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ABSTRACT This paper presents a comprehensive literature review of the state-of-the art modeling and
optimization methods for the power and propulsion systems of ships. Modeling is a tool to investigate the
performance of actual systems by running simulations in the virtual world. There are two main approaches
in modeling: physics-based and data-driven, which are both covered in detail in this survey paper. The
output from the simulations might not be optimal in terms of certain performance criteria such as energy
consumption, fuel cost etc. Hence, it is vital to optimize the systems considering the efficient interaction
between the components, to yield the optimal performance for the integrated vessel’s powertrain. In this
paper, the optimization case studies, for the ship energy systems, will be divided in terms of a) optimal
design (topology and sizing), b) optimal control and energy management strategies, c) combined optimal
design and control. Tables that summarize the literature review outcomes will also be presented at the end of
each section. The main outcome is that limited literature is available for optimizations of ship powertrains
using data-driven models, especially surrogate models. Surrogate-assisted optimizations for integrated ship
energy systems can yield optimal solutions at fast computational speeds, with sufficient accuracy, even for
complex, nested, multi-level, multi-objective optimizations.

INDEX TERMS Energy systems, modeling, optimizations, ships.

I. INTRODUCTION

The energy systems of ships are all the components of ves-
sels” powertrains, including the storage, power supply, dis-
tribution, and power consumption units [1]. In recent years,
there has been a shifting trend to electrification in mar-
itime transportation [2]. The hybrid electric configurations
with diesel generators, batteries, fuel cells, solar panels, and
other sources for power supply, have attracted increasing
interest [3]. Through Alternating Current (AC) or Direct
Current (DC) distribution systems, the produced current is
delivered to the electric motor that drives the ship’s propul-
sor. Such hybrid electric arrangements tend to replace the
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conventional diesel mechanical propulsion systems, since
they offer reduced emissions, increased energy efficiency,
flexibility, and redundancy in case of components’ failures,
despite their higher cost and complexity [3]. This survey will
focus on case studies with hybrid electric ship systems.
Modeling is a tool to investigate the performance of com-
plex power systems by running simulations in a digital envi-
ronment. In simulations, it is important to find the balance
between complexity, time, and accuracy. The most widely
used method for components’ modeling is the physics-based
approach [4]. The models are created based on the laws of
physics, and they are represented by mathematical equations
with known input-output relationships. However, in complex
multi-physics systems, it might become challenging, and
time consuming to identify these relationships, and solve the
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problem [5]. A second approach, with a rapid increase
in interest, is the data-driven modeling method. With this
approach, the components can be modeled without fully
understanding the system, its internal parameters, and under-
lying physics, but instead purely relying on data. However,
data-driven approaches may provide physically inconsistent
results if they are not properly implemented [6]. In this review
paper, both modeling methods are discussed in detail.

Once the components have been modeled, they should
be optimized in terms of design and control, considering
their integration into the vessel’s powertrain, for overall per-
formance improvements. Optimization frameworks include
objective function(s), design variables, algorithms, and con-
straints. This review will focus on multi-objective optimiza-
tion problems for powertrains of ships, in which a trade-off is
required between the different objectives to select the optimal
solution from the Pareto Front.

There are a few review papers covering approaches for
modeling and optimization of ship energy systems from dif-
ferent perspectives. Trinklein et al. [7] discussed the benefits
of using exergy methods for modeling and optimization of
ship power systems. Jaurola et al. [8] reviewed the papers
that were published until 2017, and they were related to
the optimization of design and power management, focus-
ing on diesel mechanical and diesel electric configurations.
Xie et al. [9] discussed the rule-based, and optimization-
based energy management approaches for ship microgrids,
and Banaei et al. [10] focused on optimal control strategies
applied only on hydrogen hybrid vessels. To the best of the
authors’ knowledge, this is the first survey paper, in which
the state-of-the-art physics-based and data-driven approaches
used in the modeling of innovative ship hybrid energy sys-
tems are analyzed. Moreover, it is the first literature review in
which novel methodologies for vessel systems’ optimization
in terms of topology, sizing, control, and energy management
are discussed.

The rest of the paper is organized as follows. In Sec-
tion II, the physics-based and the data-driven approaches for
the modeling of ship energy systems are discussed. In Sec-
tion III, the studies that are relevant to the optimization of
ship energy systems in terms of design, control, or a com-
bination of both, are presented. Finally, in Section IV, the
conclusions that were drawn from the literature outcomes,
and the authors’ reflections for potential future directions,
based on the research gaps, are presented.

