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Abstract

We demonstrate a Model Order Reduction technique for a system of nonlinear equations arising from the Finite Ele-
ment Method (FEM) discretization of the three-dimensional quasistatic equilibrium equation equipped with a Perzyna
viscoplasticity constitutive model. The procedure employs the Proper Orthogonal Decomposition-Galerkin (POD-G)
in conjunction with the Discrete Empirical Interpolation Method (DEIM). For this purpose, we collect samples from
a standard full order FEM analysis in the offline phase and cluster them using a novel k-means clustering algorithm.
The POD and the DEIM algorithms are then employed to construct a corresponding reduced order model. In the
online phase, a sample from the current state of the system is passed, at each time step, to a nearest neighbor clas-
sifier in which the cluster that best describes it is identified. The force vector and its derivative with respect to the
displacement vector are approximated using DEIM, and the system of nonlinear equations is projected onto a lower
dimensional subspace using the POD-G. The constructed reduced order model is applied to two typical solid me-
chanics problems showing strain localization (a tensile bar and a wall under compression) and a three-dimensional
square-footing problem.

KEY WORDS: Finite Element Method, Model Order Reduction, Proper Orthogonal Decomposition, Discrete
Empirical Interpolation Method, Perzyna viscoplasticity, strain softening, machine learning, k-means clustering algo-
rithm

1 Introduction
In spite of constant advances in theoretical development and computing power, there are regularly applied many-query
procedures, such as parameter sensitivity analysis or parameter estimation for inverse problems, that require many
computationally expensive simulations. Model Order Reduction (MOR) techniques aim to reduce the computational
cost of these procedures by breaking them into a two-phase procedure commonly known as the offline-online decom-
position. A reduced order model is first trained in the computationally expensive offline phase and then used in the
online phase to efficiently carry out a many-query procedure. Successful examples can be found in structural dynam-
ics [5], computational fluid dynamics [26, 32] and control systems [20]. Here we employ a set of machine learning
techniques that can significantly improve the computational efficiency of a reduced order model.

The main hypothesis of any MOR technique can be put forth as follows [10]:

“For a particular system, the solution space is often attracted to a low-dimensional manifold.”

This hypothesis being true, it is in principle possible to build a set of basis vectors for a lower-dimensional subspace of
the solution space, in which solution vectors can be approximated with acceptable accuracy, and therefore reduce the
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computational cost. The lower-dimensional subspace is built by means of samples collected from the solution space
and the application of a Principal Component Analysis [17].

Many MOR techniques (Proper Orthogonal Decomposition-Galerkin (POD-G) [22], Balanced Truncation [14]
and Moment Matching [3] to cite a few examples) have proven effective in reducing the computational cost of a linear
model. However, they all fail to effectively reduce the computational cost of a nonlinear model [10], as the cost of the
evaluation of the nonlinear contribution scales to the size of the full order system. To overcome this inefficiency, hyper-
reduction methods, such as Missing Point Estimation [4], Gappy Proper Orthogonal Decomposition [31] and Discrete
Empirical Interpolation Method (DEIM) [10], have been proposed to approximate the nonlinear contributions.

In the field of solid mechanics, MOR techniques such as POD-G [16, 18], Karhunen Loeve Expansion [12, 19],
and Proper Generalized Decomposition (PGD) [1, 11] are employed to reduce the dimension of the system of equa-
tions. Nevertheless, the complexity of the evaluation of the constitutive equation remains a computational bottleneck.
At variance with these models, in the hyper-reduction technique proposed in Reference [27] the integration of the
constitutive equation is performed in a reduced integration domain. In Reference [28], an FE efficient unassembled
variant of DEIM (UDEIM) is proposed and applied to geometrically nonlinear structural dynamics problems. In [29],
UDEIM is further enhanced to reduce the associated offline cost. Apart from PGD, which is an a-priori method, these
contributions focus only on the MOR technique itself, presuming that the underlying samples are fully capable of
constructing an efficient reduced order model. We show that this is not necessarily always a valid assumption for the
class of problems we are tackling here.

In this contribution we demonstrate an application of a MOR technique –POD-G, Section 3.1– in conjunction
with a hyper-reduction method –DEIM, Section 3.2– to build a reduced order model for a boundary value problem
–quasistatic equilibrium equation– with a nonlinear and path-dependent constitutive law –Perzyna viscoplasticity [25],
Section 2. We observe that the singular values of the collected samples, which we wish had a fast decay as a proof
of the central hypothesis of the MOR techniques, decrease at a slow rate. As a result, the efficiency of the reduced
order model is diminished. To overcome this issue, Peherstorfer et al. [24] and Haasdonk et al. [15] divide the time
domain and the parameter space into several local regions and construct a reduced order model for each one of them
individually. Following a similar logic, we employ a set of Machine Learning techniques, such as the k-means clus-
tering algorithm, Section 3.3.1, and the nearest neighbor classifier, Section 3.3.2, as suggested in [24]. As novel
contributions, (i) we modify the distance definition in the k-means clustering algorithm to increase the consistency
of the clustering procedure and, consequently, the effectiveness of DEIM; (ii) we modify the distance metric in the
k-means clustering algorithm and the nearest neighbor classifier, which we heuristically show to be vital for a con-
sistent classification; and (iii) we propose a trivial initial clustering in k-means clustering algorithm that exploits the
path-dependent characteristic of the problem. The merits of the proposed MOR technique are demonstrated by three
typical solid mechanics problems in Section 4.

2 Problem statement
A strain-softening Perzyna viscoplasticity constitutive model is employed as an archetype of a class of constitutive
models typically encountered in nonlinear solid mechanics. The three-dimensional quasistatic equilibrium equation

LLLT
σσσ = qqq in Ω, (1)

expressed using matrix notation, is defined in the body Ω that is bounded by the surface Γ = Γu ∪ Γt. A set of
appropriate Dirichlet and Neumann boundary conditions is applied on Γu and Γt, respectively. In (1), σσσ is an array
containing the components of the stress tensor in engineering notation, qqq the body force vector, uuu the displacement
vector, and the operator matrix LLL is defined as

LLLT =

∂x 0 0 ∂y 0 ∂z

0 ∂y 0 ∂x ∂z 0

0 0 ∂z 0 ∂y ∂x

 , (2)

in which ∂# = ∂

∂# is the partial derivative operator with respect to #. The equilibrium equation is equipped with the
stress-strain relationship

σ̇σσ = DDDe (ε̇εε − ε̇εε
vp) (3)
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in rate form, where #̇ = ∂#
∂ t is the time derivative of #, DDDe represents the elastic modulus tensor, εεε represents the strain

tensor, and εεεvp the viscoplastic strain tensor. In a Perzyna viscoplasticity constitutive model [25], the viscoplastic
strain evolves following the flow rule

ε̇εε
vp = λ̇

∂θ

∂σσσ
(4)

with the rate of the plastic multiplier
λ̇ = η < φ(θ) >

β , (5)

the yield function
θ = σvm−σY, (6)

and the overstress function
φ(θ) =

θ

σY
. (7)

