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Abstract: Aged earthworks constitute a major proportion of European rail infrastructures, the re-
placement and remediation of which poses a serious problem. Considering the scale of the networks
involved, it is infeasible both in terms of track downtime and money to replace all of these assets. It is,
therefore, imperative to develop a rational means of managing slope infrastructure to determine the
best use of available resources and plan maintenance in order of criticality. To do so, it is necessary to
not just consider the structural performance of the asset but also to consider the safety and security of
its users, the socioeconomic impact of remediation/failure and the relative importance of the asset to
the network. This paper addresses this by looking at maintenance planning on a network level using
multi-attribute utility theory (MAUT). MAUT is a methodology that allows one to balance the priori-
ties of different objectives in a harmonious fashion allowing for a holistic means of ranking assets and,
subsequently, a rational means of investing in maintenance. In this situation, three different attributes
are considered when examining the utility of different maintenance options, namely availability (the
user cost), economy (the financial implications) and structural reliability (the structural performance
and subsequent safety of the structure). The main impact of this paper is to showcase that network
maintenance planning can be carried out proactively in a manner that is balanced against the needs of
the organization.

Keywords: infrastructure maintenance; utility theory; slope stability; maintenance scheduling; multi-
attribute utility theory; cuttings and embankments

1. Introduction

Traditionally rail infrastructure asset maintenance has been performed retroactively to
correct, through replacement or remediation, failed elements. Naturally, this carries substan-
tial safety implications for end-users and financial liability for infrastructure owners [1]. To
limit their exposure, infrastructure owners have been trying to move towards more proac-
tive asset maintenance approaches [2–4]. Such an approach would allow them to invest
money in a prudent, sensible fashion, which maximizes utility and subsequently gives the
best return on their investment [5]. Resulting in safer infrastructure which offers greater
value to consumers and owners alike with less investment of resources [6]. Unfortunately, it
is seldom clear how to most effectively allocate resources to achieve these goals.

Railway networks are a significant global asset, with an estimated 200,063 km of track [7]
in the EU alone, 95% of which was built before 1905. Individual structures along these
railways, including bridges, tunnels and earthworks, were constructed prior to the advent
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of modern design and construction standards. Given their age, many have far exceeded
typical design lifetimes, and their resilience to the impacts of increased traffic loading and
extreme weather events is lower than comparable assets on modern networks like highways.
Bridges and tunnels are discrete, high-value, visible assets, where the majority of safety
problems are relatively easy to detect, and thus, budgets can be assigned with some certainty.
As a result, these assets have undergone regular remediation and replacement since their
initial construction, while most earthworks remain in their original condition [3]. This is
problematic on several levels as the present-day structures are now carrying loads far above
what was originally intended as part of everyday operation, while their long lifespans
have left them at increased risk of deterioration from aging effects and extreme climate
scenarios [8]. Aged embankments, in particular, due to their steep construction, are more
susceptible to rainfall-induced shallow failures than their modern-day equivalents [9,10].
This is because embankments constructed at slope angles in excess of their internal angle
of friction rely on cohesion and matric suction for stability, the latter of which is inversely
proportional to soil moisture [11,12]. As a result, shallow shear failures often occur after
heavy or prolonged rainfall [13]. Loveridge et al. [14] found a strong correlation between
earthwork failure and monthly rainfall in excess of the long-term average.

Earthworks are often covered by vegetation, and their behavior varies temporally, being
strongly influenced by both rainfall and drying events [15–18]. The situation is complicated
further by the scope of the networks involved and the presence of steep earthworks made
of unknown material [19–21]. As a result, it is difficult for infrastructure managers to make
effective maintenance decisions that utilize allocated resources in an optimum fashion.

Although risk assessment for the management of earthwork slopes is now widely
adopted, major failures are increasing [3]. This is partly due to issues such as aging, climate
change and increased demand. However, an additional contributing factor is that current
risk assessment approaches are overly reliant on the results of visual inspection for hazard
assessment. When stability analyses are performed to compare the capacity (strength)
to the demand (load), they tend to be deterministic with conservative estimates of input
parameters. In reality, both the capacity and demand vary temporally in response to weather
events and therefore, the choice of input parameters is neither straight-forward nor fixed,
and a move towards probabilistic assessment where uncertainty is quantified to deliver a
specific level of safety is preferred. The increased availability of data such as LiDAR for
geometry, embedded sensor and satellite data combined with improved weather forecasts
provides an opportunity for infrastructure managers to address this problem of quantifying
safety and make better-informed maintenance investment decisions [22].

