Poroelastic
Reservoirs
P. Cornelissen1,2 , B. J. Meulenbroek3 , and J. D. Jansen1

1Department of Geoscience and Engineering, Delft University of Technology, Delft, The Netherlands, 2Now at
Wageningen Environmental Research, Wageningen, The Netherlands, 3Delft Institute of Applied Mathematics, Delft
University of Technology, Delft, The Netherlands

Abstract We critically review the derivation of closed‐form analytical expressions for elastic
displacements, strains, and stresses inside a subsurface reservoir undergoing pore pressure changes using
inclusion theory. Although developed decades ago, inclusion theory has been used recently by various authors
to obtain fast estimates of depletion‐induced and injection‐induced fault stresses in relation to induced
seismicity. We therefore briefly address the current geomechanical relevance of this method, and provide a
numerical example to demonstrate its use to compute induced fault stresses. However, the main goal of our
paper is to correct some erroneous assumptions that were made in earlier publications. While the final
expressions for the poroelastic stresses in these publications were correct, their derivation contained conceptual
mistakes due to the mathematical subtleties that arise because of singularities in the Green's functions. The aim
of our paper is therefore to present the correct derivation of expressions for the strains and stresses inside an
inclusion and to clarify some of the results of the aforementioned studies. Furthermore, we present two
conditions that the strain field must satisfy, which can be used to verify the analytical expressions.

Plain Language Summary Previous authors derived mathematical expressions to aid in
understanding the nature of earthquakes as a result of the production of fluids from the subsurface or the
injection of fluids into it. These expressions represent relationships between stresses and pore pressures in
subsurface reservoirs (i.e., sealed bodies of porous rock containing fluids). Although the expressions are correct,
the reasoning behind their derivation contained flaws related to mathematical subtleties in the underlying
theory. In the present paper we explain those errors and present the correct derivation. Moreover we present two
additional results that can be of help in the derivation of similar expressions for different configurations or
purposes, and we give an example to demonstrate the use of these expressions in computing stresses caused by
fluid production from a faulted reservoir.

1. Introduction
1.1. Current Relevance

Pore pressure changes in subsurface reservoirs yield a poro‐elastic response in the reservoir and its surroundings
(Biot, 1941; Geertsma, 1973; Segall, 1985; Wang, 2000). Numerical computation of the induced stresses can be
demanding, as a fine mesh resolution is required to capture the sharp stress variations at the reservoir boundaries,
while singularities in the underlying mathematical structure may frustrate convergence. Therefore, analytical
methods, developed several decades ago, have recently regained popularity to provide a fast estimate of injection‐
induced or depletion‐induced displacements, strains, or stresses (Jansen et al., 2019; Lehner, 2019; Wu
et al., 2021). Moreover, these methods can nowadays be coupled with semi‐analytical or numerical models to
efficiently compute induced fault stresses as a basis for subsequent simulation of fault slip and seismic hazard
assessment (Acosta et al., 2023; Barbosa et al., 2022; Cornelissen & Jansen, 2023b; Jansen & Meulenbroek, 2022;
Smith et al., 2022; van Wees et al., 2018, 2019).

1.2. Inclusion Theory and the Nucleus of Strain Concept

Analytical expressions for the linear elastic displacements, strains, and stresses induced by pore pressure changes
in a subsurface reservoir can be derived under some simplifying assumptions. Such expressions are mainly
derived from either the nucleus of strain concept, based on potential theory, or inclusion theory. The nucleus of
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strain concept (Love, 1927) was introduced by Goodier (1937) for thermoelasticity and was later applied to
poroelasticity by Geertsma (1966, 1973). In this concept, the displacement field is equated to the gradient of a
scalar potential, denoted as the displacement potential. Substituting the displacement potential into the me-
chanical equilibrium equations yields the Poisson equation, for which a solution exists in integral form. Inclusion
theory was introduced by Eshelby (1957) to compute the stresses around elliptical inclusions. Eshelby (1957)
computes the displacement field due to a region, the inclusion, undergoing a change in shape and size through a
series of imaginary steps that involve cutting, transforming, and re‐inserting the inclusion. While the derivations
of the governing equations in the two approaches are conceptually different, they yield identical expressions for
the displacements, strains, and stresses.

Inclusion theory and the nucleus of strain concept were later adopted to estimate subsidence and stress fields
outside elliptical subsurface reservoirs (Geertsma, 1973; Segall, 1985, 1989, 1992; Segall et al., 1994). Segall and
Fitzgerald (1998) considered the stresses inside ellipsoidal reservoirs, where the strains are uniform inside the
inclusion as per Eshelby's result (Eshelby, 1957). More recently, Soltanzadeh and Hawkes (2008), Jansen
et al. (2019), Lehner (2019), and Wu et al. (2021) also considered the non‐uniform stresses inside non‐elliptical
reservoirs, such as rectangular, triangular, and trapezoidal reservoirs. Soltanzadeh and Hawkes (2008) did not
present analytical expressions for the stresses, while the other three studies did. Although all these studies pre-
sented correct final solutions for the stress field, the derivations of Jansen et al. (2019) and Wu et al. (2021)
contained errors. Furthermore, mathematical subtleties arise in all three studies. The aim of this paper is to clarify
and correct the derivation of closed‐form expressions for the stresses inside an inclusion and in particular address
the derivations by Jansen et al. (2019) and Wu et al. (2021), but also to highlight the mathematical subtleties that
arise when considering strains and stresses inside an inclusion.

1.3. Organization of the Paper

In Section 2 we recapitulate the derivation of expressions for poroelastic displacements, strains, and stresses using
inclusion theory, and in Section 3 we present the resulting expressions for rectangular and triangular elements. A
critical review in Section 4 forms the heart of the paper in which we clarify the erroneous assumptions in earlier
derivations. In Section 5 we provide a numerical example to illustrate the use of the theory to compute induced
stresses in a faulted reservoir, whereafter Section 6 concludes the paper. Two appendices provide additional
mathematical details.

2. Derivation of Closed‐Form Expressions for Displacements, Strains, and Stresses
2.1. General Procedure

Here, we will use inclusion theory to derive closed‐form expressions for the displacements, strains, and stresses
induced by pore pressure changes, but identical expressions can be obtained from potential theory and the related
’nucleus of strain concept’ (Barbosa et al., 2022; Geertsma, 1973; Goodier, 1937; Lehner, 2019; Lehner
et al., 2005; Rudnicki, 2002, 2011; Smith et al., 2022; Timoshenko & Goodier, 1970; Vasco & Johnson, 1987;
Wang, 2000). For more background information and a thorough derivation of the governing equations in in-
clusion theory, readers are referred to Mura (1987) and Rudnicki (2011). The description in this section is partly
based on the Supplementary Information belonging to Jansen et al. (2019).

