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1 Abstract

Stochastic scheduling is a crucial and
rapidly growing field that attracts signif-
icant interest across numerous domains,
particularly in the development of digital
factories. We evaluate and compare three
algorithms for the stochastic Multi-Mode
Resource Constrained Project Scheduling
Problem with Hard Deadlines. We out-
line the proactive, reactive and hybrid ap-
proaches and compare their performance
in terms of feasibility, execution time
and makespan. We also experiment with
higher variance, different instance sizes
and duration distributions to understand
the factors that affect performance. Our
results highlight the potential of the hy-
brid approach and demonstrate the funda-
mental trade-off between robustness and
schedule quality.

2 Introduction

Scheduling is one of the most pertinent
challenges of the industrial era. From
distributing assignments in a team, to
creating a plan of execution for product
development and production, scheduling
concerns all efficiency-driven companies
and agents. Throughout the years, many
deterministic and randomized algorithms
have been developed to solve these prob-
lems while experimenting with the trade-
off between optimality and runtime.

However, the uncertainty of the real
world adds another level of complexity to
this NP-hard problem [1]. With proba-
bilistic and uncertain durations of tasks,
more thorough research is required to test
and evaluate algorithms. There has been a
considerable amount of research for deter-
ministic problems [4], but not as extensive
for the stochastic version. The aim of this
project is to explore the utility of Simple
Temporal Networks with Uncertainty (or
STNUs for short) [11], in solving instances
of Resource Constraint Project Schedul-

ing Problems (or RCPSP for short) with
deadlines and comparing it to other state-
of-the-art algorithms.

A recent study [6] proposed the use
of STNUs with the RTE* algorithm [7]
to provide good approximate solutions to
the stochastic RCPSP. This algorithm uti-
lizes a Partial Order Schedule (or POS for
short) that is created offline, and adapts
it accordingly during execution. This hy-
brid approach was then compared with
simple proactive and reactive methods
and concluded that the hybrid, STNU
method outperformed the basic proactive
and reactive algorithms in terms of solu-
tion quality (measured by makespan).

We extend this study [6] by analyz-
ing the STNU-based approach for in-
stances of the Multi-Mode Resource Con-
strained Project Scheduling Problem (or
MMRCPSP for short) where some tasks
have hard deadlines. Our findings in-
dicate that the hybrid STNU-based ap-
proach can provide high-quality schedules
with high feasibility ratios. Combining it
with robust sampling consistently yields
Pareto-optimal results, as does the proac-
tive method with 0.5 quantile sampling.
Among these, proactive-0.5 achieves bet-
ter makespan, illustrating the tradeoff be-
tween feasibility and optimality.

3 Related Work

There has been a lot of research in
the fields of algorithmic and stochastic
scheduling. Ramos et al. [12] formu-
lated the Multi-Mode Resource Constraint
Project Scheduling Problem and pro-
posed a multi-start iterated local search
approach to solve it. Hartmann and
Drexl [5] provide a comprehensive com-
parison of exact branch-and-bound algo-
rithms for the MMRCPSP, introducing a
new enumeration strategy and evaluating
it against existing methods using theoret-
ical analysis and extensive computational
experiments. Bold et al. [2] proposed
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a mixed-integer linear programming ap-
proach for solving the stochastic MMR-
CPSP. Van den Houten et al. [6] proposed
the use of simple temporal networks with
uncertainty to approach the stochasticity
of the problem and provided an in depth
comparison between this new method and
two baseline ones, a proactive and a re-
active algorithm. This research addresses
the gap in existing work by incorporating
multiple modes and hard deadlines and ex-
ploring the effectiveness of STNUs in solv-
ing this scheduling problem.

4 Methodology
and Background

4.1 Problem Definition

The Multi-Mode Resource Constrained
Project Scheduling Problem with Hard
Deadlines can be expanded from [12] as
follows:
• A set of tasks T = {0, 1, . . . , n + 1},

where 0 is the dummy source and n+1
the dummy sink task.

• For each task i ∈ T \ {0, n + 1}, a set
of execution modes Mi = {1, . . . , mi}.

• A set of renewable resources R =
{1, . . . , r} with capacities ck for each
k ∈ R.

• Each mode m ∈ Mi for activity i spec-
ifies:
– A stochastic duration Di,m.
– Resource consumption rk

i,m for each
resource k.