Having established the safety level, asset maintenance planning is a process of decid-
ing the scope, timing, costs, and benefits of future maintenance activities on a specific asset.
Due to long lifespans and constraints on budgets, optimization of maintenance investments
considering technical and economic objectives is essential for railway owners to fulfill
societal expectations. Implicit in any decision-making process is the need to construct,
either directly or indirectly, the preference order so that alternatives can be ranked, and the
best alternative can be selected [23]. For some decision-making problems, this may easily
be accomplished. For example, in the case of a decision based on a cost-minimization rule
(where the lowest-cost alternative is chosen), the preference order is adequately represented
by the natural order of real numbers (representing costs). Multicriteria decision-making
(MCDM) methods provide a systematic approach to evaluate multiple conflicting criteria
in decision-making. Conflicting criteria are typical in evaluating options; for example, the
cost is usually one of the main criteria, and some measure of quality (performance level)
is typically another criterion, usually in conflict with a cost. MCDM is used to identify
and quantify decision-maker and stakeholder considerations about various (mostly) non-
monetary factors in order to compare alternative courses of action [24]. Alternatively, the
multiple performance criteria can be combined into a so-called utility function, in which all
the criteria are brought into a single scale.
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This paper demonstrates the applicability of MAUT for proactively determining the
optimum maintenance schedule of earthwork assets on a network scale. The approach is
demonstrated using the Irish Rail network. Multiple performance objectives or goals are
considered looking at a range of attributes, failure scenarios and maintenance options. The
result is a ranking of a network’s earthwork maintenance schedule, in order of maximum
return on investment, where the return is based on the tradeoff of multiple performance
goals as selected by the infrastructure manager. An example would be to increase the struc-
tural safety and availability of a network while minimizing the cost of interventions [25–28].
It allows for the consideration of environmental impacts and user costs and can easily be
augmented further by additional performance goals as they become relevant. It explicitly
allows the user to integrate choice and risk preferences.

2. Stability Assessment of Earthworks

In this section, we present an overview of the safety challenges faced by owners of
aging earthworks and set-out a rational methodology to describe earthwork safety using
reliability theory.

2.1. Slope Stability

The earthworks assets considered in this paper include cuttings; where the line is exca-
vated below the existing ground level in either soil or rock (Figure 1a); and embankments
where the line is carried above existing ground on man-made fill, usually soil (Figure 1b).
Common problems causing instability of slopes are shallow translational landslides caused
by high rainfall (Figure 1a,b), rock falls caused by freeze–thaw effects (Figure 1c), and deep-
seated rotational failures caused by the construction of embankments over weak sub-soils
(Figure 1d). The safety of earthworks is typically determined in a slope stability analysis.
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Figure 1. Examples of earthworks failures: (a) shallow translational failure in soil cutting, (b) shallow translational failure
in an embankment, (c) deep rotational failure and, (d) rockfall.



Appl. Sci. 2021, 11, 965 4 of 20

Shallow translational landslides are usually triggered by near-surface changes in
moisture content. In dry periods negative pore water pressure (suctions) develop in the
near-surface soils, which contribute significantly to their overall stability. This suction
transient and reduce during periods of rainfall or snowmelt. Assuming an infinite slope
failure model, the factor of safety (FOS = capacity/demand) can be calculated as follows:

FOS =
C + γ h cos2 α tan φ

γ h cos α sin α
(1)

where γ is the unit weight of soil, h the wetting front depth (depth of infiltrated water), the
friction angle of the soil φ and α, the slope angle, See Gavin and Xue [29]. In this simplified
approach, the effective cohesion and matric suction are combined into the total cohesion, C.

The primary mechanism for deep rotational slip failures on railway networks is the
presence of soft ground underlying an embankment. As a result, these failures tend to be
geographically well-defined (e.g., in peatlands and delta regions) and are not significantly
affected by climate hazards. As the depth of this failure mechanism is typically much larger
than rainfall-induced failures, the volume of soil involved is much larger. The factor of
safety is typically determined assuming a circular failure surface in which the failure surface
is divided into a number of vertical slices, and moment equilibrium is considered [30]. The
key inputs for the analysis are the slope geometry and shear strength parameters of the soil.
The factor of safety of a slope subject to a rotational failure is as follows:

FOS =
∑n

i=1[ci∆xi + (Wi − ui∆xi) tan φi]
sec αi

1+tan φi tan αi/FOS

∑n
i=1 Wi sin αi

(2)

where: Wi is the weight (kN) of the ith slice, αi is the inclination angle of the base of the
ith slice, ∆xi (m) is the ith slice width, ci (kPa) is the cohesion of the soil on the base of the
ith slice, ui (kPa) is the pore water pressure at the base of the ith slice, and φi is the friction
angle of the soil at the base of the ith slice, See Figure 2.
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Figure 2. Definition of terms used in rotational failure analyses.

The stability of a rock slope depends on a number of internal (slope angle, geology,
fracturing, etc.) and external parameters (weathering, tectonic events, human anthro-
pogenic factors, etc.). The impact of freeze–thaw cycles on rockfalls is well documented, as
water infiltrates into existing fractures, freezes and causes expansion of the fracture that
may eventually lead to a rock wedge being dislodged from the mass. In this paper, a 2D
rock wedge failure mode is considered, where the geometry of the critical failure surface is
dependent on the slope geometry [31].
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2.2. Reliability of Slopes

Because soils are naturally occurring materials, their properties vary spatially and
temporally. Therefore, while simple limit equilibrium analyses such as those described in
Section 3.1 can be performed to determine the factor of safety against slope failure, many
of the input parameters needed for these analyses are highly variable. As a result, the
FOS value obtained is critically dependent on assumptions made by the designer. For
the case of shallow translational landslides, the specific uncertainties associated with this
failure mode include; the variation of total cohesion when suctions reduce as a result of
changes in water content during infiltration and difficulties in assessing the rate at which
wetting front development occurs. The wetting front or failure surface depth is a function
of many variables. These include the initial suction profile (which depends on the grain
size properties and antecedent weather), the geometry of the slope and permeability of
the soil, rainfall intensity and duration, among other factors. For the rotational failure
mechanism, the key uncertainties are the shear strength parameters and the presence of
local soft spots or buried features, stresses on the failure plane and location of the slip
surface. For rock wedge failures, the key uncertainty relates to the fracture spacing and the
impact of freeze–thaw cycles.