We are interested in the elastic strain and stress fields caused by a change of pore pressure p in a region, denoted as
the inclusion Ω, inside an infinite three‐dimensional elastic domain. The boundary of the inclusion is defined by
Γ. We consider linear elasticity theory, as is the norm in inclusion theory. Both the inclusion and the surroundings
are assumed to have homogeneous and isotropic elastic properties, which are the same inside and outside the
inclusion. An increase in pore pressure in the inclusion causes a reduction in effective stress in its matrix and
consequently an elastic expansion of the inclusion. The induced stresses are assumed to vanish at infinity. As first
described by Eshelby (1957), the displacements, strains, and stresses in and around the expanding inclusion can
be computed by following a series of imaginary steps:

1. Remove the inclusion from its surroundings.
2. Allow the inclusion to expand freely in response to a change in pore pressure.
3. Restore the inclusion to its original shape by applying distributed forces at its boundaries.
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4. Re‐attach the inclusion to its surroundings and remove the forces (i.e., apply the forces in opposite direction to
the entire infinite solid).

These steps are visualized in Figure 1 for a rectangular inclusion, but the approach is applicable to inclusions of all
shapes.

Only the incremental stresses (i.e., the stresses induced by changes in pore pressure) are computed with this
method. These incremental stresses can be added to the background stresses (or initial stresses) to obtain the total
stress field, as we later show in this paper. We assume that the incremental displacements, strains, and stresses are
initially zero.

We assume that the change in pore pressure p is uniform in Ω. If the inclusion would be allowed to expand (for an
increase in pore pressure) or shrink (for a drop in pore pressure) stress‐free, as in step 2 above, it would experience
a uniform dilational deformation. The corresponding strain tensor ϵ∗

ij , often referred to as the transformation
strain, stress‐free strain, or eigenstrain, has components (Wang, 2000, p. 38)

ϵ∗
ij =

αp
3K
δijδΩ, (1)

where α = 1 − cs /cm is Biot's coefficient, with cs the compressibility of the solid phase and cm the drained
compressibility of the porous medium, K is the drained pore bulk modulus, δij is the regular Kronecker delta, and
δΩ is a modified Kronecker delta which equals 1 inside the inclusion and 0 outside. No strains would develop
outside the inclusion as a result of step 2.

The inclusion can be brought back to its original shape and size by applying surface tractions with magnitude
− σ∗

ij nj to the boundary of the inclusion, where σ∗
ij is obtained from the transformation strain via Hooke's law

σ∗
ij = − (λδijϵ

∗
kk + 2μϵ∗

ij) = − αpδijδΩ, (2)

where λ and μ are Lamé’s first and second parameter, respectively, repeated indices imply summation, and ni
denotes the i‐component of the outward normal vector of the inclusion boundary. The stress tensor σ∗

ij is generally
referred to as the eigenstress (not to be confused with the principal stresses, which are computed from the ei-
genvalues of the stress tensor). We employ the sign convention of continuum mechanics, such that positive
normal stresses correspond to tension. At the end of step 3, the strain then equals zero everywhere, while the stress
inside the inclusion equals σ∗

ij and vanishes outside of the inclusion.

Next, we reconnect the inclusion to the surrounding material and remove the distributed forces by applying their
negatives. The resulting displacement field can be computed from

ui(x) = αp∫
Γ
gijnj dΓ, (3)

Figure 1. Two‐dimensional view of the four imaginary steps involved in computing the displacements in and around an
expanding rectangular inclusion in an infinite elastic solid using Eshelby's method.
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where ui is the displacement in the i‐direction and gij are Green's functions, which denote the displacement in the i‐
direction at point x due to an applied force in the j‐direction at point x′ (Love, 1927). Expressions for the Green's
functions will be given in the next section. Applying the divergence theorem allows us to transform the surface
integral in Equation 3 into a volume integral

ui(x) = αp∫
Ω
gij,j(x,x′) dΩ. (4)

The displacement field described by Equation 4 is due to a distribution of centers of dilatation (i.e., double forces
without moment in all perpendicular directions), also referred to as nuclei of strain.

Once the displacement field is known from Equation 4, the total strains ϵij can be obtained from the compatibility
equation

ϵij =
1
2
(uj,i + ui,j). (5)

The stresses can be obtained from the strains by Hooke's law. However, for points inside the inclusion Ω it is
necessary to add the eigenstress defined in Equation 2. The stresses are then given by

σij = λδijϵkk + 2μϵij − αpδijδΩ, (6)

which is equivalent to the poroelastic form of Hooke's law (Wang, 2000).

2.2. Displacements

Up to this point, the equations that have been presented are valid for the general three‐dimensional case. From this
point onward, we will restrict ourselves to two‐dimensional plane strain problems, similar to Jansen et al. (2019)
and Wu et al. (2021). The same method is applicable to three‐dimensional problems, but the expressions for the
Green's functions and resulting integrals are different. For the plane strain case, the transformation strain is given
by (Wang, 2000, p. 151)

ϵ∗
ij =

αp(1 + ν)
3K

δijδΩ, (7)

where ν is Poisson's ratio which is related to Lame's parameters as ν = λ
2(λ+ μ), such that the eigenstress still equals

σ∗
ij = − αpδijδΩ (Wang, 2000).

Under plane strain conditions, the Green's functions are given by Mura (1987) as

gxx(x,y,x′,y′) =
1

8π(1 − ν)μ

⎡

⎢
⎢
⎢
⎣

(x − x′)2

R2 − (3 − 4ν)ln R

⎤

⎥
⎥
⎥
⎦
, (8)

gyy(x,y,x′,y′) =
1

8π(1 − ν)μ

⎡

⎢
⎢
⎢
⎣

( y − y′)2

R2 − (3 − 4ν)ln R

⎤

⎥
⎥
⎥
⎦
, (9)

gxy(x,y,x′,y′) =
1

8π(1 − ν)μ
(x − x′)( y − y′)

R2 , (10)

where R =
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

(x − x′)2 + ( y − y′)2
√

is the distance between the points (x, y) and (x′, y′) (Figure 2). Substituting
Equations 8–10 into Equation 4 yields expressions for the displacements
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ux(x,y) = D∫∫
Ω

x − x′
R2 dx′dy′ = D∫∫

Ω
gx dx′dy′, (11)

uy(x,y) = D∫∫
Ω

y − y′
R2 dx′dy′ = D∫∫

Ω
gy dx′dy′, (12)

with D = (1− 2ν)αp
4π(1− ν)μ for ease of notation. These equations are also presented by

Jansen et al. (2019), Lehner (2019), and Wu et al. (2021). We define Gx and
Gy as the double integrals of the Green's functions

Gx =∫∫
Ω
gx dx′dy′, (13)

Gy =∫∫
Ω
gy dx′dy′. (14)

Outside of the inclusion, the Green's functions gx and gy can be integrated as usual. However, Wu
et al. (2021) correctly pointed out that Fubini's theorem does not hold inside the inclusion. Fubini's theorem
states that it is possible to compute a double integral by using an iterated integral, independent of the order
of integration, if the double integral yields a finite answer when the integrand is replaced by its absolute
value:

∫∫
Ω
f (x,y)dΩ = ∫

Δx
(∫

Δy
f (x,y) dy) dx

= ∫
Δy
(∫

Δx
f (x,y) dx) dy if ∫∫

Ω
|f (x,y)|dΩ < ∞.