Il. MODELING OF SHIP ENERGY SYSTEMS

A. PHYSICS-BASED MODELING

In this section, the modeling studies for ship energy sys-
tems following physics-based approaches will be discussed.
Bagherabadi et al. [11] modeled a marine fuel cell and its
auxiliary components using the bond graph method to investi-
gate the system’s efficiency and dynamic response for various
component sizes and topologies. The model had real time-
capabilities, and it could capture the fuel cell dynamics while
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scaling the power range. Balestra and Schjglberg [12] mod-
eled the powertrain of a hydrogen-fueled ferry, combining
real-time operational data and dynamic component models in
Simulink, using the ode3 (Bogacki-Shampine) solver. They
studied the effects of component sizes on the implemented
rule-based Energy Management Strategy (EMS) and vice
versa. The developed mathematical model was robust and
scalable, so it can be used for powerplants up to 10 MW.
Donnarumma et al. [13] modeled a simplified electrical
power system, considering the electromechanical behavior of
the power-frequency dynamic. The dynamics of the vessel
and the electrical system were different, so systems with
stiff ordinary differential equations were integrated into the
time-domain simulation platform with lower time steps. The
model had real time capabilities, and it was used to study
the vessel’s behavior in harsh operating conditions. The
electromechanical dynamics were also considered in [14]
for the system-level mathematical modeling of a DC-based
distribution shipboard system. For the proposed reduced-
order and average-value modeling method, the variable-
step odel5s solver was used. The computational efficiency
for the simulations was high with sufficient accuracy for
both steady-state and transient operations. This approach
is flexible for adjustments to other system-level cases.
Abrougui et al. [15] used MATLAB/Simulink to solve the
ordinary differential equations for the propulsion components
of an electric boat. The equations of the electrical machine
were simplified, and it was demonstrated fast and accurately
that there was no overshooting in ship’s forward speed and
electric motor’s rotational speed. Zhu and Dong [16] used
MATLAB/Simulink and SimPowerSystems to solve the gov-
erning equations of the dynamic components of an AC distri-
bution system, for a diesel electric ferry. Manufacturer data
was used for the parameterization of the components. The
reductions in fuel consumption and energy costs were demon-
strated by comparisons to the conventional ferry version.
Hemdana et al. [17] studied different serial and parallel con-
figurations for the propulsion system of a watercraft with fuel
cells, generator, batteries, and solar panels. The overall model
was of fourth order, nonlinear, and multivariate. The required
power was estimated by solving the differential equations of
the propulsion system, and it was verified that all the systems
were properly functioning under different topologies. Yang
and Zhang [18] presented a backward simulation model in
MATLAB/Simulink, including input power demand, ship’s
dynamic model, management strategy and the power supply
components. The simulation model could only reflect the
static characteristics of the system. Jaster et al. [19] modeled a
hydrogen-based ship system using SimPowerSystems blocks.
The propulsion and control modules were simulated follow-
ing Hardware-in-the-Loop approaches to estimate fast and
accurately the loads, energy consumption, and battery State
of Charge (SoC).

Most of the physics-based modeling studies are for diesel
electric, battery, or hydrogen hybrid vessels. There is a gap in
the literature for the modeling of methanol or ammonia fueled
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energy systems, which have been widely developed in recent
years. Simplified mathematical models and ordinary differ-
ential equations were mostly used for the modeling of the
ship power and propulsion components. MATLAB/Simulink
was the most frequently used software tool for the analyses.
Power and efficiency estimations, as well as investigation of
the dynamic performances were the most common modeling
purposes.

A novel physics-based modeling approach, to avoid solv-
ing time consuming simulations of complex interconnected
power systems, is the co-simulation using Functional Mock-
up Interface [20]. The models can be solved independently
using their own solvers and local time steps, different mod-
eling methods and software tools, but they are simulated
together in the same digital environment. This can result
in significant reductions of computational time, with ide-
ally similar accuracy. Perabo et al. [21] modeled separately
the components of an AC-based diesel electric vessel in
MATLAB/Simulink. The simulation of the integrated pow-
ertrain was performed in Open Simulation Platform. The
solvers used were Euler 1%t order for the electric powerplant,
and Runge Kutta 4™ order for the engines and propellers. The
results were obtained after 8 minutes with almost identical
accuracy to a monolithic simulation. Ghimire et al. [22] used
co-simulation to model a hybrid DC system with batteries,
and diesel generators. The components and their controllers
were split to different Functional Mockup Units (FMUs)
based on the required fidelity. Euler 1% order and Runge Kutta
4 order were the solvers that were used. The results of the
dynamic loads were compared to [23], where a monolithic,
all-in-one simulation was performed in MATLAB/Simulink
for the same system, using a bond graph modeling approach.
It was demonstrated that the results were obtained much
faster using co-simulation, without sacrificing accuracy. The
developed hybrid power system model can be used for real-
time virtual testing. Finally, co-simulation was also used
in [24] and [25] using Euler and Runge Kutta as integration
methods for the different FMUs. The aim in both studies was
to investigate the ships’ hydrodynamic performances under
different conditions.

To the best of the authors’ knowledge, there are currently
no studies that utilize co-simulation for novel ship power
and propulsion systems with alternative fuels, as in most
cases diesel mechanical and diesel electric configurations
have been analyzed.

The results from the physics-based modeling studies are
summarized in Table 1.