Probabilistic analysis offers a rational way for engineers to include uncertainty in
their designs [32]. Instead of assuming deterministic (unique) values for variables, the full
distribution of likely values is considered. The limit-state (performance) function, which
compares the capacity (C) and demand (D), See Figure 3 is given by Equation (3).

g(X) = (C− D)


> 0, sa f e state
= 0, limit state
< 0, f ailure state

(3)

The probability of failure is the area of the curve where demand exceeds capacity
and the reliability index β is defined as the distance by which the mean or expected value
of the performance function exceeds zero in units of its standard deviation, σ (Equation
(4). As entire distributions are being used as inputs, reliability can either be determined
through brute force computation using Monte Carlo or else approximated using mathemat-
ical optimization approaches such as First Order Reliability Methods [33], Second Order
Reliability Methods [34], Genetic Algorithm [29], Particle Swarm Optimisation [35,36], etc.
This paper utilizes a genetic algorithm approach, as recommended by Xue and Gavin [29],
to determine the reliability index.

β =
µ(G(X))

σ(G(X))
(4)
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3. Multiobjective Decision-Making Model for Maintenance Planning
3.1. Model Description

MAUT is a multicriteria decision-making method [37], based on expected utility theory
where the concept of a lottery is used to change the weightings of different attributes to
determine the indifference point between different outcomes. The indifference point is
the point where the expected values from different outcomes are the same. MAUT allows
the decision-maker to strongly influence the preference order through the construction of
utility functions, which further allows for the direct consideration of uncertainty. In the
maintenance planning process, the uncertainty mainly originates from a lack of data and/or
a lack of clear preferences from the stakeholders. These functions are real-valued functions
that must be determined for each attribute, where the attributes chosen should represent the
characteristics that the decision-maker in question deems important. After defining utility
functions for each attribute, objectives and constraints need to be established. If the decision-
maker has a personal preference regarding maximizing or minimizing the influence of
a given attribute, relative weights can be ascribed. The individual utility functions are
then combined into one utility function using the established relative weightings and any
constraints set by the decision-maker. This single criterion is optimized to determine the
best course of action. MAUT’s primary use is to choose the strategy in situations where a
strategy must be implemented, but there is no clear indication of which path is of greatest
value [26].

MAUT is a well-structured procedure designed to elicit utility functions from multiple
attributes, implement relative weighting, and establish an objective ranking. There are
several methods available to model an attributes utility, such as linear, log, exponential,
logarithmic and quadratic [38]. In this paper, the exponential utility function [39] is uti-
lized to capture the uncertainty in stakeholder preference and the risk tolerance of the
decision-maker for slope maintenance planning, considering object reliability, economy
and availability as performance criteria.

The step-by-step application procedure to implement MAUT on multiple objective
maintenance planning problems is shown in Figure 4 and discussed in detail below, see
Equations (5)–(8):

1. Assuming that the objectives of the maintenance planning and related attributes have
been established, the first step is to compute a single utility function (SUF) for each
attribute by applying the exponential utility functions [40,41] as follows:

Ui(xi) = A− Be(
−xi
RT ) (5)

where:

A =
e(
−Min(xi)

RT )[
e(
−Min(xi)

RT ) − e(
−Max(xi)

RT )

] (6)

B =
1[

e(
−Min(xi)

RT ) − e(
−Max(xi)

RT )

] (7)

RTi =
−CEi

ln
(
−0.5Ui(Max(xi))−0.5Ui(Min(xi))+A

B

) (8)

where:
Ui(xi) = Single utility value for attribute i of a maintenance alternative x
A, B = Scaling constants;
e = The exponential constant, i.e., 2.718;
Min(xi) = The exponential constant, i.e., 2.718;
Min(xi) = Minimum value of attribute i across all alternatives;
Max(xi)= Minimum value of attribute i across all alternatives;
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RT = Risk tolerance.
When computing SUF, the scaling constants and RT are cyclically dependent. Equa-

tion (9) can be used with the goal seeker function of MS Excel [42] to solve this.

e
−CE
RT = 0.5 e

−Max(xi)
RT + 0.5 e

−Min(xi)
RT (9)

To obtain the exponential SUF, the decision-makers are presented with a lottery ques-
tion of a maximum value (i.e., Max(xi)) and a minimum value (i.e., Min(xi)) of an attribute.
The decision-maker must choose an indifference point between the best and the worst
possible values, which is referred to as the certainty equivalent (CE). The average value
between the best possible value or the worst possible value is referred to as the expected
value (EV). The indifference point chosen by the decision-maker represents his/her attitude
towards risk and risk tolerance. An indifference value where CE is equivalent to EV repre-
sents risk-neutral behavior. If the value of CE is lower than EV, the decision-maker has a
risk-avoiding attitude, whereas the CE value greater than EV shows a risk-taking attitude.
Consequently, a risk-avoiding attitude has a positive risk tolerance, while a risk-taking
attitude has a negative risk tolerance value [43] (Caballero and Krishnamurthy, 2008). With
the consideration of decision-makers’ uncertainty in eliciting indifference points, CE, under
risk consideration, the final computed utilities of an attribute must lie between U (Max(xi))
= 0, U (Min(xi)) = 1.