In the above equations, < # > is the Macaulay bracket, η is the viscosity parameter, β is a model parameter, σY is the
current yield stress, and σvm is the von Mises stress. To introduce a strain-softening response, we employ the relation

σY = σY0 ((1+a) e−b κ − a e−2b κ), (8)

where a and b are model parameters, σY0 is the initial yield stress, and the plastic strain

κ = λ . (9)

The strong form of the quasistatic equilibrium equation (1) is cast into its corresponding weak form and the displace-
ment field is discretized in space using the Finite Element Method (FEM). Standard procedures yield the nonlinear
discrete set of equations

rrr(aaa) = fff int(aaa)− fff ext = 000, (10)

where

fff int(aaa) =
∫

Ω

BBBT
σσσ(aaa) dΩ, and

fff ext =
∫

Γt
NNNT t̄tt dΓ +

∫
Ω

NNNT qqq dΩ.
(11)

In (11), NNN ∈ R3×N is a matrix that contains shape functions, BBB = LLL NNN ∈ R6×N contains derivatives of the shape
functions, t̄tt are the prescribed tractions on Γt, aaa ∈RN is a vector of the nodal values of the displacement vector uuu, and
N is the total number of degrees of freedom (DOFs).

The system of equations (10) is then solved using a Newton-Raphson scheme according to which

KKK j daaa j+1 = − rrr j, and

aaa j+1 = aaa j + daaa j+1,
(12)

where rrr j ∈RN is the residual vector at iteration j, KKK j ∈RN×N is the stiffness matrix at iteration j, and daaa j+1 ∈RN is
the increment of the displacement vector at iteration j+ 1. From here onward, the iteration number j is dropped for
the sake of readability. The residual vector

rrr = KKKL aaa + fff − fff ext (13)

consists of a nonlinear part, fff , and a linear part, KKKL aaa − fff ext. In the linear part, the matrix

KKKL =
∫

Ω

BBBT DDDe BBB dΩ ∈RN×N (14)

is the linear elastic stiffness matrix, equal to the stiffness matrix KKK at the first iteration of the first time step. In
the nonlinear part, the vector fff = fff (aaa) ∈ RN is referred to as the force vector. The derivative of the force vector,
∂ fff
∂aaa ∈RN×N , generates the nonlinear part of the stiffness matrix.

Strain softening viscoplasticity typically induces strongly localized strain fields. As a result, a large number of
degrees of freedom is required to resolve these gradients, thus causing two computational bottlenecks:

1. the solution of an N×N system (12.1), and

2. the evaluation of the force vector fff and its derivative with respect to the displacement vector ∂ fff
∂aaa .
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3 Model Order Reduction
Essentially, a Model Order Reduction technique decomposes a many-query procedure into two parts: a computation-
ally expensive offline phase, and a computationally efficient online phase. In the offline phase, a set of samples is
collected from a standard analysis (in this context, this is done using FEM). This information is employed to construct
a reduced order model. In the online phase, the reduced order model is used to carry out the many-query proce-
dure. The MOR technique employed in this study is summarized in Section 3.5 while the corresponding online/offline
procedures are detailed next.

The POD-G [10] is employed to project the nonlinear system of equations (10) onto a lower-dimensional subspace.
DEIM [10] is then used to approximate the force vector and its derivative with respect to the displacement vector. In
practice, the Proper Orthogonal Decomposition [8] is applied to a set of samples collected from a full order FEM
analysis to compute a set of basis vectors. These basis vectors are later used in the POD-G and the DEIM procedures.
Finally, the Localized Discrete Empirical Interpolation Method (LDEIM) [24] is employed to overcome a shortcoming
of DEIM that occurs when the collected samples of the force vector are not attracted to a sufficiently lower-dimensional
subspace. At variance with [24], we propose (i) a modified distance definition in the k-means clustering algorithm
that is tailored for DEIM, (ii) a modified distance metric that is used in the k-means clustering algorithm and the
nearest neighbor classifier, and (iii) a trivial initial clustering in the k-means clustering algorithm that exploits the
path-dependent characteristic of the problem.

3.1 Proper Orthogonal Decomposition-Galerkin
3.1.1 Galerkin projection

To begin with, we attempt to project the nonlinear system of equations (10) onto a lower-dimensional subspace.
Suppose that the solution of (10) is attracted to a lower-dimensional subspace Y ⊂ RN . This solution can then be
approximated by a weighted linear combination of the set of orthonormal basis vectors {vvv1, . . . ,vvvk} (k� N) spanning
Y as in

aaa≈VVV ãaa, (15)

where ãaa ∈ Rk is a set of scalar weights associated to the set of basis vectors VVV ∈ RN×k. Inserting (15) into (10)
yields an overdetermined nonlinear system of N equations in k unknowns. To compute an approximate value for ãaa,
we construct an equivalent system of equations ggg = 000 that is determined. To find such a system, we search for a set
of k functions ggg in subspace Y such that, for any given value of ãaa, the L2 norm of the difference between the residual
rrr(VVV ãaa) and its counterpart in the lower-dimensional subspace VVV ggg is minimized according to [7, Theorem 3.2]

arg min
ggg
‖ rrr(VVV ãaa) − VVV ggg ‖2. (16)

Owing to the choice of the L2 norm, it is straightforward to solve (16) for ggg. Consequently, the equivalent system
of equations ggg = 000 becomes

VVV T rrr(VVV ãaa) = 000. (17)

The system of equations (17) is then solved using a Newton-Raphson scheme according to which

K̃KK j dãaa j+1 = − r̃rr j, and

ãaa j+1 = ãaa j + dãaa j+1,
(18)

where K̃KK j
= VVV TKKK j VVV ∈ Rk×k is the reduced stiffness matrix and r̃rr j = VVV Trrr j ∈ Rk is the reduced residual vector. The

set of basis vectors VVV is computed using the Proper Orthogonal Decomposition as explained in Section 3.1.2.
In spite of the system of equations (18) being of dimension k � N, the complexity of problem still depends

on N when computing the nonlinear contributions. Efficient reduction is achieved later in Sections 3.2 and 3.3 by
approximating the force vector and its derivative with respect to the displacement vector using DEIM.

3.1.2 Proper Orthogonal Decomposition

A set of orthonormal basis vector {vvv1, . . . ,vvvk} is used to project the system of equations (10) onto a lower-dimensional
subspace as in (17). This set is computed by means of the Proper Orthogonal Decomposition (POD) method [8, 30].
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For this purpose, samples of the displacement and the force vectors are collected from a standard full order FEM
analysis and gathered in the sample matrices AAAsamp = [aaa1, . . . ,aaans ] and FFFsamp = [ fff 1, . . . , fff ns ], respectively. For the
displacement samples (and similarly for the force samples), we search for a subspace Y = span{vvv1, . . . ,vvvk} ⊂ RN

in which the samples can be optimally described. In other words, it is preferable that the error between samples and
their projection on Y is minimized in a certain sense. Formally, the set of orthonormal basis vectors spanning Y is
computed by solving the optimization problem [10]

arg min
{vvv1,...,vvvk}

ns

∑
i=1
‖aaai −

k

∑
j=1

(vvvT
j aaai) vvv j‖2

2, (19)

subjected to vvvT
m vvvn =

{
1 m = n
0 m 6= n , m,n = 1, . . . ,k.