B. DATA-DRIVEN MODELING

In this section, the modeling studies for ship energy systems
following data-driven approaches will be discussed. Ghimire
et al. [26] developed data-driven polynomial-based dynamic
models for each component of the powertrain, to assess the
overall efficiency, considering conventional diesel electric
and battery hybrid configurations, with AC or DC distribu-
tion systems. The computational effectiveness of the method

VOLUME 11, 2023

for efficiency estimations of complex power systems was
demonstrated. Swider et al. [27] built a statistical model,
namely a Generalized Additive Model, which could estimate
the ship’s required power, and its most influential parameters,
for different weather and wave inputs. Such a model was more
accurate than a regression-based model since it could incor-
porate nonlinear effects. Fang et al. [28] proposed a method
that utilized an Extreme Learning Machine for characterizing
the uncertainties of photovoltaic power generation, and a two-
stage framework that covered the worst-case scenario and
accommodated these uncertainties during operation. A neural
network was trained to predict the power output for various
temperature and solar irradiation conditions along the navi-
gation route. This method was proved to be robust as there
was flexibility in varying working conditions.

TABLE 1. Physics-based modeling studies.

Ref. Modeling Methods Modeling purpose

[11] Bond graph method. Investigation of power efficiency

and dynamic response.

[12] Ode3 solver in time Effects of system sizing on EMS
domain with fixed and vice versa.
time step.

[13] Ordinary differential Ship dynamic performance and
equations, model- operation in harsh conditions.
based techniques.

[14] Variable-step odel5s Dynamic performance,
solver, time-domain. electromechanical dynamics.

[15] Ordinary differential Investigation of overshooting in
equations — math ship’s speed and motor’s
modeling. rotational speeds.

[16] Dynamic mathematical ~Comparison of energy costs with
modeling. the conventional ferry version.

[17]

(18]

[19]

[21]

4" order nonlinear
model, differential
equations.

Backward simulation
modeling.

Model-based approach
SimPowerSystems
blocks.

Co-simulation — Euler
and Runge Kutta.

Propulsion power estimation,
verification that the components
are functional.

Investigation of engine’s
efficiency, power demand,
system’s stability.

Estimation of loads, fuel
consumption, battery SoC,
emissions.

Investigation of system’s
dynamics, power, voltage, and
frequency fluctuations.

[22] Co-simulation - Euler System dynamics, reliability of
and Runge Kutta. components.

[23] Bond graph method. System dynamics, reliability of

components.

[24] Co-simulation — Euler ~ Propulsion system performance
and Runge Kutta. under different conditions.

[25] Co-simulation — Euler ~ Hydrodynamic performance.
and Runge Kutta.

There are a few case studies that focused on the predic-
tion of ship’s performance in terms of speed loss and fuel
consumption. Karagiannidis and Themelis [29] trained neural
networks using data from onboard sensors to estimate the
shaft’s power and engine’s fuel consumption. It was demon-
strated that by increasing awareness about hull and pro-
peller conditions, and by delicate data filtering, the model’s
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accuracy could be increased by 1.5%. Coraddu et al. [30]
proposed a data-driven digital twin for two tankers to com-
pute the speed loss due to fouling on the ships’ hull and
propeller. The model was built based on Deep Extreme Learn-
ing Machines to detect speed deviations. The method had
superior prediction accuracy compared to the standard ISO
19030 approach. An extensive literature review of maritime
digital twins is presented in [31], where it was demonstrated
that limited information is available in the literature studies
for data-driven digital twins of ship energy systems, as in
most cases these models are developed based on the laws of
physics.

There are a few case studies that used data-driven models
for condition monitoring and fault detections in the main
machinery ship systems. Lazakis et al. [32] developed a
Support Vector Machine, that was trained using noon-report
data from normal operating conditions with limited assump-
tions, to monitor the performance of a marine diesel gen-
erator. It was demonstrated that the data-driven model can
accurately discern between normal and faulty machinery
conditions, and it can be used for different energy systems.
Cheliotis et al. [33] developed Regression-based Expected
Behavior models that were integrated with Exponentially
Moving Weighted Average control charts, without requiring
large training datasets. The data-driven models could detect
early malfunctions related to exhaust gas temperature and
scavenging air pressure of a main engine, to maintain energy-
efficient operations.