Appl. Sci. 2021, 11, x FOR PEER REVIEW 7 of 19 
 

𝑀𝑖𝑛(𝑥௜) = The exponential constant, i.e., 2.718; 𝑀𝑖𝑛(𝑥௜) = Minimum value of attribute i across all alternatives; 𝑀𝑎𝑥(𝑥௜)= Minimum value of attribute i across all alternatives; 
RT = Risk tolerance. 

 
Figure 4. Flowchart for multi-attribute utility theory (MAUT) application. 

When computing SUF, the scaling constants and RT are cyclically dependent. Equa-
tion (9) can be used with the goal seeker function of MS Excel [42] to solve this. 𝑒ି஼ாோ் = 0.5 𝑒ିெ௔௫(௫೔)ோ் + 0.5 𝑒ିெ௜௡(௫೔)ோ்  (9)

To obtain the exponential SUF, the decision-makers are presented with a lottery ques-
tion of a maximum value (i.e., 𝑀𝑎𝑥(𝑥௜)) and a minimum value (i.e., 𝑀𝑖𝑛(𝑥௜)) of an at-
tribute. The decision-maker must choose an indifference point between the best and the 
worst possible values, which is referred to as the certainty equivalent (CE). The average 
value between the best possible value or the worst possible value is referred to as the 
expected value (EV). The indifference point chosen by the decision-maker represents 
his/her attitude towards risk and risk tolerance. An indifference value where CE is equiv-
alent to EV represents risk-neutral behavior. If the value of CE is lower than EV, the deci-
sion-maker has a risk-avoiding attitude, whereas the CE value greater than EV shows a 
risk-taking attitude. Consequently, a risk-avoiding attitude has a positive risk tolerance, 
while a risk-taking attitude has a negative risk tolerance value [43] (Caballero and Krish-
namurthy, 2008). With the consideration of decision-makers’ uncertainty in eliciting in-
difference points, CE, under risk consideration, the final computed utilities of an attribute 
must lie between U (𝑀𝑎𝑥(𝑥௜)) = 0, U (𝑀𝑖𝑛(𝑥௜)) = 1. 
2. The next step is to perform tradeoffs among the attributes in order to find a solution 

that either maximizes or minimizes the stated performance goals or objectives. These 
tradeoffs characterize the relative importance of attributes for their defined objec-
tives/performance goals. A direct rating method is applied to determine the 
weighting factors of the attributes, which is represented in Equation (10). 

𝑘(𝑥௜) = 𝑤(𝑥௜)∑ 𝑤(𝑥௜)௡௜ୀଵ  (10)

where: 𝑘(𝑥௜) = Weighting factor of each attribute i across all alternatives; 𝑤(𝑥௜) = weighting assigned by an expert for attribute i for maintenance activity x; 𝑤(𝑥௜) = weighting assigned by an expert for attribute i for maintenance activity x. 
3. The next step of the MAUT application is the computation of the aggregated utility 

of each alternative based on both the computed SUF and the relative weighting fac-
tors. For the final aggregation, the multiplicative or addictive form can be used. The 
additive form requires the attributes to be mutually and preferentially independent. 
Preferentially independent means that the preferences of one attribute are not de-
pendent on the preferences of another. When attributes are not mutually and prefer-
entially independent, the multiplicative form is used [44]. Here, as the attributes (pre-
sented in Section 4.1.2) are found to be mutually and preferentially independent, the 

Figure 4. Flowchart for multi-attribute utility theory (MAUT) application.

2. The next step is to perform tradeoffs among the attributes in order to find a solu-
tion that either maximizes or minimizes the stated performance goals or objectives.
These tradeoffs characterize the relative importance of attributes for their defined
objectives/performance goals. A direct rating method is applied to determine the
weighting factors of the attributes, which is represented in Equation (10).

k(xi) =
w(xi)

∑n
i=1 w(xi)

(10)

where:
k(xi) = Weighting factor of each attribute i across all alternatives;
w(xi) = weighting assigned by an expert for attribute i for maintenance activity x;
w(xi) = weighting assigned by an expert for attribute i for maintenance activity x.

3. The next step of the MAUT application is the computation of the aggregated util-
ity of each alternative based on both the computed SUF and the relative weighting
factors. For the final aggregation, the multiplicative or addictive form can be used.
The additive form requires the attributes to be mutually and preferentially indepen-
dent. Preferentially independent means that the preferences of one attribute are not
dependent on the preferences of another. When attributes are not mutually and pref-
erentially independent, the multiplicative form is used [44]. Here, as the attributes
(presented in Section 4.1.2) are found to be mutually and preferentially independent,
the additive form is used to compute the total aggregated score of each alternative,
see Equation (11):
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U(x) =
n

∑
i=1

kiUi(xi) (11)

where:
U(x) = multi-attribute utility of alternative x;
k = weighting factor of each attribute i;
Ui(xi) = single-attribute utility of each attribute i for an alternative x.