• A set of precedence constraints (i, j) ∈
P ⊆ T ×T , indicating the strict order of
execution between tasks. These include
four types:
– PSBS ⊆ P : StartBeforeStart — task

i must start before task j starts
– PSBE ⊆ P : StartBeforeEnd — task i

must start before task j ends
– PEBS ⊆ P : EndBeforeStart — task i

must end before task j starts
– PEBE ⊆ P : EndBeforeEnd — task i

must end before task j ends

• Hard deadlines di for tasks Td ∈ T .

Decision Variables

• xi,m ∈ {0, 1} 1 if activity i is executed
in mode m, 0 otherwise.

• Si ∈ R≥0 Start time of activity i
• Di = ∑

m∈Mi
xi,mDi,m Stochastic dura-

tion of activity i
• Ei = Si + Di End time of activity i

Constraints
• ∑

m∈Mi
xi,m = 1 ∀i ∈ T \ {0, n + 1} One

mode per task

• StartBeforeStart (SBS): Si ≤
Sj ∀(i, j) ∈ PSBS Start of i before
start of j

• StartBeforeEnd (SBE): Si ≤
Ej ∀(i, j) ∈ PSBE Start of i before
end of j

• EndBeforeStart (EBS): Ei ≤
Sj ∀(i, j) ∈ PEBS End of i before
start of j

• EndBeforeEnd (EBE): Ei ≤
Ej ∀(i, j) ∈ PEBE End of i before end
of j

• ∑
i∈J

∑
m∈Mi

xi,m · rk
i,m · I[Si,Ei)(t) ≤

ck∀k ∈ R, ∀t Resource limits

• Ei ≤ di∀i ∈ Td Deadline adherence

Objectives
• min En+1 Minimize makespan

4.2 Stochastic Scheduling Algo-
rithms

Scheduling under durational uncertainty
has led to the development of various algo-
rithmic approaches, which can be broadly
positioned along a spectrum from fully
proactive to fully reactive strategies.

Before introducing the algorithms, it is
crucial to present the sampling strategies
considered, as they are relevant for all al-
gorithms. We have experimented with the
following:
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• Robust: Select the worst-case sce-
nario, assuming each activity takes its
maximum possible duration.

• Mean-based: Use the expected value
of each duration distribution.

• Quantile-based: Choose a specific
quantile (e.g., 0.9 quantile) from each
duration distribution.
The choice of sampling method influ-

ences the trade-off between schedule qual-
ity and schedule feasibility. More pes-
simistic samples (e.g., robust or high
quantile samples) typically yield higher
feasibility ratios but poorer performance
in terms of makespan. In contrast, op-
timistic samples (e.g., using means or
low quantile samples) can produce sched-
ules with shorter expected makespans, but
they are more likely to become infeasible
during execution [6].

4.2.1 The Proactive Approach

The proactive algorithm we evaluated in
this research aims to construct a sched-
ule in advance and strictly follow it dur-
ing execution, without adjusting to real-
time events. This relies on transforming
the stochastic problem into a determinis-
tic one by sampling from the duration dis-
tributions of tasks as explained above.

4.2.2 The Reactive Approach

The reactive algorithm we evaluated in
this paper, dynamically adjusts the sched-
ule in response to real-time information
(e.g. completion of tasks) during execu-
tion. It begins with an initial determin-
istic schedule based on a chosen estimate
of the activity durations, just like in the
proactive approach (e.g., mean, robust or
quantile).

During execution, whenever an activity
finishes, the algorithm checks whether the
actual completion time differs from the
estimated time. If so, it triggers a full
rescheduling procedure by solving a new
MMRCPSP instance.

4.2.3 The STNU based approach

The aforementioned algorithms will
be evaluated against an STNU-based
approach that utilizes both proactive
scheduling and dynamic adjustments
[6]. This approach creates a Partial
Order Schedule (or POS for short) which
consists of precedence relations and tem-
poral constraints but maintains temporal
flexibility in terms of actual starting
times of tasks. The POS is modelled
using an STNU, which is then checked
for dynamic controllability [10] to ensure
that the schedule can adjust in real time
to uncertain events regardless of how
they unfold. During the actual execution,
as tasks are completed and their real
durations are revealed, the starting times
of the unscheduled tasks are determined
based on the POS.

4.3 Methodology

We outline key aspects of our process, in-
cluding key assumptions and decisions.