Surrogate data-driven models have also been used for
modeling of complex systems to produce results of suffi-
cient accuracy at fast computational speeds. These models
are trained with data from the original physics-based, time-
consuming simulations. There are a few case studies from
other research fields, for individual energy components, such
as fuel cells, batteries, e-motors, power converters and other
components, that can comprise parts of modern ship elec-
tric powertrains. Surrogate models have been recently used
for the performance optimization of fuel cells, which have
complex, multi-physics attributes. Ensemble learning models
were used in [34] for efficiency improvements, and Sup-
port Vector Machines were used in [35] for power density
maximization. The data-driven models were trained from
the Computational Fluid Dynamics (CFD) results. Surro-
gate models have also been used for battery modeling and
optimizations in electric vehicles, and especially for their
thermal management systems. In [36] an Adaptive Kriging
High Dimensional model was used, and in [37] a response
surface was utilized. In both studies it was aimed to maintain
the desired operating temperature range. Surrogate-assisted
optimizations have also been performed for electric motors
and power converters. In [38] a second order polynomial
surrogate model was used for an induction machine, and
in [39] a Kriging model for a permanent magnet synchronous
motor, to improve their electromagnetic efficiencies. Regard-
ing the power converters, in [40] a neural network was used
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for efficiency improvements, and in [41] surrogate global
optimization was performed for configuration enhancements.
Surrogate models have also been used for modeling and opti-
mization of full powertrains of road electric vehicles in [42]
and [43], but there is a gap in the literature for maritime
drivelines. To the best of the authors’ knowledge, the only
study that used surrogate models for a ship’s powertrain
is [44], where a Kriging model was developed at the upper
level, and Dynamic Programming was used at the lower level
for optimal sizing and control.

Overall, for the data-driven modeling studies of ship
energy systems, machine learning models have been mostly
utilized for power and efficiency estimations, speed predic-
tions, and condition monitoring of energy systems, under
different endogenous and exogenous parameters.

The results from the data-driven modeling studies are sum-
marized in Table 2.

TABLE 2. Data-driven modeling studies.

Ref. Modeling Methods Modeling purpose

[26] Polynomial-based Efficiency-modeling of all-
dynamic model. electric powertrains.

[27] Generalized additive Power estimation for uncertain
(statistical) model. input conditions.

[28] Extreme learning Solar panel power output
machine, neural predictions for uncertain input
network. parameters.

[29] Neural networks. Prediction of shaft’s power and

engine’s fuel consumption.

[30] Data driven digital Speed loss estimation due to
twin, Deep Extreme fouling on hull and propeller, to
Learning Machines. reduce fuel consumption.

[32] Support Vector Condition monitoring/fault
Machine. detection of diesel generators.

[33] Regression-based Detections of malfunction in
Expected behavior engine’s exhaust and air systems.
models.

[34] Ensemble learning Fuel cell efficiency and power
models. density maximization.

[35] Support Vector Fuel cell power density
Machine. maximization.

[36] Adaptive Kriging High ~ Hybrid thermal management
Dimensional model system of Li-ion batteries.

[37] Response surface. Thermal performance of air-

cooled batteries.

[38] Second order Electromagnetic efficiency
polynomial model. improvement of induction motor.

[39] Kriging surrogate Efficiency improvement of a
model. synchronous motor.

[40] Neural network Efficiency improvement of a
surrogate model. buck power converter.

[41] Surrogate global Configuration improvement of
optimization. power converters.

[44] Kriging surrogate. System sizing and control.

Ill. OPTIMIZATION OF SHIP ENERGY SYSTEMS

In this section, the studies that are relevant to the optimization
of ship energy systems will be discussed. There will be a
division in a) optimal design (topology and sizing), b) optimal
control, and c¢) combined optimal design and control studies.
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A. OPTIMAL DESIGN STUDIES

Wu and Bucknall [45] presented a multi-objective optimiza-
tion for a hydrogen-hybrid ferry. Deterministic Dynamic Pro-
gramming was used to select the component sizes and yield
the optimal performance in terms of operational expenses and
emissions, for an averaged operating profile. With the pro-
posed approach and propulsion system, a life-cycle emission
reduction of at least 65% could be achieved, compared to the
original diesel-based systems. Vieira et al. [46] proposed a
configuration optimization for a retrofitted hybrid platform
supply vessel, to minimize the carbon emissions and bat-
tery degradations. The HOMER software, that implements
a proprietary derivative-free approach, was used to optimize
the topology of the powertrain, considering uncertainties in
power demands. A 10% reduction of carbon dioxide emis-
sions was obtained in the configuration with main and auxil-
iary generators, a 3 MW battery pack, and a 250-kW fuel cell
system.

Zhu et al. [47] presented an optimal design study for a
battery hybrid vessel to reduce diesel consumption, lifecy-
cle costs and emissions. The Pareto solutions of the Non-
dominated Sorting Genetic Algorithm-II (NSGA-II) and
the Multi-Objective Particle Swarm Optimization (MOPSO)
algorithm were compared in terms of space and quality cri-
teria, and it was demonstrated that the NSGA-II provided
more solutions which were less-distributed in space. The
same authors in [48] presented a multi-objective design opti-
mization, using the NSGA-II, for an anchor handling tug
supply vessel, to minimize diesel consumption and emissions.
Hardware-in-the-Loop tests were used for model validations
in both studies. The experiments demonstrated that the multi-
objective optimization results were closer to the ideal point
compared to the single-objective optimizations with focus
either on fuel consumption or emissions.