4. Finally, maintenance alternatives are ranked based on the magnitude of their aggre-
gated score. The maintenance alternative that contributes most to the realization of
the defined objectives is ranked the highest.

There are several successful examples of MAUT in the area of transport infrastructure
management. Zavadskas et al. [45] (2008) used MAUT as a means of quality control for
bridge construction, Dabous and Alkass [46] (2010) utilized it as the basis for a bridge
management system, while Allah Bukhsh et al. [4] (2019) demonstrated the viability of
MAUT for network-level bridge maintenance. MAUT also has been used for the reliability
assessment of infrastructure design and for inspection and maintenance planning [5].

3.2. Attributes
3.2.1. Safety–Change in Reliability Index Due to an Intervention

In order to estimate the benefit of an intervention (maintenance activity), the difference
in reliability index before and after the intervention was used. Utility theory can find the
optimal balance between the benefit of increased reliability and incurred costs. The change
in the reliability index due to the intervention is defined in Equation (12):

∆β = β2 − β1 (12)

where: β1 and β2 are the reliability index before and after the intervention, respectively.
In this paper, the reliability indices of all individual earthworks on the Irish Rail

network were determined based on the approaches described in Section 3. Chowdury and
Flentje [47] suggest that for earth slopes outside urban areas, a minimum target reliability
index βT = 2.0, corresponding to a probability of failure of 2.23%, is acceptable. Although
this reliability index would classify the performance as poor in accordance with [48]
USACE, it is consistent with conventional practice in geotechnical engineering [49].

For each asset type, embankment, soil cutting and rock cutting that scored βT < 2,
maintenance activities were identified that would provide a given increase in reliability
index based on the do the minimum, do medium and do maximum maintenance levels.
The intervention rules for soil cuttings and embankments are shown in Table 1 and for rock
slopes in Table 2. The unit costs include mobilization and a rate per length of the treated
area that should be multiplied by the linear height of the treated area. The duration of the
works refers to the length of time in days that the line must be closed for the maintenance
activity to be carried out. This has a value of zero if a complete possession of the track (full
closure) is not required for works to be carried out. In such cases, speed restrictions are
applied to ensure worker safety. The expected lifespan is an estimate of the time until the
reliability index degrades back to its initial value.
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Table 1. Intervention rules for earth slopes (cuttings and embankments).

Maintenance Levels Description of Damage Maintenance Option Maintenance Cost
(Unit Cost) *

Downtime/Duration
[days]

Reduced Speed
(km/h)

Failure
Mechanism

Reliability
Index after

Expected Lifespan
[years]

Minimum
Blocked drains Vegetation clearance-drainage Mobilization

€1000, + €1/m′ 1 0 Planar 4 5

Insufficient or
overgrown vegetation

Vegetation
clearance-management

Mobilization
€1000, + €5/m′ 0 25 Planar 4 10

Medium
Tension cracks Passive debris barrier Mobilization

€1000, + €300/m′ 1 0 Planar 3 20

Major water seepage Passive debris barrier Mobilization
€1000, + €300/m′ 1 0 Rotational 3 20

Maximum

Redesign requirements
(clearance widening) Retaining wall (various types) Mobilization

€2500, + €700/m′ 4 0 Rotational 5 30

Landslide Benching; berms Mobilization
€2500, + €400/m′ 3 0 Rotational 3 40

Oversteep asset Regrading Mobilization
€2500, + €400/m′ 3 0 Both 3.5 50

* unit costs are calculated per m/run for linear assets and should be multiplied by the sloped height.

Table 2. Intervention rules for rock cuttings.

Maintenance Levels Description of Damage Maintenance Option Maintenance Cost
(Unit Cost) *

Downtime/Duration
[days]

Reduced Speed
(km/h)

Failure
Mechanism

Reliability
Index after

Expected Lifespan
[years]

Medium
Oversteep asset Installation of a rock face mesh Mobilization

€1000, + €400/m′ 2 0 Wedge 4 20

Tension cracks Passive debris barrier Mobilization
€1000, + €300/m′ 1 0 Wedge 3.5 20

Maximum
Landslide/rockfall Regrading Mobilization

€1000 + €1000/m′ 10 0 Wedge or
rotational 4.5 50

Over-steep/fractured Shotcrete and anchors Mobilization
€20,000 + €1600 m′ 20 0 Wedge 4 50

Loose debris Shotcrete Mobilization
€10,000 + €500 m′ 4 0 - 2.5 10

* unit costs are calculated per m/run for linear assets and should be multiplied by the sloped height.
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3.2.2. Economy–Annual Maintenance Cost

The second attribute considered in the model is the object’s average annual main-
tenance cost. Maintenance options were determined based on the slope type and the
proposed damage; see Tables 1 and 2. The corresponding maintenance service life was
then estimated along with associated mobilization costs and the unit costs associated with
certain interventions. Next, the unit cost of maintenance activity is multiplied by the
object length it acts over. The maintenance cost is then normalized by the object’s intended
lifespan to calculate the average annual maintenance cost (AMC), see Equation (13).

AMC =
mobilization cost + (unit cost× length)

li f espan
(13)

where AMC is the average annual maintenance cost.