(15)

For a proof, see, for example, Ghorpade and Limaye (2010), and for examples of the use of Fubini's theorem, see
Stewart et al. (2021). Due to the singularity at (x, y) = (x′, y′), condition (Equation 15) is not met in Equations 13
and 14. Therefore, we must take special care of points inside the inclusion.

To solve the improper double integral over the inclusion domain Ω, we first remove a square region Sδ of size
2δ × 2δ around the singularity

Sδ = {(x′,y′)∈R2 | x − δ≤ x′ ≤ x + δ, y − δ≤ y′ ≤ y + δ}, (16)

such that the resulting domain Ωδ=Ω\Sδ does not contain the singularity. The integral in Ωδ can then be computed
directly with an iterated integral, as this domain does not contain the singularity. As an example, we consider the
horizontal displacement for a point (x, y) inside the rectangular inclusion Ω

Ω = {(x′,y′)∈R2 | p≤ x′ ≤ q, r≤ y′ ≤ s}. (17)

The double integral over Ωδ is then given by

∫∫
Ωδ

gx dx′dy′ = ∫

s

r
∫

x− δ

p
gx dx′dy′ +∫

s

r
∫

q

x+δ
gx dx′dy′ +∫

y− δ

r
∫

x+δ

x− δ
gx dx′dy′

+∫

s

y+δ
∫

x+δ

x− δ
gx dx′dy′.

(18)

Since Fubini's theorem holds on the domain Ωδ, changing the order of integration does not affect the result.
Furthermore, the result is independent of δ.

Figure 2. The Green's function gij gives the displacement in the i‐direction at
point (x, y) due to a point force in the j‐direction at point (x′, y′), which is a
function of the distance R between both points. Each point (x′, y′) inside the
inclusion contributes to the displacement at point (x, y). The total
displacement at point (x, y) is then obtained by integrating the Green's
function over the entire inclusion (in this example, a rectangular inclusion).
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Next, we consider the improper integral on the domain Sδ. In Appendix A, we show that the improper double
integral converges absolutely and equals zero

∫∫
Sδ
gx dx′dy′ = 0. (19)

This result is independent of δ. The solution to the integral in Equation 13 is then given by

Gx =∫∫
Ωδ

gx dx′dy′ +∫∫
Sδ
gx dx′dy′ =∫∫

Ωδ

gx dx′dy′. (20)

The same approach can also be applied to the vertical displacement by replacing gxwith gy in the equations above,
as well as to shapes different from the rectangular inclusion considered in this example.

2.3. Strains and Stresses

Once the displacement field is known, the total strains ϵij are obtained by differentiation as

ϵxx = D
∂
∂x
∫∫

Ω
gx dx′dy′ = DGx,x = DGxx, (21)

ϵyy = D
∂
∂y
∫∫

Ω
gy dx′dy′ = DGy,y = DGyy, (22)

ϵxy =
D
2
(
∂
∂x
∫∫

Ω
gy dx′dy′ +

∂
∂y
∫∫

Ω
gx dx′dy′) =

D
2
(Gy,x + Gx,y) = DGxy. (23)

Note that we take the derivative of the displacements outside of the double integral. Previous studies placed
the derivative under the integral sign to obtain Green's functions for the strains and stresses (Barbosa
et al., 2022; Jansen et al., 2019; Soltanzadeh & Hawkes, 2008; Wu et al., 2021). However, the resulting
double integrals over the Green's functions for the stresses are not convergent (Ghorpade & Limaye, 2010).
Since the Green's functions for the displacements are discontinuous at the singularity, their derivatives are
undefined inside the inclusion. Therefore, the order of differentiation and integration is not interchangeable
for points inside the inclusion. In other words, Leibniz's integral rule cannot be applied for these points
(Protter & Morrey, 1985). Indeed, it was already pointed out by Mura (1987, p. 12) that switching the
order of differentiation and integration should generally be avoided. Placing the derivative under the in-
tegral sign is only valid for points outside the inclusion. The same conclusion follows from potential
theory, in which the first derivatives of a potential (corresponding to displacements) obey Leibniz's integral
rule for points inside the inclusion, whereas the second derivatives (corresponding to strains) do not
(D’Urso, 2013).

Finally, we compute the stresses from the elastic strains using Hooke's law (Equation 6), which yields

σxx = (λ + 2μ)ϵxx + λϵyy − αp δΩ, (24)

σyy = λϵxx + (λ + 2μ)ϵyy − αp δΩ, (25)

σxy = 2μϵxy. (26)

2.4. Conditions to Verify Results

As obtaining closed‐form expressions for the strains and stresses is prone to errors due to the mathematical
subtleties surrounding the improper integrals, it is worthwhile to determine some requirements that the solution
must adhere to. Here, we present two conditions that the strain field must satisfy.
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2.4.1. Strain Discontinuity

As the Green's functions are solutions to the mechanical equilibrium equations, the normal traction must be
continuous everywhere. While stresses develop both inside and outside the inclusion due to the change in pore
pressure, the eigenstress is non‐zero inside the inclusion and zero outside. Therefore, there must be a jump in the
strains to maintain continuity of the normal traction across the interface of the inclusion. The magnitude of
the required strain jump can be derived purely from the geometry of the inclusion boundary, independently from
the analytical solution for the strains (Mura, 1987, p. 39). This approach can be used to verify our expressions for
Gxx, Gyy, and Gxy. The normal traction should be continuous across the boundary of the inclusion

ΔTx = Δσxxnx + Δσxyny = 0,

ΔTy = Δσxynx + Δσyyny = 0,
(27)

where Tx and Ty are the components of the normal traction vector, nx and ny are the components of the unit vector
normal to the inclusion boundary (pointing outwards), and Δ indicates the jump in the variable from just inside the
inclusion to just outside the inclusion (e.g., Δσxx = σoutxx − σinxx). We use Hooke's law to write the stresses in
Equation 27 in terms of the strains

[(λ + 2μ)Δϵxx + λΔϵyy + αp] nx + 2μΔϵxyny = 0,

2μΔϵxynx + [λΔϵxx + (λ + 2μ)Δϵyy + αp] ny = 0.
(28)