Lan et al. [49] combined the NSGA-II and the MOPSO
algorithm to obtain the optimal sizes for solar panels, diesel
generators, and batteries of a hybrid tanker, to minimize the
capital expenses, fuel costs and onboard emissions. Through
a sensitivity analysis, it was demonstrated that the local time
and the time zones had the largest effects on the efficiency of
the photovoltaic panels. Wang et al. [50] used the NSGA-II
to select the optimal component sizes of an unmanned patrol
boat with sail-assisted systems, solar panels, and batteries,
to reduce the total cost and emissions. The optimal design was
compared to a version without photovoltaic arrays. Reduced
emissions and lifecycle costs were obtained.

Zhan et al. [S51] used the NSGA-II to select the optimal
components of a retrofitted diesel electric trailing suc-
tion hopper dredger. The fuel consumption and the com-
ponents’ weights were reduced up to 10% compared to
the diesel mechanical version. The battery SoC was con-
strained between 40% and 90%. Zhu and Li [52] used the
NSGA-II to select the optimal components for a hybrid elec-
tric catamaran, with scalable electrical components, to reduce
energy consumption and emissions. About 10% reductions in
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emissions and energy consumption were observed compared
to the conventional diesel mechanical version of the vessel.

Wang et al. [53] proposed a multi-objective design opti-
mization using NSGA-II for a battery hybrid polar cruise
ship, to minimize diesel consumption, lifecycle costs, and
maximize the battery usage onboard. Compared to the orig-
inal diesel electric version, the retrofitted system presented
a 38% increase of annual time in pure electric mode, with
almost the same fuel consumption, but with 8% higher life-
cycle costs. Valera-Garcia and Atutxa-Lekue [54] presented
a design optimization study using the NSGA-II for a hybrid
offshore support vessel, investigating both DC and AC con-
figurations. The total costs including capital and operational
expenses were reduced. The spinning reserve power was a
safety constraint in the optimization problem, to reduce the
system’s blackout probability.

Dolatabadi and Mohammadi-Ivatloo [55] presented an
optimal sizing study for a hybrid solar-diesel-battery system
of an oil tanker, using the Mixed Integer Linear Programming
(MILP) algorithm for different operating modes and power
requirements. The aim was to reduce fuel and maintenance
costs. The uncertain solar radiation was predicted using a
Monte-Carlo simulation. To quantify the risks related to the
sizing of the energy systems, like variance and expected
shortfall, the conditional value-at-risk approach was imple-
mented. Kistner et al. [56] optimized the design of a decen-
tralized AC-based power system, consisting of LNG- fueled
Solid Oxide Fuel Cells and batteries, to reduce the capital
and fuel costs, and waste power. The ant colony algorithm
selected the optimal locations/compartments of the vessel at
which the fuel cells were located. Cardenas et al. [57] used
parametric sweeping of free design parameters to investigate
the compromise of cost/fuel savings, and battery lifetime for
a battery hybrid vessel. It was demonstrated that 80% of the
maximum cost savings could be achieved when the battery
was used only in spinning reserve mode.

The results from the optimal design studies are summa-
rized in Table 3.

B. OPTIMAL CONTROL STUDIES

There are more studies that analyzed the optimal control
strategies onboard vessels, compared to the optimal design
cases. Control and EMS are the terms that will be used in
this section. An EMS can be rule-based or optimization-based
and it is an important part of optimization, as it coordinates
the operation of the systems, and it splits the power between
the different components, based on the operating profile and
other input parameters.

Sun et al. [58] simplified the control problem to a con-
vex formulation, to be solved by the optimizers using the
MOSEK with CVX package. The power was optimally split
between the batteries and the fuel cells, to reduce the fuel
and the degradation costs of the fuel cells. The simulation
results demonstrated the effectiveness of the approach for the
considered power system. Han et al. [S9] proposed an optimal
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TABLE 3. Optimal design studies.

Optimization

Ref. Objectives Methods/Algorithms

[45] Operational expenses, Deterministic Dynamic
emissions. Programming.

[46] Carbon emissions, Derivative-free approach.
battery degradations.

[47,48]  Diesel consumption, NSGA-IL
emissions.

[49] Capital and fuel costs, NSGA-II and MOPSO.
onboard emissions.

[50] Total cost, emissions. NSGA-IL

[51] System weight, fuel NSGA-IL
consumption.

[52] Energy consumption, NSGA-II.
emissions.

[53] Diesel consumption, NSGA-II
lifecycle costs, battery
usage.

[54] Capital and operational ~NSGA-IL
expenses.

[55] Fuel and maintenance MILP.
costs.

[56] Capital and fuel costs, Ant colony algorithm.
waste power.

[57] Cost savings, battery Brute-force method
lifetime.

rule-based EMS, so that the batteries and fuel cells could
operate at their optimum levels to maximize the efficiency
of the propulsion system. Simplified models and ideal gas
equations were considered for reductions of computational
complexity. The performance of the power system was vali-
dated with real ship data from a small fuel cell-powered boat.