3.2.3. Availability–User Delay Cost

The final attribute considered in the model is object availability, expressed as user
delay costs. Where user delay costs are the costs that are born directly by the users of
the rail network as a result of traffic disruptions associated with the construction and
maintenance of objects on the network. The maximum speed on the network considered
is 160 km/h for passenger trains and 80 km/h for freight trains. However, on certain
sections of line and/or for certain types of train, lower maximum speed limits apply. These
permanent speed restrictions were determined for the network from Irish Rail [50] (2018).

In order to determine the current impacts of those permanent speed restrictions, the
user delay costs were calculated as the difference between time traveled at the current
speed and the time traveled at the speed that would be possible if the earthworks were at
full operational speed.

The user delay costs (UDC) are calculated in Equation (14)

UDC =

(
length

reduced speed
− length

standard speed

)(
train f requecy

number o f working hours

)
VoT × n (14)

where VoT is an average value of time for railway passengers (€ per hour). A value of €32.5
per hour was used [51], and n is the average number of passengers per hour on a weekday.

4. Case Study

The developed model was applied to the Irish Rail network, see Figure 5, to determine
the optimal schedule for asset maintenance. Relevant asset metrics were sourced from Irish
Rail; the objective was to be accomplished by minimizing annual maintenance costs and
user delay costs while maximizing asset reliability.

The Irish Rail asset database is comprised of 3404 slopes giving details on function,
location, average height, slope angle, construction type, drainage, condition scores, damage
detail, critical failure mechanism, reliability index and other characteristics. Any assets
with a reliability index greater than 2 were deemed to be at low risk of failure and were
not considered for maintenance. Similarly, if an asset slope was located at a distance more
than twice its height from the track, it was eliminated from the dataset. This left 190 slopes
requiring some form of maintenance. The intervention rules described in Section 4 were
applied to determine maintenance options, relevant costs, reduced speed, the duration
of maintenance, and to estimate the reliability index followed intervention for the asset
in question. The related decision attributes, i.e., improvement in reliability index, annual
maintenance cost and user costs, were then computed.

As the objectives are conflicting, MAUT was applied to the case study data with a
minimization function. As a result, the slope with the lowest overall utility score contributes
most to the realization of the objective. The application of MAUT ranks the slopes (i.e.,
alternatives) into some order based on how well they meet or tradeoff multiple performance
objectives. Whichever slope has the lowest overall utility score is the slope that will benefit
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most from maintenance. The following sections outline the quantification process to
compute single utility functions, the weighting factors and overall aggregation scores of
the alternatives.
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4.1. Application of Multi-Attribute Utility Theory (MAUT)

The following sections outline the quantification process to compute single utility
functions, the weighting factors and overall aggregation scores of the alternatives.

4.1.1. Assessment of Single Utility Function

Utility functions are inspired by lottery problems wherewith equal probability of
obtaining the best or worst possible value; a gambler needs to take a certain risk under
uncertainty. We have adopted the convention from [52] to present the lottery question
along with the risk preferences of the decision-maker. It is worth mentioning that the utility
of an attribute is relative to the decision-maker’s choices, which can change over time.

To determine a single utility function, the utility function of all attributes must be
computed, i.e., reliability benefit, annual maintenance cost and user cost. The reliability
benefit is determined using Equation (12), where the initial reliability is taken from the Irish
Rail database, and the final reliability is taken from the row relating to the maintenance
activity in question in Table 1 or Table 2. The greater the change in the reliability index,
the safer the slope will be. Therefore, the objective is to maximize the reliability benefit
while keeping the annual maintenance cost and user cost minimal. Figure 6 presents the
lottery set up to elicit the CE (certainty equivalent)/indifference point of increasing the
reliability index.

www.irishrail.ie
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Figure 6. Lottery setup to discern utility values for the benefit of reliability.

The expected value (EV) of increasing the reliability index is determined by setting up
a lottery question where there is an equal chance of getting the best possible increase in
reliability index and the worst possible increase in reliability index. The expected value is
then easily obtained by getting the mean value. In this case, the expected increase in the
reliability index is equal to 2.89. Due to the maximization objective, the indifference point
(CE) was chosen to be 2. The risk tolerance (RT) value was calculated by satisfying optimiz-
ing Equation (9). The exponential single utility function of all the maintenance alternatives
is calculated by solving Equations (6)–(8) iteratively, which resulted in Equation (15).

Uri(xri) = −0.18 + 3.23e(
−xi
1.5 ) (15)

Figure 7 describes the change in utility as reliability increases. Due to the conflicting
nature of the attributes, the utility scores of the benefit from the reliability index were
reversed. Therefore, the slopes which gain the most from increasing reliability will have
the lowest utility score. The rationale behind this is to keep better alignment between the
attributes as minimum values are preferred in the other two attributes. The value reversal
will reduce the maximal values (the largest increase in reliability) into smaller utility scores,
as shown in Figure 7 so as to rank them higher in the final minimization function.
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Figure 7. Utility plot of reliability benefit.