The jump in strains can be expressed as

Δϵxx = βxnx, (29)

Δϵyy = βyny, (30)

Δϵxy =
1
2
(βxny + βynx), (31)

where βi represents the jump in the derivative of the displacements (Mura, 1987, p. 39). Substituting this into
Equation 28 and rearranging yields

[(λ + 2μ)βxnx + λβyny] nx + μ[βxny + βynx] ny = − αpnx,

μ[βxny + βynx] nx + [λβxnx + (λ + 2μ)βyny] ny = − αpny.
(32)

For a given boundary with known normal vector, this yields two equations for the two unknowns βx and βy. The
general solution is

βx = αp
(λ + μ)nxn2

y − [(λ + 2μ)n2
y + μn2

x] nx
[(λ + 2μ)n2

x + μn2
y][(λ + 2μ)n2

y + μn2
x] − [(λ + μ)nxny]2

, (33)

βy = αp
(λ + μ)n2

x ny − [(λ + 2μ)n2
x + μn2

y] ny
[(λ + 2μ)n2

x + μn2
y][(λ + 2μ)n2

y + μn2
x] − [(λ + μ)nxny]2

, (34)

which can be used to verify the expressions for the strains.

2.4.2. Volumetric Strain

The displacements, strains, and stresses must satisfy the mechanical equilibrium equation, which is given in terms
of displacements by

(λ + μ)uk,ki + μui,kk = (αpδΩ),i, (35)
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where the modified Kronecker delta δΩ appears because the change in pore
pressure equals p inside the inclusion and 0 outside. Following
Geertsma (1973), we can take the divergence of this equation and use the
definition of the volumetric strain ɛ = ϵkk = uk,k to obtain

(λ + 2μ)ε,kk = (αpδΩ),kk. (36)

Hence, the volumetric strain must satisfy the condition

ε =
αp

λ + 2μ
δΩ =

(1 − 2ν)αp
2(1 − ν)μ

δΩ. (37)

Equation 37 can be used as another method to verify the expressions for the
strains. This condition can be derived more directly from potential theory
(Lehner, 2019; Wang, 2000).

3. Resulting Expressions
3.1. Rectangular Inclusion

We now present expressions for the scaled displacements and strains. We
consider a rectangle with corners (p, r), (q, r), (q, s), and (p, s) as shown in
Figure 3. All the expressions presented in this section are valid for points
inside and outside the inclusion.

Computing the double integrals of Equations 13 and 14 yields

Gx =
y − s

2
ln[
(x − q)2 + ( y − s)2

(x − p)2 + ( y − s)2
] −

y − r
2

ln[
(x − q)2 + ( y − r)2

(x − p)2 + (y − r)2
]

+ (x − q)(atan[
y − s
x − q

] − atan[
y − r
x − q

])

− (x − p)(atan[
y − s
x − p

] − atan[
y − r
x − p

]),

(38)

Gy =
x − q

2
ln[
(x − q)2 + ( y − s)2

(x − q)2 + ( y − r)2
] −

x − p
2

ln[
(x − p)2 + ( y − s)2

(x − p)2 + ( y − r)2
]

+ ( y − s)(atan[
x − q
y − s

] − atan[
x − p
y − s

])

− ( y − r)(atan[
x − q
y − r

] − atan[
x − p
y − r

]),

(39)

where atan is the arctangent function.

The scaled strains are obtained by taking the spatial derivatives of Gx and Gy
as defined in Equations 21–23. This yields

Gxx = atan [
y − s
x − q

] − atan [
y − r
x − q

] − atan [
y − s
x − p

] + atan [
y − r
x − p

], (40)

Gyy = atan [
x − q
y − s

] − atan [
x − q
y − r

] − atan [
x − p
y − s

] + atan [
x − p
y − r

], (41)

Gxy =
1
2
ln [

((x − q)2 + ( y − s)2)((x − p)2 + ( y − r)2)
( (x − q)2 + ( y − r)2)( (x − p)2 + ( y − s)2)

]. (42)

Figure 3. Geometry of a rectangular inclusion with corner points (p, r), (q, r),
(q, s), and (p, s).

Figure 4. Geometry of a triangular inclusion with corner points (o, r), (p, r),
and (p, s). The extension of the hypotenuse goes through the origin of the
coordinate system (i.e., the hypotenuse lies along the line y = x tan θ).
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3.2. Triangular Inclusion

We consider a right triangle with vertices (o, r), (p, r), and (p, s) with angle θ = atan (s − rp − o ), as shown in

Figure 4. We assume that the hypotenuse lies along the line y′ = x′ tan θ. Using the fact that o = r cot θ,
p = s cot θ, r = o tan θ, and s = p tan θ, the integrated Green's functions for the displacements due to a
triangular inclusion are

Gx =
y − s

2
ln [(x − p)2 + ( y − s)2] −

y − r
2

ln [(x − p)2 + ( y − r)2]

+ (x − p)(atan [
y − s
x − p

] − atan [
y − r
x − p

])

+ sin2 θ(
(x − o)cot θ + y − r

2
ln [(x − o)2 + ( y − r)2]

−
(x − p)cot θ + y − s

2
ln[(x − p)2 + ( y − s)2]

+ (x − y cot θ)(atan [
(x − o)cot θ + y − r

x − y cot θ
] − atan [

(x − p)cot θ + y − s
x − y cot θ

])),

(43)

Gy =
x − o

2
ln[(x − o)2 + ( y − r)2] −

x − p
2

ln[(x − p)2 + ( y − r)2]

+ ( y − r)(atan [
x − o
y − r

] − atan [
x − p
y − r

])

− cos2 θ(
x − o + ( y − r) tan θ

2
ln [(x − o)2 + ( y − r)2]

−
x − p + ( y − s) tan θ

2
ln [(x − p)2 + ( y − s)2]

+ ( y − x tan θ)(atan [
x − o + ( y − r) tan θ

y − x tan θ
] − atan [

x − p + ( y − s) tan θ
y − x tan θ

])).

(44)

Taking the spatial derivatives of the integrated Green's functions yields the scaled strains

Gxx = atan[
y − s
x − p

] − atan [
y − r
x − p

] +
sin θ cos θ

2
ln [

(x − o)2 + ( y − r)2

(x − p)2 + ( y − s)2
]

− sin2 θ(atan [
(x − p)cot θ + y − s

x − y cot θ
] − atan [

(x − o)cot θ + y − r
x − y cot θ

]),

(45)

Gyy = atan[
x − o
y − r

] − atan[
x − p
y − r

] −
sin θ cos θ

2
ln [

(x − o)2 + ( y − r)2

(x − p)2 + ( y − s)2
]

+ cos2 θ(atan [
x − p + ( y − s) tan θ

y − x tan θ
] − atan [

x − o + ( y − r) tan θ
y − x tan θ

]),

(46)

Gxy =
1
2
ln [

(x − p)2 + ( y − s)2

(x − p)2 + ( y − r)2
] +

sin2θ
2

ln [
(x − o)2 + ( y − r)2

(x − p)2 + ( y − s)2
]

+ sin θ cos θ(atan [
(x − p)cot θ + y − s

x − y cot θ
] − atan [

(x − o)cot θ + y − r
x − y cot θ

]).