In the equation above, the error between a sample aaai and its projection ∑
k
j=1(vvv

T
j aaai) vvv j onto the subspace Y is mini-

mized in an L2 sense. Note that the norms in (19) are squared to facilitate the derivation of (21). It can be shown [30]
that the solution to (19) is a set of left singular vectors VVV obtained from the application of the Singular Value Decom-
position (SVD) to the sample matrix AAAsamp such that

VVV ΣΣΣ WWW T = AAAsamp, (20)

where VVV ∈ RN×N is a set of left orthonormal singular basis vectors, WWW ns×ns is a set of right orthonormal singular
basis vectors, and ΣΣΣ is a diagonal matrix that contains the singular values in a descending manner σ1 > ... > σr,
r = rank (AAAsamp). Therefore, by using an SVD [30, Theorem 1.1.1], the residual of (19) becomes [10]

ns

∑
i=1
‖aaai −

k

∑
j=1

(vvvT
j aaai) vvv j‖2

2 =
r

∑
i=k+1

σ
2
i . (21)

From the equation above, it is possible to infer that the projection error scales to the sum of the squares of the neglected
(i = k+1 to r) singular values (RHS of (21)). As a result of this observation, a heuristic criterion to select the number
of basis vectors k would be to consider the ratio of the sum of the squares of the neglected singular values to the sum
of all the singular values as in

∑
r
i=k+1 σ2

i

∑
r
i=1 σ2

i
≤ ε (22)

where ε ∈ [0 1] is a user-defined tolerance. As the value of ε deviates from one and tends to zero, the number
of neglected singular values decreases. Simultaneously, the number of basis vectors which are taken into account
increases, yielding a more accurate reduced order model. The POD procedure is summarized in Algorithm 1.

Algorithm 1: POD procedure

input : A set of sample AAAsamp, a tolerance ε

output: A set of truncated basis vectors VVV ∈RN×k

Apply Singular Value Decomposition: AAAsamp = VVV ΣΣΣ WWW T

Truncate VVV based on ΣΣΣ and criterion (22)

3.2 Discrete Empirical Interpolation Method
We now tackle the computational bottleneck related to the complexity of the evaluation of the force vector and its
derivative with respect to the displacement vector. This is done by employing DEIM [10]. Suppose that the force
vector fff in (13) is attracted to a lower-dimensional subspace U = span{uuu1, . . . ,uuum} ⊂RN , where m� N. The force
vector can then be approximated using a weighted linear combination of the basis vectors spanning U according to

fff ≈ f̂ff = UUU ccc, (23)
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where ccc ∈Rm is a set of scalar weights associated to the set of basis vectors UUU . To find these scalar weights, m rows
of both sides of (23) are selected by means of a matrix PPP ∈RN×m:

PPPT fff ≈ PPPTUUU ccc. (24)

Solving (24) for ccc and inserting it in (23) yield the approximated force vector

f̂ff = UUU ( PPPTUUU )−1PPPT fff = UUU ( PPPTUUU )−1 fff DEIM. (25)

Here, fff DEIM = PPPT fff ∈Rm contains m entries of the force vector, and the matrix PPP is defined with the aid of the DEIM
algorithm listed in the next subsection. The complexity of the evaluation of fff is now reduced to that of f̂ff ; thus, this
consists of the evaluation of fff DEIM and a matrix multiplication (note that the computation of UUU ( PPPTUUU )−1 is carried
out in the offline phase).

To compute the derivative of the approximated force vector (25) with respect to the displacement vector, several
methods are suggested in [6]. Here we choose to utilize the same set of basis vectors previously computed for the
force vector, as originally suggested in [10]:

∂ f̂ff
∂VVV ãaa

= UUU ( PPPTUUU )−1PPPT ∂ fff
∂VVV ãaa

= UUU ( PPPTUUU )−1 KKKDEIM, (26)

where KKKDEIM = PPPT ∂ fff
∂VVV ãaa ∈ Rm×N contains m rows of the nonlinear part of the stiffness matrix. The procedure to

assemble fff DEIM and KKKDEIM is detailed in Algorithm 2.

Algorithm 2: Assembly of KKKDEIM and fff DEIM

input : A set IIINNNDDD = [IND1, . . . , INDm] of entries selected by the DEIM Algorithm 3
output: KKKDEIM and fff DEIM

Set KKKDEIM and fff DEIM to zero
for i = 1, . . . ,m do

Find elements EEE = {E1, . . . ,Ene} sharing the INDi entry
for e = 1 . . . ne do

Compute the nonlinear part of element stiffness matrix and the force vector: KKKE
e and fff E

e
Find the local DOF j associated to the entry INDi
fff DEIM(i) = fff DEIM(i)+ fff E

e ( j)
Define gggIIInnndddeeexxx as the vector of global DOFs associated with element e
KKKDEIM(i, gggIIInnndddeeexxx) = KKKDEIM(i, gggIIInnndddeeexxx)+KKKE

e ( j, :)
end

end

3.2.1 Discrete Empirical Interpolation Method algorithm

The error bound for the DEIM approximation f̂ff of the force vector fff is given by [10]

‖ fff − f̂ff‖2 ≤ ‖(PPPTUUU)−1‖2 ‖(III−UUU UUUT) fff‖2. (27)

To increase the accuracy of the DEIM approximation, the value of ‖(III−UUU UUUT) fff‖2 should be decreased while the
value of ‖(PPPTUUU)−1‖2 is kept bounded [10, Lemma 3.2].

The quantity ‖(III−UUU UUUT) fff‖2 is the projection error induced by POD (21). Therefore, by increasing the number
of basis vectors in UUU , according to (22), its value becomes smaller. However, by increasing the number of basis
vectors, the value of ‖(PPPTUUU)−1‖2 becomes larger, jeopardizing the accuracy of the DEIM approximation. According
to Chaturantabut and Sorensen [10, Lemma 3.2], the DEIM Algorithm 3 computes the matrix PPP in a way that the
growth of this term is bounded. Consequently, the accuracy of the approximation can be improved by taking more and
more basis vectors into account.