Mitropoulou et al. [60] developed an optimal EMS, using
the Nelder Mead algorithm, for a naval ship with hybrid
power supply and hybrid propulsion, considering the com-
promise between fuel and maintenance costs, noise, and
infrared signature. Grid losses and battery degradations dur-
ing charging were not considered. The proposed direct search
method provided improved solutions compared to the rule-
based start point of the search, and it can be an effective
method for multi-objective non-convex problems. Xiang and
Yang [61] presented a two-layer multi-objective optimization
for a diesel electric fishing boat, considering mode switch-
ing to optimize the working points of the diesel engine and
electric motor. In the inner layer, the Equivalent Consump-
tion Minimization Strategy (ECMS) was used to reduce the
amount of consumed energy, and in the outer layer the ant
colony algorithm was utilized to maintain the desired battery
SoC. The proposed strategy was compared to optimization
and rule based ECMS and demonstrated a reduction of fuel
consumption up to 12%.

Dall’ Armi et al. [62] used the MILP algorithm and demon-
strated that up to 185% longer lifetime for the fuel cells
and batteries could be achieved, compared to an optimiza-
tion that did not consider the progressive aging effects.
Zhang et al. [63] proposed a real time EMS, which combined
ECMS and a filter-based control strategy. The Sequential
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Quadratic Programming (SQP) algorithm was implemented
to maximize efficiency and minimize the degradations of
batteries and fuel cells. The proposed approach provided
smoother responses for the batteries and fuel cells, and
increased energy efficiency by 5-7% compared to the rule-
based and wavelet-based control strategies. Bassam et al. [64]
presented a multi-scheme EMS, with coded instructions that
were set a-priori. It was aimed to switch between four differ-
ent strategies during operation, depending on the load profile
and the battery SoC, to minimize energy consumption, oper-
ating cost, and battery degradations. The results demonstrated
that energy savings up to 8% could be achieved compared
to the four individual strategies: ECMS, Charge-Depleting-
Charge-Sustaining, Classical Proportional Integral and state-
based EMS. Voyage planning and scheduling optimizations
were presented in [65] using the MINLP, and in [66] using
the NSGA-II, to choose the optimal routes and ships’ speeds
along the voyages, for different uncertain operating condi-
tions. The objectives in both studies were to minimize the
operational expenses and the onboard emissions.

In a few cases, data-driven machine learning methods have
been used for the optimal control problems. Wu et al. [67]
developed a near-optimal EMS using deep reinforcement
learning, to control the power of components in uncertain
conditions. It was demonstrated that the proposed approach
could mitigate the function overestimates in stochastic envi-
ronments and provide lower cost results by 5.5% and in a
shorter time by 93.8%, compared to the Double Q-learning
agent in state space, without function approximations, that
was presented in [68]. In [69], an optimal ECMS using arti-
ficial neural networks, to maximize energy efficiency, was
implemented. A Bayesian regularization approach was also
utilized to reduce the error between the actual and predicted
network’s outputs.

Optimal Power Management Strategies (PMS) were pre-
sented in [70] and [71] using PSO algorithms to mini-
mize the operational expenses and emissions for hybrid
electric vessels. In [71] the implemented fuzzy-based PSO
algorithm provided faster convergence to the optimal point
than the traditional PSO and Dynamic Programming meth-
ods. Mummadi and Vijay [72] presented an optimal control
study, under load changes and faulty conditions, for a DC
power system of a vessel. Automatic, self-governing, real-
time control was achieved, maintaining the power balance
and systems’ reliability, even after the faults’ detections and
isolations.

Fuzzy logic EMS were implemented in [73] and [74] for
real-time control of hydrogen hybrid powerplants. Reduc-
tions of energy consumption up to 14% were observed com-
pared to traditional rule-based EMS. Wang and Li [75] used
the NSGA-II to optimize the capacity of a hybrid energy
storage system consisting of batteries and supercapacitors,
which absorbed the low and high-frequency load fluctuations
respectively. The relationship between the investment cost
and battery lifetime was presented. The NSGA-II was also
used in [76] for the control optimization of a power system
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consisting of diesel generators, batteries, and supercapaci-
tors to reduce the fuel consumption and emissions. It was
demonstrated that the output power of the diesel generators
remained almost stable when both energy storage systems
were in operation.

The results from the optimal control studies are summa-
rized in Table 4.

TABLE 4. Optimal control studies.

Ref. Oop&.‘:éfiavt;‘;n Methods/Algorithms

[58] Fuel and degradation Convex solvers.
costs of fuel cells.

[59] Efficiency of Rule-based EMS.
propulsion system.

[60] Fuel, maintenance Nelder Mead Algorithm.
costs, noise.

[61] Energy consumption, ECMS - inner layer, ant colony
battery SoC range. algorithm - outer layer.

[62] Fuel consumption, MILP.
battery/fuel cell life.

[63] System efficiency, ECMS and filter-based strategy,
battery/fuel cell life. SQP algorithm.