(47)

Analytical solutions for the displacements, strains, and stresses for various other inclusion shapes, including
elliptical inclusions, are given by Mura (1987, p. 80).

4. Critical Review
The expressions for the scaled displacements for a rectangular inclusion derived in this paper are equivalent to
those presented by Jansen et al. (2019). Expressions for the scaled displacements for triangular inclusions were
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not given by Jansen et al. (2019). The expressions for the scaled strains are equivalent to the ones presented by
Jansen et al. (2019) for both rectangular and triangular inclusions. Wu et al. (2021) did not consider the dis-
placements. Their expression for the scaled shear strain is equal to the one presented in this paper, but their
expressions for the scaled normal strains are different. They included an extra term − πδΩ for Gxx and incorrectly
used Gyy = − Gxx. This latter equality is only valid for points outside the inclusion, but not for points inside the
inclusion. It violates the condition for the volumetric strain (Equation 37) and is therefore incorrect. Note that the
volumetric strain is constant inside the inclusion and equal to zero outside. This means that the inclusion ex-
periences dilation, while the surroundings do not. The components of the strain tensor (i.e., the horizontal,
vertical, and shear strain) are generally not constant in space.

The equations presented in this paper do satisfy the requirement for the volumetric strain. Writing Equation 37 in
terms of Gxx and Gyy yields

Gxx + Gyy = 2πδΩ. (48)

For a rectangular inclusion, it is relatively straightforward to prove that this holds for our expressions by taking the
sum of Equations 40 and 41 and using the identity atan(x) + atan(1/x) = π

2sign(x). This is a bit more cumber-
some to prove for triangular inclusions, but the condition also holds in this case (Appendix B). The scaled
volumetric strain Gxx +Gyy

π is shown in Figure 5, which shows that the condition for the volumetric strain is met for
both rectangular and triangular inclusions.

Additionally, we consider the jump in strains that arises from the condition of continuous normal traction across
the inclusion boundary. Figure 6 shows the jump in the scaled strains Gij across a straight inclusion boundary for
various boundary orientations, where we compare the jumps as computed from the closed‐form expressions for
the strains presented in Equations 40–42 and 45–47 and the closed‐form expressions of Wu et al. (2021) with the
jump required to satisfy continuity of normal traction as computed from Equations 29–31. The strains obtained
from the closed‐form expressions presented in this study satisfy the requirement of continuous normal traction
given by Equations 29–31. The closed‐form expressions for the strains given by Jansen et al. (2019) are equivalent
to the expressions presented in Equations 40–42 and 45–47, and therefore also satisfy the condition of continuous
normal traction. However, the normal strains as computed from the closed‐form expressions of Wu et al. (2021)
do not satisfy this condition.

Both Jansen et al. (2019) and Wu et al. (2021) considered Green's functions for the strains by placing the de-
rivative under the integral sign in Equations 21–23. Moreover, Jansen et al. (2019) did not take into account the
singularity at (x, y) = (x′, y′) and solved the double integral incorrectly, although this resulted in the correct
expressions for the strains. However, changing the order of integration while disregarding the singularity would
have given a different, incorrect result. Wu et al. (2021) did take into account the singularity and correctly solved
the double integral. However, as we just showed, they did not obtain correct results for the strains. Because of the
singularity at (x, y)= (x′, y′), we cannot interchange differentiation and integration for points inside the inclusion.
Therefore, the Green's functions for the strains are only valid for points outside the inclusion. To circumvent this

Figure 5. The scaled volumetric strain (Gxx + Gyy)/π for a rectangular inclusion (left) and triangular inclusion (right). Inside
the inclusion, Gxx + Gyy = 2π, while outside the inclusion Gxx + Gyy = 0.
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problem, we must not change the order of differentiation and integration. The correct way, as demonstrated in this
paper, is to first solve the double integral for the displacements and then take the derivative to obtain the strains.

Nevertheless, both Jansen et al. (2019) and Wu et al. (2021) presented correct expressions for the stresses and their
key results are therefore not affected by the mistakes in the derivation. We can show that our expressions for the
normal stresses are equivalent to theirs. Using the expression for the volumetric strain (Equation 37) in the
expression for the normal stresses (Equations 24 and 25) and using λ = 2μν

1 − 2ν, the normal stresses can be written as

σxx = 2μϵxx −
1 − 2ν
1 − ν

αp δΩ, (49)

σyy = 2μϵyy −
1 − 2ν
1 − ν

αp δΩ. (50)

Defining the scaling factor C = 2 μD = (1 − 2ν)αp
2π(1 − ν) allows Equations 49 and 50 to be written as

σxx = C(Gxx − 2πδΩ), (51)

σyy = C(Gyy − 2πδΩ), (52)

which is identical to the expressions of the normal stresses given by Jansen et al. (2019) and Wu et al. (2021).
Their expressions for the stresses are therefore correct, although their explanations for the factor − 2πδΩ were
incorrect. Jansen et al. (2019) had correct expressions for the strains, but incorrectly assumed that the volumetric
strain equals zero everywhere, which is only valid for points outside the inclusion. They added the factor − 2πδΩ to
comply with the condition of continuous normal traction. Wu et al. (2021) obtained incorrect expressions for the
strains, but obtained correct expressions for the stresses by incorrectly using two different values for the
eigenstress σ∗

ij throughout the solution process. Here, we have shown that the factor − 2πδΩ, instead, is the (scaled)
sum of the contributions of the volumetric strain and the eigenstress to the normal stresses.

Figure 6. Scaled jumps in the strains across the inclusion boundary as a function of the boundary orientation. Here, θ indicates
the angle with respect to a horizontal line, such that θ= 0° corresponds to a horizontal boundary and θ= 90° corresponds to a
vertical boundary. The jumps are defined as ΔGij = Goutij − Ginij . The jumps in the strains as required to satisfy continuous
normal traction as computed by Equations 29–31 are represented by the solid lines, the jumps as computed from the closed‐form
expressions from Equations 40–42 and 45–47, which are equivalent to the expressions of Jansen et al. (2019), are represented by
the circular markers, and the jumps as computed from the closed‐form expressions of Wu et al. (2021) are represented by the
asterisk markers.
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The condition for the volumetric strain (Equation 37) can also be used to
derive conditions for the stress arching ratios or the mean stress. The stress
arching ratios γij are defined by Mulders (2003) and Soltanzadeh and
Hawkes (2008) as the ratios of stress change over the pore pressure change
multiplied by Biot's coefficient:

γij = −
σij
αp

. (53)

Using Equations 37 and 53, the sum of the normal stress arching ratios can be
expressed as

γxx + γyy =
1 − 2ν
1 − ν

δΩ, (54)

which is identical to the expression as given by Soltanzadeh and
Hawkes (2008), who derived this result for a cylindrical inclusion under plane
strain conditions. Wu et al. (2021) correctly stated that this holds for any
inclusion under plane strain conditions, regardless of its shape, as shown by
Equation 54.