In Algorithm 3, eeei is the ith column of an identity matrix. The notation MMM← [MMM , vvvi] indicates that the matrix MMM
is augmented by adding the column vector vvvi.
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Algorithm 3: DEIM algorithm

input : A set of basis vectors UUU = [uuu1, . . . ,uuum]
output: Entries of the force vector selected by DEIM IIINNNDDD = [IND1, . . . , INDm], and

the matrix PPP = [eeeIND1 , . . . ,eeeINDm ]

Set IND1 = index of the maximum entry of |uuu1|
Initiate matrices: WWW = [uuu1], PPP = [eeeIND1 ], IIINNNDDD = [IND1]
for i = 2, . . . ,m do

Solve PPPTWWW ccc = PPPTuuui for ccc
Compute residual rrr = uuui−WWW ccc
Set INDi = index of the maximum component of |rrr|
Augment WWW ← [WWW , uuui] , PPP← [PPP , eeeINDi ] and IIINNNDDD← [IIINNNDDD , INDi]

end

3.3 Localized Discrete Empirical Interpolation Method
DEIM succeeds in defining an efficient reduced order model, as in [10], only if the singular values of the force vector
decay sufficiently fast –this effectively means that, when a relatively small number of basis vectors are considered,
the sum of the squares of the singular values corresponding to the neglected basis vectors becomes negligibly small.
However, in the context of a viscoplasticity constitutive model this assumption is, apparently, not valid. As it will be
shown in Section 4.2, a considerably large number of basis vectors are required to sufficiently reduce the projection
error. Hence, an efficient reduced order model cannot be constructed merely by applying the standard version of
DEIM.

We employ a Localized DEIM [24] to remedy the above shortcoming. The general idea is to group samples, which
are close to each other in a certain sense, into clusters. We show that the decay of the singular values becomes signif-
icantly faster for each cluster, implying that the samples are attracted to a considerably lower-dimensional subspace.
In this work we only investigate the performance of DEIM in conjunction with the clustered force samples. Nonethe-
less, the displacement samples could also be clustered as suggested in [6]. For the purpose of clustering the samples,
we make use of machine learning techniques such as the k-means clustering algorithm (for clustering samples in the
offline phase), and the nearest neighbor classifier (for finding the correct cluster in the online phase).

3.3.1 Modified k-means clustering algorithm

We now describe a procedure to divide a set of samples FFFsamp, schematically shown in Figure 1a, into nc clusters
with the intention that samples in each cluster are close to each other according to a certain distance definition. For
this purpose, a k-means clustering algorithm, informally explained in [23], is used. In this contribution the k-means
clustering algorithm is tailored for DEIM and the path-dependent nature of the problem. More specifically, we will
improve on the cluster initiation, the distance definition, and the distance metric.

The strong path-dependency of the problem under consideration leads to a rather straightforward choice of the
initial guess for the clustering. In other words, since force vectors from a certain part of the loading history are already
“close” to each other, the samples are simply divided into nc clusters without any permutation as an initial guess for
the k-means clustering algorithm.

In contrast to the definition of the distance in the standard k-means clustering algorithm, which is the distance
between a sample and the center of clusters, the distance is here defined between a sample and its DEIM approximation.
For instance, consider a sample fff i and, for each cluster c = 1 . . . nc, a set of basis vectors UUUc and a matrix PPPc (from
here onward, the number of clusters is indicated by a subscript on the left-hand side of the corresponding quantity).
The distance measure used in the k-means clustering algorithm is defined by the difference between fff i and its DEIM
approximation f̂ffc i = AAAc PPPc

T fff i for each cluster c = 1 . . . nc, where AAAc = UUUc ( PPPc
T UUUc )−1. In the standard k-means

clustering algorithm, it is typical to consider a Euclidean distance metric. Shortcomings of the Euclidean distance are
further discussed in [2]. Here, a stricter metric, based on the Euclidean distance and the cosine similarity, is defined:

d =
√

d2
Euclidean +d2

cosine, (28)

7



where
dEuclidean = ‖ fff i− f̂ffc i‖2 /‖ fff i‖2 and dcosine = 1−| fff T

i f̂ffc i| /(‖ fff i‖2 ‖ f̂ffc i‖2). (29)

Since ‖ fff i− f̂ffc i‖2 < ‖ fff i‖2, these two measures are comparable in terms of magnitude; values of dEuclidean and dcosine
fall between zeros and one, and it is therefore safe to take their norm as in (28).

The proposed k-means clustering algorithm is detailed in Algorithm 4. The procedure initiates by dividing samples
in FFFsamp into nc clusters, as schematically shown in Figure 1b, without permuting them. Additionally, a mapping
(sssaaammmpppllleeeTTT oooCCCllluuusss : sample→ cluster number) is initiated to keep track of samples and their corresponding cluster
number. In the k-means iterative scheme, the POD (Algorithm 1) and the DEIM (Algorithm 3) procedures are applied
to each one of the clusters, and a reduced set of basis vectors UUUc , a matrix PPPc , and a set of DEIM selected entries
IIINNNDDDc are computed. The distance between each sample fff i and its DEIM approximation f̂ffc i = AAAc PPPc

T fff i (28) is
saved in a matrix GGG ∈Nns×nc (ns being the number of samples).

Next, each sample fff i is checked to make sure that it belongs to its cluster. To do so, f̂ffc i = AAAc PPPc
T fff i is computed

for each one of the clusters c = 1 . . . nc. Then, the distance between fff i and each one of the f̂ffc i is measured by means
of (28). The cluster that helps generating the most accurate DEIM approximation of fff i, such that f̂ffc i is closest to fff i
as shown in Figure 1c, is the cluster fff i actually belongs to. To keep track of samples in the clusters, when a sample
is designated to another cluster, the mapping sssaaammmpppllleeeTTT oooCCCllluuusss is updated. The procedure continues until a maximum
number of iterations is reached or all the samples are (sub)optimally clustered.

unclustered

(a)

cluster #1
cluster #2
cluster #3

(b)

f̂ff1 i

f̂ff2 i

f̂ff3 i

fff i

(c)

cluster #1
cluster #2
cluster #3

(d)

Figure 1: Modified k-means clustering algorithm: (a) unclustered samples; (b) initial clustering of samples; (c) distance
between a sample fff i and its DEIM approximation using AAAc and PPPc of all clusters, c = 1 . . . nc. The sample fff i belongs
to the cluster that generates the closest f̂ffc i = AAAc PPPc

T fff i in the sense of (28); (d) final form of clusters after convergence
of the modified k-means clustering algorithm.
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When an insufficient number of basis vectors is considered, the rate of convergence of the k-means clustering
algorithm becomes very slow and the quality of the clusters diminishes. From the implementation point of view, to
prevent division by zero in dcosine and dEuclidean (29), it is vital to eliminate zero vectors from the matrix of force
samples.

In order to check the validity of the proposed approach we can plot the singular values associated with each cluster
and observe their rate of decay. If their rate of decay is not substantially faster than that of the singular values associated
with all the samples, the number of clusters needs to be increased at the cost of a more expensive k-means clustering
algorithm.