Figure 8 shows the procedure for determining the CE (certainty equivalent)/indifference
point for annual maintenance cost (AMC). As with the reliability attribute, the expected
value must first be obtained by setting up a lottery problem with the best and worst case.
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In this case, the expected value was equal to €9672. Assuming that the decision-maker
is willing to spend €7000 each year (CE) on maintaining a critical asset. The Equations
(5)–(8) solved iteratively yield the Risk Threshold and AMC scaling constants resulting in
Equation (16).

Uamc(xamc) = 1.02− 1.04e(
−xi
5000 ) (16)
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Figure 8. Lottery setup to discern utility values for annual maintenance cost.

By substituting the AMC value for each slope into Equation (16), the utility score of all
the slopes are computed. Figure 9 presents a plot of annual maintenance cost versus utility
where the utility values increase steadily with increasing expenditure. Since the objective
is to have minimal AMC, smaller utility sores are preferred.
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Figure 9. Utility plot of annual maintenance cost.

The lottery setup to discern the utility score of user delay cost (UDC) is shown in
Figure 10. To evaluate the UDC metrics were needed on passenger numbers, Value of time
and line speed. As per Irish Rail, the maximum speed is 160 km/h for passenger trains and
80 km/h for freight trains. However, on certain sections of line and/or for certain types
of train, lower maximum speed limits apply. These permanent speed restrictions can be
found in Irish Rail (2018). For a railway passenger, the value of €32 per hour was assumed
(for further details, see (Barrett and Ramdas, 2018)).
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Figure 10. Lottery setup to discern utility values for user delay cost.

As the objective is to have as low UDC as possible, a CE value of €100,000 is chosen,
which is considerably less than the expected value. Assuming risk-avoiding behavior, the
RT value of €75,000 is obtained using Equation (8).

By solving the Equations (5)–(8) iteratively, scaling constants of unity were determined
for the exponential utility of user delay cost; the updated utility equation is shown in
Equation (17).

Uudc(xudc) = 1− e(
−xi

75,000 ) (17)

Figure 11 depicts how the user delay cost increases as the utility score increases. Lower
UDC values have lower utility values as minimizing UDC is desirable in this situation.
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4.1.2. Attribute Tradeoff

As the goal is to determine the optimum maintenance schedule, which gets the
greatest return on investment, the slopes must be ranked based on some performance
criteria. As the previously stated performance objectives are conflicting in nature, in that
any improvement in the reliability index will result in increased annual costs and user
delay costs, tradeoffs among the attributes must occur.

In line with the direct rating method, shown in Equation (10), rates were assigned
by experts and used to determine the weighting factors of each attribute. Increasing the
reliability was deemed to be twice as important as decreasing the annual maintenance cost
or user delay cost, see Table 3.
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Table 3. Weighting of attributes.

Performance Aspect Attribute Weights Rating

Economy Annual maintenance cost 25 25/100 = 0.25
Reliability Improved reliability 50 50/100 = 0.50

Availability User delay cost 25 25/100 = 0.25

4.1.3. Aggregated Utility and Results

The final step of the application of MAUT is to compute the aggregated utility of
each alternative to rank them in an order that contributes the most to the realization of
the objectives. Either additive or multiplicative aggregation must be selected depending
on whether or not the attributes are preferentially independent of one another. In this
case, the performance measures used are dependent on each other, but if a decision-maker
states a preference for one attribute, it does not, in turn, fix other attributes, so they are
preferentially independent. In other words, a decision-maker can prefer having a minimum
annual maintenance cost while preferring the maximum possible improvement in reliability.
This preference structure makes the maintenance cost and reliability benefit mutually and
preferentially independent of each other. Considering this, the additive form was used to
compute the global aggregated score for each alternative, as shown in Equation (11). The
smallest aggregated utility score represents the most preferred alternative.

Tables 4 and 5 show the ten highest and lowest-ranked slopes along with their attribute
values. The top-ranked slopes highlight the decision-makers’ tradeoff preferences, with all
of them having substantial improvements in reliability. It is important to note that other
slopes may have a greater increase in reliability but at an unacceptable cost. The slope
which had the greatest increase in reliability ended up being ranked number 20 as the
annual maintenance cost was extremely high. While, the slope that had the largestannual
maintenance cost did not rank lowest (it ranked 94th), as with the associated intervention
would result in a substantial improvement in the reliability index. At the bottom of the
table are slopes which had a negligible gain in reliability in combination with high costs.

5. Conclusions

In this paper, the challenges faced by infrastructure owners managing aged earthworks
were identified. Many of the earthworks along prominent European rail networks were
constructed in the mid-19th century. Historic levels of under-investment in maintenance
and remediation of these assets have left them less resilient to extreme weather events
than their modern counterparts. Having identified a number of critical failure modes, a
reliability-based methodology was developed to determine an asset’s probability of failure
and dominant failure mode. A set of treatment options for each failure mechanism was
proposed; each option had an associated posttreatment reliability increase and service
life extension. The direct treatment cost and user delay cost for each maintenance activ-
ity were determined and translated into utility values. Thereafter, a MAUT model was
adapted to determine optimum maintenance planning for cutting and embankments on a
network level. Such an approach allows infrastructure managers to identify which assets
should be prioritized for a given maintenance budget while considering safety, cost and
availability objectives.
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Table 4. Highest ranked slopes using MAUT.