For a uniform eigenstrain as considered in this paper, the double integral for the displacements (Equations 13 and
14) can also be expressed as a line integral by applying Green's theorem. In that case, we can apply Leibniz's
integral rule to obtain Green's functions for the strains, as long as we do not consider points (x, y) located on the
boundaries of the inclusion. When only the strains and stresses are of interest, the line integral approach would
save a computational step, as then it is not necessary to first derive expressions for the displacements. Addi-
tionally, analytical solutions for the integral over a straight line have already been given for both plane strain
problems (Nozaki et al., 2001) and three‐dimensional problems (D’Urso, 2013; Holstein & Ketteridge, 1996;
Kuvshinov, 2008; Pohánka, 1988). These solutions can be used to determine the displacements, strains, and
stresses for any polygonal or polyhedral inclusion.

While we focused on poroelastic stresses in this paper, the same approach is also applicable to determine ther-
moelastic stresses by simply replacing αp by 2μ(1+ ν)

1 − 2ν cT in all expressions presented here, where c is the linear
thermal expansion coefficient and T is the change in temperature. In fact, the expressions for thermoelastic stresses
were obtained much earlier than those for poroelastic ones (Goodier, 1937). The combined effects of poroelas-
ticity and thermoelasticity can also be considered in a similar manner, as was done by Segall and Fitzgerald (1998)
for the case of geothermal energy production. The mathematical subtleties discussed in this article are there-
fore not just limited to poroelasticity, but are also relevant for problems of (poro‐)thermoelasticity.

5. Example: Depletion‐Induced Fault Slip
As an example of the use of inclusion theory to compute induced fault stresses, consider a two‐block hydrocarbon
reservoir with two bounding faults and one central fault as depicted in Figure 7. An x − y coordinate system is
chosen with its origin in the central fault at depthD0= 3,000 m. The reservoir is represented with two rectangular

and four triangular elements with dimensions listed in Table 1 where w is
element width, r and s are bottom and top element y coordinates, and θ is fault
angle, measured anti‐clockwise with respect to horizontal. The fault throw
and reservoir height follow as t = 125 m and h = 250 m. The central fault is
permeable and the reservoir experiences a spatially uniform drop in pore
pressure. Table 2 lists the physical properties that are required to compute the
resulting depletion‐induced stresses with the aid of inclusion theory.

The initial pore pressure p0 and the initial stresses σ0
ij in the reservoir and the

faults can be computed as indicated at the bottom of Table 2. The depletion‐
induced incremental stresses σij are obtained by adding the contributions of
the six elements. The individual element contributions for the incremental
normal stresses σxx and σyy follow from Equations 51 and 52 and from a

Figure 7. Reservoir with two fault blocks divided in six elements (not to
scale).

Table 1
Element Dimensions

Element h (m) w (m) r (m) s (m) θ (°)

1 250 |h/tan θ| ≈ 117 − 200 50 115

2 250 500 − 200 50 –

3 250 ≈44 − 200 50 80

4 250 ≈44 − 50 200 80

5 250 750 − 50 200 –

6 250 ≈44 − 50 200 100
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similar expression for the incremental shear stresses σxy, although without subtraction of the factor 2π inside the
reservoir:

σij = C(Gij − 2πδijδΩ), (55)

where C = (1 − 2ν)αp
2π(1 − ν) . The scaled strains Gij can be obtained from Equations 40–42 for rectangular elements. For

triangular elements, they can be obtained from Equations 45–47, but only for right triangles oriented as in
Figure 4, that is, with the right angle at the bottom‐right corner and with the extension of the hypotenuse
intersecting the y axis in the origin. To allow for the use of these equations for more general situations that may
have different locations of the right angle and/or a shifted intersection with the y axis, four different cases can be
identified, as depicted in Figure 8. The corresponding expressions Gkij ,k = 1,…,4, can be obtained as

Gkij = F(i,j,k)Gij ( x̄, ȳ − y0, ō,p̄, r̄ − y0, s̄ − y0), (56)

where Gij(x, y, o, p, r, s) indicates the original Equations 45–47, and where

{x̄, ȳ,ō, p̄, r̄, s̄} =

⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

{ x, y, o, p, r, s} if k = 1,

{ − x, y, − o, − p, r, s} if k = 2,

{ − x, − y, − o, − p, − r, − s} if k = 3,

{ x, − y, o, p, − r, − s} if k = 4,

(57)

while y0 is the intersection with the y axis according to

y0 =
p̄r̄ − ōs̄
p̄ − ō

. (58)

The factor F can be expressed in terms of (modified) Kronecker deltas as

F(i,j,k) = δk∈{1,3} + δk∈{2,4} (δi=j − δi≠j), (59)

Table 2
Physical Properties

Symbol Property Value SI units

D0 Depth at reservoir center (y = 0) 3,500 m

g Acceleration of gravity 9.81 m/s2

G Shear modulus 6,500 MPa

K0 Ratio of initial effective horizontal to vertical stresses 0.40 −

p0
0 Initial reservoir pore pressure at reservoir center 35 MPa

p Incremental reservoir pore pressure (pore pressure change) − 30 MPa

α Biot's coefficient 0.9 −

αf Effective stress coefficient for fault friction 0.9 −

μ Static friction coefficient 0.50 −

ν Poisson's ratio 0.20 −

ρf Fluid density 1,020 kg/m3

ρs Solid density 2,650 kg/m3

ϕ Porosity 0.20 −

Note. The initial pore pressure, initial vertical stress, and initial horizontal stress can be computed as: p0( y) = p0
0 − ρf g y,

σ0
yy( y) = [(1 − ϕ)ρs + ϕρf ]g(y − D0), σ0

xx( y) = K
0 (σ0

yy( y) + αp0( y)) − αp0( y). (Valid for reservoir, overburden and
underburden).
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which implies that for configurations 2 and 4 the scaled shear strain Gxy changes sign.