Algorithm 4: Modified k-means clustering algorithm

input : A set of force vector samples FFFsamp = [ fff 1, . . . , fff ns ],
total number of clusters nc,
maximum number of iterations maxIter

output: AAAc , PPPc , IIINNNDDDc where c = 1, . . . ,nc,
the mapping sssaaammmpppllleeeTTT oooCCCllluuusss

Cluster samples without sorting FFFsamp = { FFF1 , . . . , FFFnc }
Initiate sssaaammmpppllleeeTTT oooCCCllluuusss (mapping from a sample to its corresponding cluster)
Set converged = 1
while converged 6= 1 and maxIter not reached do

for c = 1 . . .nc do
Compute a set of reduced basis vectors: UUUc = POD ( FFFc ) Algorithm 1
Compute the DEIM entries: [ IIINNNDDDc , PPPc ] = DEIM ( UUUc ) Algorithm 3
Compute the DEIM coefficient matrix: AAAc = UUUc ( PPPc

T UUUc )−1

for i = 1 to ns do
Compute the DEIM approximation: f̂ffc i = AAAc PPPc

T fff i
Compute the distance d and save it in GGG(i,c) Equation (28)

end
end
for i = 1 to ns do

Get the old cluster number: cold = sssaaammmpppllleeeTTT oooCCCllluuusss(i)
Find the new cluster number: cnew = index of the minimum value of GGG(i, :)
if cold 6= cnew then

converged = 0
Update mapping and, consequently, clusters : sssaaammmpppllleeeTTT oooCCCllluuusss(i) = cnew

end
end
if converged = 1 then

Save AAAc , PPPc , and IIINNNDDDc for all c = 1 . . .nc
Save the mapping sssaaammmpppllleeeTTT oooCCCllluuusss

end
end

3.3.2 Nearest neighbor classifier

To find the cluster that best represents the current state of the system during the runtime, we employ a nearest neighbor
classifier and modify its distance metric according to (28). At each time step, the nearest neighbor classifier computes
distances (28) between the converged force vector f̂ff and each one of the clustered samples fff i, i = 1 . . . ns. The
classifier then determines the sample with the least distance to the converged force vector. The cluster that contains
this sample best describes the current state of the system.
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To reduce the computational cost of the classification, the nearest neighbor classifier uses a low-dimensional rep-
resentation of the force vector. In this context, we employ the DEIM-based feature extraction [24]

f̂ff FE = PPPcold
T f̂ff and fff FE,i = PPPcold

T fff i, (30)

where f̂ff FE ∈Rm and fff FE,i ∈Rm are a low-dimensional representation of f̂ff and fff i, respectively, and PPPcold
∈RN×m is

the DEIM matrix from the previous time step. Distance metric in (28) are computed as

dEuclidean = ‖ fff FE,i− f̂ff FE‖2 /‖ fff FE,i‖2 and dcosine = 1−| fff T
FE,i f̂ff FE| /(‖ fff FE,i‖2 ‖ f̂ff FE‖2). (31)

.

Algorithm 5: Nearest neighbor classifier

input : A set of force vector samples FFFsamp = [ fff 1, . . . , fff ns ],
the sssaaammmpppllleeeTTT oooCCCllluuusss (mapping from a sample to its corresponding cluster),
the force vector f̂ff ∈RN at time step t,
the current cluster cold

output: New cluster cnew

Extract feature of the force vector: f̂ff FE = PPPcold
T f̂ff

for i = 1 . . .ns do
Extract feature of the sample: fff FE,i = PPPcold

T fff i

Compute the distance ddd(i) between f̂ff FE and fff FE,i Equations (28) and (31)
end
Find the index imin of the minimum component of ddd
Find the new cluster cnew = sssaaammmpppllleeeTTT oooCCCllluuusss(imin)

3.4 Discussion on the computational cost
The computational cost of DEIM and LDEIM is already discussed in [10, 24]. For the sake of completeness, this
section is dedicated to a brief review of the key points. Moreover, we also discuss some of our observations.

• In spite of the additional computational cost of the clustering, the cost of the offline phase is still strongly
dominated by the sample collection.

• For the online phase, the primary contributor to the computational cost is the nearest neighbor classifier, Al-
gorithm 5. Note that the computational complexity of this procedure is independent of the number of dofs N,
thanks to the feature extraction concept (30). However, it strongly depends on the total number of samples
ns. As ns becomes larger, the nearest neighbor classification loses its efficiency. To tackle this problem, it is
possible to either reduce the number of samples through Redundancy Reduction methods such as the QR-SVD
technique [9, 21], or perform the classification based on a set of surrogate quantities instead of samples. For
instance, the centroid of the clusters computed in classical k-means clustering algorithm can be an adequate
substitute. In this manner, the procedure becomes dependent on the number of clusters. However, hopefully, the
number of clusters are always significantly smaller than the number of samples.

• If, as a result of the POD and the DEIM approximations, the consistency of the linearization of (17) is jeop-
ardized, the number of iterations in the Newton-Raphson scheme in the reduced order model will increase.
Nevertheless, the iteration counts could be kept the same by accepting a solution that is not fully converged.
This claim could be conjectured as follows. Consider the error between the full order model and the outcome
of the Newton-Raphson scheme in the reduced order model, eee = aaa−aaaNR. By adding and subtracting the exact
solution of (17), aaaROM, to the right hand side of the error expression and taking the L2 norm of both sides, an
upper bound to the error becomes

‖eee‖2 ≤ ‖aaa−aaaROM‖2 +‖aaaROM−aaaNR‖2. (32)
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From the equation above, it can be inferred that, regardless of how accurately (17) is solved, even at the limit
where ‖aaaROM−aaaNR‖2 becomes effectively zero, the error as a result of the MOR approximation ‖aaa−aaaROM‖2
remains untouched. As a result, the bound on the error is, at most, as tight as ‖aaa− aaaROM‖2 permits. Hence,
a solution that is relatively accurate, considering the error as a result of MOR, but not fully converged in the
Newton-Raphson scheme should be considered as acceptable. Nevertheless, in Section 4, we always consider
enough basis vectors to ensure the consistency of the linearization and, consequently, quadratic convergence
rate of the Newton-Raphson scheme.

• In theory, as the number of clusters becomes larger, the computer memory occupied by the basis vectors in
the online phase grows dramatically. However, in practice, we experienced that by increasing the number of
clusters, the number of basis vectors in each cluster becomes significantly smaller. As a result, the cumulative
number of basis vectors does not increase dramatically, as shown in Section 4.3.

3.5 Summary of the proposed Model Order Reduction technique
Next, a step-by-step guide for the proposed MOR technique is outlined. The offline phase (Algorithm 6) is run first
and its output data are saved to a file. In the online phase (Algorithm 7), the data are read and the reduced order model
is employed to run the simulation.

Algorithm 6: Offline phase

1. Collect samples of the displacement and the force vectors in AAAsamp and FFFsamp,

respectively, using a standard FEM analysis.

2. Compute a set of POD basis vectors for the displacement samples: VVV = POD(AAAsamp). Section 3.1.2

3. Cluster force samples using the k-means clustering algorithm (Algorithm 4), Section 3.3.1
and compute the converged values of the DEIM coefficient matrices AAAc ,

the matrix PPPc , the DEIM selected entries IIINNNDDDc

for each cluster (c = 1 . . . nc), and the mapping sssaaammmpppllleeeTTT oooCCCllluuusss.