4.3.1 Modelling the Problem

To model deadlines in the Partial Order
Schedule, we added dummy tasks repre-
senting each deadline as separate jobs with
zero resource consumption, start time at
zero and fixed duration equal to the dead-
line. These were linked via precedence
constraints to ensure all associated tasks
completed before the dummy deadline
task ended. This indirect modelling en-
forces deadline adherence during execu-
tion from the POS, without interfering
with resource constraints. One such a rep-
resentation is found in appendix C.

4.3.2 Mode selection

We perform mode selection offline for all
algorithms by solving the deterministic
CP model with sampled durations. This
simplifies execution and reduces online
runtime, as mode flexibility is not required
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during online rescheduling and thus the
number of variables and constraints de-
creases.

4.3.3 Evaluation metrics

To evaluate and compare the proactive,
hybrid and reactive strategies, we use four
metrics:
• Feasibility ratio: The proportion of

simulated scenarios in which the sched-
ule remains feasible, that is, all tasks
are completed within their deadlines
and without violating resource or tem-
poral constraints.

• Offline execution time: The time re-
quired to compute the initial schedule
before execution begins. This reflects
the planning effort and computational
complexity of the scheduling method.

• Online execution time: The time re-
quired to make real-time decisions dur-
ing execution, such as adapting the
schedule in response to observed delays
or uncertainty realizations.

• Makespan: The total time required
to complete all tasks in the project.
A lower makespan indicates higher
scheduling efficiency.

4.3.4 Distributions

In order to get a thorough understand-
ing about the nature of the problem and
the performance of the three approaches
it is crucial to consider different distribu-
tions for the uncertain durations. This
will cover a larger basis of real-world ap-
plications. For this research, we use the
uniform and binomial distributions that
relate to the noise factor as follows:
1. Uniform Distribution: The noise

factor α determines the lower and up-
per bounds of the uniform distribu-
tion using the formula:lower bound =
max(1, d − α ·

√
d), upper bound =

d + α ·
√

d, where d is the duration of
the task.

2. Binomial Distribution: The same
bounds are computed as in the uniform
case. The number of trials is set as
n = upper − lower, and durations are
sampled from a binomial distribution
with parameters n and fixed probabil-
ity p = 0.5, then shifted by the lower
bound.

5 Experimental Process

The goal of our experiments is to under-
stand the capabilities of these algorithms
and how they compare with each other un-
der varying conditions and levels of uncer-
tainty.

For this evaluation, we use instances
from PSPLIB [8], which provides a
well-established benchmark for project
scheduling. We also add deadlines for
some tasks in each sample in order to cre-
ate instances for our specific problem. The
range of deadlines is d ∈ [m, h], where d
is the deadline, m is the minimum com-
pletion time (taken as the minimum du-
ration of any mode for a task) and h is
the project horizon, the maximum com-
pletion time for all tasks (it is not consid-
ered in this project). The deadline gen-
eration uses the filename as the random
seed. This results in some infeasible in-
stances and some trivial ones, for example
when deadlines are far away, but overall
produces interpretable results since we use
the same instances for all methods.

We use PyJobShop [9] for both mod-
elling and solving deterministic reductions
of instances. The algorithms are evaluated
in instances with varying number of tasks
and varying noise factors, which affect the
uncertainty of scheduling. This gives in-
sight not only on algorithms’ performance
but also on the areas they excel at.

Finally, we run the experiments on the
DelftBlue supercomputer at TU Delft.
The exact parameter settings that we used
in the experiments can be found in Ap-
pendix A.
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(a) Uniform distribution (b) Binomial distribution

Figure 1: Feasibility ratios across three approaches. Results are based on 100 instances
with 10 tasks and a noise factor of 1.

6 Results and Discussion

We now outline the most important find-
ings and provide an analysis of the results.

6.1 Evaluation Metrics

In this section we analyze the results on
each metric individually. We omit analysis
of the offline times since, as expected, the
STNU requires longer setup time before
execution as, along with solving a deter-
ministic constraint-programming model,
it creates a partial order schedule. For
completeness we have included the corre-
sponding graph in appendix B. Offline ex-
ecution time is also, arguably, less impor-
tant than online execution time as most
agents will have limited time to adjust
their schedule online but will likely be
more willing to spend more time offline to
create a schedule.

6.1.1 Feasibility Ratio

Feasibility ratio is a key metric that
reflects the likelihood of an algorithm
producing a feasible schedule, that is,
one that satisfies all imposed constraints.
Evaluating and comparing feasibility ra-
tios across different sampling methods is
crucial, as a fully robust approach may

guarantee 100% feasibility but often at the
cost of suboptimal schedules with respect
to makespan.