Once initial and incremental stresses have been computed, combined stresses Σij follow as their sum:

Σij = σ0
ij + σij. (60)

The combined normal stress Σ⊥ and the combined shear stress Σ‖ in an inclined fault are then obtained through a
standard tensorial coordinate transformation (see, e.g., Barber, 2010)

Σ⊥ = Σŷŷ = Σxx sin2 θ + Σyy cos2 θ − 2Σxy sin θ cos θ, (61)

Σ‖ = − Σx̂ŷ = (Σxx − Σyy) sin θ cos θ + Σxy ( sin2 θ − cos2 θ), (62)

where the x̂ − ŷ coordinate system is rotated anti‐clockwise over an angle θ, and where a positive fault shear stress
Σ‖ is defined to correspond to an upward movement of the rock to the right side of the fault in relation to the rock
at the left side.

To describe slip we use Coulomb friction theory (Ohnaka, 2013; Scholz, 2019). This implies that slip‐provoking
conditions occur when

Σ‖ < − Σsl or Σsl < Σ‖, (63)

Figure 8. The four possible configurations of a rectangular‐triangular element in a horizontal reservoir. The corresponding
expressions Gkij ,k = 1,…,4 are given by Equation 56.
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where Σsl is the slip stress, defined as

Σsl = − μΣ′⊥ = − μ[Σ⊥ + α f (p0 + p)δ(Ω∪Φ)]. (64)

Here μ is the friction coefficient, Σ′⊥ is the effective normal stress, p0 is the initial pore pressure (variable over the
height of the reservoir), p is the incremental pore pressure (uniform in the reservoir; negative for depletion), and αf
is an effective fault stress coefficient which is sometimes given the same value as the poroelastic Biot coefficient
but also often set equal to one (Scholz, 2019). Note that in a typical deep subsurface situation the effective normal
stress Σ′⊥ is negative, corresponding to compression. The friction coefficient may be a function of position, time,
temperature, slip, slip rate, and/or additional state variables that represent internal mechanisms influencing the
friction properties (Ohnaka, 2013; Scholz, 2019). Here, we only consider the simplest possible formulation:
constant friction with a static friction coefficient μ. The Kronecker delta δ(Ω∪Φ) ensures that the pore pressure is
only added for regions inside the reservoir domain Ω and/or the fault segment Φ (Jansen et al., 2019). Here we
assume that the incremental pressure is felt in those fault segments that are in direct contact with reservoir rock
from either one or two sides.

Figure 9 depicts the combined shear stress Σ‖ and the two slip thresholds Σsl and − Σsl in the three faults. Values
Σsl < Σ‖ correspond to a positive slip; this situation occurs in the central fault for values of y between slightly less
than − 50 m and slightly more than 50 m, resulting in a slip patch showing a local increase of the initial normal‐
fault offset. Opposed, values Σ‖ < − Σsl correspond to a negative slip tendency. This occurs in the left fault for y
values between approximately 45 and 150 m.

Note that, in theory, all the peaks in the shear stresses (two in the bounding faults and four in the central fault) go to
plus orminus infinity for even an infinitesimally small amount of depletion. In reality, pore pressure diffusion and a
realistic geometry (e.g., rounded corners) will result in finite stress peaks, while non‐elastic rock deformation will
also put an upper limit on the stresses. However, also for more realistic physical conditions the emergence of sharp
stress peaks is a typical characteristic of induced stresses in reservoirswith displaced faults.Moreover, an important
consequence is that elastic numerical simulations aimed at finding a threshold depletion below which there will be
no fault slip are not very meaningful because they are mesh dependent; that is, an increase in the mesh density near
the peaks will lead to a decrease in the threshold change in pore pressure without converging to a final minimum.

Figure 9. Shear stress Σ‖ and slip thresholds Σsl and − Σsl in the three faults. The horizontal dotted black lines indicate the top
and bottom boundaries of the reservoir blocks.
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Also note that the present approach only provides information about potential slip patches, that is, zones where the
absolute value of the fault shear stress exceeds the slip stress. Once slip occurs, a redistribution of shear stress will
occur, leading to an increase in the slip patch size. Moreover, the nature of the friction (e.g., slip weakening,
velocity weakening or rate‐and‐state‐type) will determine whether the slip will be seismic or aseismic. For simple
fault geometries, a (semi‐)analytical approach of induced slip is still feasible (see, e.g., Jansen & Meulen-
broek, 2022), but for more realistic situations, in particular those involving fault rupture, numerical simulations
will be the method of choice (see, e.g., Buijze et al., 2017, 2019).

The present example considers spatially uniform reservoir depletion. However, inclusion theory can also be used
to compute induced stresses in reservoirs with impermeable faults that cause the reservoir blocks to have different
pore pressures (Wu et al., 2021), or in reservoirs with other nonuniform pore pressure distributions in which the
integrals in the formulation may either be approximated with numerical quadrature or by simply using a large
number of elements, each with a different pore pressure; see, for example, van Wees et al. (2019) (who used 3D
point‐based expressions from Okada (1992) for the subdomains in the numerical integration), Smith et al. (2022)
(who used 3D volume‐based expressions from Kuvshinov (2008) which, unlike point‐based expressions, don't
suffer from near‐fault anomalies), Barbosa et al. (2022) (who used 3D volume‐based expressions from Nagy et al.
(2000, 2002)), and Cornelissen and Jansen (2023b) (who used the 2D expressions of the present paper which are
also volume based).

6. Conclusions
We presented the derivation of closed‐form expressions for displacements, strains, and stresses inside a poroe-
lastic inclusion. This derivation differs from both Jansen et al. (2019) and Wu et al. (2021), who incorrectly
applied Leibniz's integral rule and integrated Green's functions for the strains. Jansen et al. (2019) did not take
note of the singularity and solved the double integral incorrectly, but managed to obtain correct expressions for
the strains. Wu et al. (2021) correctly solved the double integral, but their solution for the strains does not satisfy
the condition of continuous normal traction. As Leibniz's integral rule is not valid inside the inclusion, the Green's
function for the strains used by Jansen et al. (2019) and Wu et al. (2021) is only valid outside the inclusion. To
obtain the correct expressions for the strains, the double integral must first be solved for the displacements, after
which we can take the derivative to obtain the strains.

Jansen et al. (2019) and Wu et al. (2021) do present correct expressions for the stresses, which are equivalent to
the expressions presented in this study. Hence, while their derivations contained errors, their key results remain
valid. Furthermore, we have clarified that the term − 2πCδΩ, used in the aforementioned studies, comprises of the
contributions of the eigenstress and the volumetric strain to the normal stresses.

Additionally, we derived two conditions for the strains which can be used to verify the analytical solutions. First,
continuous normal traction across the inclusion boundary requires a discontinuity in the strains. Second, the
volumetric strain is proportional to the incremental pore pressure. For a uniformpore pressure change as considered
here, this means that the volumetric strain is constant inside the inclusion and zero outside. These conditions can
be used to verify expressions for the strains, also for inclusions of different shapes than considered here.