In Algorithm 4 for c = 1 . . . nc :

3.1. use the POD procedure (Algorithm 1): UUUc = POD ( FFFc ), Section 3.1.2

3.2. use the DEIM Algorithm 3: [ IIINNNDDDc , PPPc ] = DEIM( UUUc ), Section 3.2.1

3.3. compute AAAc = UUUc ( PPPc
T UUUc )−1, and

3.4. update the mapping matrix sssaaammmpppllleeeTTT oooCCCllluuusss.

4. Save VVV ,FFFsamp,sssaaammmpppllleeeTTT oooCCCllluuusss, and the converged values of AAAc , PPPc , IIINNNDDDc .

4 Applications
We demonstrate the proposed MOR technique by means of three typical solid mechanics problems. A specific set of
parameters (η = 10−5 s−1, a =−1, b = 50, Y = 1 N / mm−2, E = 1000 N / mm−2, ν = 0) is considered unless stated
otherwise.

4.1 Tensile bar: One-dimensional strain-localization
The tapered bar in Figure 2a is clamped at the left-hand side. The bar is subjected to a monotonic tensile loading. The
final displacement of 1 mm is applied at the free end in 200 steps with a constant rate of 0.66×10−4 mm / s. Figure 2b
shows the results of a mesh refinement study performed with uniform subdivisions of the bar domain along the axis.
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Algorithm 7: Online phase

1. Initiate standard FEM code and load:

1.1. the set VVV of POD basis vectors associated with the displacement field, Algorithm 6

1.2. the sample matrix of the force vector FFFsamp and Algorithm 6

the mapping sssaaammmpppllleeeTTT oooCCCllluuusss between samples and clusters,

1.3. the DEIM coefficient matrices AAAc , the matrix PPPc , and Algorithm 6

the DEIM selected entries IIINNNDDDc for all clusters (c = 1 . . . nc).

2. Set the cluster cnew = 1.

3. Break the time domain into steps → For each time step t :

3.1. execute the Newton-Raphson scheme → For each iteration j :

3.1.0. compute and save the linear part of the stiffness matrix KKKL Equation (14)

in the first time step and the first iteration,

3.1.1. compute f̂ff = AAAcnew fff DEIM( IIINNNDDDcnew ) and K̂KK = AAAcnew KKKDEIM( IIINNNDDDcnew ) Section 3.2

3.1.2. compute the reduced residual vector r̃rr j =VVV T (KKKL aaa j + f̂ff ) and Section 3.1.1

the reduced stiffness matrix K̃KK j
=VVV T (KKKL + K̂KK) VVV , Section 3.1.1

3.1.3. solve the reduced system of equations K̃KK j dãaa j+1 =−r̃rr j, Equation (18.1)

3.1.4. update the reduced solution: ãaa j = ãaa j +dãaa j+1, Equation (18.2)

3.1.5. check convergence: r̃rr j < tol.

3.2. Set the cluster cold = cnew.

3.3. Pass cold, f̂ff ,FFFsamp, and sssaaammmpppllleeeTTT oooCCCllluuusss to the nearest neighbor classifier Section 3.3.2

(Algorithm 5) and find the cluster cnew that best represents the current

state of the problem.

3.4. Go to the next time step.
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The mesh refinement study identifies the solution related to the 71 eight-node regular hexahedral element mesh as the
reference solution for the development of a reduced order model.
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Figure 2: One-dimensional strain-localization problem: (a) the clamped end of the tapered bar has a smaller cross-
section to trigger the initiation of plasticity and consequent strain localization; (b) the regularizing properties of vis-
coplasticity are reflected in the mesh refinement study in terms of the resultant force at the clamped end plotted against
the displacement at the free end.

To test the MOR technique, we consider three different values of the b parameter (b = [0,20,100]). According
to (8), large positive values of b result in a fast decay of σY as κ grows and characterize the softening branch of the load-
displacement curve as shown in Figure 2b. A reference solution is computed for each value of b, and the corresponding
displacement and force samples are collected in matrices AAAsamp = [aaa1 . . . aaa200] and FFFsamp = [ fff 1 . . . fff 200].

A reduced order model is constructed using these samples for each value of the b parameter. The result of the
online computation, depicted in Figure 3, evidently show the complexity reduction achieved by employing our MOR
technique. For instance, for the steepest strain softening curve, obtained with b = 100, the size of the system of
equations is reduced, without apparent loss of accuracy, to 93×93 from 864×864 and, in the light of DEIM, evaluation
of the force vector is required to be carried out at 57 entries rather than 864. A subdivision of the samples into three
clusters allows to further reduce this number to 63-17-15 (the notation 63-17-15 indicates that we have considered
three clusters and that the first cluster requires the evaluation of 63 entries, the second requires 17 entries, and the
last only 15). For the other two curves, the size of the system of equations is reduced to 115× 115 (b = 20) and
94× 94 (b = 0). The evaluation of the force vector is carried out at 30 and 53 entries, respectively, when employing
DEIM. With LDEIM and three clusters, it is possible to further reduce the number of entries to 32-11-8 and 51-22-13,
respectively.
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Figure 3: The MOR technique applied to the one-dimensional strain-localization problem. The reference curves
are obtained with the 71 eight-node regular hexahedral element mesh (864 DOFs) using different values of the b
parameter (8).

4.2 Wall under compression: Shear band formation
This example is dedicated to a wall under compression that shows a localization zone in form of a shear band. The
lower and the left-hand side edges of the wall depicted in Figure 4a are constrained in the x and y directions. The wall
is subjected to a monotonic compressive loading. The final displacement of 2 mm is applied at the upper edge in 400
steps with a constant rate of 1.33×10−4 mm / s. The parameter b in (8) is taken equal to 100.

A mesh refinement study has been carried out considering uniform grids with one element across the thickness.
Figure 4b shows the results of the mesh refinement study. The solution obtained with 196 (14×14) eight-node regular
hexahedral elements is taken as the reference solution.

Displacement and force samples are collected at each time step in matrices AAAsamp = [aaa1 . . . aaa400] and FFFsamp =
[ fff 1 . . . fff 400] . Figure 5a shows the convergence of DEIM to the reference solution by a basis addition study. The
number of the basis vectors is chosen based on the sum of the square of the neglected singular values as explained in
Section 3.1.2. It is possible to make an analogy between adding the basis vectors associated with the singular values
shown in Figure 5b for a basis addition study and increasing the number of elements for a mesh refinement study. By
adding each subsequent basis vector, the squared value of its associated singular value (say σm) is deducted from the
error defined in (21) –the error then becomes ∑

r
i=m+1 σ2

i in which the contribution of σ2
m is missing thus yielding a

smaller value.
Figure 5b evidently shows the slow rate of decay of the singular values. As a result, a large number of basis

vectors is required to decrease the projection error, that is the sum of the square of the neglected singular values, to
an acceptable value and render the reduced order model sufficiently accurate. Figure 5a shows that at least 88 DEIM
entries (brown curve) are required to construct a reduced order model that is capable of reproducing the reference
solution (green curve). The black dashed line is to confirm that we have reached the converged solution. Checking
the difference between results of two consecutive basis addition cases can be an adequate criterion to determine the
convergence of a reduced order model. It is also noteworthy to report a case where the DEIM approximation results in
an unstable reduced order model as shown by the red curve in Figure 5a. The source of this instability is, to the best
of our knowledge, still unknown. The same type of behavior is reported in [9] and [13].