[64] Energy consumption, Multi - scheme EMS — four
operating cost, battery ~ schemes switched in operation.
degradations.

[65] Operational expenses, MINLP.
emissions.

[66] Operational expenses, NSGA-II.
emissions.

[67,68]  Operational cost and Deep reinforcement learning.
power predictions.

[69] Energy efficiency. ECMS using artificial neural

networks.

[70,71]  Operational expenses, PMS using PSO algorithms.
emissions.

[72] Power balance, system  Automatic self-governing fault
stability. detection and real-time control.

[73,74]  Powertrain efficiency. Fuzzy logic EMS.

[75] Battery degradations NSGA-IL
and lifecycle costs.

[76] Fuel consumption and NSGA-IL

emissions.

C. COMBINED OPTIMAL DESIGN-CONTROL STUDIES

In this section, the studies that analyze combined optimal
design and control for ship energy systems will be presented.
The design studies are focused on the selection of optimal
component sizes and topologies for the various combinations
of systems. In the control cases, for a given system design,
the energy management strategies are optimized to achieve
efficient power splitting between the main power sources. Itis
important to consider combined optimal design and control
for ships’ powertrains to avoid performance degradations for
the components.

Wang et al. [77] developed a nested plant and control
design architecture for a hydrogen-hybrid vessel. In the exter-
nal optimization layer, the NSGA-II was used to reduce cap-
ital expenses, operational costs, and emissions, by varying
the sizes of the components. In the inner layer, the MILP
algorithm was used to select the optimal control strategy.

VOLUME 11, 2023

For an emission-free target, the fuel cells were sized based
on load-leveling, the batteries covered the maximum demand
and transient load fluctuations, and the diesel generators were
used only for emergency purposes. Dall’Armi et al. [78]
presented a coupled health-conscious optimization using the
MILP algorithm and Monte Carlo analysis, to consider the
long-time uncertainties related to fuel cell and battery cap-
ital expenses, and hydrogen fuel costs. From the sensitivity
analysis it was demonstrated that the hydrogen cost was the
most influential parameter in the cost function. The optimal
topologies and sizes of components were validated using the
approach presented in [79].

Pivetta et al. [79] presented a multi-objective design and
operation optimization strategy. The MILP algorithm was
used to minimize fuel cell degradation, daily operational
costs, and capital expenses. It was demonstrated that the
strategy could be adapted to different hydrogen hybrid vessel
sizes. In [80] a PSO algorithm was implemented for the
component sizing, to reduce the fuel consumption, and a
fuzzy logic controller was utilized for optimally splitting the
energy between the diesel generators and the batteries. The
proposed fuzzy-PSO method reduced the fuel consumption
up to 40%, compared to the original conventional boat.

Wu and Bucknall [81] presented an optimal design and
control study using a genetic algorithm in the external
layer to minimize emissions and fuel costs, and Dynamic
Programming in the inner layer for the optimal EMS. It was
highlighted that even if hydrogen is produced by steam
reforming of natural gas, the well-to-propeller emissions can
be reduced by more than 25% for the considered case study.
Zhu et al. [82] proposed a bi-level optimization using the
MOPSO algorithm for component sizing in the higher layer,
and a modified adaptive ECMS for control at the lower level.
It was aimed to find the best compromise between emissions,
fuel consumption, and Net Present Cost including investment
costs, operational expenses, and battery replacement costs.
The results were validated experimentally with Hardware-in-
the-Loop approaches. It was demonstrated that the bi-level
optimization outperformed the two single-level (upper and
lower) in terms of convergence to the optimal solutions. The
emissions were reduced by 3-7% and the Net Present Cost by
11-14%, with the multi-objective bi-level approach.

Balsamo et al. [83] formulated an optimization problem for
a battery-supercapacitor semi-active hybrid system, using the
Ritz method. It was demonstrated that the peak current values
could be reduced up to 40%. Letafat et al. [84] presented an
optimal design and control study for a hydrogen hybrid ferry
using the Improved Sine Cosine Algorithm with Harmony
Search. The approach yielded a small cost reduction up to
2% compared to a rule-based EMS.

Chen et al. [85] introduced a modified equivalent circuit
battery degradation and semi-empirical life prediction model
for the optimal design (sizing) and optimal EMS of a hybrid
electric propulsion system. Experimental data were used for
building the model. An error of 13% was observed in the
validation stage. Hofman et al. [86] presented a system-level
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optimization study, using convex and Mixed Integer solvers,
for the simultaneous sizing of the batteries and system con-
trol. The simplification of the problem, from non-linear to
convex, led to a simulation convergence in around 8 minutes.

There are a few case studies, where data-driven mod-
els have been utilized for the combined design and control
optimization problems. Chen et al. [87] presented a novel
approach, based on Support Vector Machine and frequency
control for the joint optimization of the sizing of the battery-
supercapacitor hybrid system and the EMS, using the Whale
Algorithm. The proposed approach decreased the power
fluctuations by 44% compared to the traditional fixed-filter
rule-based EMS. Si et al. [88] proposed a configuration opti-
mization combining fuzzy rules and a quantum artificial bee
colony algorithm, to reduce the total cost, but also increase
the reliability and components’ lifetime. An optimal EMS
was also developed using the Quantum PSO algorithm to
maximize clear energy utilization.