Figures 1a and 1b show the feasibil-
ity ratios for all methods under the uni-
form and binomial sampling distributions,
respectively. Under the uniform distri-
bution, the hybrid STNU-based approach
consistently outperforms the two baselines
across all sampling methods.

This performance can be attributed to
the temporal flexibility offered by the hy-
brid approach, which allows it to dynami-
cally adapt schedules and handle extreme
task durations more effectively, especially
when durations approach their maximum
possible values.

In the case of the binomial distribution,
the STNU-based method still performs
best for lower quantile sampling (e.g., 75th
and 50th percentiles), though it shows a
larger dip in the higher quantile region
(e.g., 90th percentile). Notably, the fea-
sibility ratios of the STNU-based method
remain relatively stable across both distri-
butions, reinforcing the hypothesis that it
is a robust and generalizable method.

The main difference between the two
distributions lies in how the baseline
methods behave. With the binomial dis-
tribution, where values above a certain
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Figure 2: Average online execution times
across the three approaches. Results are
based on 100 instances, each evaluated
with 10 scenarios, under two noise factors
(1 and 2) and two instance sizes (10 and
20).

quantile tend to be closer to that quan-
tile, the proactive and reactive algorithms
suffer a less dramatic drop in feasibility
as the sampling quantile decreases. This
shows that the distribution choice strongly
affects algorithm performance and can
change how methods rank in terms of fea-
sibility. Additional plots for other settings
are included in Appendix B.

6.1.2 Online Execution Time

Online execution time is a critical con-
sideration when evaluating scheduling al-
gorithms, especially in real-world scenar-
ios where decisions must be made quickly
and adjustment time is limited. Excessive
overhead during execution can become a
bottleneck, undermining the practicality
of even high-quality schedules.

The online behavior of the three ap-
proaches differs significantly, as explained
in section 4.2. As shown in figure 2,
the reactive approach incurs the high-
est online execution time, while the
proactive method is the most efficient
in this regard. The STNU-based ap-
proach, although slightly more demand-
ing than the proactive algorithm due to

Methods\Quantile 0.5 0.75 0.9 1
Reactive-Proactive Proactive Reactive Reactive Reactive
Reactive-STNU STNU STNU STNU STNU
Proactive-STNU Proactive STNU STNU STNU

Table 1: Results of the Wilcoxon
Matched-Pairs Rank-Sum Test between
methods across different sampling quan-
tiles for the binomial distribution. Each
value considers all noise factor-instance
size combinations. Cells in red indicate
comparisons with non-significant differ-
ences (p-value > 0.05), using the Wilcoxon
signed-rank test with α = 0.05.

its real-time decision-making, remains sig-
nificantly more efficient than the reactive
alternative.

6.1.3 Makespan

Finally, it is critical to present and ana-
lyze one of the most important and univer-
sal metrics in scheduling, the makespan.
While each domain demands specific met-
rics and optimization objectives, minimiz-
ing the makespan of a schedule is often an
important and central goal.

The figures 3a and 3b show the
makespans for the uniform and binomial
distributions respectively. It can be ob-
served, that the STNU-based approach
outperforms both the proactive and reac-
tive approach in the robust mode by a rel-
atively substantial margin. However, as
the sampling method becomes more op-
timistic about the actual durations, the
makespan of the other two approaches
drops significantly while the value for the
hybrid one experiences much less variance.
This can be explained by the nature of
the algorithms, since the hybrid approach
does not rely on the sampling method as
much since it only uses the sample for the
partial order schedule.

When analyzing the results using this
metric alone, the proactive approach with
a mean-based sampling method seems to
be the optimal algorithm. Despite the
promising results, it is vital to under-
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(a) Uniform distribution (b) Binomial distribution

Figure 3: Makespan values across three approaches. Results are based on 100 instances
with 10 tasks and a noise factor of 1.

stand that these values were derived only
from feasible schedules, that is, sched-
ules that satisfy the constraints. Since
lower-quantile sampling methods will only
produce feasible schedules for favorable,
lower real durations, analysis should be
performed for only the common instances.
One test that can provide more insight in
this regard is the Wilcoxon Matched-Pairs
Rank-Sum Test [3], which compares the
absolute differences between the results of
the two methods and ranks them. This
is useful in our case since it will give a
clear indication to which approach outper-
forms the others, based only on common
instances.