The force vector and the stiffness matrix associated with these 88 DOFs are computed by evaluating all the ele-
ments shown in Figure 7a, clearly a major subset of the elements in the mesh. As a result, significant reduction in
computation cost can not be achieved. To mitigate this issue, we cluster the samples of the force vector that are ‘close’
to each other and compute, for each cluster, a set of reduced basis vectors and a set of DEIM selected entries as dis-
cussed in Section 3.3. As shown in Figure 6a, a basis addition study is carried out with 5 clusters. The reduced order
model with 19-10-9-9-9 DEIM entries (brown curve) accurately approximates the reference solution (green curve).
The singular values corresponding to the x component of the force vector samples are depicted in Figure 6b for each
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Figure 4: Two-dimensional strain localization problem: (a) geometry of the wall under compression with the dark
shaded part indicating the weak region that localizes the initiation of plasticity and triggers a shear band; (b) the
regularizing properties of viscoplasticity are reflected in the mesh refinement study in terms of the resultant of the
force in the vertical direction on the lower edge against the value of the displacement of the upper edge; the inset
shows the deformed wall with the shear band due to strain localization.
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Figure 5: Performance of the DEIM approximation in the two-dimensional strain localization problem: (a) basis
addition study (reference solution: 1350 DOFs, 196 elements; reduced order model: 227 POD basis vectors associated
with the displacement field); (b) singular values of the force vector samples.
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Figure 6: Performance of the LDEIM approximation in the two-dimensional strain localization problem: (a) basis
addition study (reference solution: 1350 DOFs, 196 elements; reduced order model: 227 POD basis vectors associated
with the displacement field); (b) singular values of the x component of the force vector samples using unclustered and
clustered samples (those corresponding to the y and the z components follow the same trend).
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Figure 7: Elements used in the online phase in the two-dimensional strain localization problem: (a) DEIM –brown
line in Figure 5a; (b) LDEIM –brown line in Figure 6a.

cluster of the reduced order model (those corresponding to the y and the z components follow the same trend). It is
clear that the singular values associated with each cluster decay significantly faster than those of all samples.

The elements used in this case are depicted in Figure 7b. Due to the path-dependent nature of the model, all
elements depicted in this figure need to be updated for their history parameters. However, only a subset of them is
used to compute the force vector and the stiffness matrix at each Newton-Raphson iteration. Figures 7a and 7b show
that the online phase of LDEIM is computationally cheaper than that of DEIM.

As discussed in Section 3.3.2, a nearest neighbor classifier is executed at each time step to find the cluster the
current force vector belongs to. The classification is carried out based on the m� N DEIM-selected entries of the
force vector. Due to the non-periodic nature of the mechanical response in this class of problems, clusters do not
get repeated during the run time. For instance, if the first cluster is selected at a time step close to the peak of the
load-displacement curve, it will not be selected when the load-displacement curve reaches a plateau at the end. Cluster
selection being automatic, this observation can be used to monitor the consistency of cluster switching. In other
words, repetition of a cluster during the simulation is an indication that either the clustering procedure in the offline
phase or the classification procedure in the online phase is inconsistent with the nature of the path-dependent problem.
Additionally, this observation can be used to increase the efficiency of the nearest neighbor classifier, Algorithm 5.
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Figure 8: The effect of the distance metric on the load-displacement curves of the two-dimensional strain localization
problem (reference solution: 1350 DOFs, 196 element; reduced order model: 227 POD basis vectors associated with
the displacement field and LDEIM with 5 clusters and 19-10-9-9-9 DEIM entries in each cluster).

Indeed, by neglecting samples associated with previously selected clusters, the classifier can compare the current state
of the system to fewer number of samples.

To achieve consistency as explained in the previous paragraph, we modify the distance metric in the k-means
clustering algorithm and the nearest neighbor classifier algorithms. Figure 8 shows that the reduced order model
based on the Euclidean distance and the cosine similarity metric (28) (black curve) properly reproduces the reference
solution, whereas the reduced order model based on the standard Euclidean distance definition alone fails to do so. For
the Euclidean distance case, the cluster nunmber switches from 1 to 5 right before the peak load (note that cluster 5 is
associated with the plateau part of the load-displacement curve). This is not consistent and, as a result, the blue curve
deviates from the reference equilibrium path.

4.2.1 Parameter sensitivity analysis

We now demonstrate an application of the reduced order model to a simple parameter sensitivity analysis study. The
goal is to construct a reduced order model response related to a set of parameters using samples obtained from two
different parameter sets. To this end, we run the standard FEM model for b = 80 and b = 120 (the other parameters
are defined at the beginning of Section 4). Samples are uniformly collected in matrices AAAsamp

b80 , FFFsamp
b80 , AAAsamp

b120 and FFFsamp
b120

at each time step. These samples are combined into two matrices AAAsamp and FFFsamp. Since the k-means initial clustering
uniformly divides samples into clusters, it is a good practice to combine FFFsamp

b80 and FFFsamp
b120 in a way that samples from

the peak load region are collected in the initial columns of FFFsamp and samples from plateau region are collected in the
last columns as described in Algorithm 8.

Algorithm 8: Construct FFFsamp

input : Two sets of force vector samples for b = 80 and b = 120: FFFsamp
b80 ∈RN×ns and FFFsamp

b120 ∈RN×ns

output: A mixed sample matrix FFFsamp ∈RN×2ns

Initiate the mixed sample matrix: FFFsamp = [FFFb80(:,1) , FFFb120(:,1)]
for i = 2 . . .ns do

Append ith columns of FFFb80 and FFFb120 to FFFsamp

end

A reduced order model is constructed using these samples. In Figure 9a, the reduced order model is employed to
simulate the case with b = 100. To approximate the standard FEM solution, 85 DEIM entries are required when the
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samples are not clustered. However, when the samples are divided into 5 clusters, only 31-19-19-19-17 DEIM entries
are required. It is also shown that fewer DEIM entries are needed to reach an acceptably accurate solution (black
curve) when the number of clusters increases.