Appendix A: Convergence of the Double Integral for Displacements
Here, we will establish both convergence and absolute convergence of the double integral for the scaled dis-
placements inside the inclusion. We consider a square Sδ with side lengths 2δ around the singularity (Figure A1).
The integral for the horizontal displacements is then given by

∫∫
Sδ

x − x′
R2 dx′dy′ =∫∫

S′δ

u
u2 + v2

du dv =∫∫
S′δ
f (u,v) du dv, (A1)

where we used the substitution u= x − x′ and v= y − y′. We split S′δ in two parts: the disk with radius δ around the
singularity and the difference between the square domain S′δ and the disk D′δ:

S′δ = S′δ\D′δ ∪D′δ. (A2)
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It is clear that the integral over the region S′δ\D′δ is absolutely convergent, since f(u, v) is continuous and the
domain S′δ\D′δ is compact. Therefore, we can compute the double integral by an iterated integral, which yields
zero due to the symmetry in f(u, v). This can easily be shown by separating the integral into four parts

∫∫
S′δ \D′δ

f (u,v)dA =∫
δ

0
∫

δ

̅̅̅̅̅̅̅̅̅
δ2 − u2

√ f (u,v) du dv +∫
δ

0
∫

−
̅̅̅̅̅̅̅̅̅
δ2 − u2

√

− δ
f (u,v) du dv

+∫

0

− δ
∫

δ

̅̅̅̅̅̅̅̅̅
δ2 − u2

√ f (u,v) du dv +∫
0

− δ
∫

−
̅̅̅̅̅̅̅̅̅
δ2 − u2

√

− δ
f (u,v) du dv

= 0. (A3)

Next, we consider the improper integral over the domainD′δ. In order to establish convergence of the integral over
D′δ we will use the following proposition proven by Ghorpade and Limaye (2010).

Proposition (from Ghorpade and Limaye (2010)) LetD be a bounded subset ofR2 such that δD is of content zero
and let f : D → R be a nonnegative unbounded continuous function. Suppose that D admits an expanding
sequence Dn of subsets ofD such that f is bounded on Dn for each n∈N. Then ∬D f is unconditionally convergent
if and only if there is α∈R such that ∬Dnf ≤ α for all n∈N, and in this case ∬D f = limn→∞∬Dnf .

To make use of this proposition, we split D′δ in two parts using polar coordinates

D′δ,r = {(r,θ) | 0 ≤ r≤ δ, −
π
2

≤ θ≤
π
2
} and D′δ,l = {(r,θ) | 0 ≤ r≤ δ,

π
2

≤ θ≤
3π
2
},

such that f(u, v) ≥ 0 in D′δ,r and f(u, v) ≤ 0 in D′δ,l. For D′δ,r we choose the sequence Dn as follows

Dn = {(r,θ) |
δ
n

≤ r≤ δ, −
π
2

≤ θ≤
π
2
},

and we note that Dn and f(u, v) satisfy the conditions for absolute convergence. Since f(u, v) is bounded on the
domain Dn, we can use an iterated integral to compute the integral over this subdomain, which yields

In =∫
δ

δ
n

r dr∫
π
2

− π
2

dθ
r cos θ
r2

= 2δ(1 −
1
n
). (A4)

The integral over domain D′δ,r is then given by

Figure A1. We consider a square region with side lengths 2δ around the singularity, termed Sδ (left). This region is further
split into a disk with radius δ around the singularity Dδ and the domain Sδ\Dδ (right).
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∫∫
D′δ,r
f (u,v) dA = lim

n→∞
∫∫

Dn
f (u,v) dA = 2δ. (A5)

Using the fact that − f(u, v) ≥ 0 on D′δ,l, we find

∫∫
D′δ,l
− f (u,v) dA = 2δ. (A6)

Hence, ∬D′δ f (u,v) dA is absolutely convergent and

∫∫
D′δ
f (u,v) dA =∫∫

D′δ,l
f (u,v) dA +∫∫

D′δ,r
f (u,v) dA = 2δ − 2δ = 0. (A7)

The integral over the domain S′δ thus results in

∫∫
S′δ
f (u,v) dA =∫∫

S′δ \D′δ
f (u,v) dA +∫∫

D′δ
f (u,v) dA = 0. (A8)

As we have just shown that the integral is absolutely convergent, we can also apply Fubini's theorem and compute
the integral over S′δ directly using an iterated integral to obtain the result from Equation A8.

Absolute convergence of the double integral for the vertical displacement can be established in a similar manner,
but then we have to split the disk D′δ into a top and bottom part

D′δ,t = {(r,θ) | 0 ≤ r≤ δ,0 ≤ θ≤ π} and D′δ,b = {(r,θ) | 0 ≤ r≤ δ,π≤ θ≤ 2π},

rather than a right and left part, such that gy does not change sign within the subdomains.

Appendix B: Volumetric Strain for a Triangular Inclusion
Summing Equations 45 and 46 yields

Gxx + Gyy = − atan [
y − r
x − p

] − atan [
x − p
y − r

]

+ atan [
x − o
y − r

] + atan [
(x − o) + ( y − r) tan θ

x tan θ − y
]

+ atan [
y − s
x − p

] − atan [
(x − p) + ( y − s) tan θ

x tan θ − y
].

(B1)

For the first two terms, we can use the identity atan(x) + atan(1/x) = π
2sign(x), which we also used for the

rectangular inclusion. This yields

− (atan [
y − r
x − p

] + atan [
x − p
y − r

]) =

⎧⎪⎨

⎪⎩

−
π
2

(x> p,y> r),(x< p,y< r)

π
2

(x> p,y< r),(x< p,y> r)
. (B2)

For the other terms, we can use the addition formula for the arctangent function, which yields

atan [
x − o
y − r

] + atan [
(x − o) + ( y − r) tan θ

x tan θ − y
] =

⎧⎪⎪⎨

⎪⎪⎩

− θ (x>
y

tan θ
,y< r),(x<

y
tan θ

,y> r)

π − θ (x>
y

tan θ
,y> r),(x<

y
tan θ

,y< r)
, (B3)
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atan [
y − s
x − p

] − atan [
(x − p) + ( y − s) tan θ

x tan θ − y
] =

⎧⎪⎨

⎪⎩

θ −
π
2

(x> p,y< x tan θ),(x< p,y> x tan θ)

θ +
π
2

(x< p,y< x tan θ),(x> p,y> x tan θ)
. (B4)

Summing Equations B2–B4 yields

Gxx + Gyy = {
2π (x< p,r< y< x tan θ)

0 otherwise
, (B5)

and hence Gxx + Gyy = 2πδΩ.

Data Availability Statement
The Matlab scripts used for the creation of Figures 5, 6, and 9 are available via the 4TU data repository (Cor-
nelissen & Jansen, 2023a).
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