The results of the Wilcoxon test are pre-
sented in Table 1. These findings align
with Figure 3, further illustrating the ad-
vantage of the proactive method over both
the reactive and hybrid approaches when
mean-based sampling is applied. Inter-
estingly, the hybrid algorithm shows bet-
ter performance than the reactive one,
although the difference may not reach
strong statistical significance. For a de-
tailed view of the exact p-values, which
provide further insight into the statistical
relevance of the observed differences, we
refer the reader to Table 2 in the appendix.

6.2 Cross-Metric Evaluation

We will now look at the results from a
more general point of view rather than
analysing each metric individually.

6.2.1 Sampling

From the results above it is quite clear
that the sampling used has a dramatic ef-
fect in the feasibility ratio and makespan
for the proactive and reactive approaches,
while it only seems to affect the feasi-
bility ratio for the hybrid one. Conse-
quently, robust sampling is optimal for the
hybrid method as it ensures higher feasi-
bility without compromising model perfor-
mance.

6.2.2 Pareto Analysis

To combine the feasibility ratio and
makespan and draw reasonable conclu-
sions about the performance of each al-
gorithm, we now present and analyze the
pareto frontier as shown in 4 for both dis-
tributions. Looking at the graphs it be-
comes clear that there is no silver bul-
let that produces better schedules at a
higher rate. On the other hand, we can
see that, while some sampling method-
algorithm combinations outperform oth-
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(a) Uniform distribution (b) Binomial distribution

Figure 4: Scatter plots of feasibility ratio against makespan for all sampling methods and
both uniform and binomial distributions respectively. The grey line indicates the pareto
optimal frontier.

ers, there is a tradeoff between the two
metrics.

More specifically, in both distributions,
the STNU-robust and proactive-0.5 ap-
proaches appear in the frontier, one of-
fering optimal feasibility while the other
generating better schedules. The remain-
ing plots can be found in appendix B.

It is important to note here that the
makespan results could be a bit misleading
because the proactive approach is likely
only generating feasible schedules for bet-
ter samples from the distributions, while
the hybrid one gives a feasible schedule in-
dependent of how the durations turn out.
To really understand which of the two ap-
proaches creates higher quality schedules
we run the Wilcoxon test on the two when
using the same real durations.

For both distributions we find that
the proactive-0.5 is indeed outperform-
ing the STNU-robust algorithm based on
makespan. The exact averages can be
found in the appendix B for reference.

7 Conclusion and Future
Work

In this paper we compare different ap-
proaches for the stochastic Multi-Mode

Resource Constrained Project Scheduling
Problem with Hard Deadlines. More
specifically, we evaluate reactive, proac-
tive and hybrid (STNU-based) algorithms
on four metrics, feasibility, online and of-
fline execution times and schedule qual-
ity, measured by makespan. We find that
the hybrid approach with robust sampling
gives the best tradeoff between feasibility
and makespan without introducing large
online computational overhead. The fi-
nal choice of method depends on the spe-
cific characteristics of the problem and
the scheduler’s expectations and require-
ments.

In future work, other variations of these
algorithms could be considered. For exam-
ple, mode selection could occur during ex-
ecution, increasing the flexibility of reac-
tive and hybrid approaches. Furthermore,
different modelling strategies for deadlines
could be implemented and examined, as in
our research we only focused on dummy
task-based representations.

Responsible Research

The codebase used to generate these re-
sults along with the values of each individ-
ual run are available at https://github.
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com/kimvandenhouten/PyJobShopSTNUs.
To reproduce our experiments, one can
run python pyjobshop_pipeline.py
mmrcpspd and adjust the parameters
in the pyjobshop_pipeline.py file
accordingly. While this research aimed
to approximate real-world scenarios as
much as possible, it is important to
acknowledge the assumptions made in the
process. Fixed task dependencies, perfect
knowledge of stochastic distributions,
and immediate rescheduling capabilities
without penalty were assumed. Addi-
tionally, all resource and mode-related
uncertainties are assumed to be identical
across tasks. These assumptions simplify
analysis but may limit applicability to
complex, dynamic settings.

While these algorithms require rela-
tively low computational times for small
instances, the execution times and compu-
tational demands increase exponentially
with the complexity of the problems. This
amount of resource consumption can have
a significant environmental impact and
should be considered when making deci-
sions concerning these algorithms.