Slope
ID Type Failure

Mechanism
Maintenance
Level

Damage
Description

Maintenance
Option

Annual
Maintenance
Cost (AMC)

User Delay
Cost (UDC)

Reliability
Improvement
(RI)

Utility of
AMC

Utility
of UDC

Utility
RI

MAUT
Score Rank

731 Soil Cutting Planar Do
minimum

Insufficient or
overgrown
vegetation

Vegetation
clearance-
drainage

351.50 0.00 3.50 0.05 0.00 0.13 0.08 1

659 Soil Cutting Rotational Do
maximum Oversteep asset Regrading 930.00 3365.03 3.50 0.15 0.04 0.13 0.11 2

884 Embankment Planar Do
minimum

Insufficient or
overgrown
vegetation

Vegetation
clearance-
drainage

144.50 0.00 2.97 0.01 0.00 0.26 0.13 3

355 Embankment Planar Do
minimum

Insufficient or
overgrown
vegetation

Vegetation
clearance-
drainage

155.00 0.00 2.96 0.01 0.00 0.26 0.13 4

147 Embankment Planar Do
minimum

Insufficient or
overgrown
vegetation

Vegetation
clearance-
drainage

214.50 0.00 2.96 0.02 0.00 0.26 0.14 5

334 Embankment Planar Do
minimum

Insufficient or
overgrown
vegetation

Vegetation
clearance-
drainage

237.00 0.00 2.97 0.03 0.00 0.26 0.14 6

512 Embankment Planar Do
minimum

Insufficient or
overgrown
vegetation

Vegetation
clearance-
drainage

132.00 0.00 2.92 0.00 0.00 0.28 0.14 7

511 Embankment Planar Do
minimum

Insufficient or
overgrown
vegetation

Vegetation
clearance-
drainage

244.00 0.00 2.95 0.03 0.00 0.27 0.14 8

152 Embankment Planar Do
minimum

Insufficient or
overgrown
vegetation

Vegetation
clearance-
drainage

209.50 0.00 2.92 0.02 0.00 0.28 0.14 9

345 Embankment Planar Do
minimum

Insufficient or
overgrown
vegetation

Vegetation
clearance-
drainage

356.50 0.00 2.92 0.05 0.00 0.28 0.15 10

The colors indicate whether a value is beneficial or not, the same below.
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Table 5. Lowest ranked slopes using MAUT.

Slope
ID Type Failure

Mechanism
Maintenance
Level

Damage
Description

Maintenance
Option

Annual
Maintenance
Cost (AMC)

User Delay
Cost (UDC)

Reliability
Improvement
(RI)

Utility of
AMC

Utility
of UDC

Utility
RI

MAUT
Score Rank

049 Soil Cutting Rotational Do
maximum Oversteep asset Regrading 2098.00 1370.99 1.53 0.33 0.02 0.98 0.33 179

030 Embankment Rotational Do
maximum Oversteep asset Regrading 1514.00 7413.78 1.50 0.25 0.09 1.00 0.25 180

531 Embankment Rotational Do
maximum Oversteep asset Regrading 2890.00 0.00 1.56 0.44 0.00 0.96 0.44 181

116 Soil Cutting Rotational Do
maximum Oversteep asset Regrading 2482.00 18,813.26 1.60 0.39 0.22 0.92 0.39 182

472 Embankment Rotational Do
maximum Oversteep asset Regrading 5250.00 19,884.27 1.78 0.66 0.23 0.80 0.66 183

271 Soil Cutting Rotational Do
maximum Oversteep asset Regrading 5042.00 0.00 1.59 0.64 0.00 0.94 0.64 184

378 Soil Cutting Rotational Do
maximum Oversteep asset Regrading 4090.00 61,982.55 1.82 0.56 0.56 0.78 0.56 185

527 Soil Cutting Planar Do
minimum

Insufficient or
overgrown
vegetation

Vegetation
clearance-
drainage

278.50 850,820.52 1.74 0.03 1.00 0.83 0.03 186

664 Embankment Rotational Do
maximum Oversteep asset Regrading 17,642.00 111,343.65 2.37 0.99 0.77 0.48 0.99 187

390 Soil Cutting Rotational Do
maximum Oversteep asset Regrading 13,090.00 0.00 1.65 0.95 0.00 0.89 0.95 188

The colors indicate whether a value is beneficial or not.
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The methodology is demonstrated on the Irish Rail network. Having established the
current safety level using the reliability indices calculated across the entire network, multiple
performance objectives or goals were considered looking at a range of attributes, failure
scenarios and maintenance options. The MAUT model provides a systematic assessment
procedure for making objective uncertainty-based decisions. It can adapt to the needs of the
decision-maker by incorporating their preferences into its ranking and can present results in
a transparent manner. Three attributes were used in this case study to rank the slopes, which
would return the greatest benefit from investment. The increase in reliability index was
considered to be twice as important as the other two attributes used in this study, namely
maintenance cost and track downtime. The individual scaling factors for all the attributes
were determined and aggregated into one single utility function, which was then optimized
to determine the optimal schedule. The slope that ranked highest objectively contributes
the most to the realisation of the decision-makers’ defined goals.

MAUT is a flexible framework that can be modified to accept more or fewer attributes
as required and can be used to remove subjectivity from key investment decisions. It
explicitly allows the user to integrate choice and risk preferences.
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