In Figure 9a we observe fluctuations in the load-displacement curves of the reduced order models, starting from
a displacement equal to 0.4 mm. A possible explanation could be related to the set of samples that underlies the
construction of the basis vectors for the cases with b = 80 and b = 120. According to (8), the nonlinear parts of
the stress related to these two cases, and the corresponding force vectors, differ slightly at the beginning when the
plastic strain κ is small; hence, the reduced subspaces corresponding to the two force vectors are close to one another.
However, as κ grows, the nonlinear part of the stress for b = 80 case decays slower than that for b = 120 and, as a
result, their corresponding force vectors tend to deviate from one another. Consequently, the corresponding reduced
subspaces these two cases belong to are no longer as close as they used to be. At this point, let us consider the case
b = 100 with a reduced order model constructed using samples collected from the cases with b = 80 and b = 120.
Figure 9a supports the hyphothesis just advanced. At the beginning, the load-displacement curves of the reduced
order models are fairly close to that of the reference curve (green curve), suggesting that the force vectors for the
b = 100 case are adequately approximated. Later on, however, small fluctuations in the load-displacement curves of
the reduced order models become visible as κ grows.

To reduce these fluctuations, either the number of the basis vectors (and consequently the DEIM entries) in each
cluster should be increased or more clusters should be taken into account. The first approach decreases the efficiency
of the reduced order model and is not considered. The second approach increases the accuracy of the reduced order
model and permits the use of the same or even smaller number of DEIM entries as shown in Figure 9a.

To quantify the impact of the fluctuations in the load-displacement curve of the reduced order model with 10
clusters (black line), we consider the points that coincide with the 8th and 9th cluster change as shown in Figure 9b.
These two points correspond to the largest deviation from the reference solution (green curve) and are used to compare
their corresponding displacement fields with that of the reference solution employing the relative error measurement

eee =
|uuuFEM−uuuLDEIM|
‖uuuFEM‖2

, (33)

where |ΘΘΘ| is the component-wise absolute value of ΘΘΘ. Figure 10 shows the deformed specimen and the relative error
corresponding to these two points. It can be observed that the reduced order model is sufficiently accurate in the entire
domain with maximum relative error of 3×10−4.

It is noteworthy that we do not enforce clusters to change consecutively. However, we would expect them to change
in this manner due to the special initial k-means clustering discussed in Section 3.3.1.
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Figure 9: Simple parameter sensitivity analysis for the two-dimensional strain localization problem: (a) evaluation of
the case with b = 100 using the reduced order model constructed from samples collected from reference cases with
b = 80 and b = 120 (reduced order model: 325 POD basis vectors associated with the displacement field for DEIM
and LDEIM); (b) enlargement of the boxed region in (a) with locations of cluster change marked.
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(a) FEM: u = 1.685 mm (b) FEM: u = 1.800 mm

(c) LDEIM: u = 1.685 mm (d) LDEIM: u = 1.800 mm

(e) Relative error at u = 1.685 mm (f) Relative error at u = 1.800 mm

Figure 10: Two-dimensional strain localization problem: deformed configuration corresponding to the black curve
depicted in Figure 9a at displacement levels corresponding to the 8th and 9th cluster changes indicated in Figure 9b.
The reference FEM solution and reduced order model are depicted in the upper rows and the error between them is
depicted in the bottom row.

4.3 Three-dimensional square footing
The footing depicted in Figure 11a is subjected to a monotonic compressive loading. The final compressive displace-
ment of 1 mm is applied at the dark shaded plate on the upper surface in 1200 steps with a constant rate of 0.66×10−4

mm / s. The surface on the left-hand side, bottom, and the front are constrained from moving in the x, the z and the y
directions, respectively.

A mesh refinement study is carried out and the result is depicted in Figure 11b. Load-displacement curves are
associated with the resultant of the forces on the y plane at the bottom and the vertical displacement of the loading plate.
Here, we choose the load-displacement curve obtained with 1331 eight-node hexahedral elements as the reference
solution. The numerical solution, although not yet converged, is sufficiently accurate for the purpose of this study.
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Figure 11: Footing: (a) geometry; (b) mesh refinement study.

In total, 1200 samples were uniformly collected from the reference solution to construct a reduced order model.
A large number of POD basis vectors (609), associated with the displacement field, is considered to sufficiently
reduce the POD-G projection error. In this manner, it is possible to objectively study the performance of the DEIM
approximation.

As shown in Figure 12, at least 335 DEIM entries are required to almost reconstruct the reference solution. Note
that the load-displacement curve of the reduced order model starts to deviate from the reference solution before reach-
ing the final displacement value. Nevertheless, it is possible to considerably reduce the number of the DEIM entries
by clustering samples. For instance, considering 20, 30, and 40 clusters at most, as depicted in Figure 13, 117, 101,
and 43 DEIM entries are required, respectively. This observation implies that by increasing the number of clusters it is
possible to construct a significantly more efficient reduced order model. In practice, the amount of memory usage in
the online phase is not necessarily proportional to the number of clusters. As depicted in Figure 13, when considering
only one cluster, 335 basis vectors are required. Evidently, this number grows to 827 by increasing the number of
clusters to 30. However, when the number of clusters becomes 40, the cumulative number of basis vectors shrinks
down to 564. The computer memory usage not being necessarily proportional to the number of clusters, considering a
large number of clusters is a feasible option.

It is also noteworthy to realize the importance of the distance metric in achieving a consistent clustering. Load-
displacement curves for the 40-cluster case (black dashed line in Figure 12) associated with two distance metrics
are depicted in Figure 14. It is clear that the metric based on both the Euclidean distance and the cosine similarity
definition gives a proper result, whereas the metric based on the Euclidean distance alone fails to do so.

5 Conclusions
Considering the slow decay of the singular values of the samples collected in the offline phase, it is possible to infer
that the hypothesis central to all the MOR techniques, reported in Section 1, is not valid for the entire loading history
of the class of problems studied in this paper. To mitigate this issue, samples are divided into clusters such that for each
cluster the central hypothesis becomes valid. For this purpose, a potentially computationally costly k-means clustering
algorithm is added to the offline phase and, employing feature extraction, an efficient nearest neighbor classifier is
added to the online phase.

We now identify a possible computational bottleneck pertinent to the reduced stiffness matrix (step 3.1.2 in Al-
gorithm 7) –note that this is merely a technical problem and not a fundamental one as those described at the end of
Section 2. The storage of KKK = KKKL + K̂KK could be quite memory consuming due to the structure of the DEIM approxi-
mated nonlinear part K̂KK. Unlike the linear part of the stiffness matrix KKKL, its sparsity could be considerably less than
what is expected in a classical FEM analysis. Additionally, standard procedures that take advantage of the sparsity of
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Figure 12: Footing: load-displacement curves associated with different number of clusters (reference solution: 5184
DOFs, 1331 elements; reduced order model: 609 POD basis vectors associated with the displacement field for DEIM
and LDEIM).
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Figure 14: Footing: the effect of the distance definition on the load-displacement diagram (reference solution: 5184
DOFs, 1331 elements; reduced order model: 609 POD basis vectors associated with the displacement field, LDEIM
with 40 clusters).

the stiffness matrix, such as matrix assembly, might not be able to perform as efficiently as anticipated in a FEM anal-
ysis. As a result, we suggest to avoid explicitly forming K̂KK when computing the reduced stiffness matrix by employing
an appropriate matrix chain multiplication.
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