Furthermore, these methods are de-
signed for efficiency and optimality and
completely neglect the human aspect of
job scheduling. They should be used with
caution when there is a direct effect on em-
ployees as they might lead to overworking
and exhaustion.
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A DelftBlue Parameters

The following configuration was used on
the DelftBlue supercomputer to run all ex-
periments:

• Job runtime limit: 5 hours
• CPUs per task: 2
• Memory per CPU: 3968 MB
• Number of tasks: 1 (non-MPI job)
• Partition used: compute

B Results

(a) Uniform distribu-
tion

(b) Binomial distri-
bution

Figure 5: Feasibility ratios across three
approaches. Results are based on 100 in-
stances with 10 tasks and a noise factor of
2.
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(a) Uniform distribu-
tion

(b) Binomial distri-
bution

Figure 6: Feasibility ratios across three
approaches. Results are based on 100 in-
stances with 20 tasks and a noise factor of
1.

(a) Uniform distribu-
tion

(b) Binomial distri-
bution

Figure 7: Feasibility ratios across three
approaches. Results are based on 100 in-
stances with 20 tasks and a noise factor of
2.

(a) Uniform distribu-
tion

(b) Binomial distri-
bution

Figure 8: Makespan values across three
approaches. Results are based on 100 in-
stances with 10 tasks and a noise factor of
2.

(a) Uniform distribu-
tion

(b) Binomial distri-
bution

Figure 9: Makespan values across three
approaches. Results are based on 100 in-
stances with 20 tasks and a noise factor of
1.

(a) Uniform distribu-
tion

(b) Binomial distri-
bution

Figure 10: Makespan values across three
approaches. Results are based on 100 in-
stances with 20 tasks and a noise factor of
2.

(a) Uniform distribu-
tion

(b) Binomial distri-
bution

Figure 11: Scatter plots of feasibility ratio
against makespan for all sampling meth-
ods and both uniform and binomial distri-
butions respectively. The grey line indi-
cates the pareto optimal frontier.
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(a) Uniform distribu-
tion

(b) Binomial distri-
bution

Figure 12: Scatter plots of feasibility ratio
against makespan for all sampling meth-
ods and both uniform and binomial distri-
butions respectively. The grey line indi-
cates the pareto optimal frontier.

(a) Uniform distribu-
tion

(b) Binomial distri-
bution

Figure 13: Scatter plots of feasibility ratio
against makespan for all sampling meth-
ods and both uniform and binomial distri-
butions respectively. The grey line indi-
cates the pareto optimal frontier.

Methods\Quantile 0.5 0.75 0.9 1
Reactive-Proactive 0.12 2.46e-47 3.88e-211 1.40e-267
Reactive-STNU 0.72 0.87 5.25e-13 3.57e-150
Proactive-STNU 3.28e-12 0.67 8.51e-35 1.12e-224

Table 2: p-values from Wilcoxon signed-
rank tests comparing method pairs across
different quantile-based sampling strate-
gies. The significance level is set to α =
0.05; values in red indicate non-significant
results (p > 0.05).

Figure 14: Average offline execution times
across the three approaches. Results are
based on 100 instances, each evaluated
with 10 scenarios, under two noise factors
(1 and 2) and two instance sizes (10 and
20).

Method Instance Noise Avg Makespan
proactive_quantile_0.50 j10 1 19.9275
proactive_quantile_0.50 j10 2 21.3207
proactive_quantile_0.50 j20 1 24.6078
proactive_quantile_0.50 j20 2 26.2917
stnu j10 1 22.2315
stnu j10 2 23.2727
stnu j20 1 31.7221
stnu j20 2 35.8393

Table 3: Average makespan for proactive
and STNU methods on job-shop instances
under two noise levels using the binomial
distribution. Values are rounded to 4 dec-
imal places.

Method Instance Noise Avg Makespan
proactive_quantile_0.50 j10 1 18.9432
proactive_quantile_0.50 j10 2 20.1532
proactive_quantile_0.50 j20 1 25.1153
proactive_quantile_0.50 j20 2 26.4150
stnu j10 1 22.74444
stnu j10 2 24.81136
stnu j20 1 33.22820
stnu j20 2 39.69285

Table 4: Average makespan for proactive
and STNU methods on job-shop instances
under two noise levels using the uniform
distribution. Values are rounded to 4 dec-
imal places.
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C Supplementary Visualiza-
tions

Figure 15: An example Gantt chart
showing resource consumption and task
scheduling for a specific instance. Tasks 11
and 12 represent deadline dummy tasks.
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