The results from the combined optimal design and control
studies are summarized in Table 5.

TABLE 5. Combined optimal design and control studies.

Optimization

Ref. Objectives Methods/Algorithms

[77] Operational and capital NSGA-II in the external layer,
costs, emissions. MILP in the inner layer.

[78] Costs and degradations ~ MILP algorithm and Monte Carlo
of components. analysis.

[79] Operational and capital ~MILP algorithm.
costs, fuel cell
degradations.

[80] Fuel consumption. PSO algorithm and fuzzy logic

controller.

[81] Fuel costs, onboard Genetic algorithm - outer layer,
emissions. Dynamic Programming — inner

layer.

[82] Emissions, fuel MOPSO at higher level, modified
consumption, net adaptive ECMS at lower level.
present cost.

[83] Battery degradation. Ritz Method.

[84] Operating costs and Improved Sine Cosine Algorithm
capital expenses. with Harmony Search.

[85] Lifecycle cost, battery ~ Battery degradation and semi-
lifetime. empirical life prediction model.

[86] Capital and operating Convex and Mixed Integer
costs. solvers/algorithms.

[87] Battery degradations, Support Vector Machine, Whale
energy efficiency. algorithm.

[88] Total cost, reliability, Fuzzy rules and a quantum

and lifetime of
components.

artificial bee colony algorithm,
Quantum PSO algorithm.

Overall, for the optimal design (A), control (B), and com-
bined optimization problems (C), it is worth noting that
around 80% of the considered studies used physics-based
approaches for the modeling of the components, while only
the rest 20% used data-driven methods. The most frequently
used optimization algorithms were the NSGA-II, MOPSO
and MILP. The most assessed optimization objectives were
the capital expenses, operating costs, emissions, and energy
consumption. The degradations of components were focused
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only on fuel cells and batteries. The volumes and weights of
ship energy systems were usually considered as constraints
in the optimization problems. Moreover, the experimental
validations of energy system models were very limited due
to the high cost, time, and lab availability. Most case studies
validated their approaches with other models and methods
from the literature. There are very few studies that considered
uncertain conditions in terms of system’s performance, costs,
or operating profiles. Finally, there is no study covering all
the following optimization objectives for a specific case ship
or vessel category: lifecycle costs and emissions, energy con-
sumption, degradation of components, safety, and reliability.

IV. CONCLUSION

This review summarized the state-of-the-art approaches for
modeling and optimization of ship energy systems. In this sur-
vey paper, the physics-based and data-driven modeling stud-
ies were discussed, considering the types of energy systems,
modeling methods and purpose for each case. Once the com-
ponents are modeled, they should be optimized to improve
the overall powertrain’s performance. The optimization stud-
ies in terms of design, control, and a combination of both,
were analyzed. The importance of considering simultaneous
optimization of sizing and control, to avoid performance
degradations of the components and suboptimal solutions,
was highlighted. The objectives that needed to be satisfied
for each problem, and the methods/algorithms/strategies that
were implemented were discussed.

The uniqueness of this paper is twofold. It is the first
study that discusses the state-of-the art modeling approaches
such as co-simulation, digital twins, and surrogate models
for novel ship energy systems. To the best of the authors’
knowledge, it is also the only survey paper that approaches
optimizations of ship power and propulsion systems from
three perspectives i.e., design, control, and a combination of
both.

To conclude, ship powertrains are becoming increasingly
complex with interconnections of energy systems that can
affect the overall performance. The design spaces are multi-
dimensional with an increased number of sustainable power
and propulsion systems’ configurations, and a vast design
parameter investigation is required. Hence, the classical mod-
eling and design approaches are highly probable to fail, which
makes it challenging to ensure optimality for the integrated
powertrain. This indicates that optimization of such com-
plex power systems can be challenging and time consum-
ing, especially for a multi-objective problem. Hence, for
future research directions it would be recommended to apply
more data-driven approaches, especially surrogate models in
the optimizations of ship powertrains, to increase the com-
putational efficiency and be able to test various systems,
topologies, and control approaches in a short time inter-
val. Surrogate data-driven models have been widely utilized
recently for various energy systems to increase the compu-
tational efficiency of optimizations. Despite their increasing
applications on energy systems from other research fields,

VOLUME 11, 2023



F. Mylonopoulos et al.: Comprehensive Review of Modeling and Optimization Methods

IEEE Access

there are almost no studies until now, on surrogate-assisted
modeling and optimizations of ship powertrains. By utilizing
data-driven surrogate models, the optimal solutions can be
obtained at fast computational speeds with sufficient accu-
racy, even for complex, nested, multi-level, multi-objective
optimizations of ship powertrains.
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